Sample records for beam computed tomographic

  1. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems.

    PubMed

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V

    2016-01-01

    Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.

  2. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems

    PubMed Central

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V

    2016-01-01

    ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155

  3. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  4. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  5. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  6. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  7. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  8. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  9. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  10. Orthodontic decompensation in skeletal Class III malocclusion: redefining the amount of movement assessed by Cone-Beam Computed Tomography

    PubMed Central

    Cappellozza, José Antonio Zuega; Guedes, Fabio Pinto; Nary, Hugo; Capelozza, Leopoldino; Cardoso, Mauricio de Almeida

    2015-01-01

    Introduction: Cone-Beam Computed Tomography (CBCT) is essential for tridimensional planning of orthognathic surgery, as it allows visualization and evaluation of bone structures and mineralized tissues. Tomographic slices allow evaluation of tooth inclination and individualization of movement performed during preoperative decompensation. The aim of this paper was to assess maxillary and mandibular incisors inclination pre and post orthodontic decompensation in skeletal Class III malocclusion. Methods: The study was conducted on six individuals with skeletal Class III malocclusion, surgically treated, who had Cone-Beam Computed Tomographic scans obtained before and after orthodontic decompensation. On multiplanar reconstruction view, tomographic slices (axial, coronal and sagittal) were obtained on the long axis of each incisor. The sagittal slice was used for measurement taking, whereas the references used to assess tooth inclination were the long axis of maxillary teeth in relation to the palatal plane and the long axis of mandibular teeth in relation to the mandibular plane. Results: There was significant variation in the inclination of incisors before and after orthodontic decompensation. This change was of greater magnitude in the mandibular arch, evidencing that natural compensation is more effective in this arch, thereby requiring more intensive decompensation. Conclusion: When routinely performed, the protocols of decompensation treatment in surgical individuals often result in intensive movements, which should be reevaluated, since the extent of movement predisposes to reduction in bone attachment levels and root length. PMID:26560818

  11. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  12. Scalp marking for a craniotomy using a laser pointer during preoperative computed tomographic imaging: technical note.

    PubMed

    Kubo, S; Nakata, H; Sugauchi, Y; Yokota, N; Yoshimine, T

    2000-05-01

    The preoperative localization of superficial intracranial lesions is often necessary for accurate burr hole placement or craniotomy siting. It is not always easy, however, to localize the lesions over the scalp working only from computed tomographic images. We developed a simple method for such localization using a laser pointer during the preoperative computed tomographic examination. The angle of incidence, extending from a point on the scalp to the center of the computed tomographic image, is measured by the software included with the scanner. In the gantry, at the same angle as on the image, a laser is beamed from a handmade projector onto the patient's scalp toward the center of the gantry. The point illuminated on the patient's head corresponds to that on the image. The device and the method are described in detail herein. We applied this technique to mark the area for the craniotomy before surgery in five patients with superficial brain tumors. At the time of surgery, it was confirmed that the tumors were circumscribed precisely. The technique is easy to perform and useful in the preoperative planning for a craniotomy. In addition, the device is easily constructed and inexpensive.

  13. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.

    PubMed

    Cantekin, Kenan; Sekerci, Ahmet Ercan; Buyuk, Suleyman Kutalmis

    2013-12-01

    Computed tomography (CT) is capable of providing accurate and measurable 3-dimensional images of the third molar. The aims of this study were to analyze the development of the mandibular third molar and its relation to chronological age and to create new reference data for a group of Turkish participants aged 9 to 25 years on the basis of cone-beam CT images. All data were obtained from the patients' records including medical, social, and dental anamnesis and cone-beam CT images of 752 patients. Linear regression analysis was performed to obtain regression formulas for dental age calculation with chronological age and to determine the coefficient of determination (r) for each sex. Statistical analysis showed a strong correlation between age and third-molar development for the males (r2 = 0.80) and the females (r2 = 0.78). Computed tomographic images are clinically useful for accurate and reliable estimation of dental ages of children and youth.

  14. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.

  15. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.

  16. General rigid motion correction for computed tomography imaging based on locally linear embedding

    NASA Astrophysics Data System (ADS)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  17. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  18. Diagnostic Accuracy of Periapical Radiography and Cone-beam Computed Tomography in Identifying Root Canal Configuration of Human Premolars.

    PubMed

    Sousa, Thiago Oliveira; Haiter-Neto, Francisco; Nascimento, Eduarda Helena Leandro; Peroni, Leonardo Vieira; Freitas, Deborah Queiroz; Hassan, Bassam

    2017-07-01

    The aim of this study was to assess the diagnostic accuracy of periapical radiography (PR) and cone-beam computed tomographic (CBCT) imaging in the detection of the root canal configuration (RCC) of human premolars. PR and CBCT imaging of 114 extracted human premolars were evaluated by 2 oral radiologists. RCC was recorded according to Vertucci's classification. Micro-computed tomographic imaging served as the gold standard to determine RCC. Accuracy, sensitivity, specificity, and predictive values were calculated. The Friedman test compared both PR and CBCT imaging with the gold standard. CBCT imaging showed higher values for all diagnostic tests compared with PR. Accuracy was 0.55 and 0.89 for PR and CBCT imaging, respectively. There was no difference between CBCT imaging and the gold standard, whereas PR differed from both CBCT and micro-computed tomographic imaging (P < .0001). CBCT imaging was more accurate than PR for evaluating different types of RCC individually. Canal configuration types III, VII, and "other" were poorly identified on CBCT imaging with a detection accuracy of 50%, 0%, and 43%, respectively. With PR, all canal configurations except type I were poorly visible. PR presented low performance in the detection of RCC in premolars, whereas CBCT imaging showed no difference compared with the gold standard. Canals with complex configurations were less identifiable using both imaging methods, especially PR. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  20. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    PubMed

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  1. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    PubMed

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  2. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    PubMed

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  3. Inflammatory Myofibroblastic Tumor Mimicking Apical Periodontitis.

    PubMed

    Adachi, Makoto; Kiho, Kazuki; Sekine, Genta; Ohta, Takahisa; Matsubara, Makoto; Yoshida, Takakazu; Katsumata, Akitoshi; Tanuma, Jun-ichi; Sumitomo, Shinichiro

    2015-12-01

    Inflammatory myofibroblastic tumors (IMTs) are rare. IMTs of the head and neck occur in all age groups, from neonates to old age, with the highest incidence occurring in childhood and early adulthood. An IMT has been defined as a histologically distinctive lesion of uncertain behavior. This article describes an unusual case of IMT mimicking apical periodontitis in the mandible of a 42-year-old man. At first presentation, the patient showed spontaneous pain and percussion pain at teeth #28 to 30, which continued after initial endodontic treatment. Panoramic radiography revealed a radiolucent lesion at the site. Cone-beam computed tomographic imaging showed osteolytic lesions, suggesting an aggressive neoplasm requiring incisional biopsy. Histopathological examination indicated an IMT. The lesion was removed en bloc under general anesthesia, and the patient manifested no clinical evidence of recurrence for 24 months. Lesions of nonendodontic origin should be included in the differential diagnosis of apical periodontitis. Every available diagnostic tool should be used to confirm the diagnosis. Cone-beam computed tomographic imaging is very helpful for differential diagnosis in IMTs mimicking apical periodontitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report.

    PubMed

    Bendyk-Szeffer, Maja; Łagocka, Ryta; Trusewicz, Matylda; Lipski, Mariusz; Buczkowska-Radlińska, Jadwiga

    2015-02-01

    An extensive perforating internal root resorption accompanied by apical periodontitis and odontogenic sinus mucositis was detected on preoperative cone-beam computed tomographic scans in a first maxillary molar. After the chemomechanical debridement of the root canals, calcium hydroxide was placed as a temporary dressing for 7 days. Mineral trioxide aggregate was used to fill the perforation site with the aid of a surgical microscope. At the next visit, the root with the resorption defect was filled with warm vertical compaction of gutta-percha. A control cone-beam computed tomographic scan acquired 6 months after the endodontic treatment revealed complete resolution of the sinus retention cyst. Moreover, the patient's frequent otolaryngologic disturbances ceased. The tooth was functional with satisfactory clinical and radiographic results after 12 months. Based on the results of this case, successful repair of an extensive, perforating internal resorption with mineral trioxide aggregate may lead to complete resolution of apical periodontitis and maxillary sinus retention cyst. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.

    PubMed

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections.

  6. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  7. Synthetic Incoherence via Scanned Gaussian Beams

    PubMed Central

    Levine, Zachary H.

    2006-01-01

    Tomography, in most formulations, requires an incoherent signal. For a conventional transmission electron microscope, the coherence of the beam often results in diffraction effects that limit the ability to perform a 3D reconstruction from a tilt series with conventional tomographic reconstruction algorithms. In this paper, an analytic solution is given to a scanned Gaussian beam, which reduces the beam coherence to be effectively incoherent for medium-size (of order 100 voxels thick) tomographic applications. The scanned Gaussian beam leads to more incoherence than hollow-cone illumination. PMID:27274945

  8. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography

    PubMed Central

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835

  9. Cone beam tomographic study of facial structures characteristics at rest and wide smile, and their correlation with the facial types.

