Science.gov

Sample records for beam beam interaction

  1. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  2. Beam-Bem interactions

    SciTech Connect

    Kim, Hyung Jin; /Fermilab

    2011-12-01

    In high energy storage-ring colliders, the nonlinear effect arising from beam-beam interactions is a major source that leads to the emittance growth, the reduction of beam life time, and limits the collider luminosity. In this paper, two models of beam-beam interactions are introduced, which are weak-strong and strong-strong beam-beam interactions. In addition, space-charge model is introduced.

  3. Beam-energy inequality in the beam-beam interaction

    SciTech Connect

    Krishnagopal, S.; Siemann, R. )

    1990-03-01

    Conditions for energy transparency,'' unequal-energy beams having the same beam-beam behavior, are derived for round beams from a Hamiltonian model of the beam-beam interaction. These conditions are equal fractional betatron tunes, equal synchrotron tunes, equal beam-beam strength parameters, equal nominal sizes, equal {beta}{sup *}'s and equal bunch lengths. With these conditions the only way to compensate for unequal energies is with the number of particles per bunch.

  4. Coherent beam-beam interaction with four colliding beams

    NASA Astrophysics Data System (ADS)

    Podobedov, B.; Siemann, R. H.

    1995-09-01

    The coherent beam-beam interaction in the absence of Landau damping is studied with a computer simulation of four space-charge-compensated colliding beams. Results are presented for the modes, phase space structures, widths, and growth rates of coherent beam-beam resonances. These results are compared with solutions of the Vlasov equation, and with measurements made at the Dispositif de Collisions dans l'Igloo (DCI) storage ring in Orsay, France, which operated with space-charge-compensated colliding beams.

  5. Beam-beam interaction working group summary

    SciTech Connect

    Siemann, R.H.

    1995-03-01

    The limit in hadron colliders is understood phenomenologically. The beam-beam interaction produces nonlinear resonances and makes the transverse tunes amplitude dependent. Tune spreads result from the latter, and as long as these tune spreads do not overlap low order resonances, the lifetime and performance is acceptable. Experience is that tenth and sometimes twelfth order resonances must be avoided, and the hadron collider limit corresponds roughly to the space available between resonances of that and lower order when operating near the coupling resonance. The beam-beam interaction in e{sup +}e{sup {minus}} colliders is not understood well. This affects the performance of existing colliders and could lead to surprises in new ones. For example. a substantial amount of operator tuning is usually required to reach the performance limit given above, and this tuning has to be repeated after each major shutdown. The usual interpretation is that colliding beam performance is sensitive to small lattice errors, and these are being reduced during tuning. It is natural to ask what these errors are, how can a lattice be characterized to minimize tuning time, and what aspects of a lattice should receive particular attention when a new collider is being designed. The answers to this type of question are not known, and developing ideas for calculations, simulations and experiments that could illuminate the details of the beam-beam interaction was the primary working group activity.

  6. Beam-Material Interaction

    SciTech Connect

    Mokhov, N. V.; Cerutti, F.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  7. Coulomb interactions in particle beams

    SciTech Connect

    Jansen, G.H. )

    1990-01-01

    This book develops analytical and computer models for beams in which Coulomb interactions are important. The research into the different phenomena of Coulomb interactions in particle beams is stimulated by developments in the field of electron beam lithography for VLSI electronics. The standard theory of charged particle optics breaks down for intense beams in which interactions between particles are significant. This monograph is devoted to the theory of these intense beams, which are not only used in VLSI electronics but also in scanning electron microscopes. The theory is also applicable to focused ion beams, which are used in VLSI mask repair.

  8. Halo formation from mismatched beam-beam interactions

    SciTech Connect

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  9. Coulomb interactions in particle beams

    NASA Astrophysics Data System (ADS)

    Jansen, Gerrit Hermanus

    The theory of particle interactions in low and medium density, nonrelativistic, time-independent beams of identical particles, in probe forming instruments is discussed. Low and medium density and nonrelativistic refer to beam currents typically much smaller than 1 mA and beam voltages typically between 1 and 100 keV. Time-independent implies that the flow of particles is assumed to be constant. The theory is developed for electron-beam lithography pattern generators and scanning electron microscopes. It should be applicable to focused ion beam tools as well. The analytical models used are based on the ideas of Van Leeuwen and Jansen (1983). This work is extended and confronted with other theories and the results of numerical Monte Carlo simulation. The impact of particle interactions on beams in drift space is stressed. Results of an analysis to extend the model to beams in an external uniform acceleration field are presented.

  10. Tangent map analysis of the beam-beam interaction

    SciTech Connect

    Lee, S.Y.; Tepikian, S.

    1989-01-01

    We studied the tangent map of the beam-beam interaction and found no evidence of beam-beam instability for /epsilon/ = 0.04. Tracking study with tune modulation shows however large emittance growth due to the sum resonances. The emittance growth is due to the multiple crossing of the sum resonances. 12 refs., 7 figs.

  11. Luminosity dilution due to random offset beam-beam interaction

    SciTech Connect

    Stupakov, G.

    1991-11-01

    We consider beam-beam interaction in a collider in the case when the beams randomly displace around the equilibrium orbit at the interaction point. Due to the random part of the interaction, particles diffuse over the betatron amplitude causing an emittance growth of the beam. A Fokker-Planck equation is derived in which a diffusion coefficient is related with the spectral density of the noise. Estimations for the Superconducting Super Collider parameters give a tolerable level of the high-frequency beam offset at the interaction point. 2 refs.

  12. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect

    Kim, Hyung J.; Sen, Tanaji; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  13. Closed Orbit Distortion and the Beam-Beam Interaction

    SciTech Connect

    Furman, M.; Chin, Y.; Eden, J.; Kozanecki, W.; Tennyson, J.L.; Ziemann, V.; /SLAC

    2007-02-23

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  14. Closed orbit distortion and the beam-beam interaction

    SciTech Connect

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W. |; Tennyson, J.; Ziemann, V.

    1992-06-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  15. Simulations of Beam-Beam Interaction in Linear Colliders

    NASA Astrophysics Data System (ADS)

    Chen, Pisin

    1996-05-01

    The single-pass nature of linear colliders demands that the high energy beams be focused to a minuscure dimension at the collision point in order to maximize the luminosity. In turn the collective EM fields of one beam seen by the particles of the oncoming beam is extremely strong. Various nonlinear classical electrodynamic effects (e.g., the disruption) and quantum electrodynamic effects (e.g., beamstrahlung and pair production), or even quantum chromodynamic effects (e.g., minijet events), are thus generated which influence the luminosity and the beam quality, and create severe detector backgrounds problems. While certain aspects of these very important issues can be addressed by analytic means, computer Monte Carlo simulations are indespensible to handle the very nonlinear evolutions of the beams and their collective fields. In this talk we first review the basic physics involved in linear collider beam-beam interaction. Then we describe the computer codes, mainly ABEL and CAIN, that studies these beam-beam effects. This is followed by simulation results on the various collision modes in a future linear collider, including e^+e^-, e^-e^- and γγ collisions.

  16. Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)

    SciTech Connect

    Sramek, C

    2003-11-20

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.

  17. Incoherent pair generation in a beam-beam interaction simulation

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.

    2006-03-01

    This paper deals with two topics: the generation of incoherent pairs in two beam-beam simulation programs, GUINEA-PIG and CAIN, and the influence of the International Linear Collider (ILC) beam parameter choices on the background in the micro vertex detector (VD) induced by direct hits. One of the processes involved in incoherent pair creation (IPC) is equivalent to a four fermions interaction and its cross section can be calculated exactly with a dedicated generator, BDK. A comparison of GUINEA-PIG and CAIN results with BDK allows to identify and quantify the uncertainties on IPC background predictions and to benchmark the GUINEA-PIG calculation. Based on this simulation and different VD designs, the five currently suggested ILC beam parameter sets have been compared regarding IPC background induced in the VD by direct IPC hits. We emphasize that the high luminosity set, as it is currently defined, would constrain both the choices of magnetic field and VD inner layer radius.

  18. Observations and open questions in beam-beam interactions

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  19. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  20. Spin Depolarization due to Beam-Beam Interaction in Nlc

    NASA Astrophysics Data System (ADS)

    Thompson, Kathleen A.

    2002-04-01

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions.1 We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  1. The beam-beam interaction in e[sup +]e[sup [minus

    SciTech Connect

    Siemann, R.H.

    1993-03-01

    This article is a personal perspective about the physics of the beam-beam interaction. This is an active area of research combining operational experience, experiments, computer models, and theory with the goal being to overcome the shortcomings above. This research hasn't progressed sufficiently to quantitatively explain beam-beam limits, but there are qualitative explanations of many of the features of the beam-beam interaction and clear directions for future developments.

  2. The beam-beam interaction in e{sup +}e{sup {minus}} storage rings

    SciTech Connect

    Siemann, R.H.

    1993-03-01

    This article is a personal perspective about the physics of the beam-beam interaction. This is an active area of research combining operational experience, experiments, computer models, and theory with the goal being to overcome the shortcomings above. This research hasn`t progressed sufficiently to quantitatively explain beam-beam limits, but there are qualitative explanations of many of the features of the beam-beam interaction and clear directions for future developments.

  3. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  4. Neutral Beam Interactions with Materials.

    DTIC Science & Technology

    1985-11-22

    studies of electron beam pumped optical emission , we have performed extensive research into the problems of field- emission cathode designs for jlis...starting point for this work. The basic configuration for the initial diode experiments is depicted in Figure 1. Both carbon fiber and velvet cathodes were...2,523( 0981). 35 i 12. " Explosive emission of electrons ," S.P. Bugaev, E.A. Litvinov, G.A. Mesyats, and D.1. Proskurovskii, Sov. Phys.-Usp.,1,5 1

  5. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  6. TUNE MODULATION FROM BEAM BEAM INTERACTION AND UNEQUAL RADIO FREQUENCIES IN RHIC.

    SciTech Connect

    FISCHER,W.CAMERON,P.PEGGS,S.SATOGATA,T.

    2003-05-19

    The two RHIC rings have independent rf systems to accommodate different species. Thus, the radio frequencies can differ when the phase and radial loops are closed, and the if frequencies of the two rings are not synchronized. A radio frequency difference leads to longitudinally moving beam crossing points. When the crossing points are between the beam splitting dipoles, the beams experience the beam-beam interaction. Outside the interaction region the beam-beam interaction is switched off. In this way the tune is modulated. A computation of the tune modulation depth, pulse shape and frequency is presented. Tune modulation measurements are shown.

  7. Fast ion beam-plasma interaction system.

    PubMed

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  8. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  9. The Particle Beam Optics Interactive Computer Laboratory

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C. |

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. {copyright} {ital 1997 American Institute of Physics.}

  10. The Particle Beam Optics Interactive Computer Laboratory

    SciTech Connect

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.

  11. The Particle Beam Optics Interactive Computer Laboratory

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.

  12. Review of linear collider beam-beam interaction

    SciTech Connect

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.

  13. Beam-beam deflections as an interaction point diagnostic for the SLC

    SciTech Connect

    Bambade, P.; Erickson, R.

    1986-05-01

    A technique is described for non-destructive measurement and monitoring of the steering offset of the electron and positron beams at the interaction point of the SLC, based on using stripline beam-position monitors to measure the centroid of one beam as it is deflected by the opposing beam. This technique is also expected to provide diagnostic information related to the spot size of the micron-size beams.

  14. Beam-beam interaction study of medium energy eRHIC

    SciTech Connect

    Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.

    2009-07-15

    Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.

  15. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  16. Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Li, Yuanyuan; Zhang, Yanpeng

    2014-03-24

    We investigate numerically interactions between two in-phase or out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media in one transverse dimension. We discuss different cases in which the beams with different intensities are launched into the medium, but accelerate in opposite directions. Since both the Airy beams and nonlinear accelerating beams possess infinite oscillating tails, we discuss interactions between truncated beams, with finite energies. During interactions we see solitons and soliton pairs generated that are not accelerating. In general, the higher the intensities of interacting beams, the easier to form solitons; when the intensities are small enough, no solitons are generated. Upon adjusting the interval between the launched beams, their interaction exhibits different properties. If the interval is large relative to the width of the first lobes, the generated soliton pairs just propagate individually and do not interact much. However, if the interval is comparable to the widths of the maximum lobes, the pairs strongly interact and display varied behavior.

  17. Beam-beam interaction in an asymmetric collider for B-physics

    SciTech Connect

    Chin, Yong Ho.

    1989-08-01

    This note is devoted to deriving the minimum criteria to achieve a symmetrical behavior of unequal energy beams in asymmetric colliders for B-physics. The computer simulation results suggest that at least the following quantities should be equalized in the two rings: beam-beam tune shift, cross-sectional area at the interaction point, damping decrement per turn, and betatron phase modulation due to synchrotron motion. 5 refs., 5 figs., 1 tab.

  18. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, K. ); Chen, P. )

    1989-05-05

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC.

  19. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, Kaoru; Chen, Pisin

    1988-09-01

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC. 7 refs., 1 fig.

  20. Ionosphere/microwave beam interaction study

    NASA Technical Reports Server (NTRS)

    Gordon, W. E.; Duncan, L. M.

    1978-01-01

    The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.

  1. Multi-transmission-line-beam interactive system

    SciTech Connect

    Figotin, Alexander; Reyes, Guillermo

    2013-11-15

    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

  2. Three regimes of relativistic beam - plasma interaction

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-01

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?ωpe: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  3. Three regimes of relativistic beam - plasma interaction

    SciTech Connect

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-21

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?{omega}{sub pe}: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  4. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  5. Intense e-beam interaction with matter

    SciTech Connect

    Ritchie, R.H.; Crawford, O.H.

    1984-01-01

    This document describes work done in this period on certain nonlinear processes of potential importance at high energy densities in condensed matter, and on the theory of the electron slowing-down-cascade spectrum engendered in solids by e-beams.

  6. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    SciTech Connect

    Scisciò, M.; Antici, P.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  7. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  8. Effects of parasitic beam-beam interaction during the injection process at the PEP-II B Factory

    SciTech Connect

    Chin, Y.H.

    1992-06-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory, PEP-II. It is shown that the parasitic beam-beam interaction can lead to a significant blowup in the vertical size of the injected beam. Simulation results for the horizontal and the vertical injection schemes are presented, and their performances are studied.

  9. Beam-Plasma Interaction in a 2D Complex Plasma

    NASA Astrophysics Data System (ADS)

    Kyrkos, Stamatios; Kalman, G. J.; Rosenberg, M.

    2006-10-01

    In a complex (dusty) plasma, penetrating ion or electron beams may lead to beam-plasma instabilities. The instability displays interesting new properties when either the plasma or the beam, or both, are strongly interacting^1. Foremost amongst them is the possible generation of transverse instabilities. We consider the case when a 2D plasma is in the crystalline phase, forming a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a realistic Yukawa potential. The beam particles are assumed to be weakly coupled to each other and to the lattice^2. Using the full phonon spectrum for a 2D hexagonal Yukawa lattice^3, we determine and compare the transverse and longitudinal growth rates. The behavior of the growth rates depends on the direction of the beam and on the relationship between the beam speed v and the longitudinal and transverse sound speeds sL, sT. For beam speeds between the longitudinal and transverse sound speeds, the transverse instability could be more important, because it appears at lower k values. ^1 G. J. Kalman and M. Rosenberg, J. Phys. A: Math. Gen. 36 5963 (2003) ^2 M. Rosenberg, G. J. Kalman, S. Kyrkos and Z. Donko, J. Phys. A: Math. Gen. 39 4613 (2006) ^3 T. Sullivan, G. J. Kalman, S. Kyrkos, P. Bakshi, M. Rosenberg and Z. Donko, J. Phys. A: Math. Gen. 39 4607 (2006)

  10. Atom beam surface interaction studies: Experimental system development

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1973-01-01

    Quantitative deposition by standard techniques of adsorbates containing C and Si onto selected substrates is studied. The interaction kinetics of a beam of oxygen, nitrogen, or hydrogen atoms of known flux are investigated by Auger electron spectroscopy and LEED. Desborbed molecules will be analyzed by mass spectroscopy using modulated beam techniques. Experimental conditions permitting, two sets of measurements will be correlated.

  11. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    SciTech Connect

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  12. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  13. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.

    SciTech Connect

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-05-16

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.

  14. Generation of filamentary structures by beam-plasma interaction

    SciTech Connect

    Wang, X.Y.; Lin, Y.

    2006-05-15

    The previous simulations by Wang and Lin [Phys. Plasmas. 10, 3528 (2003)] showed that filaments, frequently observed in space plasmas, can form via the interaction between an ion beam and a background plasma. In this study, the physical mechanism for the generation of the filaments is investigated by a two-dimensional hybrid simulation, in which a field-aligned ion beam with relative beam density n{sub b}=0.1 and beam velocity V{sub b}=10V{sub A} is initiated in a uniform plasma. Right-hand nonresonant ion beam modes, consistent with the linear theory, are found to be dominant in the linear stage of the beam-plasma interaction. In the later nonlinear stage, the nonresonant modes decay and the resonant modes grow through a nonlinear wave coupling. The interaction among the resonant modes leads to the formation of filamentary structures, which are the field-aligned structures (k perpendicular B) of magnetic field B, density, and temperature in the final stage. The filaments are nonlinearly generated in a prey-predator fashion by the parallel and oblique resonant ion beam modes, which meanwhile evolve into two types of shear Alfven modes, with one mainly propagating along the background field B{sub 0} and the other obliquely propagating. The filamentary structures are found to be phase standing in the plasma frame, but their amplitude oscillates with time. In the dominant filament mode, fluctuations in the background ion density, background ion temperature, and beam density are in phase with the fluctuations in B, whereas the significantly enhanced beam temperature is antiphase with B. It is found that the filaments are produced by the interaction of at least two ion beam modes with comparable amplitudes, not by only one single mode, thus their generation mechanism is different from other mechanisms such as the stimulated excitation by the decay of an Alfven wave.

  15. Electron Beam/Converter Target Interactions in Radiographic Accelerators

    SciTech Connect

    McCarrick, J; Caporaso, G; Chambers, F; Chen, Y-J; Falabella, S; Goldin, F; Guethlein, G; Ho, D; Richardson, R; Weir, J

    2003-05-27

    Linear induction accelerators used in X-ray radiography have single-pulse parameters of the order 20 MeV of electron beam energy, 2 kA of beam current, pulse lengths of 50-100 ns, and spot sizes of 1-2 mm. The thermal energy deposited in a bremsstrahlung converter target made of tantalum from such a pulse is {approx}80 kJ/cc, more than enough to bring the target material to a partially ionized state. The tail end of a single beam pulse, or any subsequent pulse in a multi-pulse train, undergoes a number of interactions with the target that can affect beam transport and radiographic performance. Positive ions extracted from the target plasma by the electron beam space charge can affect the beam focus and centroid stability. As the target expands on the inter-pulse time scale, the integrated line density of material decreases, eventually affecting the X-ray output of the system. If the target plume becomes sufficiently large, beam transport through it is affected by macroscopic charge and current neutralization effects and microscopic beam/plasma instability mechanisms. We will present a survey of some of these interactions, as well as some results of an extensive experimental and theoretical campaign to understand the practical amelioration of these effects, carried out at the ETA-II accelerator facility at the Lawrence Livermore National Laboratory.

  16. Beam-beam simulations for separated beams

    SciTech Connect

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  17. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  18. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  19. Beam-target interaction experiments for Bremsstrahlung converter applications

    SciTech Connect

    Buckles, R; Caparaso, G; Chen, Y-J; Crist, C; Falabella, S; Houck, T; Krogh, M; McCarrick, J; Richardson, R; Sampayan, S; Sanders, D; Weir, J; Westenkow, G

    1999-03-01

    The authors are investigating the possible adverse effects of (1) backstreaming ion emission from the Bremsstrahlung converter target and (2) the interaction of the resultant plasma with the electron beam during subsequent pulses for multi-pulse radiography facilities. These effects would primarily manifest themselves in a static focusing system as a rapidly varying x-ray spot. To study these effects, they are conducting beam-target interaction experiments on the ETA-II accelerator (a 6.0 MeV, 2.5 kA, 70 ns FWHM pulsed, electron accelerator). They are measuring spot dynamics and characterizing the resultant plasma for various configurations. Thus far, their experiments show that the first effect is not strongly present when the beam initially interacts with the target. Electron beam pulses delivered to the target after formation of a plasma are strongly affected. They have also performed initial experiments to determine the effect of the beam propagating through the plasma. This data shows that the head of the beam is relatively robust, but that backstreaming ions from the plasma can still manifest itself as a dynamic focus toward the tail of the beam. They report on the details of the experimental work to suppress these effects.

  20. Interceptive Beam Diagnostics - Signal Creation and Materials Interactions

    SciTech Connect

    Plum, Michael

    2004-11-10

    The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.

  1. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  2. Coherent beam-beam effects, theory & observations

    SciTech Connect

    Yuri I Alexahin

    2003-07-16

    Current theoretical understanding of the coherent beam-beam effect as well as its experimental observations are discussed: conditions under which the coherent beambeam modes may appear, possibility of their resonant interaction (coherent resonances), stability of beam-beam oscillations in the presence of external impedances. A special attention is given to the coherent beam-beam modes of finite length bunches: the synchro-betatron coupling is shown to provide reduction in the coherent tuneshift and--at the synchrotron tune values smaller than the beam-beam parameter--Landau damping by overlapping synchrotron satellites.

  3. Damping Ring to Interaction Point Beam Transport Issues

    SciTech Connect

    Tenenbaum, Peter G

    2003-08-08

    One of the major challenges facing the proposed high-energy linear e{sup +}e{sup -} colliders is the preservation of the extremely small vertical emittance from the damping rings to the interaction point (IP). This emittance must be transported through bunch compression sections, the main linac and finally through the beam delivery system to the IP. Historically, the beam dynamics issues of each subsystem have been studied quasi-independently, with the beam conditions and tolerances being specified at the boundaries. As part of the recent International Linear Collider Technical Review Committee [1], new simulation tools have been developed to simulate the beam transport through the integrated system, including static and dynamic errors, stabilization systems, and tuning algorithms.

  4. Summary of working group g: beam material interaction

    SciTech Connect

    Kiselev, D.; Mokhov, N.V.; Schmidt, R.; /CERN

    2010-11-01

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  5. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  6. Interaction of Photon Vortex Beams with Atomic Matter

    NASA Astrophysics Data System (ADS)

    Solyanik, Maria; Afanasev, Andrei; Carlson, Carl E.

    2017-01-01

    In our work we consider helical Bessel beams' (BB's) propagation and interaction with isotropic matter. Dynamical properties of the beams with non-zero orbital angular momentum (OAM), which are determined by spatial degrees of freedom and polarization, modify the fundamental processes in light-matter interactions. Circular dichroism of BBs propagating in hydrogen gas was considered within the frame of studying the vortex beams' attenuation due to photoabsorption in hydrogen gas. In this case, the phenomenon is due to the topology of the wave front, contrary to the zero OAM case, when the change in polarization state is due to matter inhomogeneity. The effect of circular dichroism has been predicted by calculating the beam ellipticity evolution when traversing an isotropic target. According to our results, the BBs' transverse ellipticity profile has a structure of concentric circular maxima which correspond to minima of the intensity. The characteristic polarization singularity arises on the beam axis as the result of interaction with matter. It is shown, that even for the case of the paraxial approximation the effect of circular dichroism takes place. These signatures can be used for theoretical and experimental analysis of the interactions of optical vortices with atomic matter.

  7. SUMMARY OF BEAM BEAM OBSERVATIONS DURING STORES IN RHIC.

    SciTech Connect

    FISCHER,W.

    2003-05-19

    During stores, the beam-beam interaction has a significant impact on the beam and luminosity lifetimes in RHIC. This was observed in heavy ion, and even more pronounced in proton collisions. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. In addition, RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. Coherent beam-beam modes were observed, and suppressed by tune changes. In this article we summarize the most important beam-beam observations made during stores so far.

  8. Particle Simulations for Electron Beam-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-cheng; G, Zhou C.; Li, Yang; Cao, Jin-bin; J, Cao B.; Wang, Xue-yi; X, Wang Y.