    PubMed

    Martins, Luciana Flaquer; Vigorito, Julio Wilson

    2013-01-01

    To determine the characteristics of facial soft tissues at rest and wide smile, and their possible relation to the facial type. We analyzed a sample of forty-eight young female adults, aged between 19.10 and 40 years old, with a mean age of 30.9 years, who had balanced profile and passive lip seal. Cone beam computed tomographies were performed at rest and wide smile postures on the entire sample which was divided into three groups according to individual facial types. Soft tissue features analysis of the lips, nose, zygoma and chin were done in sagittal, axial and frontal axis tomographic views. No differences were observed in any of the facial type variables for the static analysis of facial structures at both rest and wide smile postures. Dynamic analysis showed that brachifacial types are more sensitive to movement, presenting greater sagittal lip contraction. However, the lip movement produced by this type of face results in a narrow smile, with smaller tooth exposure area when compared with other facial types. Findings pointed out that the position of the upper lip should be ahead of the lower lip, and the latter, ahead of the pogonion. It was also found that the facial type does not impact the positioning of these structures. Additionally, the use of cone beam computed tomography may be a valuable method to study craniofacial features.

  10. Forest representation of vessels in cone-beam computed tomographic angiography.

    PubMed

    Chen, Zikuan; Ning, Ruola

    2005-01-01

    Cone-beam computed tomographic angiography (CBCTA) provides a fast three-dimensional (3D) vascular imaging modality, aiming at digitally representing the spatial vascular structure in an angiographic volume. Due to the finite coverage of cone-beam scan, as well as the volume cropping in volumetric image processing, an angiographic volume may fail to contain a whole vascular tree, but rather consist of a multitude of vessel segments or subtrees. As such, it is convenient to represent multitudinal components by a forest. The vessel tracking issue then becomes component characterization/identification in the forest. The forest representation brings several conveniences for vessel tracking: (1) to sort and count the vessels in an angiographic volume, for example, according to spatial occupancy and skeleton pathlength; (2) to single out a vessel and perform in situ 3D measurement and 3D visualization in the support space; (3) to delineate individual vessels from the original angiographic volume; and (4) to cull the forest by getting rid of non-vessels and small vessels. A 3D skeletonization is used to generate component skeletons. For tree construction from skeletons, we suggest a pathlength-based procedure, which lifts the restrictions of unit-width skeleton and root determination. We experimentally demonstrate the forest representation of a dog's carotid arteries in a CBCTA system. In principle, the forest representation is useful for managing vessels in both 2D angiographic images and 3D angiographic volumes.

  11. Pulp Revascularization on Permanent Teeth with Open Apices in a Middle-aged Patient.

    PubMed

    Wang, Yu; Zhu, Xiaofei; Zhang, Chengfei

    2015-09-01

    Pulp revascularization is a promising procedure for the treatment of adolescents' immature permanent teeth with necrotic pulp and/or apical periodontitis. However, the ability to successfully perform pulp revascularization in a middle-aged patient remains unclear. A 39-year-old woman was referred for treatment of teeth #20 and #29 with necrotic pulp, extensive periapical radiolucencies, and incomplete apices. Pulp revascularization procedures were attempted, including root canal debridement, triple antibiotic paste medication, and platelet-rich plasma transplantation to act as a scaffold. Periapical radiographic and cone-beam computed tomographic examinations were used to review the changes in the apical lesions and root apex configuration. The patient remained asymptomatic throughout the 30-month follow-up. Periapical radiographic examination revealed no change in the apical lesions of either tooth at 8 months. The periapical radiolucency disappeared on tooth #20 and significantly decreased on tooth #29 by the 30-month follow-up, findings that were also confirmed by cone-beam computed tomographic imaging. No evidence of root lengthening or thickening was observed. Successful revascularization was achieved in a middle-aged patient's teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  13. Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantom of the newborn patient

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.

    Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients. Overall, utilization of the newborn tomographic phantom in MC simulations has shown the need for and usefulness of pediatric tomographic phantoms. The newborn tomographic model has shown more versatility and realistic anatomical modeling when compared to the existing stylized newborn phantom. This work has provided important organ dose data for infant patients in common examinations in pediatric radiology.

  14. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  15. An image filtering technique for SPIDER visible tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonnesu, N., E-mail: nicola.fonnesu@igi.cnr.it; Agostini, M.; Brombin, M.

    2014-02-15

    The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.

  16. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam.

    PubMed

    Crotty, Dominic J; Brady, Samuel L; Jackson, D'Vone C; Toncheva, Greta I; Anderson, Colin E; Yoshizumi, Terry T; Tornai, Martin P

    2011-06-01

    A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.

  17. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam

    PubMed Central

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D’Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2011-01-01

    Purpose: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Methods: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Results: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Conclusions: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging. PMID:21815398

  18. Noninvasive coronary artery angiography using electron beam computed tomography

    NASA Astrophysics Data System (ADS)

    Rumberger, John A.; Rensing, Benno J.; Reed, Judd E.; Ritman, Erik L.; Sheedy, Patrick F., II

    1996-04-01

    Electron beam computed tomography (EBCT), also known as ultrafast-CT or cine-CT, uses a unique scanning architecture which allows for multiple high spatial resolution electrocardiographic triggered images of the beating heart. A recent study has demonstrated the feasibility of qualitative comparisons between EBCT derived 3D coronary angiograms and invasive angiography. Stenoses of the proximal portions of the left anterior descending and right coronary arteries were readily identified, but description of atherosclerotic narrowing in the left circumflex artery (and distal epicardial disease) was not possible with any degree of confidence. Although these preliminary studies support the notion that this approach has potential, the images overall were suboptimal for clinical application as an adjunct to invasive angiography. Furthermore, these studies did not examine different methods of EBCT scan acquisition, tomographic slice thicknesses, extent of scan overlap, or other segmentation, thresholding, and interpolation algorithms. Our laboratory has initiated investigation of these aspects and limitations of EBCT coronary angiography. Specific areas of research include defining effects of cardiac orientation; defining the effects of tomographic slice thickness and intensity (gradient) versus positional (shaped based) interpolation; and defining applicability of imaging each of the major epicardial coronary arteries for quantitative definition of vessel size, cross-sectional area, taper, and discrete vessel narrowing.

  19. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  20. Cone Beam Computed Tomographic imaging in orthodontics.

    PubMed

    Scarfe, W C; Azevedo, B; Toghyani, S; Farman, A G

    2017-03-01

    Over the last 15 years, cone beam computed tomographic (CBCT) imaging has emerged as an important supplemental radiographic technique for orthodontic diagnosis and treatment planning, especially in situations which require an understanding of the complex anatomic relationships and surrounding structures of the maxillofacial skeleton. CBCT imaging provides unique features and advantages to enhance orthodontic practice over conventional extraoral radiographic imaging. While it is the responsibility of each practitioner to make a decision, in tandem with the patient/family, consensus-derived, evidence-based clinical guidelines are available to assist the clinician in the decision-making process. Specific recommendations provide selection guidance based on variables such as phase of treatment, clinically-assessed treatment difficulty, the presence of dental and/or skeletal modifying conditions, and pathology. CBCT imaging in orthodontics should always be considered wisely as children have conservatively, on average, a three to five times greater radiation risk compared with adults for the same exposure. The purpose of this paper is to provide an understanding of the operation of CBCT equipment as it relates to image quality and dose, highlight the benefits of the technique in orthodontic practice, and provide guidance on appropriate clinical use with respect to radiation dose and relative risk, particularly for the paediatric patient. © 2017 Australian Dental Association.

  1. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bapst, Blanche, E-mail: blanchebapst@hotmail.com; Lagadec, Matthieu, E-mail: matthieu.lagadec@bjn.aphp.fr; Breguet, Romain, E-mail: romain.breguet@hcuge.ch

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlightmore » liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.« less

  2. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    PubMed

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Guided Endodontic Access in Maxillary Molars Using Cone-beam Computed Tomography and Computer-aided Design/Computer-aided Manufacturing System: A Case Report.

    PubMed

    Lara-Mendes, Sônia T de O; Barbosa, Camila de Freitas M; Santa-Rosa, Caroline C; Machado, Vinícius C

    2018-05-01

    The aim of this study was to describe a guided endodontic technique that facilitates access to root canals of molars presenting with pulp calcifications. A 61-year-old woman presented to our service with pain in the upper left molar region. The second and third left molars showed signs of apical periodontitis confirmed by the cone-beam computed tomographic (CBCT) scans brought to us by the patient at the initial appointment. Conventional endodontic treatment was discontinued given the difficulty in locating the root canals. Intraoral scanning and the CBCT scans were used to plan the access to the calcified canals by means of implant planning software. Guides were fabricated through rapid prototyping and allowed for the correct orientation of a cylindrical drill used to provide access through the calcifications. Second to that, the root canals were prepared with reciprocating endodontic instruments and rested for 2 weeks with intracanal medication. Subsequently, canals were packed with gutta-percha cones using the hydraulic compression technique. Permanent restorations of the access cavities were performed. By comparing the tomographic images, the authors observed a drastic reduction of the periapical lesions as well as the absence of pain symptoms after 3 months. This condition was maintained at the 1-year follow-up. The guided endodontic technique in maxillary molars was shown to be a fast, safe, and predictable therapy and can be regarded as an excellent option for the location of calcified root canals, avoiding failures in complex cases. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Tomographic diagnostic of the hydrogen beam from a negative ion source

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Brombin, M.; Serianni, G.; Pasqualotto, R.

    2011-10-01

    In this paper the tomographic diagnostic developed to characterize the 2D density distribution of a particle beam from a negative ion source is described. In particular, the reliability of this diagnostic has been tested by considering the geometry of the source for the production of ions of deuterium extracted from an rf plasma (SPIDER). SPIDER is a low energy prototype negative ion source for the international thermonuclear experimental reactor (ITER) neutral beam injector, aimed at demonstrating the capability to create and extract a current of D- (H-) ions up to 50 A (60 A) accelerated at 100 kV. The ions are extracted over a wide surface (1.52×0.56m2) with a uniform plasma density which is prescribed to remain within 10% of the mean value. The main target of the tomographic diagnostic is the measurement of the beam uniformity with sufficient spatial resolution and of its evolution throughout the pulse duration. To reach this target, a tomographic algorithm based on the simultaneous algebraic reconstruction technique is developed and the geometry of the lines of sight is optimized so as to cover the whole area of the beam. Phantoms that reproduce different experimental beam configurations are simulated and reconstructed, and the role of the noise in the signals is studied. The simulated phantoms are correctly reconstructed and their two-dimensional spatial nonuniformity is correctly estimated, up to a noise level of 10% with respect to the signal.

  5. IDIOS: An innovative index for evaluating dental imaging-based osteoporosis screening indices.

    PubMed

    Barngkgei, Imad; Halboub, Esam; Almashraqi, Abeer Abdulkareem; Khattab, Razan; Al Haffar, Iyad

    2016-09-01

    The goal of this study was to develop a new index as an objective reference for evaluating current and newly developed indices used for osteoporosis screening based on dental images. Its name; IDIOS, stands for Index of Dental-imaging Indices of Osteoporosis Screening. A comprehensive PubMed search was conducted to retrieve studies on dental imaging-based indices for osteoporosis screening. The results of the eligible studies, along with other relevant criteria, were used to develop IDIOS, which has scores ranging from 0 (0%) to 15 (100%). The indices presented in the studies we included were then evaluated using IDIOS. The 104 studies that were included utilized 24, 4, and 9 indices derived from panoramic, periapical, and computed tomographic/cone-beam computed tomographic techniques, respectively. The IDIOS scores for these indices ranged from 0 (0%) to 11.75 (78.32%). IDIOS is a valuable reference index that facilitates the evaluation of other dental imaging-based osteoporosis screening indices. Furthermore, IDIOS can be utilized to evaluate the accuracy of newly developed indices.

  6. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less

  7. Mandibular second molar exhibiting a unique "Y-" and "J-" "shaped" root canal anatomy diagnosed using cone-beam computed tomographic scanning: A case report.

    PubMed

    Parashar, Saumya-Rajesh; Kowsky, R Dinesh; Natanasabapathy, Velmurugan

    2017-01-01

    This article aims to report a unique case with aberrant root canal anatomy exhibiting "Y-" and "J"-shaped canal pattern in a mandibular second molar. Anatomic complexities may pose challenges for endodontic treatment. Before performing endodontic treatment, the clinician should be aware of the internal anatomy of the tooth being treated and should recognize anatomic aberrations if present. Presence of unusual anatomy may call for modifications in treatment planning. This report describes in detail about a mandibular second molar tooth associated with two paramolar tubercles having a peculiar "Y-" and "J-"shaped canal anatomy detected with the aid of cone beam computed tomography, which has never been reported in the dental literature. The proposed treatment protocol for the endodontic management of the same has also been discussed.

  8. A cost-utility analysis of the use of preoperative computed tomographic angiography in abdomen-based perforator flap breast reconstruction.

    PubMed

    Offodile, Anaeze C; Chatterjee, Abhishek; Vallejo, Sergio; Fisher, Carla S; Tchou, Julia C; Guo, Lifei

    2015-04-01

    Computed tomographic angiography is a diagnostic tool increasingly used for preoperative vascular mapping in abdomen-based perforator flap breast reconstruction. This study compared the use of computed tomographic angiography and the conventional practice of Doppler ultrasonography only in postmastectomy reconstruction using a cost-utility model. Following a comprehensive literature review, a decision analytic model was created using the three most clinically relevant health outcomes in free autologous breast reconstruction with computed tomographic angiography versus Doppler ultrasonography only. Cost and utility estimates for each health outcome were used to derive the quality-adjusted life-years and incremental cost-utility ratio. One-way sensitivity analysis was performed to scrutinize the robustness of the authors' results. Six studies and 782 patients were identified. Cost-utility analysis revealed a baseline cost savings of $3179, a gain in quality-adjusted life-years of 0.25. This yielded an incremental cost-utility ratio of -$12,716, implying a dominant choice favoring preoperative computed tomographic angiography. Sensitivity analysis revealed that computed tomographic angiography was costlier when the operative time difference between the two techniques was less than 21.3 minutes. However, the clinical advantage of computed tomographic angiography over Doppler ultrasonography only showed that computed tomographic angiography would still remain the cost-effective option even if it offered no additional operating time advantage. The authors' results show that computed tomographic angiography is a cost-effective technology for identifying lower abdominal perforators for autologous breast reconstruction. Although the perfect study would be a randomized controlled trial of the two approaches with true cost accrual, the authors' results represent the best available evidence.

  9. Noninvasive detection of coronary artery bypass graft patency by intravenous electron beam computed tomographic angiography.

    PubMed

    Yamakami, Shoji; Toyama, Junji; Okamoto, Mitsuhiro; Matsushita, Toyoaki; Murakami, Yoshimasa; Ogata, Masaki; Ito, Shigenori; Fukutomi, Tatsuya; Okayama, Naotsuka; Itoh, Makoto

    2003-11-01

    This study evaluates the usefullness of intravenous electron beam computed tomographic angiography (EBA) for the detection of coronary artery bypass graft patency in 43 patients (33 men and 10 women, mean age, 65 years) who had coronary artery bypass graft surgery. EBA was performed a few days before selective bypass graft angiography (SGA). Forty axial cross-sections of angiographic images of the heart were acquired consecutively by an electrocardiographic trigger signal at 40% of the RR interval, which corresponds to the end-systolic phase. EBA data were reconstructed as a three-dimensional shaded surface display of the heart and bypass grafts. Detectability of the patency of bypass gratis was evaluated, taking selective angiographic images of the bypass grafts as a gold standard. One hundred and nine grafts (96%) out of 114 grafts were subjected to evaluation: 37 grafts were left internal mammary artery grafts (LIMA), 7 were right internal mammary artery grafts (RIMA), 6 were gastroepiploic artery grafts (GEA), 7 were free gastroepiploic artery grafts with venous drainage (free-GEA), 7 were radial artery grafts (RAG), and 45 were saphenous vein gratis (SVG). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of EBA were 98%, 100%, 100%, 91%, and 98%, respectively. EBA sampled at the end-systolic period was determined to be useful for the detection of coronary artery bypass graft patency and occlusion.

  10. CBCT findings of periapical cemento-osseous dysplasia: A case report.

    PubMed

    Eskandarloo, Amir; Yousefi, Faezeh

    2013-09-01

    Periapical cemento-osseous dysplasia (PCOD) is a subtype of cemento-osseous dysplasia that usually occurs in middle-aged black women. This report described a case of a 45-year-old Iranian woman who was diagnosed with PCOD on the basis of cone beam computed tomographic (CBCT) findings. CBCT enabled detailed visualization of the bone changes. This report described the special radiographic characteristics of PCOD, including discontinuity of the lingual cortex on the CBCT sectional and three-dimensional images.

  11. CBCT findings of periapical cemento-osseous dysplasia: A case report

    PubMed Central

    Eskandarloo, Amir

    2013-01-01

    Periapical cemento-osseous dysplasia (PCOD) is a subtype of cemento-osseous dysplasia that usually occurs in middle-aged black women. This report described a case of a 45-year-old Iranian woman who was diagnosed with PCOD on the basis of cone beam computed tomographic (CBCT) findings. CBCT enabled detailed visualization of the bone changes. This report described the special radiographic characteristics of PCOD, including discontinuity of the lingual cortex on the CBCT sectional and three-dimensional images. PMID:24083217

  12. Differences on the Root and Root Canal Morphologies between Asian and White Ethnic Groups Analyzed by Cone-beam Computed Tomography.