    1998-12-01

    The computer simulations of high-frequency instabilities excited by the high density electron beam and their nonlinear effect are presented. One-dimensional electromagnetic particle simulations are performed with different values of the electron beam-to-plasma density ratio. The results show that for the high electron beam-to-background plasma density ratio, all the Langmuir waves and two electromagnetic waves with left-hand and right-hand circular polarizations (i.e., the "L-O mode" and the "R-X mode") propagating parallel to the magnetic field can be generated and the maximum values of wave electric fields are nearly the same. The electron beam and background plasma are diffused and a part of energetic background electrons are obviously accelerated by the wave-particle interactions. The heating of the beam and background plasma is mainly due to the electrostatic (Langmuir) wave-particle interactions, but the accelerations of a part of energetic background electrons may be mainly due to the electromagnetic wave-particle interactions.

  9. Cartesian beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2007-12-01

    A new and very general beam solution of the paraxial wave equation in Cartesian coordinates is presented. We call such a field a Cartesian beam. The complex amplitude of the Cartesian beams is described by either the parabolic cylinder functions or the confluent hypergeometric functions, and the beams are characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integration are studied in detail. Applying the general expression of the Cartesian beams, we also derive two new and meaningful beam structures that, to our knowledge, have not yet been reported in the literature. Special cases of the Cartesian beams are the standard, elegant, and generalized Hermite-Gauss beams, the cosine-Gauss beams, the Lorentz beams, and the fractional order beams.

  10. An interactive beam line simulator module for RHIC

    SciTech Connect

    MacKay, W.W.

    1997-07-01

    This paper describes the interactive simulation engine, bl, designed for the RHIC project. The program tracks as output to shared memory the central orbit, Twiss and dispersion functions, as well as the 6 x 6 beam hyperellipsoid. Transfer matrices between elements are available via interactive requests. Using a 6-d model, optical elements are modeled with a linear transfer matrix and a vector. The vector allows simulation of misalignments, shifts in field strengths, and beam rigidity. Currently only a linear model is used for elements. In addition to the usual magnets, a foil element is included which can shift the beam`s rigidity (resulting from a change of charge and energy loss), as well as increase the momentum spread and emittance. Running as a Glish client, bl can be interfaced to other programs, such as an orbit plotter and a power supply application to give a quick prediction of the beam orbit from actual operating currents in the accelerator. Various strengths and offsets may be changed by sending Glish events to bl.

  11. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect

    Mastoridis, Themistoklis

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  12. Documentation for TRACE: an interactive beam-transport code

    SciTech Connect

    Crandall, K.R.; Rusthoi, D.P.

    1985-01-01

    TRACE is an interactive, first-order, beam-dynamics computer program. TRACE includes space-charge forces and mathematical models for a number of beamline elements not commonly found in beam-transport codes, such as permanent-magnet quadrupoles, rf quadrupoles, rf gaps, accelerator columns, and accelerator tanks. TRACE provides an immediate graphic display of calculative results, has a powerful and easy-to-use command procedure, includes eight different types of beam-matching or -fitting capabilities, and contains its own internal HELP package. This report describes the models and equations used for each of the transport elements, the fitting procedures, and the space-charge/emittance calculations, and provides detailed instruction for using the code.

  13. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  14. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  15. Parametrization of Chaos in the Beam-Wave Interactions

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Lee, Jae Koo; Hur, Min Sup

    1997-11-01

    When a high energy beam flows through a bulk plasma, there are nonlinear interactions between the beam and the waves in the plasma, triggering a self oscillation and various routes to chaos. In this study, the period-doubling routes to chaos in several undriven beam-plasma systems are simulated with fluid and particle codes. In this bifurcation, a comprehensive parameter which is defined as the ratio of bounce to oscillation frequencies divided by the velocity slippage is used for the deterministic parameter of limit-cycle, period-doubled, period-quadrupled, and chaotic oscillations independent of input parameters. For different systems such as extended Pierce-diode (B.B. Godfrey, Phys. Fluids 30), 1553 (1987). and infinite homogeneous beam-plasma interaction (J.K. Lee and S.J. Hahn, IEEE Trans. Plasma Sci. 19), 52 (1991)., the larger value of the parameter makes the system more chaotic in analogy with free-electron-laser chaos (S.J. Hahn and J.K. Lee, Phys. Rev. E, 2162 (1993).). This single parameter represents the role of many input parameters, thus suitable for a simplifying and diagnostic measure of nonlinear dynamical and chaotic phenomena for various systems of particle-wave interactions. For the driven extended Pierce-diode system, the quasiperiodic oscillations are also observed.

  16. The quantum measurement effect of interaction without interaction for an atomic beam

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Yi

    When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt / T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration's period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam.

  17. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    SciTech Connect

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-06-01

    The 300{mu}s, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/{mu}s for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/{mu}s should minimize hydrodynamic effects. 3D calculations support this.

  18. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    SciTech Connect

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P. ); Mokhov, N.V. )

    1993-01-01

    The 300[mu]s, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/[mu]s for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/[mu]s should minimize hydrodynamic effects. 3D calculations support this.

  19. Effect of the beam-beam interactions on the dynamic aperture and amplitude growth in the LHC

    SciTech Connect

    C. Johnstone and W. Wan; N. Gelfand; T. Sen

    1999-06-17

    The dynamic aperture at collision energy is determined pri-marily by the nonlinear fields of the IR quadrupoles but is also influenced by the beam-beam interactions. We revisit the choice of the crossing angle that maximizes the dynamic aperture with an accurate modeling of the long-range inter-actions and use of the present values of the IR quadrupole field harmonics. A separate but related issue we address is the amplitude growth of particles in the beam halo due to the long-range interactions.

  20. SPS ionosphere/microwave beam interactions: Arecibo experimental studies

    SciTech Connect

    Duncan, L.M.

    1980-10-01

    The purpose of this program is to determine the environmental impacts associated with the operation of the proposed SPS microwave power transmission system. It is expected that thermal effects will provide the dominant force driving the nonlinear ionosphere/microwave beam interactions. Collisional damping of radio waves, producing ohmic heating of the ionospheric plasma, depends inversely on the square of the radio wave frequency. Therefore, equivalent heating and equivalent thermal forces can be generated at lower radiated power densities by using lower radio wave frequencies. This principle is fundamental to a large part of the experimental program. An understanding of the physics of the specific interactions excited by the SPS microwave beam is also an important part of the assessment program. This program is designed to determine instability thresholds, the growth rates and spatial extent of the resultant ionospheric disturbances, and the frequency and power dependences of the interactions. How these interactions are affected by variations in the natural ionospheric conditions, how different instabilities occurring simultaneously may affect each other, and how distinct microwave beams might mutually interact are studied. Status of the program is described. (WHK)

  1. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  2. Slow electrostatic fluctuations generated by beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pommois, Karen; Valentini, Francesco; Pezzi, Oreste; Veltri, Pierluigi

    2017-01-01

    Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regimes. In 1968, O'Neil and Malmberg [Phys. Fluids 11, 1754 (1968)] dubbed these waves "beam modes." In the present paper, previous analytical results on the beam modes in both linear and nonlinear regimes have been revisited numerically, pointing out that, when an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, new numerical results give evidence that, when the initial density perturbation is setup in the form of a low amplitude random phase noise, the whole Fourier spectrum of wavenumbers is excited. As a result, the electric field profile appears as a train of isolated pulses, each of them being associated with a phase space vortex in the electron distribution function. At later times, these vortical structures tend to merge and, correspondingly, the electric pulses collapse, showing the tendency towards a time asymptotic configuration characterized by the appearance of electric soliton-like pulses. This dynamical evolution is driven by purely kinetic processes, possibly at work in many space and laboratory plasma environments.

  3. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  4. Probabilistic model of beam-plasma interaction and electromagnetic radioemission

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii

    2016-07-01

    In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.

  5. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  6. Recent observations of beam plasma interactions in the ionosphere and a comparison with laboratory studies of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Kellogg, P. J.; Monson, S. J.; Holzworth, R. H.; Whalen, B. A.

    1982-01-01

    Experimental results from an electron beam injection rocket flight (27:010 AE) launched into an active aurora are summarized. The rocket carried an accelerator which injected programmed electron beams of less than 100 ma at 2 and 4 kV into the ionospheric plasma over the altitude range 120-240 km. A major objective of the experiment was the study of beam-plasma interactions and the possible identification of the ignition of the beam-plasma discharge (BPD) which had been intensively studied in the laboratory. A qualitative assessment of the data indicates that BPD ignition was produced by both 10 ma and Im beams at 2 and 4 kV. Many of the observed characteristics are similar to the BPD characteristics observed in the laboratory.

  7. Recent observations of beam plasma interactions in the ionosphere and a comparison with laboratory studies of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Kellogg, P. J.; Monson, S. J.; Holzworth, R. H.; Whalen, B. A.

    1982-01-01

    Experimental results from an electron beam injection rocket flight (27:010 AE) launched into an active aurora are summarized. The rocket carried an accelerator which injected programmed electron beams of less than 100 ma at 2 and 4 kV into the ionospheric plasma over the altitude range 120-240 km. A major objective of the experiment was the study of beam-plasma interactions and the possible identification of the ignition of the beam-plasma discharge (BPD) which had been intensively studied in the laboratory. A qualitative assessment of the data indicates that BPD ignition was produced by both 10 ma and Im beams at 2 and 4 kV. Many of the observed characteristics are similar to the BPD characteristics observed in the laboratory.

  8. Dependence of the beam-channel interaction force on the radial profiles of a relativistic electron beam and an ion channel in the ion-focusing regime

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Manuilov, A. S.

    2017-02-01

    We have derived the formulas for calculating the force of the interaction of a relativistic electron beam with an ion plasma channel in the case of the beam transportation during ion focusing. The dependence of the difference in radial profiles of the beam and the ion channel on this force for different amplitudes of beam deviations from the channel symmetry axis has been studied.

  9. Interactions of the Cluster Beams with Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Nakagawa, Sachiko T.

    The characteristics of a cluster beam interaction with a solid target are reviewed from the viewpoint of computer simulation. The similarity and dissimilarity of irradiation effects between single and cluster ion beams are the main emphasis of the review. The speed-range of a projectile studied is below the Bethe range (v1≤v0 Z1) but not so low, where electronic energy loss is significant. Because of the multiple collisions (in time and space) a classical molecular dynamic simulation is useful, whereas the multiplicity in energy is more significant for a molecular projectile. Here the collision stage of energy transfer from a projectile to target during the collision stage is separated from the succeeding relaxation stage. The multiplicity in the collision stage can cause molecular effects, however they are not always so significant. In the relaxation stage a somewhat enhanced effect can occur when the locally deposited energy exceeds a certain level.

  10. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  11. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  12. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  13. Interaction of turbulence with flexible beams in fluidic energy harvesting

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, Amir Hossein

    experimental results. The power output response spectrum of a generic piezoelectric beam in grid turbulence is also studied and recommendations are made on the type of beam that will produce the largest output in turbulence. Finally, the interaction of two piezoelectric harvesters in quiescent flow and grid turbulence is theoretically modeled and experimentally validated.

  14. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  15. Electron-electron interaction in ballistic electron beams

    NASA Astrophysics Data System (ADS)

    Müller, F.; Lengeler, B.; Schäpers, Th.; Appenzeller, J.; Förster, A.; Klocke, Th.; Lüth, H.

    1995-02-01

    The transport of ballistic electrons emitted and detected by adjacent point contacts in a two-dimensional electron gas (2DEG) in the system GaAs/AlxGa1-xAs was measured at 1.2 K as a function of the emitter current. Hot carriers with a surplus energy up to 15 meV above the Fermi level were generated by the current flow. It is shown that electron-electron scattering is the main limitation for the quasiparticle lifetime. The experimental data for the ballistic electron propagation from emitter to detector are explained without free parameters by a theory developed by Chaplik and by Giuliani and Quinn. In addition, it is shown that crossing ballistic electron beams in a 2DEG interact with one another, if one of the beams contains hot electrons in the zone of interaction. Experiments on the influence of impurities on the mean free path of ballistic electrons should be done with currents as low as 10 nA. Otherwise, the mean free path contains a contribution from electron-electron scattering. Electron-electron interaction of hot carriers is a serious basic limitation for future devices based on the transport of electrons in the mesoscopic transport regime.

  16. Far-field measurements of vortex beams interacting with nanoholes

    PubMed Central

    Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel

    2016-01-01

    We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams. PMID:26911547

  17. Beam-cavity interaction measurements in a DAW structure

    SciTech Connect

    Iwashita, Y.; Schriber, S.O.; Potter, J.M.; Swenson, D.A.; Mavrogenes, G.S.

    1985-01-01

    Mode excitations induced by relativistic electron beams have been measured in a disk-and-washer (DAW) structure. The structure had three washers, each with four radial support stems, and half-disk end terminations. The design DAW operating frequency was 1300 MHz, the same as that used to accelerate the electron beam. Both short-pulse (35-ps, 800-Hz, 17-nC/pulse) and long-pulse (10-..mu..s, 2-A average) conditions were used in the beam-excitation experiments. Mode spectra were measured and identified using low-power techniques employed after the high-power beam measurements. Mode frequency calculations for the complete three-washer geometry were performed using URMEL for up to m = 7. Calculated results are compared with data determined from low-power and beam-driven excitation of the DAW structure. 5 refs., 2 figs.

  18. Beam-cavity interaction measurements in a DAW structure

    NASA Astrophysics Data System (ADS)

    Iwashita, Y.; Schriber, S. O.; Potter, J. M.; Swenson, D. A.; Mavrogenes, G. S.

    Mode excitations induced by relativistic electron beams have been measured in a disk and washer (DAW) structure. The structure had three washers, each with four radial support stems, and half disk end terminations. The design DAW operating frequency was 1300 MHz, the same as that used to accelerate the electron beam. Both short pulse (35-ps, 800-Hz, 17-nC/pulse) and long pulse (10-(MU)s, 2-A average) conditions were used in the beam excitation experiments. Mode spectra were measured and identified using low power techniques employed after the high power beam measurements. Mode frequency calculations for the complete three washer geometry were performed using URMEL for up to m = 7. Calculated results are compared with data determined from low power and beam driven excitation of the DAW structure.

  19. Far-field measurements of vortex beams interacting with nanoholes

    NASA Astrophysics Data System (ADS)

    Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel

    2016-02-01

    We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams.

  20. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  1. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  2. Semi-Classical theory of Nonlinear interaction of circularly polarized optical vortex beam with plasma channel

    NASA Astrophysics Data System (ADS)

    Sharma, B. S.; Dhabhai, R. C.; Sharma, A.; Jaiman, N. K.

    2017-05-01

    A semiclassical approach of nonlinear interaction of intense circularly polarized optical vortex Laguerre-Gaussian (LG) beam modes with a plasma channel is analyzed theoretically and numerically. We study an exchange of angular momentum between the vortex beam and plasma channel. The transfer of angular momentum and the generated magnetic field are calculated. We have observed that both the generated magnetic field and angular momentum transfer depend on beam mode, intensity, and the polarization state of beam mode.

  3. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  4. A novel method to survey parameters of an ion beam and its interaction with a target

    NASA Astrophysics Data System (ADS)

    Long, J. D.; Yang, Z.; Li, J.; Wang, X. H.; Wang, T.; Lan, C. H.; Dong, P.; Li, X.; He, J. L.; Zheng, L.; Liu, P.

    2017-09-01

    Beam profile and composition of the pulsed ion beam from a vacuum arc source are valuable information for designing a high-intensity deuterium-tritium neutron generator. Traditional methods are notoriously difficult to obtain the information at the same time. A novel off-line diagnostic method is presented, which can obtain the transverse beam profile with high resolution as well as species of the ions in the beam. The method is using a silicon target with high purity to interact with the ion beam, and then use secondary ion mass spectrometry (SIMS) to analyze the interaction zone of the target to get the beam information. More information on beam-target interaction could get simultaneously. Proof-of-principle simulation and experimental works have demonstrated this method is practical.

  5. Electromagnetic rogue waves in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Veldes, G. P.; Borhanian, J.; McKerr, M.; Saxena, V.; Frantzeskakis, D. J.; Kourakis, I.

    2013-06-01

    The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency.

  6. Beam Losses and Background Loads on Collider Detectors Due to Beam-Gas Interactions in the LHC

    SciTech Connect

    Drozhdin, A.I.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2009-04-01

    With a fully-operational high-efficient collimation system in the LHC, nuclear interactions of circulating protons with residual gas in the machine beam pipe can be a major source of beam losses in the vicinity of the collider detectors, responsible for the machine-induced backgrounds. Realistic modeling of Coulomb scattering, elastic and inelastic interactions of 7-TeV protons with nuclei in the vacuum chamber of the cold and warm sections of the LHC ring--with an appropriate pressure profile--is performed with the STRUCT and MARS15 codes. Multi-turn tracking of the primary beams, propagation of secondaries through the lattice, their interception by the tertiary collimators TCT as well as properties of corresponding particle distributions at the CMS and ATLAS detectors are studied in great detail and results presented in this paper.

  7. Spin-orbit interaction of light and diffraction of polarized beams

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr Ya

    2017-08-01

    The edge diffraction of a homogeneously polarized light beam is studied theoretically based on the paraxial optics and Fresnel-Kirchhoff approximation, and the dependence of the diffracted beam pattern of the incident beam polarization is predicted. If the incident beam is circularly polarized, the trajectory of the diffracted beam center of gravity exhibits a small angular deviation from the geometrically expected direction. The deviation is parallel to the screen edge and reverses the sign with the polarization handedness; it is explicitly calculated for the case of a Gaussian incident beam with a plane wavefront. This effect is a manifestation of the spin-orbit interaction of light and can be interpreted as a revelation of the internal spin energy flow immanent in circularly polarized beams. It also exposes the vortex character of the weak longitudinal field component associated with the circularly polarized incident beam.

  8. COMPARISON BETWEEN THE PREDICTIONS AND MEASUREMENTS FOR THE BEAM GAS INTERACTIONS DURING THE LAST GOLD AND PROTON RUNS IN RHIC.

    SciTech Connect

    TRBOJEVIC,D.; HSEUH,H.C.; FISCHER,W.; ZHANG,S.Y.; MACKAY,W.W.

    2002-06-02

    The last gold-gold and polarized proton-proton collision runs were performed at energies of 100 GeV/nucleon. The beam gas interactions in RHIC are very important for the beam lifetime in RHIC. In this report the lifetime predicted by pressure data differences between the beams ON and beams OFF, at the energies of 100 GeV/nucleon. are compared to the predictions for the beam gas interaction and beam lifetimes.

  9. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  10. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  11. Beam-cavity interaction measurements in a DAW structure

    SciTech Connect

    Iwashita, Y.; Mavrogenes, G.S.; Potter, J.M.; Schriber, S.O.; Swenson, D.A.

    1985-10-01

    Mode excitations induced by relativistic electron beams have been measured in a disk-and-washer (DAW) structure. The structure had three washers, each with four radial support stems, and half-disk end terminations. The design DAW operating frequency was 1300 MHz, the same as that used to accelerate the electron beam. Both short-pulse (35-ps, 800-Hz, 17-nC/pulse) and long-pulse (10-..mu..s, 2-A average) conditions were used in the beam-excitation experiments. Mode spectra were measured and identified using lowpower techniques employed after the high-power beam measurements. Mode frequency calculations for the complete three-washer geometry were performed using URMEL for up to m = 7. Calculated results are compared with data determined from low-power and beamdriven excitation of the DAW structure.

  12. Interactive design environment transportation channel of relativistic charged particle beams

    NASA Astrophysics Data System (ADS)

    Osadchuk, I. O.; Averyanov, G. P.; Budkin, V. A.

    2017-01-01

    Considered a modern implementation of a computer environment for the design of channels of transportation of high-energy charged particle beams. The environment includes a software package for the simulation of the dynamics of charged particles in the channel, operating means for changing parameters of the channel, the elements channel optimization and processing of the output characteristics of the beam with the graphical output the main output parameters.

  13. Computational challenges for beam-beam simulation for RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-10-01

    In this article we will review the computational challenges in the beam-beam simulation for the polarized proton run of the Relativistic Heavy Ion Collider (RHIC). The difficulties in our multi-particle and million turn tracking to calculate the proton beam lifetime and proton beam emittance growth due to head-on beam-beam interaction and head-on beam-beam compensation are presented and discussed. Solutions to obtain meaningful physics results from these trackings are proposed and tested. In the end we will present the progress in the benchmarking of the RHIC operational proton beam lifetime.

  14. Beam tuning

    SciTech Connect

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  15. Interaction of a highly flexible cantilever beam with grid-generated turbulent flow

    NASA Astrophysics Data System (ADS)

    Goushcha, Oleg; Andreopoulos, Yiannis

    2016-11-01

    Experiments have been performed to study the fluid-structure interaction of a flexible cantilever beam with the free end facing upstream in anisotropic turbulent flow. Velocity fluctuations in the wind tunnel flow were generated by a turbulence grid. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination. Forces exerted on the beam were estimated based on the PIV data by analytically solving the Pressure Poisson Equation (PPE). Two types of interaction were observed. At a lower Reynolds number, fluid forces excite the beam into oscillations of small magnitude. At higher Reynolds number, the excitation is stronger, deflecting the beam sufficiently to cause flow separation and vortex shedding on one side of the beam. The resultant vortices exert additional forces on the beam producing large magnitude oscillations of the beam.

  16. Beam-Beam Experience at DAPHINE

    SciTech Connect

    Raimondi, Pantaleo

    2002-08-21

    This paper summarizes the results of experimental observations and measurements of beam-beam interactions in DAPHINE, the Frascati Phi-factory. The achieved results are reported with analysis of present limitations in both single and multibunch operation modes and compared with numerical simulations.

  17. Molecular contamination study by interaction of a molecular beam with a platinum surface

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1976-01-01

    The capability of molecular beam scattering from a solid surface is analyzed for identification of molecular contamination of the surface. The design and setup of the molecular beam source and the measuring setup for the application of a phase sensitive measuring technique for the determination of the scattered beam intensity are described. The scattering distributions of helium and nitrogen molecular beams interacting with a platinum surface were measured for different amounts of contamination from diffusion pump oil for surface temperatures ranging from 30 to 400 C. The results indicate the scattering of molecular beams from a platinum surface is a very sensitive method for detecting surface contamination.

  18. Observing Atoms at Work by Controlling Beam-Sample Interactions.

    PubMed

    Kisielowski, Christian

    2015-10-14

    Functional behavior can be initiated and captured in series of images with previously unknown details using a successful effort to effectively control beam-sample interactions in high-resolution transmission electron microscopy. The approach uses tunable electron dose rates that can be chosen to be as low as attoamperes per square-Ångstrom to delay sample degradation to an unexplored end. Dose rates can be systematically increased to stimulate and observe dynamic object responses. Observations can be made in real time with deep sub-Ångstrom resolution and single-atom sensitivity, even if radiation-sensitive matter is probed and either pressure or temperature is raised in the electron microscope.

  19. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  20. Experimental beam system studies of plasma-polymer interactions

    NASA Astrophysics Data System (ADS)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  1. A laser-based beam profile monitor for the SLC/SLD interaction region

    SciTech Connect

    Ross, M.C.; Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.

    1997-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford Linear Collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1{times}0.6{mu}m (x,y) at 4.0{times}10{sup 10} particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. Since the beam-beam deflection does not provide single beam size information, another method is needed for interaction point (IP) beam size optimization. The laser-based profile monitor uses a finely focused, 350-nm, wavelength-tripled yttrium-lithium-flouride (YLF) laser pulse that traverses the particle beam path about 29 cm away from the e{sup +}/e{sup {minus}} IP. Compton scattered photons and degraded e{sup +}/e{sup {minus}} are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 {mu}m. This is adequate for present or planned SLC beams. Design and preliminary results will be presented. {copyright} {ital 1997 American Institute of Physics.}

  2. A laser-based beam profile monitor for the SLC/SLD interaction region

    NASA Astrophysics Data System (ADS)

    Ross, M. C.; Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.

    1997-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford Linear Collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1×0.6 μm (x,y) at 4.0×1010 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. Since the beam-beam deflection does not provide single beam size information, another method is needed for interaction point (IP) beam size optimization. The laser-based profile monitor uses a finely focused, 350-nm, wavelength-tripled yttrium-lithium-flouride (YLF) laser pulse that traverses the particle beam path about 29 cm away from the e+/e- IP. Compton scattered photons and degraded e+/e- are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. This is adequate for present or planned SLC beams. Design and preliminary results will be presented.

  3. Foldable beam

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Coyner, J. V.; Crawford, R. F.

    1981-01-01

    A foldable beam possessing superior qualities of light weight, compactness for transportation, quick deployment with minimum use of force, and high strength is described. These qualities are achieved through the use of a series of longitudinally rigid segments, hinged along one side and threaded by one or two cables along the opposite side. Tightening the cables holds the beam extended. Loosening the cables permits the segments to fold away from the threaded side. In one embodiment the segments are connected by canted hinges with the result that the beam may be folded in a helix-like configuration around a cylinder. In another embodiment the segments themselves may be hinged to fold flat laterally as the beam is folded, resulting in a configuration that may be helixed around a shorter cylinder.