    PubMed

    Martins, Jorge N R; Gu, Yongchun; Marques, Duarte; Francisco, Helena; Caramês, João

    2018-06-01

    Populations from different geographic regions and ethnic backgrounds may present differences in dental morphology. The aim of this study was to compare the differences in root and root canal configurations on Asian and white subpopulations using cone-beam computed tomographic imaging. Information from Asian and white patients was retrieved from 2 cone-beam computed tomographic imaging databases in China and Western Europe. Two calibrated observers collected data regarding the number of roots and Vertucci root canal system configuration for all groups of teeth. A total of 15,655 teeth were analyzed. The z test for independent groups was used to analyze differences between the groups. The significance level was considered at a P value < .05. Reliability tests were performed between observers. Differences were noted in the number of roots per tooth in 6 groups of teeth. The Asian group showed a higher prevalence of single-root configurations in maxillary first premolars (83.2%) and mandibular second molars (45.4%) when compared with whites with 48.7% and 14.3%, respectively. Moreover, 3-rooted configurations in mandibular first molars were more common in Asians (25.9%) compared with whites (2.6%). Seventeen of the 20 analyzed roots had a higher prevalence of Vertucci type I configuration in Asians. Maxillary first molars with second mesiobuccal root canals were more commonly found in whites than in Asians (71.3% and 58.4%, respectively). A similar situation was found in maxillary second molars. The Asian ethnic group presented a higher prevalence of Vertucci type I configuration, whereas the white group displayed a higher number of multiple root canal system morphologies. A clinician should be aware of these differences when treating patients from these ethnic groups. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  14. A Novel Method for Characterizing Beam Hardening Artifacts in Cone-beam Computed Tomographic Images.

    PubMed

    Fox, Aaron; Basrani, Bettina; Kishen, Anil; Lam, Ernest W N

    2018-05-01

    The beam hardening (BH) artifact produced by root filling materials in cone-beam computed tomographic (CBCT) images is influenced by their radiologic K absorption edge values. The purpose of this study was to describe a novel technique to characterize BH artifacts in CBCT images produced by 3 root canal filling materials and to evaluate the effects of a zirconium (Zr)-based root filling material with a lower K edge (17.99 keV) on the production of BH artifacts. The palatal root canals of 3 phantom model teeth were prepared and root filled with gutta-percha (GP), a Zr root filling material, and calcium hydroxide paste. Each phantom tooth was individually imaged using the CS 9000 CBCT unit (Carestream, Atlanta, GA). The "light" and "dark" components of the BH artifacts were quantified separately using ImageJ software (National Institutes of Health, Bethesda, MD) in 3 regions of the root. Mixed-design analysis of variance was used to evaluate differences in the artifact area for the light and dark elements of the BH artifacts. A statistically significant difference in the area of the dark portion of the BH artifact was found between all fill materials and in all regions of the phantom tooth root (P < .05). GP generated a significantly greater dark but not light artifact area compared with Zr (P < .05). Moreover, statistically significant differences between the areas of both the light and dark artifacts were observed within all regions of the tooth root, with the greatest artifact being generated in the coronal third of the root (P < .001). Root canal filling materials with lower K edge material properties reduce BH artifacts along the entire length of the root canal and reduce the contribution of the dark artifact. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. IDIOS: An innovative index for evaluating dental imaging-based osteoporosis screening indices

    PubMed Central

    Halboub, Esam; Almashraqi, Abeer Abdulkareem; Khattab, Razan; Al Haffar, Iyad

    2016-01-01

    Purpose The goal of this study was to develop a new index as an objective reference for evaluating current and newly developed indices used for osteoporosis screening based on dental images. Its name; IDIOS, stands for Index of Dental-imaging Indices of Osteoporosis Screening. Materials and Methods A comprehensive PubMed search was conducted to retrieve studies on dental imaging-based indices for osteoporosis screening. The results of the eligible studies, along with other relevant criteria, were used to develop IDIOS, which has scores ranging from 0 (0%) to 15 (100%). The indices presented in the studies we included were then evaluated using IDIOS. Results The 104 studies that were included utilized 24, 4, and 9 indices derived from panoramic, periapical, and computed tomographic/cone-beam computed tomographic techniques, respectively. The IDIOS scores for these indices ranged from 0 (0%) to 11.75 (78.32%). Conclusion IDIOS is a valuable reference index that facilitates the evaluation of other dental imaging-based osteoporosis screening indices. Furthermore, IDIOS can be utilized to evaluate the accuracy of newly developed indices. PMID:27672615

  16. Organ and effective doses in newborn patients during helical multislice computed tomography examination

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.; Lee, Choonik; Lee, Choonsik; Williams, Matt D.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2006-10-01

    In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52° and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI100 measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ dose. Per cent differences in organ dose between the stylized and tomographic phantoms at 120 kVp and 12 mm collimator setting ranged from -25% (skin) to +164% (muscle) for head exams, -92% (thyroid) to +98% (ovaries) for chest exams, -144% (uterus) to +112% (ovaries) for abdominal exams, -98% (SI wall) to +20% (thymus) for pelvic exams and -60% (extrathoracic airways) to +13% (ovaries) for CAP exams. Better agreement was seen between the two phantom types for organs entirely within the scan field. In these cases, corresponding per cent differences in organ absorbed dose did not vary more than 17%. For all scans, the effective dose was found to range approximately 1-13 mSv across the scan parameters and scan regions. The largest effective dose occurred for CAP scans at 120 kVp.

  17. Clinical, radiographic, ultrasonographic and computed tomographic features of nonseptic osteitis of the axial border of the proximal sesamoid bones.

    PubMed

    Vanderperren, K; Bergman, H J; Spoormakers, T J P; Pille, F; Duchateau, L; Puchalski, S M; Saunders, J H

    2014-07-01

    Lysis of the axial aspect of equine proximal sesamoid bones (PSBs) is a rare condition reported to have septic or traumatic origins. Limited information exists regarding imaging of nonseptic axial osteitis of a PSB. To report the clinical, radiographic, ultrasonographic, computed tomographic and intra-arterial contrast-enhanced computed tomographic abnormalities in horses with axial nonseptic osteitis of a PSB. Retrospective clinical study. Eighteen horses diagnosed with nonseptic osteitis of the axial border of a PSB between 2007 and 2012 were reviewed retrospectively. Case details, clinical examination, radiographic, ultrasonographic, computed tomographic and intra-arterial/intra-articular contrast-enhanced computed tomographic features were recorded, when available. Radiographic, ultrasonographic and computed tomographic evaluations of the fetlock region had been performed on 18, 15 and 9 horses, respectively. The effect of the degree of lysis on the grade and duration of lameness was determined. All horses had chronic unilateral lameness, 4 with forelimb and 14 with hindlimb signs. On radiographs, lysis was identified in both PSBs in 14 horses, one PSB in 3 horses and in one horse no lysis was identified. The degree of osteolysis was variable. Ultrasonography identified variably sized irregularities of the bone surface and alteration in echogenicity of the palmar/plantar ligament (PL). All horses undergoing computed tomographic examination (n = 9) had biaxial lysis. The lesions were significantly longer and deeper on computed tomographic images compared with radiographic images. Intra-arterial contrast-enhanced computed tomography may reveal moderate to marked contrast enhancement of the PL. There was no significant effect of the degree of lysis on the grade and duration of lameness. Lesions of nonseptic axial osteitis of a PSB can be identified using a combination of radiography and ultrasonography. Computed tomography provides additional information regarding the extent of the pathology. © 2013 EVJ Ltd.

  18. Chamber dimensions and functional assessment with coronary computed tomographic angiography as compared to echocardiography using American Society of Echocardiography guidelines

    PubMed Central

    Rose, Michael; Rubal, Bernard; Hulten, Edward; Slim, Jennifer N; Steel, Kevin; Furgerson, James L; Villines, Todd C

    2014-01-01

    Background: The correlation between normal cardiac chamber linear dimensions measured during retrospective coronary computed tomographic angiography as compared to transthoracic echocardiography using the American Society of Echocardiography guidelines is not well established. Methods: We performed a review from January 2005 to July 2011 to identify subjects with retrospective electrocardiogram-gated coronary computed tomographic angiography scans for chest pain and transthoracic echocardiography with normal cardiac structures performed within 90 days. Dimensions were manually calculated in both imaging modalities in accordance with the American Society of Echocardiography published guidelines. Left ventricular ejection fraction was calculated on echocardiography manually using the Simpson’s formula and by coronary computed tomographic angiography using the end-systolic and end-diastolic volumes. Results: We reviewed 532 studies, rejected 412 and had 120 cases for review with a median time between studies of 7 days (interquartile range (IQR25,75) = 0–22 days) with no correlation between the measurements made by coronary computed tomographic angiography and transthoracic echocardiography using Bland–Altman analysis. We generated coronary computed tomographic angiography cardiac dimension reference ranges for both genders for our population. Conclusion: Our findings represent a step towards generating cardiac chamber dimensions’ reference ranges for coronary computed tomographic angiography as compared to transthoracic echocardiography in patients with normal cardiac morphology and function using the American Society of Echocardiography guideline measurements that are commonly used by cardiologists. PMID:26770706

  19. Pseudolocal tomography

    DOEpatents

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.