  4. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  5. Optical beam interactions with a periodic array of Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Roszkiewicz, A.; Nasalski, W.

    2014-08-01

    The interactions of first-order elegant Laguerre-Gaussian beams (ELG) with a two-dimensional periodic array are analysed theoretically and numerically. The structure consists of a periodic composition of two-zone Fresnel plates engraved in a silver film. The beam field is composed of periodic sequences of beams of circular or polar polarization incidence upon the structure. The beam axes coincide with the symmetry axes of every fourth Fresnel zone plate placed periodically along two orthogonal coordinates of a horizontal plane of the structure. It is shown that the beam-structure interaction results in substantial cross-polarization coupling, higher-order mode excitation, strong focussing and the extraordinary transmission of the optical field. An interpretation of the results is given per an analogy to the beam-structure interactions observed at planar, homogeneous and isotropic dielectric interfaces and layers.

  6. Current correlations in an interacting Cooper-pair beam splitter

    NASA Astrophysics Data System (ADS)

    Rech, J.; Chevallier, D.; Jonckheere, T.; Martin, T.

    2012-01-01

    We propose an approach allowing the computation of currents and their correlations in interacting multiterminal mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism relies on the expression of branching currents and noise crossed correlations in terms of one- and two-particle Green's functions for the dots electrons, which are then evaluated self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter , Nature (London)NATUAS0028-083610.1038/nature08432 461, 960 (2009); Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.136801 107, 136801 (2011); L. G. Herrmann , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.026801 104, 026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where the dots have opposite energies with respect to the superconducting chemical potential).

  7. Experimental study of vortex ring interactions with a flexible beam; investigating the role of viscous effects

    NASA Astrophysics Data System (ADS)

    Pirnia, Alireza; Hu, Jiacheng; Peterson, Sean; Erath, Byron

    2016-11-01

    Energy can be extracted from flow instabilities in the environment for powering low consumption devices. When vortices pass tangentially over a flexible beam the lower pressure in the vortex core causes the beam to deflect, and induces sustained oscillations which can be converted into energy via piezoelectric materials. The beam dynamics can be parameterized according to the beam properties (nondimensional mass and stiffness ratios) as well as the vortex properties (size, vortex circulation strength and advection velocity). Recently, inviscid models have been developed to solve this fluid-structure interaction problem but they do not capture viscous interactions; features that become more prominent when the beam is positioned close to the vortex core. In this study the interaction of a vortex ring passing tangentially over a flexible beam as a function of circulation strength, beam properties, and offset distance are investigated to identify how viscous interactions influence the energy exchange process. Particle image velocimetry is acquired in tandem with the beam dynamics. The velocity and pressure fields, and transient beam dynamics are compared and contrasted with an inviscid model to identify the role of viscous interactions. This work was supported by the National Science Foundation Grant CBET #1511761.

  8. Recent Studies of Chemical Interactions on Surfaces Using Molecular Beams

    DTIC Science & Technology

    1976-01-26

    model we also expect the "temperature" of the desorbing molecules to be less than S the surface temperature, in analogy with the effects of a positive...implicationsp as uo n s stWe@ Of Weei6Mo 1Asemical reactions, including simle dmiinlemalw c ito esett nns with the surface itself and finally srfm ce...the beam species e lences a sinsle collsion at a well defined scattering angle. 2 S King and Wells have exploited the advantages of molecular beam to

  9. Beam-beam experience in RHIC

    SciTech Connect

    Montag, C.; Heimerle, M.

    2010-07-29

    The Relativistic Heavy Ion Collider RHIC consists of two superconducting storage rings that intersect at six locations around the ring circumference. Two of these interaction regions are currently equipped with experiment detectors, namely STAR at the “6 o’clock” interaction point (IP), and PHENIX at “8 o’clock”. The two beams collide only at these two interaction regions, while they are vertically separated by typically 6-10mm at the other IPs. Together with the separator dipoles located at roughly 10m from the IP, and a distance between bunches of 30m, this avoids any parasitic beam-beam collisions. RHIC is capable of colliding any ion species at magnetic rigidities up to B × r = 830T × m , corresponding to 250 GeV for proton beams, or 100 GeV/n for fully stripped gold ions.

  10. Random aspects of beam physics and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Charman, Andrew Emile

    Aspects of the dynamics of charged particle and radiation beams, and of the interaction of plasmas with radiation are investigated, informed by concerns of classical and quantum mechanical uncertainty and noise, and related by notions of particle and radiation phase space manipulation, overlap, and control. We begin by studying questions of optimal longitudinal pulse-shaping in laser wakefield accelerators, based on a one-dimensional model with prescribed laser drive and either a linearized or fully nonlinear quasi-static plasma response. After discussing various figures of-merit, we advocate maximizing the peak wake amplitude instead of the transformer ratio. A number of new results are demonstrated, certain conjectures are rigorously proved for the first time, and some erroneous claims corrected. Instead of using short laser pulses to excite plasma waves, one can employ the beat wave between two co-propagating lasers to excite a Langmuir wave with high phase velocity suitable for acceleration of relativistic electrons. A modified version of this plasma beat-wave accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, such as relativistic detuning and nonlinear modulation of the driven Langmuir wave amplitude, as well as sen sitivity to frequency mismatch due to measurement uncertainties and density fluctuations or inhomogeneities. From radiation exciting plasmas, we turn to issues of plasmas or beams emitting radiation. We develop a Hilbert-space and operator-based approach to electromagnetic radiation, and use this formalism to derive a maximum-power variational principle (MPVP) for spontaneous radiation from prescribed classical harmonic sources. Results are first derived in the paraxial limit, based

  11. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  12. Heavy ion beam-ionosphere interactions: Electron acceleration

    SciTech Connect

    Kaufmann, R.L.; Arnoldy, R.L.; Moore, T.E.; Kintner, P.M.; Cahill L.J. Jr.; Walker, D.N.

    1985-10-01

    Operation of a divergent 25-eV Ar/sup +/ gun within an auroral arc produced dramatic changes in the flux of electrons with energies between 1 keV and the 88-eV detector cutoff. The observations suggest that intense return currents flowed parallel to B/sub 0/ to neutralize the Ar/sup +/ beam, particularly within a few meters of the rocket. These neutralization currents were carried above and below the rocket by the few-eV electrons which were emitted by the gun and by colder ionospheric electrons. Such low-energy electrons could not be measured directly by detectors on the rocket. We concluded that generation of strong field-aligned return currents was the most important effect of ion gun operation, and that these field aligned currents were responsible for many other observable effects. Downgoing hectovolt electrons appear to have been accelerated because of interactions with waves or quasi-stationary electric fields that were generated by the field-aligned current. This acceleration took place throughout a cylinder centered on the rocket,with a radius of at least several meters. Acceleration of hectovolt electrons depended surprisingly little on the direction in which the Ar/sup +/ gun was pointing.

  13. Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Kulagin, V. V.; Suk, H.

    2017-10-01

    We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.

  14. Optical Gaussian beam interaction with one-dimensional thermal wave in the Raman-Nath configuration.

    PubMed

    Bukowski, Roman J

    2009-03-01

    Optical Gaussian beam interaction with a one-dimensional temperature field in the form of a thermal wave in the Raman-Nath configuration is analyzed. For the description of the Gaussian beam propagation through the nonstationary temperature field the complex geometric optics method was used. The influence of the refractive coefficient modulation by thermal wave on the complex ray phase, path, and amplitude was taken into account. It was assumed that for detection of the modulated Gaussian beam parameters two types of detector can be used: quadrant photodiodes or centroidal photodiodes. The influence of such parameters as the size and position of the Gaussian beam waist, the laser-screen (detector) distance, the thermal wave beam position and width, as well as thermal wave frequency and the distance between the probing optical beam axis and source of thermal waves on the so-called normal signal was taken into account.

  15. Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma

    NASA Astrophysics Data System (ADS)

    Kyrkos, S.; Kalman, G.; Rosenberg, M.

    2008-11-01

    In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).

  16. Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor

    SciTech Connect

    Kim, Youngim; Heo, Ae-young; Kim, Eun-San; Boogert, Stewart; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; May, Justin; McCormick, Douglas; Smith, Tonee; /SLAC

    2012-08-14

    Nanometer resolution beam position monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam has to be measured to within a few nanometers at the interaction point. In order to achieve this performance, electronics for the low-Q IP-BPM was developed. Every component of the electronics have been simulated and checked on the bench and using the ATF2 beam. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. ATF2 is a final focus test beam line for ILC in the framework of the ATF international collaboration. The new beam line was constructed to extend the extraction line at ATF, KEK, Japan. The first goal of ATF2 is the acheiving of a 37 nm vertical beam size at focal point (IP). The second goal is to stabilize the beam at the focal point at a few nanometer level for a long period in order to ensure the high luminosity. To achieve these goals a high resolution IP-BPM is essential. In addition for feedback applications a low-Q system is desirable.

  17. Investigation of plasma-surface interaction at plasma beam facilities

    NASA Astrophysics Data System (ADS)

    Kurnaev, V.; Vizgalov, I.; Gutorov, K.; Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I.; Klimov, N.

    2015-08-01

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m2. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ṡ 1022 m-2 s-1. Initial tests of the KTM PBF's capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF).

  18. Colliding crystalline beams

    SciTech Connect

    Wei, J.; Sessler, A.M.

    1998-08-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. The authors study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. They initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, they find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  19. Head-on beam-beam compensation in RHIC

    SciTech Connect

    Fischer, W.; Heimerle, M.; Luo, Y.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes., M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, w.

    2010-07-29

    Head-on beam-beam compensation with electron lenses had been proposed for the SSC, LHC, and the Tevatron [1,2]. Two electron lenses are installed in the Tevatron [2-4], where they are routinely used as gap cleaner and have been tested in many other configurations. In RHIC there are 2 head-on beam-beam interactions at IP6 and IP8, and 4 long-range beam-beam interactions with large separation (10 mm) at the other IPs. We consider the partial indirect compensation of the head-on beam-beam effect with one electron lens in each ring. Together with intensity and emittance upgrades [5,6] our goal is to approximately double the luminosity over what can be achieved without these upgrades. A RHIC electron lens consists of: a DC electron gun, an electron beam transport to the main solenoid, the superconducting main solenoid in which the interaction with the hadron beam occurs, an electron beam transport to the collector, and an electron collector. The 2 electron lenses are located in IR10 between the DX beam separation dipoles. The proton beams pass through the main solenoids of both electron lenses, and interact head-on with one of them. The following is a slightly modified version of Ref. [7]. The table shows the main parameters of the proton beam and the electron lenses. References [8-11] present simulations for and discuss beam dynamics problems.

  20. Non-diffracting multi-electron vortex beams balancing their electron-electron interactions.

    PubMed

    Mutzafi, Maor; Kaminer, Ido; Harari, Gal; Segev, Mordechai

    2017-09-21

    The wave-like nature of electrons has been known for almost a century, but only in recent years has the ability to shape the wavefunction of EBeams (Electron-Beams) become experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate multi-electron beams, because the repulsion between electrons rapidly alters the beam shape. Here, we show how interference effects of the quantum wavefunction describing multiple electrons can be used to exactly balance both the repulsion and diffraction-broadening. We propose non-diffracting wavepackets of multiple electrons, which can also carry orbital angular momentum. Such wavefunction shaping facilitates the use of multi-electron beams in electron microscopy with higher current without compromising on spatial resolution. Simulating the quantum evolution in three-dimensions and time, we show that imprinting such wavefunctions on electron pulses leads to shape-preserving multi-electrons ultrashort pulses. Our scheme applies to any beams of charged particles, such as protons and ion beams.Vortex electron beams are generated using single electrons but their low beam-density is a limitation in electron microscopy. Here the authors propose a scheme for the realization of non-diffracting electron beams by shaping wavepackets of multiple electrons and including electron-electron interactions.

  1. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  2. Numerical studies on alpha production from high energy proton beam interaction with Boron

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.

    2017-05-01

    Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.

  3. Intense Microsecond Electron Beam Interactions with Low-Pressure Gases

    DTIC Science & Technology

    1991-02-28

    Diffusion in a Magnetic Cusp ", R.A. Bosch and R. M. Gilgenbach, Physics Letters A, 28. 437, (1988). 9) "Transport and Modulation of Relativistic...Graduate Students Receiving Support from this Contract 1) J. D. Miller 2) T. Repetti Postdoctoral Researchers Supported by This Contract 1) R.A. Bosch ...Electron Beams in UV Laser Induced Ion Channels," R. F. Lucey, R. M. Gilgenbach, J. D. Miller, J. E. Tucker, and R. A. Bosch , The Physics of Fluids B, 1

  4. The effect of phase advance errors between interaction points on beam halos

    SciTech Connect

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-06-01

    Phase advance errors between interaction points (IP) break the symmetry of multi-IP colliders. This symmetry breaking introduces new, lower order resonances which may chance the halo from the beam-beam interaction dramatically. In this paper, the mechanism of introducing new resonances is discussed. Simulation results showing the changes due to phase advance errors are presented. Simulation results are compared with experimental measurements at VEPP-2M.

  5. Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities.

    PubMed

    Fardad, Shima; Mills, Matthew S; Zhang, Peng; Man, Weining; Chen, Zhigang; Christodoulides, D N

    2013-09-15

    We demonstrate optical interactions between stable self-trapped optical beams in soft-matter systems with pre-engineered saturable self-focusing optical nonlinearities. Our experiments, carried out in dilute suspensions of particles with negative polarizabilities, show that optical beam interactions can vary from attractive to repulsive, or can display an energy exchange depending on the initial relative phases. The corresponding observations are in good agreement with theoretical predictions.

  6. Interactions of vortices with a flexible beam with applications in fluidic energy harvesting

    SciTech Connect

    Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2014-01-13

    A cantilever piezoelectric beam immersed in a flow and subjected to naturally occurring vortices such as those formed in the wake of bluff bodies can be used to generate electrical energy harvested in fluid flows. In this paper, we present the pressure distribution and deflection of a piezoelectric beam subjected to controlled vortices. A custom designed experimental facility is set up to study the interaction of individual and multiple vortices with the beam. Vortex tori are generated by an audio speaker and travel at controlled rates over the beam. Particle image velocimetry is used to measure the 2-D flow field induced by each vortex and estimate the effect of pressure force on the beam deflection.

  7. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    PubMed Central

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  8. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  9. Modeling the interaction of high power ion or electron beams with solid target materials

    SciTech Connect

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam.

  10. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum.

    PubMed

    Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  11. Theory of type 3b solar radio bursts. [plasma interaction and electron beams

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Delanoee, J.

    1975-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  12. The Particle Beam Optics Interactive Computer Laboratory for Personal Computers and Workstations

    NASA Astrophysics Data System (ADS)

    Gillespie, G. H.; Hill, B.; Brown, N.; Martono, H.; Moore, J.; Babcock, C.

    1997-05-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is a new software concept to aid both students and professionals in modeling charged particle beams and particle beam optical systems. The PBO Lab has been designed to run on several computer platforms and includes four key elements: a graphic user interface shell; (2) a knowledge database on electric and magnetic optics elements, including interactive tutorials on the physics of charged particle optics and on the technology used in particle optics hardware; (3) a graphic construction kit for users to interactively and visually construct optical beam lines; and (4) a set of charged particle optics computational engines that compute transport matrices, beam envelopes and trajectories, fit parameters to optical constraints, and carry out similar calculations for the graphically-defined beam lines. The primary computational engines in the first generation PBO Lab are the third-order TRANSPORT code, the multiple ray tracing program TURTLE, and a new first-order matrix code that includes an envelope space charge model with support for calculating single trajectories in the presence of the beam space charge. Progress on the PBO Lab development is described and a demonstration will be given.

  13. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  14. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  15. Terrain interaction with the quarter scale beam walker

    NASA Technical Reports Server (NTRS)

    Chun, Wendell H.; Price, S.; Spiessbach, A.

    1990-01-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  16. Terrain interaction with the quarter scale beam walker

    NASA Technical Reports Server (NTRS)

    Chun, Wendell H.; Price, S.; Spiessbach, A.

    1990-01-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  17. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  18. Nonlinear Amplification of the Whistler Wave in a Magnetized Relativistic Beam-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Taguchi, Toshihiro; Antonsen, Thomas; Mima, Kunioki

    2015-11-01

    We have been investigating a relativistic electron beam-plasma interaction under a strong magnetic field using a hybrid simulation code. In an initial stage, the electron beam drives a return current in a background plasma and such a two beam state causes a longitudinal two stream instability and a transverse Weibel instability. The application of a strong magnetic field is proposed for the suppression of the beam instabilities. When a sufficiently strong magnetic field is applied along the beam propagation, the Weibel instability is well suppressed and electrons flow laminarly. When the magnetic field strength is not large enough, however, electrons stagnate and the total number of beam electrons is largely reduced. Our detailed analyses show that a strong whistler wave is excited during the interaction and the wave stops the beam electrons. Since the whistler wave is composed of transverse electromagnetic fields, there should be a mechanism to convert the transverse field to a longitudinal one. In order to investigate this problem, we have performed a lot of simulation runs for a simple geometry. Then we found the amplified transverse modulation of the background plasma due to the Weibel instability plays an important role for the amplification of the whistler wave. This work was supported by a Grant-in-Aid for Scientific Research (B), 15H03758.

  19. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  20. Beam rounders for circular colliders

    SciTech Connect

    A. Burov and S. Nagaitsev

    2002-12-10

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  1. Beam geometry selection using sequential beam addition

    SciTech Connect

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  2. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    SciTech Connect

    Piot, P.; Andorf, M. B.; Fagerberg, G.; Figora, M.; Sturtz, A.

    2016-10-19

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  3. The spartial distribution of the particles of the beam interacting with an inhomogeneous electromagnetic wave

    SciTech Connect

    Serov, A.V.

    1995-12-31

    The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.

  4. Pair Creation in QED-Strong Pulsed Laser Fields Interacting with Electron Beams

    SciTech Connect

    Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Mourou, Gerard A.

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J{>=}5x10{sup 22} W/cm{sup 2} combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and {gamma} photons is derived and solved numerically.

  5. Pair creation in QED-strong pulsed laser fields interacting with electron beams.

    PubMed

    Sokolov, Igor V; Naumova, Natalia M; Nees, John A; Mourou, Gérard A

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J≥5×10(22) W/cm2 combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and γ photons is derived and solved numerically.

  6. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; Shatilov, Dmitry

    2015-12-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called "configurations," where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.

  7. Investigation of Weakly Relativistic Ponderomotive Effects on Self-Focusing During Interaction of High Power Elliptical Laser Beam with Plasma

    NASA Astrophysics Data System (ADS)

    Walia, Keshav; Tripathi, Deepak; Tyagi, Yachna

    2017-08-01

    This paper presents an investigation of weakly relativistic ponderomotive effects on self-focusing during interaction of high power elliptical laser beam with plasma. The nonlinear differential equations for the beam width parameters of elliptical laser beam have set up by using Wentzal-Krammers-Brillouin (WKB) and paraxial approximations. These equations have been solved numerically by using fourth order Runge-Kutta method to study the variation of these beam width parameters against normalized distance of propagation. Effects of variation in laser beam intensity, plasma density and electron temperature on the beam width parameters are also analyzed.

  8. Beam Diagnostics for FACET

    SciTech Connect

    Li, S.Z.; Hogan, M.J.; /SLAC

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.

  9. LHC beam-beam compensation studies at RHIC

    SciTech Connect

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  10. Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H.

    2012-12-01

    A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.

  11. Plasma-wall interaction in an electrostatic sheath of plasma containing a monoenergetic electron beam

    SciTech Connect

    Ou, Jing Zhao, Xiaoyun; Gan, Chunyun

    2016-04-15

    The plasma-wall interaction in the presence of a monoenergetic electron beam has been studied by taking into account the self-consistency among plasma transport in a collisionless electrostatic sheath, deposited energy flux at the wall and material thermal response for carbon and tungsten as wall materials. The variations of the potential drop across the sheath, ion velocity at the sheath edge, and surface temperature of material as a function of electron beam flux are explored in the presence of the electron emission. It is found that when electron beam does not dominate the sheath, potential drop across the sheath depends strongly on the material properties due to the impact of electron emission while the surface temperature of material shows monotonic variation. In the case of carbon wall, the electron beam may dominate the sheath at a certain electron beam concentration or energy. Under this circumstance, both the potential drop across the sheath and surface temperature of material demonstrate the sharp increasing transition. The development of local hot spot on the plasma facing material is caused by the enhanced ion energy flux instead of the electron beam energy flux. If the electron emission is not taken into account, as a smaller electron beam flux, both the potential drop across the sheath and surface temperature of material display the significant change and then it may be easier to develop for the local hot spot on the plasma facing material.

  12. Beam-target interactions in single-and multi-pulse radiography

    SciTech Connect

    Chen, Y.J.; Hughes, T.P.; Oliver, B.V.; Welch, D.R.

    1999-04-01

    This report describes calculations concerning the interaction of intense electron beam pulses with a solid target. In Section 2, we treat the propagation of a beam pulse through a dense plasma plume in front of the target, resulting from material blown off from the target by prior pulses. Because of the short magnetic decay-time, the primary effect of the plasma is to shift the focal spot of the beam longitudinally by an amount which is constant over most of the beam pulse. It may be possible to compensate for this effect by changing the upstream focusing elements from one beam pulse to the next. Section 3 describes a mechanism by which lighter ion species can diffuse to the surface of a plasma plume, thereby potentially increasing the concentration of bulk contaminant species such as hydrogen at the leading edge of the plume. These ions could then become a light-ion source for subsequent beam pulses. Based on the calculations, we tentatively recommend bulk contaminant fractions be limited to 10{sup -5}10{sup 4}. In Section 4, we estimate the number of adsorbed monolayers needed to provide a space-charge-limited (SCL) ion source at the target for the initial beam pulse. We find that {approx} 10 monolayers are required for SCL emission of H{sub 2}{sup +} ions. This may explain why there was little evidence of focus disruption in ETA-II target experiments.

  13. Beam-Beam Diagnostics from Closed-Orbit Distortion

    SciTech Connect

    Furman, M.; Chin, Y.-H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-07-01

    The authors study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, they calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed. Because of their two-ring structure, asymmetric B factories are likely to require more diagnostics and feedback mechanisms than single-ring colliders in order to guarantee head-on collisions. In addition to the traditional techniques, however, the independence of the two beams allows one to envisage other kinds of beam diagnostics. In this article they investigate one such possibility, by looking at the closed orbit distortion produced by the beam-beam interaction when the beams do not collide exactly head-on. They base this investigation on an analytic model and strong-strong multiparticle simulations. Although the discussion uses the PEP-II design as an example, the conclusion is that this technique is quite a promising diagnostics tool for asymmetric colliders in general.

  14. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  15. Simple beam profile monitor

    SciTech Connect

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  16. Direct measurements of plasma characteristics in space-simulation beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1982-01-01

    Recent laboratory investigations of space-simulated electron-beam-plasma interactions are discussed. The plasma has been characterized with respect to its spatial distributions in density, temperature, and density fluctuation power spectra. The latter results have been further classified in terms of amplitude and spectral distributions. The overall results include: (1) detailed radial profiles of plasma density as a function of beam parameters; (2) the association of low-frequency large amplitude fluctuations with ion acoustic, ion cyclotron, and drift-wave modes; (3) the identification and spatial mapping of suprathermal electrons in the beam core; and (4) the experimental definition of a density-dependent criterion for the ignition of the beam-plasma-discharge.

  17. THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET EXPERIMENT.

    SciTech Connect

    SIMOS, N.; KIRK, H.; PRIGL, R.; BROWN, K.; MCDONALD, K.

    2001-06-18

    In this paper, issues associated with the interaction of a proton beam with windows designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 TP per pulse and a pulse length of 100 ns is tightly focused (to 0.5 mm rms radius) on an experimental target. The need to maintain an enclosed environment around the target implies the use of beam windows that will survive the passage of the proton beam. The required beam parameters in such a setting will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed analysis of the thermal/shock response of beam windows is attempted through a transient thermal and stress wave propagation formulation that incorporates energy deposition rates calculated the by hadron interaction code MARS. The thermal response of the window structure and the subsequent stress wave generation and propagation are computed using the finite element analysis procedures of the ANSYS code. This analysis attempts to address issues pertaining to an optimal combination of material, window thickness and pulse structure that will allow for a window to safely survive the extreme demands of the experiment.

  18. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor; Sydorenko, Dmytro; Ventzek, Peter L. G.

    2016-09-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam-plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system. This research was funded by US Department of Energy.

  19. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro; Kaganovich, Igor D.; Ventzek, Peter L. G.

    2016-10-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam- plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system.

  20. Decoherence of beam oscillations in the SSC due to beam-beam collisions

    SciTech Connect

    Tsyganov, E.; Shih, H.J.; Meinke, R.; Nexsen, W.; Banda-Herath, M. ); Taratin, A. )

    1994-10-01

    Computer simulations were made to study the decoherence of beam oscillations in the SSC collider due to the tune shift generated by the head-on beam-beam interaction. The simulation results on the average tune shift and the rums tune spread were compared with previous theoretical estimates and excellent agreement was found. The simulations also confirmed the expectation that the decoherence time increases with decreasing tune spread in the beam. A simple procedure was presented to quantify the decoherence time from the simulated growth of the beam emittance relative to the beam centroid.

  1. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  2. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  3. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  4. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  5. Tunable beam displacer

    SciTech Connect

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.

    2015-03-15

    We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.

  6. Propagation and interaction of cos-Gaussian beams in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Qichang; Su, Yanli; Nie, Hexian; Ma, Ziwei; Li, Yonghong

    2017-07-01

    Investigate numerically the propagation and interaction of cos-Gaussian beams in a biased photorefractive crystal by the finite difference method. The results show that the single cos-Gaussian beam can evolve into Y-type breathing solitons when the self-focusing nonlinearity is small, and the soliton properties can be controlled by adjusting the nonlinear parameter or cos modulation parameter. The distance between two components of Y-type breathing solitons will decrease with increasing the nonlinear parameter or decreasing the cos modulation parameter. The breathing soliton with two weak sidebands can form when the self-focusing nonlinearity is big. Moreover, two internal components of two cos-Gaussian beams have obvious interaction but two outside components have tiny interaction.

  7. Using degenerate parametric interaction of intense acoustic beams to amplify weak signals

    NASA Astrophysics Data System (ADS)

    Gurbatov, S. N.; Derybin, M. S.; Kas'yanov, D. A.; Kurin, V. V.

    2017-05-01

    The paper considers the degenerate parametric interaction of an intense acoustic pumping beam and a weak signal beam at the subharmonic. The use of a special emitter system with independent signal emission at the harmonic and subharmonic made it possible to study the features of nonlinear interaction both for different amplitude levels and arbitrary phase relations of the fields at these frequencies. Just as predicted in the theory, the experiment showed that signal amplification at the subharmonic hardly occurs at all. It is shown that the use of odd field harmonics, which are absent for a zero amplitude of the signal wave, makes it possible to substantially increase the efficiency of isolating a weak signal wave. The interaction of beams for large and small acoustic Reynolds numbers of the signal wave is studied.

  8. Magic Lenses for RHIC: Compensating Beam-beam Interaction (488th Brookhaven Lecture)

    SciTech Connect

    Luo, Yun

    2013-07-17

    Scientists at Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC) smash atomic particles together to understand more about why the physical world works the way it does. Increasing rates of particle collisions, or luminosity, at RHIC is no small challenge, but the results—more data for better clues—are crucial for scientists trying answer big questions about the origins of matter and mass. When scientists at RHIC collide protons, they don’t hope for a head-on crash by focusing only two particles roaring toward each other from opposite directions. For all intents and purposes, that would be impossible. The scientists can smash protons because they significantly increase the likelihood of collisions by steering hundreds of billions clumped into bunches, which at RHIC are about 3.5 meters long and less than 1 millimeter tall. The particles of these bunches are all positively charged, so when they interact, they repel outwardly—think how magnets repel when their same poles are pushed together. Although this decreases the density of each bunch, reducing luminosity, scientists in Brookhaven Lab’s Collider-Accelerator Department (C-AD) have a solution. After more than seven years of development, the scientists have designed an electron-lens system that uses electrons’ negative charges to attract positively charged proton bunches and minimize their repelling tendencies. Combined with other upgrades to the RHIC accelerator complex, these lenses are important components in efforts towards the major task of doubling the luminosity for proton-proton collisions.

  9. Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.

    1995-12-31

    The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.

  10. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  11. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  12. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  13. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC.

    SciTech Connect

    Fischer, W; Brennan, J M; Cameron, P; Connolly, R; Montag, C; Peggs, S; Pilat, F; Ptitsyn, V; Tepikian, S; Trbojevic, D; Van Zeijts, J

    2003-05-12

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far.

  14. Coherent instabilities of a relativistic bunched beam

    SciTech Connect

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  15. Low-emittance monoenergetic electron and ion beams from ultra-intense laser-solid interactions

    SciTech Connect

    Cowan, T E; Roth, M; Allen, M M; Johnson, J; Hatchett, S P; Le Sage, G P; Wilks, S C

    2000-03-03

    Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. Focused laser intensities as high as 6 x 10{sup 20} W/cm{sup 2} are achieved, at which point the quiver energies of the target electrons extend to {approx}10 MeV. In this new, fully relativistic regime of laser-plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. In recent experiments we have observed electrons accelerated to 100 MeV, up to 60 MeV brehmsstrahlung generation, photo-nuclear fission and positron-electron pair creation. We also have observed monoenergetic jets of electrons having sufficiently small emittance to be interesting as a laser-accelerated beam, if the production mechanism could be understood and controlled. The huge flux of multi-MeV ponderomotively accelerated electrons produced in the laser-solid interaction is also observed to accelerate contaminant ions from the rear surface of the solid target up to 50 MeV. We describe spectroscopic measurements which reveal intense monoenergetic beam features in the proton energy spectrum. The total spectrum contains >10{sup 13} protons, while the monoenergetic beam pulses contain {approx}1 nC of protons, and exhibits a longitudinal and transverse emittance smaller than conventional RF proton accelerator beams.

  16. Nonlinear Dynamics of High-Brightness Electron Beams and Beam-Plasma Interactions: Theories, Simulations, and Experiments

    SciTech Connect

    C. L. Bohn , P. Piot and B. Erdelyi

    2008-05-31

    According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.

  17. Monte Carlo simulation of laser beams interaction with the human eye using Geant4.

    PubMed

    Tendeiro, Diogo; Lopes, Gonçalo; Vieira, Pedro; Santos, José Paulo

    2014-05-07

    Due to the unique characteristics of the eye, ophthalmologic diagnostic techniques often rely on the photons interaction with the retina to infer its internal structure. Although these techniques are widely used, the interpretation of the generated images is not always fully understood, as in scanning laser ophthalmoscopy dark field imaging. This limits the exploitation of its full potential as a diagnostic tool for deep abnormalities in the retina, as in the situation of drusen. With the aim of better understanding the retinal diagnostic images, we have carried out computer simulations of incident laser beams interacting with different structures of the human eye, including a retina with and without drusen. We have used the Geant4 simulation toolkit, applying the optical package of the electromagnetic (EM) physics working group, to simulate the physical processes of reflection, refraction, absorption, and scattering of low energy photons (2 eV) in biological tissues. For each simulation it was used a single beam of orange light, with a Gaussian profile, that travels through all optical elements of the eye. The reflected beam characteristics were analyzed by virtual detectors in different locations, which collected information about the number and position of photons. The geometry and optical properties of all components of the eye were considered according to the published data. Simulation results put in evidence that the presence of drusen influences the profile of the reflected beams. It changes the mean free path of the photons, modifying its reflection pattern, which depends on the area illuminated by the incident beam. This result is also visible when the reflected beam is analyzed outside of the eye, when the profile has no longer a symmetrical Gaussian distribution. These results will support the retinal diagnostic images that will be obtained in a near future with a new developed ophthalmic apparatus. The shape analysis of the reflected beams in retinal

  18. Antenna Beam Coverage Concepts

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Motamedi, Masoud

    1990-01-01

    The strawman Personal Access Satellite System (PASS) design calls for the use of a CONUS beam for transmission between the supplier and the satellite and for fixed beams for transmission between the basic personal terminal and the satellite. The satellite uses a 3 m main reflector for transmission at 20 GHz and a 2 m main reflector for reception at 30 GHz. There are several types of spot beams under consideration for the PASS system besides fixed beams. The beam pattern of a CONUS coverage switched beam is shown along with that of a scanning beam. A switched beam refers to one in which the signal from the satellite is connected alternatively to various feed horns. Scanning beams are taken to mean beams whose footprints are moved between contiguous regions in the beam's coverage area. The advantages and disadvantages of switched and/or scanning beams relative to fixed beams. The consequences of using switched/scanning in lieu of fixed beams in the PASS design and attempts are made to evaluate the listed advantages and disadvantages. Two uses of switched/scanning beams are examined. To illustrate the implications of switched beams use on PASS system design, operation at two beam scan rates is explored.

  19. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  20. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    SciTech Connect

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo; Figotin, Alexander

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  1. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-03-01

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  2. Beam Stop for Electron Accelerator Beam Characterisation

    NASA Astrophysics Data System (ADS)

    Roach, Greg; Sharp, Vic; Tickner, James; Uher, Josef

    2009-08-01

    Electron linear accelerator applications involving the generation of hard X-rays frequently require accurate knowledge of the electron beam parameters. We developed a beam stop device which houses a tungsten Bremsstrahlung target and enables the electron beam current, energy and position to be monitored. The beam stop consisted of four plates. The first was a removable aluminium (Al) transmission plate. Then followed the tungsten target. Behind the target there were four Al quadrant plates for beam position measurement. The last plate was a thick Al back-stop block. Currents from the four quadrants and the back-stop were measured and the beam lateral position, energy and current were calculated. The beam stop device was optimised using Monte-Carlo simulation, manufactured (including custom-made electronics and software) in our laboratory and tested at the ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) linear accelerator in Melbourne. The electron beam energy was determined with a precision of 60 keV at beam energies between 11 and 21 MeV and the lateral beam position was controlled with a precision of 200 mum. The relative changes of the beam current were monitored as well.

  3. A symplectic coherent beam-beam model

    SciTech Connect

    Furman, M.A.

    1989-05-01

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs.

  4. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

    PubMed

    Mangles, S P D; Murphy, C D; Najmudin, Z; Thomas, A G R; Collier, J L; Dangor, A E; Divall, E J; Foster, P S; Gallacher, J G; Hooker, C J; Jaroszynski, D A; Langley, A J; Mori, W B; Norreys, P A; Tsung, F S; Viskup, R; Walton, B R; Krushelnick, K

    2004-09-30

    High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

  5. Beam Techniques - Beam Control and Manipulation

    SciTech Connect

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  6. Electron beam control for barely separated beams

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  7. Interaction of polar molecules with resonant radio frequency electric fields: imaging of the NO molecular beam splitting.

    PubMed

    Cáceres, J O; Morato, M; González Ureña, A

    2006-12-28

    The interaction between a NO supersonic beam and a resonant radio frequency (RF) field is investigated using laser ionization coupled to imaging techniques. It is shown how the resonant interaction leads to a beam splitting of +/-0.2 degrees toward both positive and negative direction perpendicular to the beam propagation axis. This phenomenon is rationalized using a model based on molecular interferences produced by the action of the resonant RF electric field.

  8. High power beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  9. Inverse Free Electron Laser Interactions with Sub-Picosecond High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Moody, Joshua Timothy

    Advanced accelerators have great promise in reducing the size and cost of high energy colliders as well as bringing high brightness x-ray sources to the laboratory tabletop scale. The inverse free electron laser (IFEL) is a high gradient advanced accelerator scheme that is one of the most ecient ways of transferring energy from a laser to an electron beam. By copropagating a laser and a relativistic electron beam through an undulator in vacuum and taking advantage of resonant ponderomotive motion of the electron beam, IFEL avoids the breakdown associated with other schemes that use a material to couple the laser fields to the electron beams. This dissertation provides an overview of IFEL, the photoinjector electron beams to be used in IFEL interactions, and two IFEL applications: compression and synchronization of a photoinjector electron beam to a laser application using THz driven IFEL and high gradient acceleration using IFEL. The numerically investigated THz IFEL application shows that with a 10 microJ THz 8 pulse train, an electron beam bunch length of 100 fs RMS can be compressed to 14 fs RMS and have the beam's time of arrival jitter relative to an external laser reduced by an order of magnitude. High gradient acceleration by IFEL was examined experimentally at Lawrence Livermore National Laboratory (LLNL). This experiment marks the first attempt to use sub-picosecond time pulse, TW peak power scale titanium:sapphire laser pulses to perform IFEL acceleration. The demonstrated energy gain from 77 to 120 MeV combined with particle tracking simulations shows an accelerating gradient of over 200 MeV/m. Because the laser pulse length is the same order as the slippage experienced by the electron beam with respect to the laser and the time of arrival jitter has been measured to be greater than 2 ps, the overlap is investigated through relative single shot time of arrival measurements using electro-optic sampling based spatial encoding techniques. The temporal

  10. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  11. Telecommunication using muon beams

    DOEpatents

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  12. Analysis of orthotropic beams

    Treesearch

    Jen Y. Liu; S. Cheng

    1979-01-01

    A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...

  13. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    DOE PAGES

    Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; ...

    2015-12-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J.P. Koutchouk,more » CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called ''configurations,'' where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. Furthermore, for all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.« less

  14. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  15. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  16. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  17. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  18. Interaction of frequency-modulated light beams in multistage parametric amplifiers at the maximum gain bandwidth

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I

    2009-05-31

    Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)

  19. The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance

    ERIC Educational Resources Information Center

    Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu

    2012-01-01

    The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…

  20. The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance

    ERIC Educational Resources Information Center

    Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu

    2012-01-01

    The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…

  1. Study of virtual cathodes formation during beam-wave interaction in the reltron oscillator

    NASA Astrophysics Data System (ADS)

    Mahto, Manpuran; Jain, P. K.

    2017-09-01

    In the present work, a high power microwave oscillator—reltron has been analyzed to investigate the virtual cathode formation mechanism during the beam-wave interaction. In reltron, a side coupled modulation cavity is used as its RF interaction structure containing three metal grids along the longitudinal direction. The space charge current responsible for the virtual cathode and its steady state electric field distribution has been analyzed. Space charge and beam impedance conditions for efficient device operation have been demonstrated. It has been shown that during the beam-wave interaction in the device, first a virtual cathode forms in the post-acceleration gap, and then the second virtual cathode develops between the first and second grids of the modulation cavity. These two virtual cathodes co-exist and cause the formation of a third virtual cathode between the second and third grids. At this instant, only the third virtual cathode remains, and for sustained device oscillation, this process repeats periodically in the device. The present study would be useful in understanding the beam-wave interaction mechanism as well as the design and development of efficient reltron devices.

  2. Probabilistic model of beam-plasma interaction in randomly inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Voshchepynets, Andrii; Artemyev, Anton

    2014-05-01

    We study beam-plasma interaction in the presence of random density fluctuations. The level of fluctuations is supposed to be high but Langmuir waves generated by the beam instability are supposed to be not trapped inside the density depletions. This system can be considered as a good approximation of beam-plasma interaction in the solar wind. We describe the system in terms of probability density for the density fluctuations that determines the probability density for wave phase velocities during wave propagation. We suppose that at each moment of time an electron can interact only with one single wave having the phase velocity equal to its velocity or do not interact at all. We suppose that the amplitudes and electron distribution functions vary slowly with respect to single wave-particle interaction that allows one to average over a large number of interactions. This allows one to write Smoluhovsky equation for probability for particle having velocity V0 at time t0 to have velocity V at time t. From this description one can obtain Kolmogorov-Feller equation for slow variations of electron distribution function similar to the diffusion equation in quasilinear approximation. This probabilistic approach allows finding out the dependence of diffusion coefficients on statistical distribution of plasma density fluctuations. We use Liouville equation to describe the evolution of the Langmuir wave's spectral power, for each single wave. To describe slow evolution of the wave power we use averaged wave growth rate. It is obtained from the probability for the wave to have the resonant velocity on the interval. The equations obtained are solved numerically. We evaluate the influence of the density inhomogeneities on the beam relaxation time. As a result the length of relaxation of the electron beam in such inhomogeneous plasma is much longer than in homogeneous case and our goal is to determine the dependence of this length on characteristics of the statistical properties

  3. Probabilistic Model of Beam-Plasma Interaction in Randomly Inhomogeneous Plasma

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Voshchepynets, A.; Volokitin, A.; Artemyev, A.

    2014-12-01

    We study beam-plasma interaction in the presence of random density fluctuations. The level of fluctuations is supposed to be high but Langmuir waves generated by the beam instability are supposed to be not trapped inside the density depletions. This system can be considered as a good approximation of beam-plasma interaction in the solar wind. We describe the system in terms of probability density for the density fluctuations that determines the probability density for wave phase velocities during wave propagation. We suppose that at each moment of time an electron can interact only with one single wave having the phase velocity equal to its velocity or do not interact at all. We suppose that the amplitudes and electron distribution functions vary slowly with respect to single wave-particle interaction that allows one to average over a large number of interactions. This allows one to write Smoluhovsky equation for probability for particle having velocity V0 at time t0 to have velocity V at time t. From this description one can obtain Kolmogorov-Feller equation for slow variations of electron distribution function similar to the diffusion equation in quasilinear approximation. This probabilistic approach allows finding out the dependence of diffusion coefficients on statistical distribution of plasma density fluctuations. We use Liouville equation to describe the evolution of the Langmuir wave's spectral power, for each single wave. To describe slow evolution of the wave power we use averaged wave growth rate. It is obtained from the probability for the wave to have the resonant velocity on the interval. The equations obtained are solved numerically. We evaluate the influence of the density inhomogeneities on the beam relaxation time. As a result the length of relaxation of the electron beam in such inhomogeneous plasma is much longer than in homogeneous case and our goal is to determine the dependence of this length on characteristics of the statistical properties

  4. Interaction of a high-power laser beam with metal sheets

    SciTech Connect

    Boley, C. D.; Cutter, K. P.; Fochs, S. N.; Pax, P. H.; Rotter, M. D.; Rubenchik, A. M.; Yamamoto, R. M.

    2010-02-15

    Experiments with a high-power laser beam directed onto thin aluminum sheets, with a large spot size, demonstrate that airflow produces a strong enhancement of the interaction. The enhancement is explained in terms of aerodynamic effects. As laser heating softens the material, the airflow-induced pressure difference between front and rear faces causes the metal to bulge into the beam. The resulting shear stresses rupture the material and remove it at temperatures well below the melting point. The material heating is shown to conform to an elementary model. We present an analytic model of elastic bulging. Scaling with respect to spot size, wind speed, and material parameters is determined.

  5. A beam source model for scanned proton beams.

    PubMed

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-07

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  6. A beam source model for scanned proton beams

    NASA Astrophysics Data System (ADS)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  7. A Theory of Interaction Mechanism between Laser Beam and Paper Material

    NASA Astrophysics Data System (ADS)

    Piili, Heidi

    Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.

  8. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  9. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  10. Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics

    SciTech Connect

    Hueller, S.; Mounaix, P.; Tikhonchuk, V.T.; Pesme, D.

    1997-07-01

    The interaction between two neighboring laser beams focused in a hot underdense homogeneous plasma is investigated using the non-paraxial wave coupling code KOLIBRI [S. H{umlt u}ller {ital et al.}, Phys. Scr. {bold T63}, 151 (1996)] in two and three spatial dimensions. Both the plasma hydrodynamic evolution and the stimulated Brillouin scattering (SBS) aspects are studied in the case of strongly damped ion sound waves. The hydrodynamic effects consist in ponderomotively driven density perturbations located between the beams which may, in turn, influence strongly the light propagation through the plasma. The two beams are found to merge whenever the distance between them is smaller than or of the order of their diameter. Concerning the SBS aspect, it is found that due to interference effects between the beams, the spatial amplification of the backscattered light is asymmetric with respect to the laser axis. SBS can also enforce the hydrodynamic effects and the beam merging. {copyright} {ital 1997 American Institute of Physics.}

  11. Spin-orbit photonic interaction engineering of Bessel beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Artur; Brasselet, Etienne

    2016-09-01

    Interaction between the polarization and spatial degrees of freedom of a light field has become a powerful tool to tailor the amplitude and phase of light beams. This usually implies the use of space-variant photonic elements involving sophisticated fabrication technologies. Here we report on the optical spin-orbit engineering of the intensity, phase, and polarization structure of Bessel light beams using a homogeneous birefringent axicon. Various kinds of spatially modulated free-space light fields are predicted depending on the nature of the incident light field impinging on the birefringent axicon. In particular, we present the generation of bottle beam arrays, hollow beams with periodic modulation of the core size, and hollow needle beams with periodic modulation of the orbital angular momentum. An experimental attempt is also reported. The proposed structured light fields may find applications in long-distance optical manipulation endowed with self-healing features, periodic atomic waveguides, contactless handling of high aspect ratio micro-objects, and optical shearing of matter.

  12. LEDA beam diagnostics instrumentation: Beam position monitors

    NASA Astrophysics Data System (ADS)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  13. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  14. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    SciTech Connect

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.

    2015-12-15

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.

  15. Study of Nonlinear QED Effects in Interactions of Terawatt Laser with High-Energy Electron Beam

    SciTech Connect

    Shmakov, K

    2003-11-06

    Nonlinear Compton scattering and electron-positron pair production have been observed in collisions of low-emittance 46.6 GeV electron beam with terawatt laser pulses from an Nd:glass laser at the experiment E144 at the Final Focus Test Beam at SLAC. In nonlinear Compton scattering up to four laser photons interact with an electron. The positrons are interpreted as arising from a two step process in which laser photons are backscattered to GeV energies by the electron beam followed by a collision between the high-energy photon and several laser photons to produce an electron-positron pair. These results are the first laboratory evidence for inelastic light-by-light scattering involving only real photons. Results are in agreement with theoretical calculations of strong-field QED.

  16. Laser-electron beam interaction applied to optical amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Piestrup, M. A.

    1976-01-01

    Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.

  17. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma.

    PubMed

    Willingale, L; Mangles, S P D; Nilson, P M; Clarke, R J; Dangor, A E; Kaluza, M C; Karsch, S; Lancaster, K L; Mori, W B; Najmudin, Z; Schreiber, J; Thomas, A G R; Wei, M S; Krushelnick, K

    2006-06-23

    A beam of multi-MeV helium ions has been observed from the interaction of a short-pulse high-intensity laser pulse with underdense helium plasma. The ion beam was found to have a maximum energy for He2+ of (40(+3)(-8)) MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations show that the ions are accelerated by a sheath electric field that is produced at the back of the gas target. This electric field is generated by transfer of laser energy to a hot electron beam, which exits the target generating large space-charge fields normal to its boundary.

  18. Partially coherent nonparaxial beams.

    PubMed

    Duan, Kailiang; Lü, Baida

    2004-04-15

    The concept of a partially coherent nonparaxial beam is proposed. A closed-form expression for the propagation of nonparaxial Gaussian Schell model (GSM) beams in free space is derived and applied to study the propagation properties of nonparaxial GSM beams. It is shown that for partially coherent nonparaxial beams a new parameter f(sigma) has to be introduced, which together with the parameter f, determines the beam nonparaxiality.

  19. Automated beam builder

    NASA Technical Reports Server (NTRS)

    Muench, W. K.

    1980-01-01

    Requirements for the space fabrication of large space structures are considered with emphasis on the design, development, manufacture, and testing of a machine which automatically produces a basic building block aluminum beam. Particular problems discussed include those associated with beam cap forming; brace storage, dispensing, and transporting; beam component fastening; and beam cut-off. Various critical process tests conducted to develop technology for a machine to produce composite beams are also discussed.

  20. Probing the interaction between two microspheres in a single Gaussian beam optical trap

    NASA Astrophysics Data System (ADS)

    Parthasarathi, Praveen; Iyengar, Shruthi Subhash; Lakkegowda, Yogesha; Bhattacharya, Sarbari; Ananthamurthy, Sharath

    2016-09-01

    Interactions between trapped microspheres have been studied in two geometries so far: (i) using line optical tweezers and (ii) in traps using two counter propagating laser beams. In both trap geometries, the stable inter bead separations have been attributed to optical binding. One could also trap two such beads in a single beam Gaussian laser trap. While there are reports that address this configuration through theoretical or simulation based treatments, there has so far been no detailed experimental work that measures the interactions. In this work, we have recorded simultaneously the fluctuation spectra of two beads trapped along the laser propagation direction in a single Gaussian beam trap by measuring the back scattered signal from the trapping and a tracking laser beam that are counter propagating . The backscattering from the trapping laser monitors the bead encountered earlier in the propagation path. The counter propagating tracking laser, on the other hand, is used to monitor the fluctuations of the second bead. Detection is by using quadrant photo detectors placed at either end. The autocorrelation functions of both beads reveal marked departures from that obtained when there is only one bead in the trap. Moreover, the fall-off profiles of the autocorrelation indicates the presence of more than one relaxation time. This indicates a method of detecting the presence of a second bead in a trap without directly carrying out measurements on it. Further, a careful analysis of the relaxation times could also reveal the nature of interactions between the beads.