  20. Pseudolocal tomography

    DOEpatents

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  1. Correction of scatter in megavoltage cone-beam CT

    NASA Astrophysics Data System (ADS)

    Spies, L.; Ebert, M.; Groh, B. A.; Hesse, B. M.; Bortfeld, T.

    2001-03-01

    The role of scatter in a cone-beam computed tomography system using the therapeutic beam of a medical linear accelerator and a commercial electronic portal imaging device (EPID) is investigated. A scatter correction method is presented which is based on a superposition of Monte Carlo generated scatter kernels. The kernels are adapted to both the spectral response of the EPID and the dimensions of the phantom being scanned. The method is part of a calibration procedure which converts the measured transmission data acquired for each projection angle into water-equivalent thicknesses. Tomographic reconstruction of the projections then yields an estimate of the electron density distribution of the phantom. It is found that scatter produces cupping artefacts in the reconstructed tomograms. Furthermore, reconstructed electron densities deviate greatly (by about 30%) from their expected values. The scatter correction method removes the cupping artefacts and decreases the deviations from 30% down to about 8%.

  2. Business aspects of cardiovascular computed tomography: tackling the challenges.

    PubMed

    Bateman, Timothy M

    2008-01-01

    The purpose of this article is to provide a comprehensive understanding of the business issues surrounding provision of dedicated cardiovascular computed tomographic imaging. Some of the challenges include high up-front costs, current low utilization relative to scanner capability, and inadequate payments. Cardiovascular computed tomographic imaging is a valuable clinical modality that should be offered by cardiovascular centers-of-excellence. With careful consideration of the business aspects, moderate-to-large size cardiology programs should be able to implement an economically viable cardiovascular computed tomographic service.

  3. Pathology Observed on Cone Beam Computed Tomographic Scans: A Comparison of Prevalence and Type of Incidental Findings for Child/Adolescents and Adults

    DTIC Science & Technology

    2013-04-13

    the radiation passed through the subject. For conventional CT, this value is called a Hounsfield unit (HU), named in the honor of Godfrey Hounsfield ...concretions and tonsilloliths. Otolaryngol Clin North Am. 1987 May;20(2):305-9. 39. Reeves TE, Mah P, McDavid WD. Deriving Hounsfield units using grey...study are those of the authors and do not reflect the official policy of the United States Air Force, the Department of Defense, or the United States

  4. Applicability of Cone Beam Computed Tomography to the Assessment of the Vocal Tract before and after Vocal Exercises in Normal Subjects.

    PubMed

    Garcia, Elisângela Zacanti; Yamashita, Hélio Kiitiro; Garcia, Davi Sousa; Padovani, Marina Martins Pereira; Azevedo, Renata Rangel; Chiari, Brasília Maria

    2016-01-01

    Cone beam computed tomography (CBCT), which represents an alternative to traditional computed tomography and magnetic resonance imaging, may be a useful instrument to study vocal tract physiology related to vocal exercises. This study aims to evaluate the applicability of CBCT to the assessment of variations in the vocal tract of healthy individuals before and after vocal exercises. Voice recordings and CBCT images before and after vocal exercises performed by 3 speech-language pathologists without vocal complaints were collected and compared. Each participant performed 1 type of exercise, i.e., Finnish resonance tube technique, prolonged consonant "b" technique, or chewing technique. The analysis consisted of an acoustic analysis and tomographic imaging. Modifications of the vocal tract settings following vocal exercises were properly detected by CBCT, and changes in the acoustic parameters were, for the most part, compatible with the variations detected in image measurements. CBCT was shown to be capable of properly assessing the changes in vocal tract settings promoted by vocal exercises. © 2017 S. Karger AG, Basel.

  5. Improved tomographic reconstructions using adaptive time-dependent intensity normalization.

    PubMed

    Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui

    2010-09-01

    The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.

  6. Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.

    2017-07-01

    The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.

  7. Feasibility of track-based multiple scattering tomography

    NASA Astrophysics Data System (ADS)

    Jansen, H.; Schütze, P.

    2018-04-01

    We present a tomographic technique making use of a gigaelectronvolt electron beam for the determination of the material budget distribution of centimeter-sized objects by means of simulations and measurements. In both cases, the trajectory of electrons traversing a sample under test is reconstructed using a pixel beam-telescope. The width of the deflection angle distribution of electrons undergoing multiple Coulomb scattering at the sample is estimated. Basing the sinogram on position-resolved estimators enables the reconstruction of the original sample using an inverse radon transform. We exemplify the feasibility of this tomographic technique via simulations of two structured cubes—made of aluminium and lead—and via an in-beam measured coaxial adapter. The simulations yield images with FWHM edge resolutions of (177 ± 13) μm and a contrast-to-noise ratio of 5.6 ± 0.2 (7.8 ± 0.3) for aluminium (lead) compared to air. The tomographic reconstruction of a coaxial adapter serves as experimental evidence of the technique and yields a contrast-to-noise ratio of 15.3 ± 1.0 and a FWHM edge resolution of (117 ± 4) μm.

  8. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  9. The influence of dental implants in periapical and panoramic radiographs and cone beam computed tomography images: a clinical study.

    PubMed

    Felix, Rafael Perdomo; Shinkai, Rosemary Sadami Arai; Rockenbach, Maria Ivete Bolzan

    2018-01-01

    The aim of this study was to analyze the influence of dental implants on the radiographic density of the peri-implant region in tomographic and radiographic examinations. A sample of 21 dental implants from 10 patients with Brånemark-protocol prostheses was evaluated based on postoperative control images, including periapical radiography (paralleling technique), panoramic radiography, and cone beam computed tomography (CBCT). The density means of 6 defined areas near dental implants were calculated and compared considering their locations and the different imaging examinations. The CBCT examinations showed significantly different densities among the measured areas (P < 0.001), while there were no significant differences among the density means of the various areas in periapical radiographs (P = 0.430) and panoramic radiographs (P = 0.149). The highest mean densities were observed in areas closer to the implants in all the examinations: CBCT (127.88 and 120.71), panoramic (106.51 and 106.09), and periapical (120.32). The sagittal CBCT images were measured in 2 different sections, and in both sections those areas closer to implants showed mean densities that were significantly higher than means from more distant areas (P < 0.001). Means from distant areas on CBCT slice imaging were significantly lower than the densities of the same areas on periapical and panoramic examinations. The changes in mean radiographic density values in the peri-implant region confirmed the interference of dental implants in radiographic and tomographic images. CBCT images suffered the greatest interference from dental implants.

  10. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime scene.

  11. Influence of Intracanal Materials in Vertical Root Fracture Pathway Detection with Cone-beam Computed Tomography.

    PubMed

    Dutra, Kamile Leonardi; Pachêco-Pereira, Camila; Bortoluzzi, Eduardo Antunes; Flores-Mir, Carlos; Lagravère, Manuel O; Corrêa, Márcio

    2017-07-01

    Investigating the vertical root fracture (VRF) pathway under different clinical scenarios may help to diagnose this condition properly. We aimed to determine the capability and intrareliability of VRF pathway detection through cone-beam computed tomographic (CBCT) imaging as well as analyze the influence of different intracanal and crown materials. VRFs were mechanically induced in 30 teeth, and 4 clinical situations were reproduced in vitro: no filling, gutta-percha, post, and metal crown. A Prexion (San Mateo, CA) 3-dimensional tomographic device was used to generate 104 CBCT scans. The VRF pathway was determined by using landmarks in the Avizo software (Version 8.1; FEI Visualization Sciences Group, Burlington, MA) by 1 observer repeated 3 times. Analysis of variance and post hoc tests were applied to compare groups. Intrareliability demonstrated an excellent agreement (intraclass correlation coefficient mean = 0.93). Descriptive analysis showed that the fracture line measurement was smaller in the post and metal crown groups than in the no-filling and gutta-percha groups. The 1-way analysis of variance test found statistically significant differences among the groups measurements. The Bonferroni correction showed statistically significant differences related to the no-filling and gutta-percha groups versus the post and metal crown groups. The VRF pathway can be accurately detected in a nonfilled tooth using limited field of view CBCT imaging. The presence of gutta-percha generated a low beam hardening artifact that did not hinder the VRF extent. The presence of an intracanal gold post made the fracture line appear smaller than it really was in the sagittal images; in the axial images, a VRF was only detected when the apical third was involved. The presence of a metal crown did not generate additional artifacts on the root surface compared to the intracanal gold post by itself. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The Performance of a Zirconium-based Root Filling Material with Artifact Reduction Properties in the Detection of Artificially Induced Root Fractures Using Cone-beam Computed Tomographic Imaging.