  1. Strong interaction of low-power electron beams with the ionosphere

    NASA Technical Reports Server (NTRS)

    Llobert, X.; Bernstein, W.; Wilhelm, K.

    1985-01-01

    The late stages of the beam-plasma instability are not yet completely understood. A better knowledge of the evolution of the beam is necessary to explain the results of the electron beam experiments carried out in the ionosphere. An alternative to the complete stabilization by quasi-linear (QL) diffusion is the parametric 'stabilization'. In this case the beam remains unstable for very long distances, while retaining its 'hot-beam' characteristics. A recent flight provides data that indicate the relevance of this mechanism in the evolution of the beam-plasma instability.

  2. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  3. Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction

    NASA Astrophysics Data System (ADS)

    Gorman, Daniel G.; Trendafilova, Irina; Mulholland, Anthony J.; Horáček, Jaromír

    2007-11-01

    When carrying out vibration health monitoring (VHM) of a structure it is usually assumed that the structure is in the absence of fluid interaction and/or that any environmental effects which can cause changes in the vibration response of the structure either remain constant or are negligible. In general, the natural frequencies of a structure are the first candidates to be considered for damage features. But the natural frequencies would also change as a result of the interaction of the structure with a fluid/gas environment. For the purpose of VHM, one needs the pure structural natural frequencies corresponding to conditions when the structure does not interact with the environment. Therefore, in certain cases when the above assumptions cannot be made it becomes necessary to extract values of natural frequencies of the structure if it were in the absence of fluid interaction from those values measured. This paper considers the case of a cantilever beam in contact with a fluid cavity giving rise to strong structural/fluid vibration interaction and develops a method by which the natural frequencies of the beam in the absence of fluid interaction can be obtained from those of the beam in interaction.

  4. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    PubMed

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  5. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect

    Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2014-02-15

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  6. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    SciTech Connect

    Lipton, Robert Polizzi, Anthony

    2014-10-14

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  7. Tevatron beam-beam compensation project progress

    SciTech Connect

    Shiltsev, V.; Zhang, X.L.; Kuznetsov, G.; Pfeffer, H.; Saewert, G.; Zimmermann, F.; Tiunov, M.; Bishofberger, K.; Bogdanov, I.; Kashtanov, E.; Kozub, S.; Sytnik, V.; Tkachenko, L.; /Serpukhov, IHEP

    2005-05-01

    In this paper, we report the progress of the Tevatron Beam-Beam Compensation (BBC) project [1]. Electron beam induced proton and antiproton tuneshifts have been reported in [2], suppression of an antiproton emittance growth has been observed, too [1]. Currently, the first electron lens (TEL1) is in operational use as the Tevatron DC beam cleaner. We have made a lot of the upgrades to improve its stability [3]. The 2nd Tevatron electron lens (TEL2) is under the final phase of development and preparation for installation in the Tevatron.

  8. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Ivantsivskii, M. V.; Meshkov, O. I.; Popov, S. S.; Smaluk, V. V.

    2012-03-01

    Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

  9. Electron beam polarimetry

    SciTech Connect

    Sinclair, C.K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or {ital spin}. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be {ital polarized}. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given. {copyright} {ital 1998 American Institute of Physics.}

  10. Electron beam polarimetry

    NASA Astrophysics Data System (ADS)

    Sinclair, Charles K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or spin. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be polarized. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given.

  11. Summary of session 3 on synchrotron radiation and beam dynamics

    SciTech Connect

    Shiltsev, V.; Metral, E.; /CERN

    2010-12-01

    We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.

  12. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.

  13. Interaction of Airy-Gaussian beams in saturable media

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei

    2016-08-01

    Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.

  14. LANSCE beam current limiter

    NASA Astrophysics Data System (ADS)

    Gallegos, Floyd R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  15. Beam position monitor

    DOEpatents

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  16. Beam position monitor

    SciTech Connect

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2000-09-21

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  17. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}

  18. Pyramid beam splitter

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  19. An experimental study of the interaction between a pulsed electron beam and a large-amplitude electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S.

    2015-01-01

    We experimentally investigate the interaction between an electron beam with a periodically varying diameter and a large-amplitude electromagnetic wave. The effect of different factors on the pulsed beam formation and current density in bunches is established. Compared with the electron beam deceleration circuits (low-voltage vircator systems), the generators based on pulsed turbulent beams have a broader band due to the formation of a large number of space charge bunches and an integral power efficiency that is higher by a factor of 2-2.5.

  20. High and Low Energy Particle Beams Interactions with Solids.

    DTIC Science & Technology

    1986-01-01

    1985). Laser Ablation of Organic Polymers: Microscopic Models for Photochemical and Thermal Processes, B. J. Garrison and R. Srinivasan, Journal of...746-748 (1985). Partial support from NSF. Cluster Desorbed, Ejected and Ablated from Solid Surfaces B. J. Garrison, Symposium of Atomic and Surface...Interaction of Silane /Phosphine/Silicon System, B. S. Meyerson and M. L. Yu, J. Electroche. Soc. 131, 2366 (1984). Partial IBM support. The Origin of Oxidation

  1. Quantum beam generations via the laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Fukuda, Yuji; Faenov, Anatoly; Pikuz, Tania; Tampo, Motonobu; Yogo, Akifumi; Kando, Masaki; Hayashi, Yukio; Kameshima, Takeshi; Homma, Takayuki; Pirozhkov, Alexander; Kato, Yoshiaki; Tajima, Toshiki; Daido, Hiroyuki; Bulanov, Sergei

    2008-11-01

    The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO2 clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm^2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.

  2. Beam-beam issues in asymmetric colliders

    SciTech Connect

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  3. Comparison of beam-position-transfer functions using circular beam-position monitors

    SciTech Connect

    Gilpatrick, J.D.

    1997-10-01

    A cylindrical beam-position monitor (BPM) used in many accelerator facilities has four electrodes on which beam-image currents induce bunched-beam signals. These probe-electrode signals are geometrically configured to provide beam-position information about two orthogonal axes. An electronic processor performs a mathematical transfer function (TF) on these BPM-electrode signals to produce output signals whose time-varying amplitude is proportional to the beam`s vertical and horizontal position. This paper will compare various beam-position TFs using both pencil beams and will further discuss how diffuse beams interact with some of these TFs.

  4. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  5. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    SciTech Connect

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  6. Thermal interaction of short-pulsed laser focused beams with skin tissues

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2009-07-01

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  7. Modeling of the interaction of a volumetric metallic metamaterial structure with a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Shapiro, Michael A.; Temkin, Richard J.

    2015-08-01

    We present the design of a volumetric metamaterial (MTM) structure and its interaction with a relativistic electron beam. This novel structure has promising applications in particle beam diagnostics, acceleration, and microwave generation. The volumetric MTM has a cubic unit cell allowing structures of arbitrary size to be configured as an array of identical cells. This structure allows the exploration of the properties of a metamaterial structure without having to consider substrates or other supporting elements. The dispersion characteristics of the unit cell are obtained using eigenmode simulations in the hfss code and also using an effective medium theory with spatial dispersion. Good agreement is obtained between these two approaches. The lowest-order mode of the MTM structure is found to have a negative group velocity in all directions of propagation. The frequency spectrum of the radiation from a relativistic electron beam passing through the MTM structure is calculated analytically and also calculated with the cst code, with very good agreement. The radiation pattern from the relativistic electron beam is found to be backward Cherenkov radiation, which is a promising tool for particle diagnostics. Calculations are also presented for the application of a MTM-based wakefield accelerator as a possible all-metal replacement for the conventional dielectric wakefield structure. The proposed structure may also be useful for MTM-based vacuum electron devices for microwave generation and amplification.

  8. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  9. Successful Beam-Beam Tuneshift Compensation

    SciTech Connect

    Bishofberger, Kip Aaron

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  10. Characterization of laser beam interaction with carbon materials

    NASA Astrophysics Data System (ADS)

    Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander

    2013-05-01

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.

  11. Electron Beam Freeform Fabrication

    NASA Image and Video Library

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  12. Interplanetary particle beams

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1990-01-01

    This paper reviews observations of interplanetary particle beams of the kind that frequently accompany a solar flare. It is shown that the most frequently observed beams are beams of electrons which are associated with radio bursts of type III, but occasionally with flares and X-ray bursts. Although the main features of these beams and their associated plasma waves and radio bursts are known, uncertainties remain in terms of the correlation between electron beams and filamentary structures, the relative importance of the quasi-linear and the nonlinear wave emissions as the dominant process, and the mechanism of conversion of some of the Langmuir wave energy into radio emissions. Other particle beams discussed are those composed of protons, neutrons, He ions, or heavy ions. While most of these beams originate from sun flares, the source of some of particle beams may be the earth, Jupiter, or other planets as well as comets.

  13. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  14. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  15. Relativistic phase effect in modeling interactions between ultraintense laser beams and electrons plasma

    NASA Astrophysics Data System (ADS)

    Popa, Alexandru; Stancalie, Viorica

    2017-06-01

    In a series of previous papers we proved an accurate connection between quantum and classical equations in the case of electrodynamic systems. We have used this connection to elaborate simplified models for systems composed of very intense laser beams and electrons or atoms. These models are in good agreement with numerous experimental data from literature. In this paper we develop the above approach for the new field of interactions between ultraintense laser beams, having intensities in the range 1018 - 1022 W/cm2, and electron plasmas. We show that in this case new effects take place, such as the fact that the variation of the phase of the field at the point where the electron is situated, decreases when the intensity of the field increases, due to a strong relativistic behavior. This effect leads to an aperiodic behavior of the radiations generated by above interactions, and to a possible new method for solitary waves generation.

  16. Velocity evolution of electro-magnetically driven shock wave for beam-dissociated hydrogen interaction experiment

    NASA Astrophysics Data System (ADS)

    Kondo, Kotaro; Oguri, Yoshiyuki

    2016-03-01

    We present the velocity measurements in electro-magnetic shock tube for beam interaction experiment by three methods; laser refraction, photodiode for self-emission, and high speed framing camera. The laser refraction showed that the average shock velocity was 6.7 km/s when the initial pressure was 1000 Pa and the initial charging voltage was 16 kV. The self-emissions from piston discharge plasma were measured by photodiodes and by high speed framing camera. The measurements showed that the duration between shock and piston was up to 8 microseconds with a 400-mm propagation in the shock tube, which is enough time as dissociation target for beam interaction experiment.The complementary velocity measurement is significant for understanding the electro-magnetically driven shock physics.

  17. Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Da-Peng; Li, Yu-Xiao

    2017-03-01

    Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional particle-in-cell simulations. The electron cloud shape is controlled well and the electron density is improved significantly. The electrons accelerated by the three lasers induce an enhanced target normal sheath acceleration (TNSA) which suppresses the proton beam divergence and improves the maximum proton energy. The maximum proton energy is 22.9 MeV, which increased significantly than that of a single-laser target interaction. Meanwhile, the average divergence angle (22.3°) is reduced. The dependence of the proton beam on the length of sidewall is investigated in detail and the optimal length is obtained.

  18. Beam Dynamics for ARIA

    SciTech Connect

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  19. PARTICLE BEAM TRACKING CIRCUIT

    DOEpatents

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  20. Beam spreading of vortex beams propagating in turbulent atmosphere.

    PubMed

    Lukin, Vladimir P; Konyaev, Peter A; Sennikov, Victor A

    2012-04-01

    We present some results obtained by numerical modeling of the propagation of vortex beams LG(0l) through a randomly inhomogeneous medium. The vortex beams are the lower order Laguerre-Gaussian modes. Such beams, if propagated under conditions of weak turbulence, also experience distortions, like a Gaussian beam. However, the statistically averaged vortex beams (LG(0l)) conserve the central intensity dip with a nonzero intensity on the beam axis. The beam broadening of vortex beams is analyzed. The average vortex beams are found to be broadened less than the Gaussian beam while propagated through a randomly inhomogeneous medium. The higher the topological charge l is, the smaller the beam broadening is.

  1. X-ray beam/biomaterial thermal interactions in third-generation synchrotron sources.

    PubMed

    Kuzay, T M; Kazmierczak, M; Hsieh, B J

    2001-01-01

    Third-generation synchrotron sources generate strong X-ray beams. The beam's interaction with biomaterials gives rise to concerns related to thermal damage and radiation damage. Of the two issues, the thermal interaction is conducive to rigorous analysis from first principles, although this has not been performed to date in a comprehensive manner. In this study, the interaction of the X-ray beam emanating from a third-generation synchrotron with a typical frozen biocrystal is theoretically studied, focusing specifically on the resulting unsteady (time-dependent) and steady heat-transfer phenomena. A unique regime map is developed to explain and to identify, on the basis of Fourier and Biot numbers as governing parameters, the applicable mathematical models that predict the subsequent thermal behavior. Depending on the values of these parameters, some simplified but realistic 'generic' solutions are generated that are suitable for that particular domain of applicability. Classical heat-transfer theory was used to describe the third-generation X-ray beam and biomaterial thermal interaction. Besides the generalized approach presented, numerous illustrative cases were solved and the resulting temperature levels are explicitly presented. Overall, the resulting thermal behavior of the system, i.e. peak and local temperature distribution, during both early transient development and for sustained long-time steady-state conditions, depends on a number of factors including the amount of energy absorbed, convective heat-transfer film coefficient and gas temperature, the sample size and shape, and the thermophysical properties of the sample and cooling gas. Results of the analysis revealed the strong influence that convection has on the transient and final steady-state temperature of the sample and the impact of internal heat conduction. The characteristic timescales of the important and dominant thermal processes with respect to the two types of thermal models are clearly

  2. The Nonlinear Interaction of Two-Crossed Focussed Ultrasonic Beams in the Presence of Turbulence

    DTIC Science & Technology

    1988-06-10

    Sound -waves Scattering Turbulence 20. ABSTRACT (Continue on reverse @(de It nocessay and identify by block number) This paper examines the scattering...THIS PAG (1Whau Data Entat Information about the instantaneous velocity components of the turbulent field in the sound - sound interaction volume is...diagnostic tool for the experimental study of turbulent fluid fields in water. The focussed sound beams are generated by fi=1.95 MHz and f2=2.05 MHz

  3. Amplified-spontaneous-emission power oscillation in a beam-wave interaction

    NASA Astrophysics Data System (ADS)

    Bakhtyari, A.; Walsh, J. E.; Brownell, J. H.

    2002-06-01

    We present in this paper compelling evidence supporting the three-wave traveling-wave theory developed by Pierce fifty years ago. The transition in a Smith-Purcell free-electron laser from low, through moderate amplified spontaneous emission, to strong gain conditions was carefully controlled. Below threshold, the emitted far-infrared power exhibits oscillations with a cubic dependence on the electron beam current. Both characteristics are expected in a three-wave interaction yet, to date, have not been observed.

  4. Role of low-energy neutral N2 beam-surface interactions leading to spacecraft glow

    NASA Technical Reports Server (NTRS)

    Barnes, Alan V.; Albridge, Royal G.; Qi, Jining; Riehl-Chudoba, Manfred; Sun, Chang-Nian; Wang, P. W.; Tolk, Norman H.

    1990-01-01

    Measurements of the optical spectra of surfaces undergoing bombardment by N2 and N2(+) in an ultrahigh vacuum environment provide information related to the origin of spacecraft flow and erosion. This work is complementary to other measurements, in which O and O(+) beams are utilized. These efforts are part of a broad program whose goal is the understanding of interactions between surfaces and low-energy charged and neutral particles.

  5. Interaction of vector solitons and beam break up at thin film gallium-silica waveguide structure

    SciTech Connect

    Sharma, Arvind Nagar, A. K.

    2016-05-06

    We investigate the interaction of optical vector soliton with a symmetric thin-film gallium-silica waveguide structure using the equivalent particle theory. The relevant nonlinear Schrodinger equation has been solved by the method of phase plane analysis. The analysis shows beam break up into transmitted, reflected and nonlinear surface waves at the interface. The stability properties of the solitons so formed have been discussed.

  6. A new criterion to describe crossed-beam energy transfer in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Trines, R.; Schmitz, H.; Alves, E. P.; Fiuza, F.; Vieira, J.; Silva, L. O.; Bingham, R.

    2016-10-01

    Crossed-beam energy transfer (CBET) between laser beams in underdense plasma is ubiquitous in both direct-drive and indirect-drive inertial confinement fusion. To understand the impact of this process on the final shape of the laser beams involved, as well as their imprint on either hohlraum walls or target surface, a detailed spatial and temporal description of the crossing beams is needed. We have developed an analytical model and derived new criteria describing both the spatial structure and temporal evolution of the beams after crossing. Numerical simulations have been carried out justifying the analytical model and confirming the criteria. The impact of our results on present and future multi-beam experiments in laser fusion and high-energy-density physics, in particular the ``bursty'' nature of beams predicted to occur in NIF experiments, will be discussed.

  7. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  8. Cooling of Stored Beams

    SciTech Connect

    Mills, F.

    1986-06-10

    Beam cooling methods developed for the accumulation of antiprotons are being employed to assist in the performance of experiments in Nuclear and Particle Physics with ion beams stored in storage rings. The physics of beam cooling, and the ranges of utility of stochastic and electron cooling are discussed in this paper.

  9. Electromagnetic nonuniformly correlated beams.

    PubMed

    Tong, Zhisong; Korotkova, Olga

    2012-10-01

    A class of electromagnetic sources with nonuniformly distributed field correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. It is shown that the new sources are capable of producing beams with polarization properties that evolve on propagation in a manner much more complex compared to the well-known electromagnetic Gaussian Schell-model beams.

  10. Beam injection into RHIC

    SciTech Connect

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  11. Dual beam optical interferometer

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2003-01-01

    A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.

  12. ATA beam director experiment

    SciTech Connect

    Lee, E.P.; Younger, F.C.; Cruz, G.E.; Nolting, E.

    1986-06-23

    This report describes beam director elements for an experiment at the Advanced Test Accelerator. The elements described include a vernier magnet for beam aiming, an achromat magnet, and an isolation system for the beam interface. These components are built at small scale for concept testing. (JDH)

  13. Plasma dynamics of the interaction of intense ion beams with ''sub'' and ''super'' range plane targets

    SciTech Connect

    Long, K.A.; Tahir, N.A.

    1986-01-01

    Analytic and numerical solutions for the problem of the interaction of intense ion beams with matter in the form of plane targets are considered in this paper. The theory of the interaction of protons with matter at low energies is discussed and calculations are presented for the energy loss of protons in aluminum and gold. Zero- and one-dimensional models are developed and the results are compared to numerical simulations carried out with the one-dimensional Lagrangian hydrodynamic code Medusa (Comp. Phys. Comm. 1, 271 (1974)), which has been extended to include the various physical effects needed to carry out realistic simulations of the interaction of ion beams with matter. The theory and simulation of the acceleration of foils by intense ion beams is also considered and representative results are given. The theoretical results are used to investigate the optimum conditions in which to carry out stopping power experiments for ions in hot, dense plasmas, so that the theory can be tested. These results are needed in order to perform more realistic pellet calculations for inertial fusion.

  14. Beam Filamentation Instability of Interacting Current Sheets in Striped Relativistic Winds: The Origin of Low Sigma?

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    Several lines of evidence suggest that relativistic winds from pulsars have flow energy dominated by kinetic energy at their termination, even though they emerge from the light cylinder as Poynting flux dominated flows. The wind sources are oblique rotators, thus the winds are "striped" - composed of interleaved sectors of oppositely directed B in a wide sector of latitude around the rotational equator. The electric current in the sheets separating the oppositely directed magnetic fields of the stripes, which provide the star's electric return current, is composed of a high energy particle beam, propagating across the magnetic field in an almost unmagnetized channel of thickness comparable to the particles' formal Larmor radius. The beams in neighboring sheets have opposite propagation directions, and interact across the stripes through the long range electromagnetic field. Thus the beams are subject to an electromagnetic shear instability which has strong kinship to Weibel beam filamentation instabilities in unmagnetized plasmas. I outline the physics of this instability, apply it to the pair dominated winds from pulsars, both in the case when the return current is composed of ions or high energy positrons (angle between the angular velocity and the magnetic moment less than 90 degrees, an "acute" pulsar) and also in the electron beam return current case (angle between the angular velocity and the magnetic moment greater than 90 degrees, an "obtuse" pulsar). I argue that the instability saturates through magnetic trapping, which leads to the appearance of an anomalous resistance in the pulsar circuit, and show that this resistance can account for the reduction of the striped component of the winds' magnetic fields, through broadening of the current layers until they merge and the stripes disappear. I discuss some possible observational consequences of this magnetic dissipation in the apparently dark region between the light cylinder and the winds' termination

  15. Beam-wave interaction analysis of a 42 GHz, 200 kW CW gyrotron

    SciTech Connect

    Ashutosh; Singh, Rupendra; Jain, P.K. E-mail: rupendrasingh04@gmail.com

    2011-07-01

    In this paper, the self-consistent large-signal formulation is used to study the beam-wave interaction mechanism in a gyrotron oscillator. The nonlinear interaction has been computed by solving the set of self-consistent nonlinear equations along the interaction length using numerical method. Consequently, the computation of energy, phase, output power, and efficiency of a gyrotron is made. The computed results were found to be matching with the published results. A 42 GHz, 200 kW output power gyrotron operating in TE{sub 03} mode is analysed using this analysis and results found meeting desired specifications. (author)

  16. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  17. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  18. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  19. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  20. Recent Experience with Electron Lens Beam-Beam Compensation at the Tevatron

    SciTech Connect

    Kuznetsov, G.; Saewert, G.; Shiltsev, V.; Valishev, A.; Kamerdzhiev, V.; /Julich, Forschungszentrum

    2009-05-01

    Tevatron Electron Lenses (TEL) have reliably demonstrated correction of the bunch-to-bunch tune shift induced by long-range beam-beam interactions. With the commissioning of the new high voltage modulator that became operational in 2008, the electron beam can be pulsed on every bunch of the Tevatron beam. We report on the recent results of beam-beam compensation studies in the high luminosity regime.

  1. Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors

    NASA Astrophysics Data System (ADS)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Al-Adili, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Colosimo, S.; Crespi, F. C. L.; Dosme, N.; Eberth, J.; Farnea, E.; Filmer, F.; Gadea, A.; Gottardo, A.; Grave, X.; Grebosz, J.; Griffiths, R.; Gulmini, M.; Habermann, T.; Hess, H.; Jaworski, G.; Jones, P.; Joshi, P.; Judson, D. S.; Kempley, R.; Khaplanov, A.; Legay, E.; Lersch, D.; Ljungvall, J.; Lopez-Martens, A.; Meczynski, W.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Orlandi, R.; Pascovici, G.; Pullia, A.; Reiter, P.; Sahin, E.; Smith, J. F.; Strachan, J.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Veyssiere, C.; Wiens, A.; Agata Collaboration

    2011-05-01

    The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected γ-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted γ-ray. The γ-ray tracking was used to determine the full energy of the γ-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FWHM of the interaction position resolution for the γ-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a 30Si beam at 64 MeV on a thin 12C target. Pulse-shape analysis of the digitized detector waveforms and γ-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the γ-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FWHM of the interaction position resolution varies roughly linearly as a function of γ-ray energy from 8.5 mm at 250 keV to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the γ-ray energy range from 1.5 to 4 MeV.

  2. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  3. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  4. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  5. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    NASA Astrophysics Data System (ADS)

    Ji, Zengchao; Chen, Shixiu; Gao, Shen

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  6. Development of a non-ideal plasma target for non-linear beam plasma interaction experiments

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Nishinomiya, S.; Niinou, T.; Kaneko, J.; Hasegawa, J.; Ogawa, M.; Oguri, Y.