    PubMed

    Fox, Aaron; Basrani, Bettina; Lam, Ernest W N

    2018-05-01

    Limited field of view cone-beam computed tomographic (CBCT) imaging has been used to augment clinical testing of vertical root fractures (VRFs); however, the presence of gutta-percha (GP) in the canal space generates substantial imaging artifacts that make fracture detection difficult. The purpose of this study was to evaluate the influence of a zirconium (Zr)-based root filling material with radiologic properties that reduce beam hardening (BH) artifacts using CBCT imaging in the in vitro diagnosis of VRFs. One hundred seventy-six single-rooted mandibular premolar teeth were obtained, and half of these teeth were filled with GP or Zr (CPoint; EndoTechnologies, LLC, Shrewsbury, MA). VRFs were induced in 44 decoronated teeth in each group using an Instron (Norwood, MA) Universal Testing Machine. Each root was then placed in a dry human mandible and imaged with the Carestream 9000 3D CBCT system (Carestream Dental, Atlanta, GA). The images were evaluated by 6 oral maxillofacial radiologists (OMRs) and residents. The sensitivity was greater for detecting VRFs in the Zr group than the GP group (P = .035). However, the specificity was greater for the GP group than the Zr group (P = .028). Receiver operating characteristic area under the curve values were greater for the Zr group than the GP group, but these differences were not statistically significant. The OMRs outperformed the residents in the detection of VRFs in the Zr group with respect to specificity (P = .006) and positive predictive value (P = .012). The reduced BH of the Zr group improved the sensitivity of the detection of artificially induced VRFs. The ability to detect VRFs in the Zr group was further enhanced by clinical experience. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  14. Benefit from NASA

    NASA Image and Video Library

    2001-09-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  15. Fast tomosynthesis for lung cancer detection using the SBDX geometry

    NASA Astrophysics Data System (ADS)

    Fahrig, Rebecca; Pineda, Angel R.; Solomon, Edward G.; Leung, Ann N.; Pelc, Norbert J.

    2003-06-01

    Radiology-based lung-cancer detection is a high-contrast imaging task, consisting of the detection of a small mass of tissue within much lower density lung parenchyma. This imaging task requires removal of confounding image details, fast image acquisition (< 0.1 s for pericardial region), low dose (comparable to a chest x-ray), high resolution (< 0.25 mm in-plane) and patient positioning flexibility. We present an investigation of tomosynthesis, implemented using the Scanning-Beam Digital X-ray System (SBDX), to achieve these goals. We designed an image-based computer model of tomosynthesis using a high-resolution (0.15-mm isotropic voxels), low-noise CT volume image of a lung phantom, numerically added spherical lesions and convolution-based tomographic blurring. Lesion visibility was examined as a function of half-tomographic angle for 2.5 and 4.0 mm diameter lesions. Gaussian distributed noise was added to the projected images. For lesions 2.5 mm and 4.0 mm in diameter, half-tomographic angles of at least 6° and 9° respectively were necessary before visualization of the lesions improved. The addition of noise for a dose equivalent to 1/10 that used for a standard chest radiograph did not significantly impair lesion detection. The results are promising, indicating that lung-cancer detection using a modified SBDX system is possible.

  16. An alternative approach to extruding a vertically impacted lower third molar using an orthodontic miniscrew: A case report with cone-beam CT follow-up

    PubMed Central

    No-Cortes, Juliana; Cavalcanti, Marcelo Gusmão Paraíso; Arita, Emiko Saito

    2014-01-01

    One of the most common oral surgical procedures is the extraction of the lower third molar (LTM). Postoperative complications such as paresthesia due to inferior alveolar nerve (IAN) injury are commonly observed in cases of horizontal and vertical impaction. The present report discusses a case of a vertically impacted LTM associated with a dentigerous cyst. An intimate contact between the LTM roots and the mandibular canal was observed on a panoramic radiograph and confirmed with cone-beam computed tomographic (CBCT) cross-sectional cuts. An orthodontic miniscrew was then used to extrude the LTM prior to its surgical removal in order to avoid the risk of inferior alveolar nerve injury. CBCT imaging follow-up confirmed the success of the LTM orthodontic extrusion. PMID:24944969

  17. An alternative approach to extruding a vertically impacted lower third molar using an orthodontic miniscrew: A case report with cone-beam CT follow-up.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; No-Cortes, Juliana; Cavalcanti, Marcelo Gusmão Paraíso; Arita, Emiko Saito

    2014-06-01

    One of the most common oral surgical procedures is the extraction of the lower third molar (LTM). Postoperative complications such as paresthesia due to inferior alveolar nerve (IAN) injury are commonly observed in cases of horizontal and vertical impaction. The present report discusses a case of a vertically impacted LTM associated with a dentigerous cyst. An intimate contact between the LTM roots and the mandibular canal was observed on a panoramic radiograph and confirmed with cone-beam computed tomographic (CBCT) cross-sectional cuts. An orthodontic miniscrew was then used to extrude the LTM prior to its surgical removal in order to avoid the risk of inferior alveolar nerve injury. CBCT imaging follow-up confirmed the success of the LTM orthodontic extrusion.

  18. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  19. Cone Beam Computed Tomographic Evaluation of Mandibular Asymmetry in Patients with Cleft Lip and Palate.

    PubMed

    Paknahad, Maryam; Shahidi, Shoaleh; Bahrampour, Ehsan; Beladi, Amir Saied; Khojastepour, Leila

    2018-01-01

    Objective The purpose of the present study was to compare mandibular vertical asymmetry in patients with unilateral and bilateral cleft lip and palate and subjects with normal occlusion. Materials and Methods Cone beam computed tomography scans of three groups consisting of 20 patients with unilateral cleft lip and palate, 20 patients affected by bilateral cleft lip and palate, and a control group of 20 subjects with normal occlusion were analyzed for this study. Condylar, ramal, and condylar plus ramal asymmetry indices were measured for all subjects using the method of Habets et al. Kruskal-Wallis and Mann-Whitney tests were used to determine any significant differences between the groups for all indices at the 95% level of confidence. Results There were no significant differences regarding sex for all mandibular asymmetry indices in all three groups. All Asymmetry indices (condylar, ramal, and condylar plus ramal asymmetry) were significantly higher in the unilateral cleft group compared with the other two groups. Conclusion Cone beam computed tomography images showed that patients with cleft lip and palate suffered from mandibular asymmetry. Subjects with unilateral cleft lip and palate had a more asymmetric mandible compared with the bilateral cleft lip and palate and control groups. Therefore, the mandible appears to be the leading factor in facial asymmetry in subjects with unilateral cleft lip and palate.

  20. Proton radiography and proton computed tomography based on time-resolved dose measurements

    NASA Astrophysics Data System (ADS)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed pCT images of a cylindrical phantom containing inserts of different materials. As for all conventional pCT systems, the method illustrated in this work produces tomographic images that are potentially more accurate than x-ray CT in providing maps of proton relative stopping power (RSP) in the patient without the need for converting x-ray Hounsfield units to proton RSP. All phantom tests produced reasonable results, given the currently limited spatial and time resolution of the prototype detector. The dose required to produce one radiographic image, with the current settings, is ˜0.7 cGy. Finally, we discuss a series of techniques to improve the resolution and accuracy of radiographic and tomographic images for the future development of a full-scale detector.

  1. Cone-beam computed tomographic evaluation of the temporomandibular joint and dental characteristics of patients with Class II subdivision malocclusion and asymmetry

    PubMed Central

    Huang, Mingna; Hu, Yun; Yu, Jinfeng; Sun, Jicheng; Ming, Ye

    2017-01-01

    Objective Treating Class II subdivision malocclusion with asymmetry has been a challenge for orthodontists because of the complicated characteristics of asymmetry. This study aimed to explore the characteristics of dental and skeletal asymmetry in Class II subdivision malocclusion, and to assess the relationship between the condyle-glenoid fossa and first molar. Methods Cone-beam computed tomographic images of 32 patients with Class II subdivision malocclusion were three-dimensionally reconstructed using the Mimics software. Forty-five anatomic landmarks on the reconstructed structures were selected and 27 linear and angular measurements were performed. Paired-samples t-tests were used to compare the average differences between the Class I and Class II sides; Pearson correlation coefficient (r) was used for analyzing the linear association. Results The faciolingual crown angulation of the mandibular first molar (p < 0.05), sagittal position of the maxillary and mandibular first molars (p < 0.01), condylar head height (p < 0.01), condylar process height (p < 0.05), and angle of the posterior wall of the articular tubercle and coronal position of the glenoid fossa (p < 0.01) were significantly different between the two sides. The morphology and position of the condyle-glenoid fossa significantly correlated with the three-dimensional changes in the first molar. Conclusions Asymmetry in the sagittal position of the maxillary and mandibular first molars between the two sides and significant lingual inclination of the mandibular first molar on the Class II side were the dental characteristics of Class II subdivision malocclusion. Condylar morphology and glenoid fossa position asymmetries were the major components of skeletal asymmetry and were well correlated with the three-dimensional position of the first molar. PMID:28861389

  2. Comparison between Radiographic (2-dimensional and 3-dimensional) and Histologic Findings of Periapical Lesions Treated with Apical Surgery.

    PubMed

    Bornstein, Michael M; Bingisser, Andreas C; Reichart, Peter A; Sendi, Pedram; Bosshardt, Dieter D; von Arx, Thomas

    2015-06-01

    The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  4. Benefit from NASA

    NASA Image and Video Library

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  5. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.

    PubMed

    Jaffray, D A; Drake, D G; Moreau, M; Martinez, A A; Wong, J W

    1999-10-01

    Dose escalation in conformal radiation therapy requires accurate field placement. Electronic portal imaging devices are used to verify field placement but are limited by the low subject contrast of bony anatomy at megavoltage (MV) energies, the large imaging dose, and the small size of the radiation fields. In this article, we describe the in-house modification of a medical linear accelerator to provide radiographic and tomographic localization of bone and soft-tissue targets in the reference frame of the accelerator. This system separates the verification of beam delivery (machine settings, field shaping) from patient and target localization. A kilovoltage (kV) x-ray source is mounted on the drum assembly of an Elekta SL-20 medical linear accelerator, maintaining the same isocenter as the treatment beam with the central axis at 90 degrees to the treatment beam axis. The x-ray tube is powered by a high-frequency generator and can be retracted to the drum-face. Two CCD-based fluoroscopic imaging systems are mounted on the accelerator to collect MV and kV radiographic images. The system is also capable of cone-beam tomographic imaging at both MV and kV energies. The gain stages of the two imaging systems have been modeled to assess imaging performance. The contrast-resolution of the kV and MV systems was measured using a contrast-detail (C-D) phantom. The dosimetric advantage of using the kV imaging system over the MV system for the detection of bone-like objects is quantified for a specific imaging geometry using a C-D phantom. Accurate guidance of the treatment beam requires registration of the imaging and treatment coordinate systems. The mechanical characteristics of the treatment and imaging gantries are examined to determine a localizing precision assuming an unambiguous object. MV and kV radiographs of patients receiving radiation therapy are acquired to demonstrate the radiographic performance of the system. The tomographic performance is demonstrated on phantoms using both the MV and the kV imaging system, and the visibility of soft-tissue targets is assessed. Characterization of the gains in the two systems demonstrates that the MV system is x-ray quantum noise-limited at very low spatial frequencies; this is not the case for the kV system. The estimates of gain used in the model are validated by measurements of the total gain in each system. Contrast-detail measurements demonstrate that the MV system is capable of detecting subject contrasts of less than 0.1% (at 6 and 18 MV). A comparison of the kV and MV contrast-detail performance indicates that equivalent bony object detection can be achieved with the kV system at significantly lower doses (factors of 40 and 90 lower than for 6 and 18 MV, respectively). The tomographic performance of the system is promising; soft-tissue visibility is demonstrated at relatively low imaging doses (3 cGy) using four laboratory rats. We have integrated a kV radiographic and tomographic imaging system with a medical linear accelerator to allow localization of bone and soft-tissue structures in the reference frame of the accelerator. Modeling and experiments have demonstrated the feasibility of acquiring high-quality radiographic and tomographic images at acceptable imaging doses. Full integration of the kV and MV imaging systems with the treatment machine will allow on-line radiographic and tomographic guidance of field placement.

  6. Large Reactional Osteogenesis in Maxillary Sinus Associated with Secondary Root Canal Infection Detected Using Cone-beam Computed Tomography.

    PubMed

    Estrela, Carlos; Porto, Olavo César Lyra; Costa, Nádia Lago; Garrote, Marcel da Silva; Decurcio, Daniel Almeida; Bueno, Mike R; Silva, Brunno Santos de Freitas

    2015-12-01

    Inflammatory injuries in the maxillary sinus may originate from root canal infections and lead to bone resorption or regeneration. This report describes the radiographic findings of 4 asymptomatic clinical cases of large reactional osteogenesis in the maxillary sinus (MS) associated with secondary root canal infection detected using cone-beam computed tomographic (CBCT) imaging. Apical periodontitis, a consequence of root canal infection, may lead to a periosteal reaction in the MS and osteogenesis seen as a radiopaque structure on imaging scans. The use of a map-reading strategy for the longitudinal and sequential slices of CBCT images may contribute to the definition of diagnoses and treatment plans. Root canal infections may lead to reactional osteogenesis in the MS. High-resolution CBCT images may reveal changes that go unnoticed when using conventional imaging. Findings may help define initial diagnoses and therapeutic plans, but only histopathology provides a definitive diagnosis. Surgical enucleation of the periapical lesion is recommended if nonsurgical root canal treatment fails to control apical periodontitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Comparative Validity and Reproducibility Study of Various Landmark-Oriented Reference Planes in 3-Dimensional Computed Tomographic Analysis for Patients Receiving Orthognathic Surgery

    PubMed Central

    Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou

    2015-01-01

    Background Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Materials and Methods Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. Results A total of 30 patients with facial deformity and malocclusion—10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate—were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. Conclusions The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models. PMID:25668209

  8. Comparative validity and reproducibility study of various landmark-oriented reference planes in 3-dimensional computed tomographic analysis for patients receiving orthognathic surgery.

    PubMed

    Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou

    2015-01-01

    Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. A total of 30 patients with facial deformity and malocclusion--10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate--were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models.

  9. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.

    PubMed

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  10. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  11. Poster - Thurs Eve-16: Just-in-time tomography (JiTT).

    PubMed

    Pang, G; Rowlands, J A

    2008-07-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room for image-guided radiation therapy. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus is not adequate for imaging targets with intrafraction motion. In this work, a new concept for image-guided radiation therapy- just-in-time tomography (JiTT) - is introduced. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. A system to achieve JiTT is proposed and its feasibility is investigated. Research supported by Siemens. © 2008 American Association of Physicists in Medicine.

  12. Computed Tomographic Blend Sign Is Associated With Computed Tomographic Angiography Spot Sign and Predicts Secondary Neurological Deterioration After Intracerebral Hemorrhage.

    PubMed

    Sporns, Peter B; Schwake, Michael; Schmidt, Rene; Kemmling, André; Minnerup, Jens; Schwindt, Wolfram; Cnyrim, Christian; Zoubi, Tarek; Heindel, Walter; Niederstadt, Thomas; Hanning, Uta

    2017-01-01

    Significant early hematoma growth in patients with intracerebral hemorrhage is an independent predictor of poor functional outcome. Recently, the novel blend sign (BS) has been introduced as a new imaging sign for predicting hematoma growth in noncontrast computed tomography. Another parameter predicting increasing hematoma size is the well-established spot sign (SS) visible in computed tomographic angiography. We, therefore, aimed to clarify the association between established SS and novel BS and their values predicting a secondary neurological deterioration. Retrospective study inclusion criteria were (1) spontaneous intracerebral hemorrhage confirmed on noncontrast computed tomography and (2) noncontrast computed tomography and computed tomographic angiography performed on admission within 6 hours after onset of symptoms. We defined a binary outcome (secondary neurological deterioration versus no secondary deterioration). As secondary neurological deterioration, we defined (1) early hemicraniectomy under standardized criteria or (2) secondary decrease of Glasgow Coma Scale of >3 points, both within the first 48 hours after symptom onset. Of 182 patients with spontaneous intracerebral hemorrhage, 37 (20.3%) presented with BS and 39 (21.4%) with SS. Of the 81 patients with secondary deterioration, 31 (38.3%) had BS and SS on admission. Multivariable logistic regression analysis identified hematoma volume (odds ratio, 1.07 per mL; P≤0.001), intraventricular hemorrhage (odds ratio, 3.08; P=0.008), and the presence of BS (odds ratio, 11.47; P≤0.001) as independent predictors of neurological deterioration. The BS, which is obtainable in noncontrast computed tomography, shows a high correlation with the computed tomographic angiography SS and is a reliable predictor of secondary neurological deterioration after spontaneous intracerebral hemorrhage. © 2016 American Heart Association, Inc.