    2007-07-01

    A shock-driven plasma target was developed to examine non-linear interactions between low-energy heavy ions and cold-dense plasmas. MD calculations predicted that beam-plasma coupling constant γ˜0.1 must be achieved to observe the non-linearity, which corresponds to the plasma coupling constant Γ≈0.2 for projectiles of vproj≈10 keV/u and q≈2. One-dimensional numerical estimations using SESAME equation of state showed that a shock wave propagating in 5-Torr H2 gas with 47 km/s must be produced to satisfy Γ≈0.2. Utilizing an electromagnetic shock tube with a peak current of 50 kA and a current rise time of 800 ns, we achieved a shock speed of 45 km/s. The electron density distribution of the shock-produced plasma along the beam axis was measured by a Mach-Zehnder interferometer. From this measurement we confirmed that the electron density was over 1017 cm-3 and the homogeneity was acceptable during several hundred nanoseconds. The electron temperature was also determined by optical spectroscopic measurements. The Coulomb coupling constant was evaluated using these experimental data to investigate feasibility of the beam-plasma interaction experiments.

  7. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    NASA Astrophysics Data System (ADS)

    Zengchao, Ji; Shixiu, Chen; Shen, Gao

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  8. Modeling and Simulation of the Longitudinal Beam Dynamics - RF Station Interaction in the LHC Rings

    SciTech Connect

    Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; Baudrenghien, P.; Tuckmantel, J.; /CERN

    2008-07-07

    A non-linear time-domain simulation has been developed to study the interaction between longitudinal beam dynamics and RF stations in the LHC rings. The motivation for this tool is to determine optimal LLRF configurations, to study system sensitivity on various parameters, and to define the operational and technology limits. It will be also used to study the effect of RF station noise, impedance, and perturbations on the beam life time and longitudinal emittance. It allows the study of alternative LLRF implementations and control algorithms. The insight and experience gained from our PEP-II simulation is important for this work. In this paper we discuss properties of the simulation tool that will be helpful in analyzing the LHC RF system and its initial results. Partial verification of the model with data taken during the LHC RF station commissioning is presented.

  9. Ultrahigh-current proton beams from short-pulse laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Antici, P.; Fuchs, J.; Jabłowski, S.; Lancia, L.; Mancic, A.; Parys, P.; Rosiński, M.; Suchańska, R.; Szydłowski, A.; Wołowski, J.

    2008-05-01

    The results of studies of high-current proton beam generation from thin (1-3μm) solid targets irradiated by 0.35-ps laser pulse of intensity up to 2×1019 W/cm2 are reported. It is shown that the proton beams of multi-MA currents and multi-TA/cm2 current densities at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The current and energy spectrum of protons remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 - 0.2μm Au front layer) results in two-fold higher proton currents and higher proton energies than in the case of a plastic target.

  10. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding.

    PubMed

    Zou, Jianglin; Ha, Na; Xiao, Rongshi; Wu, Qiang; Zhang, Qunli

    2017-07-24

    The crucial factor of laser welding is the laser energy conversion. For a better understanding of the process, the interaction process between the laser beam and keyhole wall was investigated by observing the keyhole wall evaporation during high-power fiber laser welding. The results show that the evaporation vapor, induced by the laser beam, discretely distributed on the keyhole wall. A tiny 'hollow' zone was observed at the spot center-action region on the FKW. The evaporation vapor induced by the spot center moved downward along the front keyhole wall (FKW) with a period of about 0.3~0.75 ms, which indicates that the keyhole formation is reminiscent of a periodical laser drilling process on the FKW. The evaporation vapor on the keyhole wall suggest the assumption that the laser energy coupling mode in the keyhole was multiple-reflection, and the keyhole depth was mainly determined by the drilling behavior induced by the first absorption on the FKW.

  11. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    SciTech Connect

    Gao, Wei E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang; Li, Hongwei; Zhu, Zhihan E-mail: zhuzhihandd@sina.com

    2015-07-27

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometrical frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.

  12. Time dependence of fast electron beam divergence in ultraintense laser-plasma interactions.

    PubMed

    Akli, K U; Storm, M J; McMahon, M; Jiang, S; Ovchinnikov, V; Schumacher, D W; Freeman, R R; Dyer, G; Ditmire, T

    2012-08-01

    We report on the measurement and computer simulation of the divergence of fast electrons generated in an ultraintense laser-plasma interaction (LPI) and the subsequent propagation in a nonrefluxing target. We show that, at Iλ(2) of 10(20) Wcm(-2)μm(2), the time-integrated electron beam full divergence angle is (60±5)°. However, our time-resolved 2D particle-in-cell simulations show the initial beam divergence to be much smaller (≤30°). Our simulations show the divergence to monotonically increase with time, reaching a final value of (68±7)° after the passage of the laser pulse, consistent with the experimental time-integrated measurements. By revealing the time-dependent nature of the LPI, we find that a substantial fraction of the laser energy (~7%) is transported up to 100 μm with a divergence of 32°.

  13. Mode Gaussian beam tracing

    NASA Astrophysics Data System (ADS)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  14. The compensation of the PC beam of the scattered beam by a foam target with FWM for beam steering

    NASA Astrophysics Data System (ADS)

    Kameyama, Nobukazu; Yoshida, Hiroki

    2012-10-01

    It is necessary for the direct IFE to irradiate a target with laser beams. The laser beams have to be steered for accurate laser irradiation since the target is injected at several hundreds meters per second. The method of beam steering with phase conjugate mirrors is one of the candidates. In the method, probe beams whose energies are low enough not to damage it and expanded larger than the target radius are illuminated the target. The scattered beam enters into the phase conjugate mirrors and the phase conjugate beam is generated in the opposite direction of it. The phase conjugate beam retraces the same path for the property and irradiated the target. As the target has moved several hundreds micrometers for the high speed when the phase conjugate beam comes back, it is necessary for the phase conjugate beam to compensate for accurate irradiation. Four wave mixing is used as the compensation way. The interaction of two counter-propagating pump beams and a seed beam generates a phase conjugate beam in four wave mixing. The phase conjugate beam is adjustable by setting the angle between two pump beams. The compensation with a scattered beam by a foam target as a seed beam is reported.

  15. Beam envelope matching for beam guidance systems

    SciTech Connect

    Brown, K.L.

    1980-08-01

    Ray optics and phase ellipse optics are developed as tools for designing charged particle beam guidance systems. Specific examples of basic optical systems and of phase ellipse matching are presented as illustrations of these mathematical techniques.

  16. The interaction of functional and dysfunctional emotions during balance beam performance.

    PubMed

    Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu

    2012-06-01

    The interaction between functional and dysfunctional emotions, as one of the major tenets of the individual zones of optimal functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report of functional and dysfunctional emotions were measured during each routine. These data revealed the effectiveness of inducting emotions by manipulating height. Also, performance decreased on the most challenging condition, (i.e., the first attempt on the highest height). Moderated hierarchical regression analysis revealed a significant interaction between functional and dysfunctional emotions only when the dysfunctional emotion level was low.

  17. Refractive beam shapers for focused laser beams

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  18. Size modulated transition in the fluid–structure interaction losses in nano mechanical beam resonators

    SciTech Connect

    Vishwakarma, S. D.; Pratap, R.; Pandey, A. K.; Parpia, J. M.; Craighead, H. G.; Verbridge, S. S.

    2016-05-21

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  19. Size modulated transition in the fluid-structure interaction losses in nano mechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vishwakarma, S. D.; Pandey, A. K.; Parpia, J. M.; Verbridge, S. S.; Craighead, H. G.; Pratap, R.

    2016-05-01

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  20. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    NASA Astrophysics Data System (ADS)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  1. Formulation of the twisted-light-matter interaction at the phase singularity: Beams with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Quinteiro, G. F.; Reiter, D. E.; Kuhn, T.

    2017-01-01

    The formulation of the interaction of matter with singular light fields needs special care. In a recent article [G. F. Quinteiro et al., Phys. Rev. A 91, 033808 (2015), 10.1103/PhysRevA.91.033808] we have shown that the Hamiltonian describing the interaction of a twisted-light beam having parallel orbital and spin angular momenta with a small object located close to the phase singularity can be expressed only in terms of the electric field of the beam. Here we complement our study by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta. Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge invariant. Furthermore, it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic moment approximations.

  2. EXPERIMENTS ON LASER AND E-BEAM TRANSPORT AND INTERACTION IN A PLASMA CHANNEL.

    SciTech Connect

    POGORELSKY,I.V.; PAVLISHIN,I.V.; BEN-ZVI,I.; ET AL.

    2004-09-15

    An ablative capillary discharge is installed into a linac beamline and serves as a plasma source for generating and characterizing wakefields. Simultaneously, the electron beam is used as a tool for plasma diagnostics. A high-energy picosecond CO{sub 2} laser channeled within the same capillary strongly affects a counterpropagating electron beam. These observations, supported with simulations, suggest the possibility of manipulating relativistic electron beams by steep plasma channels ponderomotively produced by a laser.

  3. Electromagnetic instabilities driven by cool heavy ion beams. [interacting with solar wind

    NASA Technical Reports Server (NTRS)

    Winske, D.; Gary, S. P.

    1986-01-01

    The effects of the mass and density of cool, heavy ion beams on the linear and nonlinear characteristics of right-hand resonant and nonresonant electromagnetic ion beam instabilities are analyzed. The magnetic helicity and Alfven speed for a computer simulated complete linear dispersion equation for electromagnetic instabilities are examined. The data reveal that the maximum growth rate of the resonant mode and the threshold velocity of the nonresonant mode decrease with beam mass; however, the maximum growth rate of the nonresonant mode and the threshold velocity of the resonant mode are independent of the beam mass. The role reversal of the instabilities which occur when a heavy ion beam is the more dense component is studied. The nonlinear behavior of the instabilities is described; variations in the magnetic field fluctuation levels and the beam mass dependence are investigated. It is observed that at low beam density the magnetic field fluctuation level increases with beam mass and at higher beam density the fluctuation level correlates with the core mass. The instability data are applied to observations of Venus and the Comet Giacobini-Zinner.

  4. Golden beam data for proton pencil-beam scanning.

    PubMed

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-03-07

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  5. Golden Beam Data for Proton Pencil Beam Scanning

    PubMed Central

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-01-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a-priori by their fundamental interactions in medium. This a-priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a-priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a “Golden” beam data set. The Golden beam data set quantifies the pristine Bragg peak depth dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE).mm2.Gp−1, where Gp equals 109 (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used this Golden beam data on our PBS delivery systems and demonstrate that it yields absolute dosimetry well within clinical tolerance. PMID:22330090

  6. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  7. Production of high-angular-momentum electron beams in laser-plasma interactions.

    PubMed

    Ju, L B; Zhou, C T; Huang, T W; Jiang, K; Zhang, H; Wu, S Z; Qiao, B; Ruan, S C

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time t_{a} when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude a_{L}, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude a_{L}^{2} for a fixed parameter of n_{e}/n_{c}a_{L}. These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  8. Production of high-angular-momentum electron beams in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Ju, L. B.; Zhou, C. T.; Huang, T. W.; Jiang, K.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time ta when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude aL, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude aL2 for a fixed parameter of n/encaL . These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  9. Bolt beam propagation analysis

    NASA Astrophysics Data System (ADS)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  10. Slow light beam splitter.

    PubMed

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  11. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2014-09-01

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE041-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE041-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE041-like mode with ˜15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  12. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  13. Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin

    2016-07-01

    A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm-3) with a dense plasma (initial density of ~ 1021 cm-3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)

  14. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach.

    PubMed

    Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong

    2017-04-03

    The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.

  15. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  16. Craft Stick Beams

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  17. Focused Bessel beams

    SciTech Connect

    Adamson, P V

    2000-04-30

    The diffraction broadening of a focused beam with a Bessel amplitude distribution is examined. Calculations are reported not only of the traditional differential characteristics (radial distributions of the electric-energy densities and of the axial total electromagnetic energy flux in the beam), but also of integral quantities characterising the degree of transverse localisation of the radiation in a tube of specified radius within the beam. It is shown that in a large-aperture Bessel beam only a very small fraction of the total beam power is concentrated in its central core and that a focal point is also observed on intense focusing of the Bessel beam. This spot is not in the geometric-optical focal plane but is displaced from the latter by a certain distance. (laser applications and other topics in quantum electronics)

  18. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; Kubo, H.; Matsuoka, K.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.; Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.; Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.; Zeller, G. P.; Bugel, L.

    2011-01-01

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the charged current inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross-section ratio measurements to absolute cross-section values.

  19. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.

    2010-11-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  20. Primer on Beam Optics

    DTIC Science & Technology

    1993-09-27

    emphasis on neutral particle beam (NPB) optical devices. It explains how the motion of charged particles in magnetic and electric fields is...Inc. San Diego, California Table of Contents Page 1. Introduction 1 1.1 Organization of Primer 1 1.2 Introduction to Neutral Particle Beam...102 Figures Figure Pag© 1. Generic Neutral Particle Beam Device 4 2. An orthogonal three dimensional coordinate system 11 3. Trajectory of a

  1. Mechanical beam isolator

    SciTech Connect

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam.

  2. Bigelow BEAM Contract

    NASA Image and Video Library

    2013-01-16

    NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert T. Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing where it is was announced that the BEAM expandable space habitat technology will be tested on the International Space Station, Wednesday, Jan. 16, 2013 in Las Vegas. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

  3. Bigelow BEAM Contract

    NASA Image and Video Library

    2013-01-16

    NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert T. Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing where is was announced that the BEAM expandable space habitat technology will be tested on the International Space Station, Wednesday, Jan. 16, 2013 in Las Vegas. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

  4. Experimental demonstration of interaction region beam waist position knob for luminosity leveling

    SciTech Connect

    Hao, Yue; Bai, Mei; Duan, Zhe; Luo, Yun; Marusic, Aljosa; Robert-Demolaize, Guillaume; Shen, Xiaozhe

    2015-05-03

    In this paper, we report the experimental implementation of the model-dependent control of the interaction region beam waist position (s* knob) at Relativistic Heavy Ion Collider (RHIC). The s* adjustment provides an alternative way of controlling the luminosity and is only known method to control the luminosity and reduce the pinch effect of the future eRHIC. In this paper, we will first demonstrate the effectiveness of the s* knob in luminosity controlling and its application in the future electron ion collider, eRHIC, followed by the detail experimental demonstration of such knob in RHIC.

  5. Large-Spot Material Interactions with a High-Power Solid-State Laser Beam

    SciTech Connect

    Boley, C D; Fochs, S N; Rubenchik, A M

    2008-08-06

    We study the material interactions produced by the beam of a 25-kW solid-state laser, in experiments characterized by relatively large spot sizes ({approx}3 cm) and the presence of airflow. The targets are iron or aluminum slabs, of thickness 1 cm. In the experiments with iron, we show that combustion plays an important role in heating the material. In the experiments with aluminum, we observe a sharp transition from no melting to complete melt-through as the intensity on target increases. A layer of paint greatly reduces the requirements for melt-through. We explain these effects and incorporate them into an overall computational model.

  6. Beaming of High-Order Harmonics Generated from Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Yeung, M.; Dromey, B.; Adams, D.; Cousens, S.; Hörlein, R.; Nomura, Y.; Tsakiris, G. D.; Zepf, M.

    2013-04-01

    Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other.

  7. Beam Beam Simulation Studies for NLC And SLC2000

    SciTech Connect

    Thompson, K.A.; Chen, P.; Irwin, J.; Zimmermann, F.; /SLAC

    2010-05-27

    We apply and modify the computer codes CAIN(P.Chen, G.Horton-Smith, T.Ohgaki, A.W.Weidemann, K.Yokoya, contributed to Workshop on Gamma-Gamma Colliders, Berkeley, CA, March 28-31, 1994; SLAC-PUB-6583.) and GUINEAPIG(D.Schulte (DESY), unpublished.) to make detailed studies of the beam-beam interaction in the SLAC design for a future linear collider (NLC), as well as to the proposed SLC2000 project. Using realistic beam distributions, we present simulations related to the tuning and optimization of luminosity in SLC2000 and NLC.

  8. High-energy-density electron beam generation in ultra intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Liu, Jianxun; Ma, Yanyun; Yang, Xiaohu; Zhao, Jun; Yu, Tongpu; Shao, Fuqiu; Zhuo, Hongbin; Gan, Longfei; Zhang, Guobo; Zhao, Yuan; Yang, Jingkang

    2017-01-01

    By using a two-dimensional particle-in-cell simulation, we demonstrate a scheme for high-energy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum (Al) target. With the laser having a peak intensity of 4 × 1023 W cm‑2, a high quality electron beam with a maximum density of 117nc and a kinetic energy density up to 8.79 × 1018 J m‑3 is generated. The temperature of the electron beam can be 416 MeV, and the beam divergence is only 7.25°. As the laser peak intensity increases (e.g., 1024 W cm‑2), both the beam energy density (3.56 × 1019 J m‑3) and the temperature (545 MeV) are increased, and the beam collimation is well controlled. The maximum density of the electron beam can even reach 180nc. Such beams should have potential applications in the areas of antiparticle generation, laboratory astrophysics, etc. This work is financially supported by the National Natural Science Foundation of China (Nos. 11475260, 11305264, 11622547, 91230205, and 11474360), the National Basic Research Program of China (No. 2013CBA01504), and the Research Project of NUDT (No. JC14-02-02).

  9. Power beaming options

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1989-01-01

    Some large scale power beaming applications are proposed for the purpose of stimulating research. The first proposal is for a combination of large phased arrays on the ground near power stations and passive reflectors in geostationary orbit. The systems would beam excess electrical power in microwave form to areas in need of electrical power. Another proposal is to build solar arrays in deserts and beam the energy around the world. Another proposal is to use lasers to beam energy from earth to orbiting spacecraft.

  10. Plasma Beam Measurements

    DTIC Science & Technology

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  11. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  12. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  13. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  14. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  15. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  16. Magnetic beam position monitor

    SciTech Connect

    Varfolomeev, A.A.; Ivanchenkov, S.N.; Khlebnikov, A.S.

    1995-12-31

    Many nondestructive beam position monitors are known. However, these devices can not be used for DC particle beam diagnostics. We investigated a method of beam diagnostics applicable for the operative control of DC high power e-beam inside closed waveguide. A design of the detector for determination of{open_quote} center of mass {close_quote} position of DC particle beam was developed. It was shown that the monitor can be used as a nondestructive method for the beam position control in resonators. Magnetic field of the particle beam outside a resonator is used. The detector consists of the steel yokes and magnetic field sensors. The sensors measure magnetic fluxes in the steel yokes fixed outside the resonator. When the particle beam changes its position, these magnetic fluxes also change. Beam displacement sensitivity of the monitor depends on the steel yoke dimensions. The detector sensitivity is equal to 1 Gauss/mm for the conditions adequate to the FOM-FEM project.

  17. (Pulsed electron beam precharger)

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  18. Optical beam jitter control

    NASA Astrophysics Data System (ADS)

    Watkins, R. Joseph; Chen, Hong-Jen; Agrawal, Brij N.; Shin, Young S.

    2004-06-01

    For several future imaging and communications spacecraft, a challenging area of technology development is the fine acquisition, tracking, and pointing (ATP) control of the spacecraft and its payload. For example, some spacecraft with large aperture(s) in the range of 10~30 m diameter requires a few arc-seconds accuracy, 10~15 nano-radians jitter, and a fast slewing rate to acquire the target. Furthermore these stringent requirements are at risk of great structure and control interactions. This paper we will focus on the control of optical beam jitter. A Laser Jitter Control (LJC) testbed has been constructed to test jitter algorithms. The testbed consists of two fast steering mirrors (FSM), three position sensing modules (PSM), one diode laser, and several beam splitters and mirrors, all on an isolated Newport optical bench. Jitter is injected with one FSM and the other FSM is used to control it. The jitter spectrum, representing the on-orbit spacecraft and beam jitter environment, contains not only narrow band noise due to rotating devices such as gyroscopes and reaction wheels but also broadband noise. The performance of a Wiener Filter-adaptive algorithm with ideal reference signal is established as the baseline for comparison of adaptive control methods in suppressing both broadband and narrowband disturbances. Specifically, the Least Mean Squares (LMS) approach and the Gradient Adaptive Lattice (GAL) approach are investigated during these experiments.

  19. Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-03-01

    I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.

  20. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  1. Electron beam-target interaction and spot size stabilization in flash x-ray radiography

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas J. T.; Snell, Charles M.; Christenson, Peggy J.

    2000-05-01

    A high current relativistic electron beam incident on a high-Z target to produce bremsstrahlung photons for radiographic applications can be subjected to charge neutralization by target plasma ion production due to energy deposition by the electron beam. This partial charge neutralization can lead to premature focusing of the electron beam at a distance away from the target and subsequent radial divergence. Furthermore, as the ion column continues to expand, the focal point moves upstream along the path of the electron beam, causing the beam spot on the target to grow in time. The increase in radiation spot size is detrimental to the spatial resolution of radiographic images. The ion effects were confirmed via particle-in-cell simulations and analysis, and methods were investigated to suppress the growth of the electron beam spot size in single- and multiple-pulse radiographic applications. The concept of a self-biased target was proposed and validated by computer simulation showing that the electron beam can be used in a configuration to establish an electric potential between the target and the collimator. This potential can effectively trap the ions, limit the ion column length, and thereby maintain the electron beam spot size. Another approach is the placement of a thin metallic foil at 1-2 cm in front of the target, which serves as a barrier to the ions but is essentially transparent to the incoming electron beam. Our study also showed that optimized confinement of plasma ions with the electromagnetic or the mechanical method can provide an additional ion-focusing effect which leads to a desirable further reduction of the beam spot size.

  2. Analytical estimation of ATF beam halo distribution

    NASA Astrophysics Data System (ADS)

    Wang, Dou; Philip, Bambade; Kaoru, Yokoya; Gao, Jie

    2014-12-01

    In order to study the backgrounds in the ATF2 beam line and the interaction point (IP), this paper has developed an analytical method to give an estimation of the ATF beam halo distribution based on K. Hirata and K. Yokoya's theory. The equilibrium particle distribution of the beam tail in the ATF damping ring is presented, with each electron affected by several stochastic processes such as beam-gas scattering, beam-gas bremsstrahlung and intra-beam scattering, in addition to the synchrotron radiation damping effects. This is a general method which can also be applied to other electron rings.

  3. Sensitivity studies of crystalline beams

    SciTech Connect

    Wei, J.; Sessler, A.M.

    1996-07-01

    The equations of motion are presented, appropriate to interacting charged particles of diverse charge and mass, subject to the external forces produced by various kinds of magnetic fields and rf electric fields in storage rings. These equations have been employed in the molecular dynamics simulations for sensitivity studies of crystalline beams. The two necessary conditions for the formation and maintenance of crystalline beams are summarized. Effects of lattice shear and AG focusing, magnetic field imperfection, and ion neutralization on crystalline beam heating is presented.

  4. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  5. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  6. Experimental observations and theoretical models for beam-beam phenomena

    SciTech Connect

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  7. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  8. Electromagnetic plasma emission during beam-plasma interaction: Parametric decay versus induced scattering

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki

    2010-01-01

    Two-dimensional electromagnetic particle-in-cell simulations are performed for examination of electromagnetic plasma emission at twice the electron plasma frequency. Electromagnetic "2fp" waves are considered to be excited by nonlinear three-wave processes in beam-plasma interactions. In this paper, nonlinear development of an electron-beam-plasma instability is studied as an initial value problem. The present simulation result confirmed that electromagnetic 2fp waves are strongly enhanced by the wave-wave interaction between forward and backward Langmuir waves, which is in agreement with the previous studies. It is also demonstrated that large-amplitude forward Langmuir waves decay into backward Langmuir waves and ion acoustic waves via a parametric decay and that electromagnetic 2fp waves are also enhanced by the decay of Langmuir waves. However, the growth rate of the electromagnetic 2fp waves due to the parametric decay of Langmuir waves is not as high. It should be noted that induced backscattering of Langmuir waves by enhanced thermal fluctuations of ions cannot be neglected in the excitation of backward Langmuir waves. Hence, low-noise simulations are necessary to suppress the effect of enhanced thermal fluctuations in the particle-in-cell method.

  9. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    SciTech Connect

    Sharma, Prashant Nandi, Tapan

    2016-08-15

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance between charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.

  10. Traveling-wave-tube simulation: The IBC (Interactive Beam-Circuit) code

    SciTech Connect

    Morey, I.J.; Birdsall, C.K.

    1989-09-26

    Interactive Beam-Circuit (IBC) is a one-dimensional many particle simulation code which has been developed to run interactively on a PC or Workstation, and displaying most of the important physics of a traveling-wave-tube. The code is a substantial departure from previous efforts, since it follows all of the particles in the tube, rather than just those in one wavelength, as commonly done. This step allows for nonperiodic inputs in time, a nonuniform line and a large set of spatial diagnostics. The primary aim is to complement a microwave tube lecture course, although past experience has shown that such codes readily become research tools. Simple finite difference methods are used to model the fields of the coupled slow-wave transmission line. The coupling between the beam and the transmission line is based upon the finite difference equations of Brillouin. The space-charge effects are included, in a manner similar to that used by Hess; the original part is use of particle-in-cell techniques to model the space-charge fields. 11 refs., 11 figs.

  11. Proton and photon beams interaction with radiosensitizing agents in human glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Lafiandra, M.

    2016-03-01

    In oncological field, chemoradiotherapy treatments that combine radiations to radiosensitizing chemical agents are spreading out. The aim of this kind of treatment is to obtain a better tumor local control and at the same time to reduce the distant failure. The combination of radiation with microtubule-stabilizing agents is very promising in cancer therapy. In the present study, the combination of clinical proton beams and the microtubule-stabilizing agent Epothilone B has been investigated in human glioblastoma cells cultured in vitro. Photon beams have been used for comparison. Cell survival has been evaluated by colony forming assay and the interaction mechanism between radiation and Epothilone B has been investigated: survival curves relative to the combined treatment (protons or photons with Epothilone B) showed a linear trend, different from the linear quadratic behavior found with radiation alone. The analysis performed showed a synergism in the radiation-drug interaction. Thus, Epothilone B in conjunction with radiation acts as a radiosensitizer. Finally proton Relative Biological Effectiveness has been determined and results are reported in this paper.

  12. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  13. Experiments with isomeric beams

    NASA Astrophysics Data System (ADS)

    Pfützner, M.; Grzywacz, R.; Lewitowicz, M.; Rykaczewski, K.

    1997-02-01

    The results of the search for μs-isomers performed with 112Sn and 86Kr beams at 60 MeV/nucleon with the LISE3 spectrometer at GANIL are summarized. Planned extension of these studies to high energy fragmentation reactions with the FRS separator at GSI is described. Some perspectives for experiments with isomeric beams at GSI are mentioned.

  14. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  15. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  16. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  17. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  18. Beam Injection into RHIC

    NASA Astrophysics Data System (ADS)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  19. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  20. Durnin-Whitney beams

    NASA Astrophysics Data System (ADS)

    de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Alejandro Juárez-Reyes, Salvador; Julián-Macías, Israel; Ortega-Vidals, Paula; Rickenstorff-Parrao, Carolina; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Sosa-Sánchez, Citlalli Teresa

    2017-05-01

    The aim of the present work is to define a Durnin-Whitney beam as a nondiffracting beam such that its associated caustic locally only has singularities of the fold and cusp types. Since the caustic is structurally stable then the intensity pattern of this beam is also stable and this property is what makes its definition and its theoretical and experimental study worthwhile. These properties are important in applications such as uniform optical drilling in waveguides and communications through weak turbulent atmosphere. We find that in accordance with Whitney's theorem on the stability of maps from a two-dimensional manifold to a two-dimensional manifold the phase g({{Φ }}), of the complex function A({{Φ }}) characterizing the beam, locally is given by g({{Φ }})=a{{Φ }} for a fold and g({{Φ }})=b{{{Φ }}}2 for a cusp. This result implies that the Bessel beam of order zero is not stable and that any other Bessel beam is stable because locally it has a caustic of fold type. Finally, we present an example of a Durnin-Whitney beam given by g({{Φ }})=m{{Φ }}+b{{{Φ }}}2, which is a natural generalization of the Bessel beam of order m with a singularity of cusp ridge type.

  1. Atomic Ferris wheel beams

    NASA Astrophysics Data System (ADS)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  2. Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiari, Farhad; Golmohammady, Shole; Yousefi, Masoud; Ghafary, Bijan

    2016-12-01

    In the present paper, a scheme for generation of terahertz (THz) radiation in electron-neutral collisional plasma based on beating of two Gaussian laser array beams has been proposed. It is shown that the efficiency of THz radiation based on the Gaussian laser array beams can be enhanced drastically in comparison with the efficiency of THz radiation based on the Gaussian one. Furthermore, the producing THz radiation by the Gaussian laser array beams, which has an exclusive field profile, is affected by some array structure parameters. It can also be used to overcome the negative consequences of electron neutral collisions in plasma, which may be occurring in the THz radiation generation process. Optimizing the collisional plasma, laser beams and array structure parameters, THz radiation efficiency up to 0.07% can be obtained in our scheme which is about three times greater than the maximum efficiency obtained for standard (single) Gaussian laser beam. Also, considering the electrostatic energy channel in solving the THz wave equation, and reduction of THz radiation efficiency to 0.054%, in this assumption, the ratio between the efficiency of Gaussian laser array beams and standard Gaussian laser beam remained unchanged.

  3. Development of 3D beam-beam simulation for the Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  4. Multisegment coherent beam combining

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Tucker, Steve D.; Morgan, R.; Smith, Tony G.; Warren, Mial E.; Gruetzner, James K.; Rosenthal, R. R.; Bentley, A. E.

    1995-08-01

    Scaling laser systems to large sizes for power beaming and other applications can sometimes be simplified by combining a number of smaller lasers. However, to fully utilize this scaling, coherent beam combination is necessary. This requires measuring and controlling each beam's pointing and phase relative to adjacent beams using an adaptive optical system. We have built a sub-scale brass-board to evaluate various methods for beam-combining. It includes a segmented adaptive optic and several different specialized wavefront sensors that are fabricated using diffractive optics methods. We have evaluated a number of different phasing algorithms, including hierarchical and matrix methods, and have demonstrated phasing of several elements. The system is currently extended to a large number of segments to evaluate various scaling methodologies.

  5. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  6. Entangled vector vortex beams

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  7. Ion Beam Simulator

    SciTech Connect

    Kalvas, Taneli

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ion beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.

  8. Beam director design report

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  9. Electron beam emittance monitor for the SSC

    SciTech Connect

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements.

  10. The recycler ring beam life time

    SciTech Connect

    Krishnaswamy Gounder et al.

    2001-07-20

    We study the Fermilab Recycler Ring beam life time due to various physical processes associated with beam-gas interactions. This includes single coulomb scattering, electronic excitations, nuclear and multiple scattering processes. We compare the measured life time with those obtained from theoretical estimations. The results indicate additional processes are also contributing to the actual beam life time.

  11. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  12. PRIMARY TESTS OF LASER / E BEAM INTERACTION IN A PLASMA CHANNEL.

    SciTech Connect

    POGORELSKY,I.V.; BEN ZVI,I.; HIROSE,T.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; ET AL

    2002-06-23

    A high-energy CO{sub 2} laser is channeled in a capillary discharge. Plasma dynamic simulations confirm occurrence of guiding conditions at the relatively low axial plasma density 1 {divided_by} 4 x 10{sup 17} cm{sup -3}. A relativistic electron beam transmitted through the capillary changes its properties depending upon the plasma density. We observe focusing, defocusing or steering of the e-beam. Counter-propagation of the electron and laser beams in the plasma channel results in generation of intense picosecond x-ray pulses.

  13. Interactive beam tuning simulator for the SLC (Stanford Linear Collider) final focus

    SciTech Connect

    Ford, W.T.; Kozanecki, W.; Lohse, T.; Servranckx, R.V.

    1989-03-01

    An interface to the DIMAD beam optics computer program enables the operator to perform in simulation the sequence of magnet adjustments that would be used online for tuning the Stanford Linear Collider Final Focus System. The program accepts any input beam matrix from a disk file and presents a menu of magnet adjustments and scan and display options. The results of a ray trace calculation are presented as profiles or envelope plots on the graphics screen. We give results from studies of the optimization of the beam under various input conditions. 11 refs., 4 figs.

  14. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  15. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  16. Existence of Global Strong Solutions to a Beam-Fluid Interaction System

    NASA Astrophysics Data System (ADS)

    Grandmont, Céline; Hillairet, Matthieu

    2016-06-01

    We study an unsteady nonlinear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoelastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain, in particular that contact between the viscoelastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, and of the existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure.

  17. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  18. Nuclear polarization of /sup 15/N via ion-beam-foil interaction

    SciTech Connect

    Deutch, B.I.; Liu, C.H. II; Lu, F.; Sun, C.; Tan, J.; Tang, G.; Xu, K.; Yang, F.; Ye, H.

    1981-10-01

    The ion beam surface interaction at grazing incidence (IBSIGI) generates highly oriented atomic states, and nuclear spin polarized ions are produced via hf-interactions. Both single and multiple IBSIGI were reported./sup 1/ By single reflection, nuclear polarizations of P/sub I/ = 14% in /sup 14/N(I = 1), and P/sub I/ = 6.8% in /sup 7/Li(I = 3/2) were produced. In this paper, the transmission rather than reflection technique is used. A 600 keV /sup 15/N/sup +/(I = 1/2) beam passed through a foil tilted 60 /sup 0/ with respect to the beam axis, and a perpendicular foil (both made of 20 ..mu..g/cm/sup 2/ thick carbon). After the first foil, highly oriented atomic states are produced, which result in large circular polarization fractions in the fluorescent radiation. By hf-interaction, the orientation can be transferred from the electronic shell to the nucleus, or vice versa. In the second foil, which is perpendicular, and therefore does not produce any polarization, the interaction does not affect the nuclear spin, but attaches a new unoriented electronic shell to the nucleus. Thus the circular polarization in the fluorescence after the second foil must stem from the transfer of orientation from the nucleus to the electronic shell and is therefore a direct measure of the nuclear spin orientation. To determine the degree of circular polarization, the Stokes parameter S/I is measured. For the multiplet exclamation/sup 5/N II 2s/sup 2/2p3s /sup 3/P--2s/sup 2/2p3p /sup 3/D after a tilted foil the S/I is equal to 8.5 +- 0.8%; after double foils (60 /sup 0/ tilted foil+perpendicular foil), S/I = 1.6 +- 0.4%. From the latter values, the nuclear polarization of /sup 15/N is calculated: P/sub I/ = 10.2%.

  19. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  20. Interaction of a relativistic electron beam with radiation in the THz frequency range

    NASA Astrophysics Data System (ADS)

    Sung, Chieh

    The ability to generate a train of microbunches that are only typically tens of femtosecond wide and are separated by a picosecond is a topic of contemporary interest in the field of free electron lasers and plasma based accelerators. Moreover the usefulness of the high gradients present in plasma accelerators will depend on the ability to obtain mono-energetic relativistic electrons. This means that in addition to being prebunched on a scale shorter than the plasma wavelength the externally injected electron beam must be phase-locked to the accelerating plasma wave structure. In this thesis we investigate two techniques, Free Electron Laser interaction (FEL) and the Inverse Free Electron Laser interaction (IFEL), by which a medium energy electron beam can be prebunched into a series of microbunches with the same periodicity as a plasma wave and is phase locked to it. Using full-scale, 3-D simulations we show in this thesis that when a relativistic electron beam and an electromagnetic wave propagate collinearly through a magnetic undulator, FEL and IFEL interactions have the capability to form electron microbunches with periodicity 300-100 mum (1-3 THz range), which contain 50% of electrons within a small fraction of the ponderomotive buckets. Such a bunched beam is suitable for injection into plasma densities in the range 1016-1017 cm-3, respectively. Microbunching using the FEL mechanism requires a narrowband THz radiation source to act as a seed whereas the IFEL mechanism requires, in addition, such a source to be high power. In this thesis the generation of THz radiation in the Neptune Laboratory by mixing of two CO2 laser lines in a non-collinearly phase matched GaAs at room temperature is described A high-power THz pulse with up to 2 MW of peak power in a 250 ps pulse was generated using a TW class CO2 laser pulse. Such high power THz radiation is needed for the IFEL approach to microbunching. We also produced a high repetition rate THz source tunable in the

  1. Self-Consistent Simulations of Heavy-Ion Beams Interacting with Electron-Clouds

    SciTech Connect

    Vay, J; Furman, M A; Seidl, P A; Cohen, R H; Friedman, A; Grote, D P; Covo, M K; Molvik, A W; Stoltz, P H; Veitzer, S; Verboncoeur, J P

    2006-08-04

    Electron-clouds and rising desorbed gas pressure limit the performance of many existing accelerators and, potentially, that of future accelerators including heavy-ion warm-dense matter and fusion drivers. For the latter, self-consistent simulation of the interaction of the heavy-ion beam(s) with the electron-cloud is necessary. To this end, we have merged the two codes WARP (HIF accelerator code) and POSINST (high-energy e-cloud build-up code), and added modules for neutral gas molecule generation, gas ionization, and electron tracking algorithms in magnetic fields with large time steps. The new tool is being benchmarked against the High-Current Experiment (HCX) and good agreement has been achieved. The simulations have also aided diagnostic interpretation and have identified unanticipated physical processes. We present the ''roadmap'' describing the different modules and their interconnections, along with detailed comparisons with HCX experimental results, as well as a preliminary application to the modeling of electron clouds in the Large Hadron Collider.

  2. Low-power laser beam interaction with irradiated substances from the biological membrane

    NASA Astrophysics Data System (ADS)

    Ghelmez, Mihaela A.; Slavnicu, Elena; Trascu, Razvan I.

    2000-11-01

    Sandwich 25micrometers -thick cells with transparent electrodes, filled with some fatty acids (FA) important for the biological membrane (BM), and their mixtures with cholesterol, in the liquid crystal (LC) state, were subjected to a flow of thermal neutrons (4.15 x 1012 neutrons/cm2). Microstructural aspects, electric behaviour and nonlinear optical effects under lower power laser beams were studied before and after irradiation. The laser interaction with FA in the LC state shows the influence of the thermal neutrons irradiation on the electric conduction and the molecular arrangements in the LC systems. Before irradiation, a lens-like effect u nder a He-Ne laser beam has been noticed in the unsaturated (UFA) acids; due to the self-phase modulation effect, a ring pattern appear in far field. The presence of cholesterol (ch) in mixtures modified these effects. After irradiation, the optical nonlinear effects change their feature, increasing in UFA and occurring also in some saturated acids (SFA). These changes are in agreement with the microscopical aspects, the color modifications, and with the electrical state change. The mixture samples are analyzed too. A month after irradiation, SFA seem to slowing return to the initial state, but UFA samples do not come back to the state before irradiation. The nonlinear optical behavior changes dramatically. Ch slightly modifies these changes.

  3. Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration

    NASA Astrophysics Data System (ADS)

    Averkov, Yu. O.; Prokopenko, Yu. V.; Yakovenko, V. M.

    2017-07-01

    The interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration has been investigated theoretically. This metamaterial may have negative permittivity and negative permeability simultaneously over a certain frequency range where it behaves like a left-handed metamaterial. The dispersion equation for the eigenmodes spectra of a metamaterial and the coupled modes spectra of the system have been derived and numerically analyzed. It has been found that the absolute beam instability of bulk-surface waves occurs because of peculiarities of the eigenmodes spectra of a left-handed metamaterial. Specifically, the resonant frequency behavior of the permeability causes the emergence of the sections of dispersion curves with anomalous dispersion. It has been demonstrated that the symmetric bulk-surface mode with two field variations along the cylinder radius possesses the maximum value of instability increment. The obtained results allow us to propose the left-handed metamaterial as the delaying medium in oscillators of electromagnetic radiation without a need to provide an additional feedback in the system just as in a backward-wave tube.

  4. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    NASA Astrophysics Data System (ADS)

    Lawrence, J.

    2002-08-01

    Differences in the beam interaction characteristics of a CO2 laser, a Nd : YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55×10-3 cm for the CO2 laser, 18.22×10-3 cm for the Nd : YAG laser, 17.17×10-3 cm for the HPDL and 8.41×10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd : YAG laser, the HPDL and the excimer laser were 52 J cm-2, 97 J cm-2, 115 J cm-2 and 0.48 J cm-2, respectively. The thermal loading value for the CO2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm-3, 5.32 kJ cm3, 6.69 kJ cm-3 and 57.04 kJ cm-3, respectively.

  5. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.

    PubMed

    Ash, Caerwyn; Dubec, Michael; Donne, Kelvin; Bashford, Tim

    2017-09-12

    Penetration depth of ultraviolet, visible light and infrared radiation in biological tissue has not previously been adequately measured. Risk assessment of typical intense pulsed light and laser intensities, spectral characteristics and the subsequent chemical, physiological and psychological effects of such outputs on vital organs as consequence of inappropriate output use are examined. This technical note focuses on wavelength, illumination geometry and skin tone and their effect on the energy density (fluence) distribution within tissue. Monte Carlo modelling is one of the most widely used stochastic methods for the modelling of light transport in turbid biological media such as human skin. Using custom Monte Carlo simulation software of a multi-layered skin model, fluence distributions are produced for various non-ionising radiation combinations. Fluence distributions were analysed using Matlab mathematical software. Penetration depth increases with increasing wavelength with a maximum penetration depth of 5378 μm calculated. The calculations show that a 10-mm beam width produces a fluence level at target depths of 1-3 mm equal to 73-88% (depending on depth) of the fluence level at the same depths produced by an infinitely wide beam of equal incident fluence. Meaning little additional penetration is achieved with larger spot sizes. Fluence distribution within tissue and thus the treatment efficacy depends upon the illumination geometry and wavelength. To optimise therapeutic techniques, light-tissue interactions must be thoroughly understood and can be greatly supported by the use of mathematical modelling techniques.

  6. Test Beam Results for The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Collaboration

    2016-09-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. In the present ALICE detector, there are two sub-detectors, (the T0 and V0), that provide minimum bias trigger, multiplicity trigger, beam-gas event rejection, collision time for other sub-detectors, online multiplicity and event plane determination. In order to adapt these functionalities to the collision rates expected for the LHC upgrade after 2020, it is planned to replace these systems with a single system, called the Fast Interaction Trigger (FIT). In this poster we describe the FIT upgrade; show the proposed characteristics of the FIT detectors and present test beam performance results that support the current design parameters. This material is based upon work supported by the National Science Foundation under Grants NSF-PHY-1407051 and NSF-PHY-1305280.

  7. The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2009-03-01

    I propose a novel method for the modification of the corrupted human DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). code that causes particular genetic disease. The method is based on the nonlinear interaction between the DNA molecule and the ``modulation photons'' generated in beat wave driven free electron laser, BW-FEL.ootnotetextV. Alexander Stefan. Beat Wave Driven Free Electron Laser (S-U-Press, 2002, La Jolla, CA)[cf. V. Stefan, et al., Bull. Am. Phys. Soc. 32, No. 9, 1713 (1987)] The BW-FEL frequency is given by ν˜γ^2nφe (γ is the free electron beam relativistic factor, n is the harmonic number of the electron Bernstein plasma mode, and φe is the electron cyclotron frequency). The meV ``carrier photons'' are focused on the area of the brain, the source-center of a genetic disease. For the BW-FEL parameters: the free electron beam guiding d.c. magnetic field ˜ 1kG, γ˜10^3, and n=10, the keV ``modulation photons'' are generated, which are easily focused on the nucleotides. By modulating the frequency of the BW-FEL, the parametric resonance with the different DNA (sub-DNA) eigen molecular oscillation-modes are achieved, leading to the ``knock-on'' of the unwanted (corrupted) nucleotides.

  8. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  9. Investigation the interaction between the pulsed ultraviolet laser beams and PEDOT:PSS/graphene composite films

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Chung, Chien-Kai; Chang, Tien-Li

    2015-11-01

    This research aims to investigate the interaction between pulsed ultraviolet (UV) laser beams and transparent PEDOT:PSS/graphene composite films. The laser ablated microstructure on film surfaces provides the electrical isolation and prevents the electrical contact from each location for the projected capacitive touch screen. Before the laser processing, the surface roughness, microhardness, spectrum and cross-sectional view of PEDOT:PSS/graphene composite film were measured by an atomic force microscope, a nanoindenter, a spectrometer and a scanning electron microscope, respectively. The focused UV laser beam was irradiated along line patterns with an overlapping rate of 60% and the applied laser fluences much over the ablation thresholds of 1.27 J/cm2 to 3.82 J/cm2. The surface morphology, three-dimensional topography, and cross-sectional profile of isolated lines and electrode structures after laser microstructuring were measured by a confocal laser scanning microscope. By increasing the laser fluence from 1.27 J/cm2 to 3.82 J/cm2, the ablated line widths and depths increased from 12.17 ± 0.24 μm to 21 ± 0.37 μm and from 190 ± 9 nm to 227 ± 15 nm, respectively. Moreover, the ablated lines of microstructuring electrodes had a clear and regular ablated edge quality.

  10. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    SciTech Connect

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  11. Beam-plasma interactions in a positive ion-negative ion plasma

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Stern, R.

    1983-01-01

    An electron-free plasma consisting of negative ions /SF6(-)/ and positive ions /Ar(+)/, and negligible neutral-ion collision frequencies has been created in the laboratory. This plasma has a mass ratio of approximately 3.5-similar to many computer particle-in-cell simulated systems. A fluid description of this positive and negative ion confinement (PANIC) plasma is given and compared to experimental measurements of a beam-plasma instability for both beam species and a wide range of beam energies. The fluid dispersion relation and most growing modes are predicted to be insensitive to many parameters of the PANIC beam-plasma system, and found to the consistent with the data.

  12. Statistical properties of squeezed beams of light generated in parametric interactions

    NASA Technical Reports Server (NTRS)

    Vyas, Reeta

    1992-01-01

    Fluctuation properties of squeezed photon beams generated in three wave mixing processes such as second harmonic generation, degenerate and nondegenerate parametric oscillations, and homodyne detection are studied in terms of photon sequences recorded by a photodetector.

  13. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; McCarrick, James F.; Guethlein, Gary; Caporaso, George J.; Chambers, Frank; Falabella, Steven; Lauer, Eugene; Richardson, Roger; Sampayan, Steve; Weir, John

    2002-12-01

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  14. LEDA beam diagnostics instrumentation: Beam current measurement

    NASA Astrophysics Data System (ADS)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz® electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  15. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    SciTech Connect

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr.

    2012-09-15

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted

  16. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    NASA Astrophysics Data System (ADS)

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C.

    2012-09-01

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 μm and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S21) for both the short section and long section (separated by a sever) was measured as ˜-5 dB while the return loss was generally around ˜-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of ˜45 GHz with an operating frequency at 220 GHz. However, the measured S21 was ˜3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 μm, which is inevitably induced by nano-machining. Furthermore, the S21 value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted to be reduced from 90 W (for ideal

  17. CRYSTALLINE BEAMS AT HIGH ENERGIES.

    SciTech Connect

    WEI, J.; OKAMOTO, H.; YURI, Y.; SESSLER, A.; MACHIDA, S.

    2006-06-23

    Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, crystalline beams can only be formed at energies below the transition energy ({gamma}{sub T}) of the accelerators [2]. In this paper, we investigate the formation of crystals in a high-{gamma}{sub T} lattice that also satisfies the maintenance condition for a crystalline beam [3].

  18. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    NASA Astrophysics Data System (ADS)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  19. Ions motion effects on the full unstable spectrum in relativistic electron beam plasma interaction

    SciTech Connect

    Bret, A.; Dieckmann, M. E.

    2008-01-15

    A relativistic fluid model is implemented to assess the role of the ions motion in the linear phase of relativistic beam plasma electromagnetic instabilities. The all unstable wave vector spectrum is investigated, allowing us to assess how ion motions modify the competition between every possible instability. Beam densities up to the plasma one are considered. Due to the fluid approach, the temperatures must remain small, i.e., nonrelativistic. In the cold limit, ions motion affect the most unstable mode when the beam gamma factor {gamma}{sub b} > or approx. {alpha}M/mZ{sub i}, {alpha} being the beam to plasma density ratio, Z{sub i} the ion charge, M their mass, and m the electrons. The return current plays an important role by prompting Buneman-type instabilities which remain in the nonrelativistic regime up to high beam densities. Nonrelativistic temperatures only slightly affect these conclusions, except in the diluted beam regime where they can stabilize the Buneman modes.

  20. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.

    1995-05-05

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in {ital z} or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F.-J.

    1995-05-01

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree'' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  2. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F. J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a 'Christmas tree' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  3. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parmeters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  4. Synchrotron radiation damping, intrabeam scattering and beam-beam simulations for HE-LHC

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The proposed High-Energy LHC project presents an unusual combination of strong synchrotron radiation damping and intrabeam scattering, which is not seen in present-day hadron colliders. The subject of investigation reported in this paper was the simulation of beam-beam effect for the HE-LHC parameters. Parameters of SR and IBS are calculated, and the luminosity evolution is simulated in the absence of beam-beam interaction. Then, a weak-strong numerical simulation is used to predict the effect of beam-beam interaction on particle losses and emittance evolution.

  5. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  6. Beam Purification by Photodetachment

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Galindo-Uribarri, Alfredo {nmn}; Andersson, P.; Lindahl, A. O.; Hanstorp, D.; Forstner, Dr. Oliver; Gottwald, T.; Wendt, K.

    2012-01-01

    Ion beam purity is of crucial importance to many basic and applied studies. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated. In off-line experiments with stable ions, up to 104 times suppression of the isobar contaminants in a number of interesting radioactive negative ion beams has been demonstrated. For selected species, this technique promises experimental possibilities in studies on exotic nuclei, accelerator mass spectrometry, and fundamental properties of negative atomic and molecular ions.

  7. Agile beam laser

    SciTech Connect

    Valley, G. C.

    1985-01-08

    A laser system for providing a rapidly steerable laser output beam. The laser system includes a phase conjugate reflector, laser gain medium and its associated pump source, an output coupling device, and an optical element which selectably controls the transverse lasing mode of the laser system. The components are arranged to form a laser oscillator between the phase conjugate reflector and the optical device, and is operated in such a manner that each selected transverse mode of laser operation generates an output beam from the system which has a different wavefront tilt. Accordingly, the output beam is steerable and is dependent upon the selected transverse mode which is currently lasing in the oscillator.

  8. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  9. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  10. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  11. Beam scanning binary logic

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Mukai, Seiji; Watanabe, Masanobu; Mori, Masahiko; Yajima, Hiroyoshi

    1990-07-01

    A beam-scanning laser diode (BSLD) is presently applied to a novel optoelectronic logic operation, designated 'beam-scanning binary logic' (BSBL), that covers the implementation of both the basic logic gates and a spatial code encoder for photodetection, while allowing a greater reduction of the number of active devices than ordinary binary logic operations. BSBL executes multifunctional logic operations simultaneously. The data connections between logic gates in BSLD are flexible, due to the ability to electrically control both output power and laser-beam direction.

  12. First LHC transverse beam size measurements with the beam gas vertex detector

    NASA Astrophysics Data System (ADS)

    Alexopoulos, A.; Barchel, C.; Bay, A.; Blanc, F.; Bravin, E.; Bregliozzi, G.; Chritin, N.; Dehning, B.; Ferro-Luzzi, M.; Gianì, S.; Giovannozzi, M.; Girard, O.; Greim, R.; Haefeli, G.; Hopchev, P.; Jacobsson, R.; Jensen, L.; Rhodri Jones, O.; Kain, V.; Karpinski, W.; Kirn, T.; Kuonen, A.; Matev, R.; Nakada, T.; Rihl, M.; Salustino Guimaraes, V.; Schael, S.; Schneider, O.; Schultz von Dratzig, A.; Schwering, G.; Tobin, M.; Veness, R.; Veyrat, Q.; Vlachos, S.; Wlochal, M.; Wiirkner, B.; Xu, Z.

    2017-07-01

    The Beam Gas Vertex detector (BGV) is an innovative beam profile monitor based on the reconstruction of beam-gas interaction vertices which is being developed as part of the High Luminosity LHC project. Tracks are identified using several planes of scintillating fibres, located outside the beam vacuum chamber and perpendicular to the beam axis. The gas pressure in the interaction volume is adjusted such as to provide an adequate trigger rate, without disturbing the beam. A BGV demonstrator monitoring one of the two LHC beams was fully installed and commissioned in 2016. First data and beam size measurements show that the complete detector and data acquisition system is operating as expected. The BGV operating parameters are now being optimised and the reconstruction algorithms developed to produce accurate and fast reconstruction on a CPU farm in order to provide real time beam profile measurements to the LHC operators. Research supported by the HL-LHC project

  13. Caution -- Beam Crossing Ahead

    SciTech Connect

    Barat, Kenneth L.

    2008-04-02

    There are times when a laser beam needs to cross between tables or even go from one room to another. This presents an interesting traffic-flow and safety challenge to both the laser safety officer and laser user. Fortunately it is a challenge that has several solutions But the simplest solution may not be the best one. For example, the simplest way to get a beam from one optical table to another is just to put a sturdy tube around it. That's a permanent solution, and it completely contains the laser beam. While this is laser safe, there can be egress issues if it blocks a walkway. One comment this author often hears is, 'We can just duck under the tube.' The fire marshal, as well as the laser safety officer, might have issues with this. Especially in the case of a darkened lab, a blocked walkway can present a hazard of its own. One good solution is to transport the beam from Point A to Point B through a fiberoptic cable, when that is possible. One should easily be able to run the fiber up and over any walkway or down through a conduit on the floor. An important concern often overlooked with fibers is a label at the termination end indicating disconnection may expose one to laser radiation. Suppose there's an experiment that is usually confined to a single optical table, but sometimes needs to expand to a second table. It's inconvenient to install a permanent tube between the tables, so some sort of temporary arrangement is desirable. I have often seen people casually lay a beam tube across support arms, and remove it when it's not needed. The problem with this approach is that there's no mechanism to prevent the beam from crossing if somebody's forgotten the tube, or if the tube gets knocked out of place. A better solution is a mechanism that only allows the beam to cross when the beam protection is in place. A swing shutter, or a guillotine and swing arm, are examples (Figures 1 and 2). Another alternative is a sensor, maybe a little microswitch, that activates a

  14. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  15. Effect of electron-electron interaction on hot ballistic electron beams

    NASA Astrophysics Data System (ADS)

    Schäpers, Th.; Krüger, M.; Appenzeller, J.; Förster, A.; Lengeler, B.; Lüth, H.

    1995-06-01

    Electron-electron scattering of ballistic electrons in a two-dimensional electron gas was studied as a function of the electron excess energy above the Fermi energy and of temperature. At low temperatures of 1.4 K it is found that for excess energies of approximately 30% of the Fermi energy the electrons in a ballistic electron beam are already scattered significantly due to electron-electron interaction. A very good agreement between our experimental data and theory was found, when the measured data were compared with numerical calculations based on a theory of Giuliani and Quinn [Phys. Rev. B 26, 4421 (1982)], while the agreement was only poor for the analytical approximation of the electron-electron scattering rate.

  16. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  17. Coulomb interactions in a low-voltage focussed ion beam system

    NASA Astrophysics Data System (ADS)

    Marianowski, K.; Ohnweiler, T.; Plies, E.

    2011-07-01

    To be able to further optimise a low-voltage focussed ion beam system with immersion lenses and booster principle it is necessary to investigate the influence of Coulomb interactions in such a system in more detail. Therefore, Monte Carlo simulations have been done for an example system consisting of two immersion lenses separated by a drift space set to high potential (booster voltage) using both the commercial software package IMAGE by Mebs Ltd. and the programme MONTEC developed by G.H. Jansen. Parameters varied here are the total column length, the working distance as well as the internal operating mode of the objective lens. Results will be presented for landing energies of 3, 2 and 1 keV.

  18. Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Scott, R. H. H.; Pérez, F.; Streeter, M. J. V.; Clark, E. L.; Davies, J. R.; Schlenvoigt, H.-P.; Santos, J. J.; Hulin, S.; Lancaster, K. L.; Dorchies, F.; Fourment, C.; Vauzour, B.; Soloviev, A. A.; Baton, S. D.; Rose, S. J.; Norreys, P. A.

    2013-09-01

    Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2.

  19. Nonlinear modes of an intense laser beam interacting with a periodic lattice of nanoparticle

    SciTech Connect

    Sepehri Javan, N. Homami, S. H. H.

    2015-08-15

    Self-guided nonlinear propagation of an intense laser beam through a periodic lattice of nanoparticle is studied. Using a perturbative method, a cubic nonlinear wave equation describing the laser-nanoparticle interaction in the weakly relativistic regime is derived. Transverse Eigen modes of the laser, nonlinear dispersion relation and its related group velocity are obtained. It is shown that the best fitted function to the transverse profile is Gaussian. Effect of the laser amplitude and also the ratio of nanoparticles radius to their separation on the nonlinear dispersion and amplitude profiles are investigated. It is found that the increase in the just mentioned parameters leads to the localization of transverse profile around the propagation axis.

  20. The modeling of piezoceramic patch interactions with shells, plates and beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1992-01-01

    General models describing the interactions between a pair of piezoceramic patches and elastic substructures consisting of a cylindrical shell, plate and beam are presented. In each case, the manner in which the patch loads enter both the strong and weak forms of the time-dependent structural equations of motion is described. Through force and moment balancing, these loads are then determined in terms of material properties of the patch and substructure (thickness, elastic properties, Poisson ratios), the geometry of the patch placement, and the voltages into the patches. In the case of the shell, the coupling between banding and inplane deformations, which is due to the curvature, is retained. These models are sufficiently general to allow for potentially different patch voltages which implies that they can be suitably employed when using piezoceramic patches for controlling system dynamics when both extensional and bending vibrations are present.

  1. Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction

    NASA Astrophysics Data System (ADS)

    Wudy, Katrin; Lanzl, Lydia; Drummer, Dietmar

    Additive manufacturing techniques, such as selective laser melting of plastics, generate components directly from a CAD data set without using a specific mold. The range of materials commercially available for selective laser sintering merely includes some semi crystalline polymers mainly polyamides, which leads to an absence of realizable component properties. The presented investigations are concerned with the manufacturing and analysis of components made from filled polymer systems by means of selective laser sintering. The test specimens were generated at varied filler concentration, filler types and manufacturing parameter like laser power or scan speed. In addition to the characterization of the mixed powders, resulting melt depth were analyzed in order to investigate the beam material interaction. The basic understanding of the influence of different fillers, filler concentration and manufacturing parameters on resulting component properties will lead to new realizable component properties and thus fields of application of selective laser sintering.

  2. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  3. Beam-beam tuneshift during the TEVATRON squeeze

    SciTech Connect

    Mane, S.R.

    1988-11-01

    We calculate the beam-beam tuneshift during the squeeze of the beam in the Tevatron from injection to mini-beta. We find that for the beam emittances typically used, there is little variation of the tuneshift, in either plane, during the squeeze. 7 figs., 2 tabs.

  4. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  5. Single Beam Holography.

    ERIC Educational Resources Information Center

    Chen, Hsuan; Ruterbusch, Paul H.

    1979-01-01

    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  6. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  7. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  8. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  9. Beam-foil spectroscopy

    SciTech Connect

    Berry, H.G.; Hass, M.

    1982-01-01

    A brief survey of some applications of beam-foil spectroscopy is presented. Among the topics covered are lifetime and magnetic moment measurements, nuclear alignment, and polarized light production. (AIP)

  10. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  11. Bunched beam stochastic cooling

    SciTech Connect

    Wei, Jie.

    1992-01-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  12. Bunched beam stochastic cooling

    SciTech Connect

    Wei, Jie

    1992-09-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  13. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  14. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  15. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  16. SPIDER beam dump as diagnostic of the particle beam

    NASA Astrophysics Data System (ADS)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  17. SPIDER beam dump as diagnostic of the particle beam

    SciTech Connect

    Zaupa, M. Sartori, E.; Dalla Palma, M.; Brombin, M.; Pasqualotto, R.

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  18. Test Beams and Polarized Fixed Target Beams at the NLC

    SciTech Connect

    Pitthan, Rainer

    2001-01-17

    A conceptual program to use NLC beams for test beams and fixed target physics is described. Primary undisrupted polarized beams would be the most simple to use, but for NLC, the disrupted beams are of good enough quality that they could also be used, after collimation of the low energy tails, for test beams and fixed target physics. Pertinent issues are: what is the compelling physics, what are the requirements on beams and running time, and what is the impact on colliding beam physics running. A list of physics topics is given; one topic (Moeller Scattering) is treated in more depth.

  19. Test beams and polarized fixed target beams at the NLC

    NASA Astrophysics Data System (ADS)

    Keller, Lewis; Pitthan, Rainer; Rokni, Sayed; Thompson, Kathleen; Kolomensky, Yury

    2001-07-01

    A conceptual program to use NLC beams for test beams and fixed target physics is described. Primary undisrupted polarized beams would be the most simple to use, but for NLC, the disrupted beams are of good enough quality that they could also be used, after collimation of the low energy tails, for test beams and fixed target physics. Pertinent issues are: what is the compelling physics, what are the requirements on beams and running time, and what is the impact on colliding beam physics running. A list of physics topics is given; one topic (Mo/ller Scattering) is treated in more depth.

  20. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  1. Multiple Beam Optical Processing

    DTIC Science & Technology

    1989-12-01

    carrier lifetime (whichever is shorter) exceeds the spot diameter, since in that case the light beams may not be required to overlap. Exception I...incident angle of the switching beam is studied theoretically for the case of pulsed, single- wavelength operation. Both dispersive and absorptive aspects...of the eLalon are included. Simulations predict that differential-gain characteristics can be improved significantly over the normal-incidence case by

  2. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  3. Batten augmented triangular beam

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.; Hedgepeth, John M.

    1986-01-01

    The BAT (Batten-Augmented Triangular) BEAM is characterized by battens which are buckled in the deployed state, thus preloading the truss. The preload distribution is determined, and the effects of various external loading conditions are investigated. The conceptual design of a deployer is described and loads are predicted. The influence of joint imperfections on effective member stiffness is investigated. The beam is assessed structurally.

  4. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  5. Bigelow BEAM Contract

    NASA Image and Video Library

    2013-01-16

    President and founder of Bigelow Aerospace Robert T. Bigelow, talks during a media briefing where he and NASA Deputy Administrator Lori Garver discussed their $17.8 million contract to provide a Bigelow Expandable Activity Module (BEAM) to the International Space Station to test expandable space habitat technology, Wednesday, Jan. 16, 2013 at Bigelow Aerospace in Las Vegas. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

  6. Bigelow BEAM Contract

    NASA Image and Video Library

    2013-01-16

    NASA Deputy Administrator Lori Garver talks during a media briefing where she and President and founder of Bigelow Aerospace Robert T. Bigelow, discussed their $17.8 million contract to provide a Bigelow Expandable Activity Module (BEAM) to the International Space Station to test expandable space habitat technology, Wednesday, Jan. 16, 2013 at Bigelow Aerospace in Las Vegas. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

  7. Betatrons with kiloampere beams

    SciTech Connect

    Peterson, J.M.

    1982-11-01

    Although the magnetic-induction method of acceleration used in the betatron is inherently capable of accelerating intense particle beams to high energy, many beam-instability questions arise when beams in the kilo-ampere range are considered. The intense electromagnetic fields produced by the beam, and by the image currents and charges induced in the surrounding walls, can produce very disruptive effects. Several unstable modes of collective oscillation are possible; the suppression of any one of them usually involves energy spread for Landau damping and careful design of the electrical character of the vacuum chamber. The various design criteria are often mutually incompatible. Space-charge detuning can be severe unless large beam apertures and high-energy injection are used. In order to have an acceptably low degree of space-charge detuning in the acceleration of a 10-kilo-ampere electron beam, for example, an injection energy on the order of 50 MeV seems necessary, in which case the forces due to nearby wall images can have a larger effect than the internal forces of the beam. A method of image compensation was invented for reducing the net image forces; it serves also to decrease the longitudinal beam impedance and thus helps alleviate the longitudinal instability as well. In order to avoid the ion-electron collective instability a vacuum in the range of 10/sup -8/ torr is required for an acceleration time of 1 millisecond. A multi-ring betatron system using the 50-MeV Advanced Test Accelerator at LLNL as an injector was conceptually designed.

  8. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  9. Flat beams in the SLC

    SciTech Connect

    Adolphsen, C.; Barklow, T.; Burke, D.

    1993-05-01

    The Stanford Linear collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that ``flat`` beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow these beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to ``flat`` beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following we present an overview of the problems encountered and their solutions for different parts of the SLC.

  10. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  11. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  12. The SSC beam scraper system

    SciTech Connect

    Maslov, M.A.; Mokhov, N.V.; Yazynin Institut Fiziki Vysokikh Ehnergij, Protvino )

    1991-06-01

    In this paper we present the results of a full-scale study of a beam scraping system that is designed to guarantee reliable operation of the SSC throughout the whole cycle and for minimum background for experiments at the interaction regions. The machine aperture limits and beam loss formation are analyzed. Simulation programs and a calculational model are described. The physics of beam scraping is explored, and measures to increase significantly the system efficiency are determined. A tolerable scraping rate, taking into account scraper material integrity, quench limits in downstream superconducting magnets, radiation shielding requirements, and minimal beam halo levels at the IPs are also determined. Finally, a complete multi-component scraper system in the SSC East Cluster is proposed. Throughout the paper we define a scraper as a primary absorber consisting of precise movable jaws that have a flat inner edge along the circulation beam and which may be forced to touch the beam halo in horizontal or vertical planes. Secondary absorbers -- collimators -- are destined to intercept outscattered protons and other particles produced in scraper material. All these are surrounded with a radiation shielding. 15 refs., 50 figs., 13 tabs.

  13. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  14. Nonstationary plasma-thermo-fluid dynamics and transition in processes of deep penetration laser beam-matter interaction

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.

    1994-09-01

    A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.

  15. Molecular beam study of the interaction of atomic and molecular oxygen with methane

    SciTech Connect

    Liuti, G.; Pirani, F.

    1987-11-01

    Absolute integral cross sections for collisions of CH/sub 4/ with O/sub 2/ molecules and of O/sub 2/ molecules and O(/sup 3/P/sub j/) atoms with CH/sub 4/ are measured as a function of velocity at thermal energies in a molecular beam apparatus. For the O/sub 2/--CH/sub 4/ interaction the glory structure observed allows an analysis in terms of an isotropic potential model and meaningful potential parameter values are obtained. For the O(/sup 3/P/sub j/)--CH/sub 4/ interaction the anisotropy due to the O(/sup 3/P/sub j/) atoms causes a partial quenching of the glory amplitude. Nevertheless a realistic isotropic potential can be extracted from the glory extrema position. The present potential parameters for the O/sub 2/--CH/sub 4/ and the O--CH/sub 4/ interactions can be used to predict realistic parameters for more complicated interactions involving O/sub 2/ molecules and O atoms with other species of interest also in combustion.

  16. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  17. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  18. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  19. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  20. Improved Morphable Beam Device for Equipping Camera at Beam End

    NASA Astrophysics Data System (ADS)

    Mizunuma, Shintaro; Matunaga, Saburo; Kisa, Nobuhiro

    To conduct remote inspection missions, the authors has proposed Morphable Beam Device (MBD) and developed an experimental device using a bendable beam without any articulated joints. In the device, a beam is deployed, enabling a wide range of shapes and lengths. In this paper, a prototype of an MBD is introduced and a beam shaping theory for two beam shaping mechanisms of slide and rotation types is discussed and verified with experiments.

  1. Numerical calculation of beam shifts for higher-order Laguerre-Gaussian beams upon transmission

    NASA Astrophysics Data System (ADS)

    Prajapati, Chandravati

    2017-04-01

    We study numerically the spatial and angular contributions to Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts for higher-order (| l | ≥ 1) Laguerre-Gaussian (LG) beams upon transmission from a planar interface separating two media. Two kinds of spin-orbit interaction and their role in beam shifts are discussed. Firstly, the interaction between the spin and intrinsic orbital angular momentum (OAM) of the LG beam that produces polarization dependent angular shift which is further coupled to the angular momentum structure of the beam and gives rise to spatial shift in orthogonal direction. Secondly, the interaction between the intrinsic and extrinsic OAM of the beam which produces polarization independent transverse shift, called orbital-Hall effect (OHE). Since the angular and spatial shifts are coupled and the angular shift is dependent on the beam waist, the beam shifts can be tuned to maximize or reduce the resultant shifts for LG beams.

  2. Interaction of pulsed carbon dioxide laser beams with teeth in vitro.

    PubMed

    Brune, D

    1980-08-01

    Beams of pulsed carbon dioxide lasers with energy densities of about 10, 100 or 200 J/mm2 have been applied perpendicularly to third molars in vitro for the purpose of preparing cavities or pin holes for retention. A pulsed beam with an energy density of about 10 J/mm2 produced a hole approximately 2 mm deep with a diameter of about 0.2 mm. With a beam of 100 J/mm2 the hole produced penetrated the tooth to a depth of 4 mm. Minor cracks around the hole in both enamel and dentin could be observed. Around the position where the beam entered the enamel matrix a white mineralized layer was observed, while a brown discoloration was formed around the hole in the dentin at the beam exit. With an energy density of 200 J/mm2 the formation of cracks and discoloration was very pronounced. X-ray diffraction of lased tissue revealed an apatite structure. The wall in the lased hole exhibited a Vicker hardness number similar to that of enamel.

  3. Holographic memory using beam steering

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2007-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  4. Polynomial Beam Element Analysis Module

    SciTech Connect

    Ning, S. Andrew

    2013-05-01

    pBEAM (Polynomial Beam Element Analysis Module) is a finite element code for beam-like structures. The methodology uses Euler? Bernoulli beam elements with 12 degrees of freedom (3 translation and 3 rotational at each end of the element).

  5. Photodetachment process for beam neutralization

    DOEpatents

    Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.

  6. Photodetachment process for beam neutralization

    DOEpatents

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  7. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  8. Beam Interaction Measurements with a Retarding Field Analyzer in a High-Current High-Vacuum Positively-Charged Particle Accelerator

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Barnard, J J; Seidl, P A; Logan, B G; Baca, D; Vujic, J L

    2006-07-11

    A Retarding Field Analyzer (RFA) was inserted in a drift region of a magnetic transport section of the high-current experiment (HCX) that is at high-vacuum to measure ions and electrons resulting from beam interaction with background gas and walls. The ions are expelled during the beam by the space-charge potential and the electrons are expelled mainly at the end of the beam, when the beam potential decays. The ion energy distribution shows the beam potential of {approx} 2100 V and the beam-background gas total cross-section of 1.6x10{sup -20} m{sup 2}. The electron energy distribution reveals that the expelled electrons are mainly desorbed from the walls and gain {approx} 22 eV from the beam potential decaying with time before entering the RFA. Details of the RFA design and of the measured energy distributions are presented and discussed.

  9. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    SciTech Connect

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-06-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained.

  10. Beam Trail Tracking at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard; Yuan, Zongwei

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  11. Studies of beam dynamics in relativistic klystron two- beam accelerators

    NASA Astrophysics Data System (ADS)

    Lidia, Steven Michael

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain

  12. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  13. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  14. A Computer-Based, Interactive Videodisc Job Aid and Expert System for Electron Beam Lithography Integration and Diagnostic Procedures.

    ERIC Educational Resources Information Center

    Stevenson, Kimberly

    This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…

  15. Ultra-Short Electron Beam Compression and Phase Locking Using an Inverse Free Electron Laser Interaction in the THz Regime

    SciTech Connect

    Moody, J. T.; Musumeci, P.; Scoby, C. M.; To, H.; Marcoux, C.

    2010-11-04

    The concept of a THz-based IFEL compressor at the UCLA Pegasus photoinjector laboratory is explored. A 3.5 MeV sub-picosecond electron beam generated in the photoinjector blowout regime can be compressed to femtosecond timescales by a THz IFEL interaction.

  16. A Computer-Based, Interactive Videodisc Job Aid and Expert System for Electron Beam Lithography Integration and Diagnostic Procedures.

    ERIC Educational Resources Information Center

    Stevenson, Kimberly

    This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…

  17. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    ERIC Educational Resources Information Center

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  18. Interaction-Point Phase-Space Characterization using Single-Beam and Luminous-Region Measurements at PEP-II

    SciTech Connect

    Kozanecki, W; Bevan, A.J.; Viaud, B.F.; Cai, Y.; Fisher, A.S.; O'Grady, C.; Lindquist, B.; Roodman, A.; J.M.Thompson, M.Weaver; /SLAC

    2008-09-09

    We present an extensive experimental characterization of the e{sup {+-}} phase space at the interaction point of the SLAC PEP-II B-Factory, that combines a detailed mapping of luminous-region observables using the BABAR detector, with stored-beam measurements by accelerator techniques.

  19. Ultra-Short Electron Beam Compression and Phase Locking Using an Inverse Free Electron Laser Interaction in the THz Regime

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Musumeci, P.; Scoby, C. M.; To, H.; Marcoux, C.

    2010-11-01

    The concept of a THz-based IFEL compressor at the UCLA Pegasus photoinjector laboratory is explored. A 3.5 MeV sub-picosecond electron beam generated in the photoinjector blowout regime can be compressed to femtosecond timescales by a THz IFEL interaction.

  20. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.