  13. Three-dimensional assessment of maxillary changes associated with bone anchored maxillary protraction

    PubMed Central

    Nguyen, Tung; Cevidanes, Lucia; Cornelis, Marie A.; Heymann, Gavin; de Paula, Leonardo K.; De Clerck, Hugo

    2013-01-01

    Introduction Bone-anchored maxillary protraction has been shown to be an effective treatment modality for the correction of Class III malocclusions. The purpose of this study was to evaluate 3-dimensional changes in the maxilla, the surrounding hard and soft tissues, and the circummaxillary sutures after bone-anchored maxillary protraction treatment. Methods Twenty-five consecutive skeletal Class III patients between the ages of 9 and 13 years (mean, 11.10 ± 1.1 years) were treated with Class III intermaxillary elastics and bilateral miniplates (2 in the infrazygomatic crests of the maxilla and 2 in the anterior mandible). Cone-beam computed tomographs were taken before initial loading and 1 year out. Three-dimensional models were generated from the tomographs, registered on the anterior cranial base, superimposed, and analyzed by using color maps. Results The maxilla showed a mean forward displacement of 3.7 mm, and the zygomas and the maxillary incisors came forward 3.7 and 4.3 mm, respectively. Conclusions This treatment approach produced significant orthopedic changes in the maxilla and the zygomas in growing Class III patients. PMID:22133943

  14. The importance of cone-beam computed tomography in the management of endodontic problems: a review of the literature.

    PubMed

    Venskutonis, Tadas; Plotino, Gianluca; Juodzbalys, Gintaras; Mickevičienė, Lina

    2014-12-01

    To obtain essential information in clinical endodontics, cone-beam computed tomographic (CBCT) imaging can be used in all phases of treatment including diagnosis, treatment planning, during the treatment phase, and through post-treatment assessment and follow-up. The purpose of this article was to review the use of CBCT imaging in the diagnosis, treatment planning, and assessing the outcome of endodontic complications. Literature was selected through a search of PubMed electronic databases for the following keywords: tooth root injuries, tooth root radiography, tooth root perforation, tomography, cone-beam computed tomography, endodontic complications, tooth root internal/external resorption, root fractures, and broken instruments. The research was restricted to articles published in English. One hundred twelve articles met the inclusion criteria and were included in this review. Currently, intraoral radiography is the imaging technique of choice for the management of endodontic disease, but CBCT imaging appears to have a superior validity and reliability in the management of endodontic diagnosis and complications. Endodontic cases should be judged individually, and CBCT imaging should be considered in situations in which information from conventional imaging systems may not yield an adequate amount of information to allow the appropriate management of endodontic problems. CBCT imaging has the potential to become the first choice for endodontic treatment planning and outcome assessment, especially when new scanners with lower radiation doses will be available. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  16. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also allows to track discontinuities throughout the volume and therefore states a powerful tool in 3D defectoscopy.

  17. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  18. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  19. Implementation of a cone-beam backprojection algorithm on the cell broadband engine processor

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Knaup, Michael; Kachelrieß, Marc

    2007-03-01

    Tomographic image reconstruction is computationally very demanding. In all cases the backprojection represents the performance bottleneck due to the high operational count and due to the high demand put on the memory subsystem. In the past, solving this problem has lead to the implementation of specific architectures, connecting Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) to memory through dedicated high speed busses. More recently, there have also been attempt to use Graphic Processing Units (GPUs) to perform the backprojection step. Originally aimed at the gaming market, IBM, Toshiba and Sony have introduced the Cell Broadband Engine (CBE) processor, often considered as a multicomputer on a chip. Clocked at 3 GHz, the Cell allows for a theoretical performance of 192 GFlops and a peak data transfer rate over the internal bus of 200 GB/s. This performance indeed makes the Cell a very attractive architecture for implementing tomographic image reconstruction algorithms. In this study, we investigate the relative performance of a perspective backprojection algorithm when implemented on a standard PC and on the Cell processor. We compare these results to the performance achievable with FPGAs based boards and high end GPUs. The cone-beam backprojection performance was assessed by backprojecting a full circle scan of 512 projections of 1024x1024 pixels into a volume of size 512x512x512 voxels. It took 3.2 minutes on the PC (single CPU) and is as fast as 13.6 seconds on the Cell.

  20. Computed tomographic findings of cerebral fat embolism following multiple bone fractures.

    PubMed

    Law, Huong Ling; Wong, Siong Lung; Tan, Suzet

    2013-02-01

    Fat embolism to the lungs and brain is an uncommon complication following fractures. Few reports with descriptions of computed tomographic (CT) findings of emboli to the brain or cerebral fat embolism are available. We report a case of cerebral fat embolism following multiple skeletal fractures and present its CT findings here.

  1. Integrating respiratory gating into a megavoltage cone-beam CT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Sillanpaa, Jussi; Ling, Clifton C.

    2006-07-15

    We have previously described a low-dose megavoltage cone beam computed tomography (MV CBCT) system capable of producing projection image using one beam pulse. In this study, we report on its integration with respiratory gating for gated radiotherapy. The respiratory gating system tracks a reflective marker on the patient's abdomen midway between the xiphoid and umbilicus, and disables radiation delivery when the marker position is outside predefined thresholds. We investigate two strategies for acquiring gated scans. In the continuous rotation-gated acquisition, the linear accelerator (LINAC) is set to the fixed x-ray mode and the gantry makes a 5 min, 360 deg.continuousmore » rotation, during which the gating system turns the radiation beam on and off, resulting in projection images with an uneven distribution of projection angles (e.g., in 70 arcs each covering 2 deg.). In the gated rotation-continuous acquisition, the LINAC is set to the dynamic arc mode, which suspends the gantry rotation when the gating system inhibits the beam, leading to a slightly longer (6-7 min) scan time, but yielding projection images with more evenly distributed projection angles (e.g., {approx}0.8 deg.between two consecutive projection angles). We have tested both data acquisition schemes on stationary (a contrast detail and a thoracic) phantoms and protocol lung patients. For stationary phantoms, a separate motion phantom not visible in the images is used to trigger the RPM system. Frame rate is adjusted so that approximately 450 images (13 MU) are acquired for each scan and three-dimensional tomographic images reconstructed using a Feldkamp filtered backprojection algorithm. The gated rotation-continuous acquisition yield reconstructions free of breathing artifacts. The tumor in parenchymal lung and normal tissues are easily discernible and the boundary between the diaphragm and the lung sharply defined. Contrast-to-noise ratio (CNR) is not degraded relative to nongated scans of stationary phantoms. The continuous rotation-gated acquisition scan also yields tomographic images with discernible anatomic features; however, streak artifacts are observed and CNR is reduced by approximately a factor of 4. In conclusion, we have successfully developed a gated MV CBCT system to verify the patient positioning for gated radiotherapy.« less

  2. Computed tomographic contrast tenography of the digital flexor tendon sheath of the equine hindlimb.

    PubMed

    Agass, Rachel; Dixon, Jonathon; Fraser, Barny

    2018-05-01

    Pre-surgical investigation of digital flexor tendon sheath pathology remains challenging with current standard imaging techniques. The aim of this prospective, anatomical, pilot study was to describe the anatomy of the equine hind limb digital flexor tendon sheath using a combination of computed tomography (CT) and computed tomographic contrast tenography in clinically normal cadaver limbs. Ten pairs of hind limbs with no external abnormalities were examined from the level of the tarsometatarsal joint distally. Limbs initially underwent non-contrast CT examination using 120 kVp, 300 mAs, and 1.5 mm slice thickness. Sixty millilitres of ioversol iodinated contrast media and saline (final concentration 100 mg/ml) were injected using a basilar sesamoidean approach. The computed tomographic contrast tenography examination was then repeated, before dissection of the specimens to compare gross and imaging findings. The combined CT and computed tomographic contrast tenography examinations provided excellent anatomical detail of intra-thecal structures. The borders of the superficial and deep digital flexor tendons, and the manica flexoria were consistently identifiable in all limbs. Detailed anatomy including that of the mesotenons, two of which are previously undescribed, and the plantar annular ligament were also consistently identifiable. Dissection of all 10 pairs of limbs revealed there to be no pathology, in accordance with the imaging findings. In conclusion, the combination of CT and computed tomographic contrast tenography may be useful adjunctive diagnostic techniques to define digital flexor tendon sheath pathology prior to surgical exploration in horses. © 2017 American College of Veterinary Radiology.

  3. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    PubMed

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  4. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  5. Optimization of tomographic reconstruction workflows on geographically distributed resources

    PubMed Central

    Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149

  6. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  7. The use of a computed tomographic application for mobile devices in the diagnosis of oral and maxillofacial surgery.

    PubMed

    Aoki, Eduardo Massaharu; Cortes, Arthur Rodriguez Gonzalez; Arita, Emiko Saito

    2015-01-01

    The aim of the current technical report was to introduce a computed tomographic (CT) application for mobile devices as a diagnostic tool for analyzing CT images. An iPad and an iPhone (Apple, Cuppertino, CA) were used to navigate through multiplanar reconstructions of cone beam CT scans, using an application derived from the OsiriX CT software. Tools and advantages of this method were recorded. In addition, images rendered in the iPad were manipulated during dental implant placement and grafting procedures to follow up and confirm the implant digital planning in real time. The study population consisted of 10 patients. In all cases, it was possible to use image manipulation tools, such as changing contrast and brightness, zooming, rotating, panning, performing both linear and area measurements, and analyzing gray-scale values of a region of interest. Furthermore, it was possible to use the OsiriX application in the dental clinic where the study was conducted, to follow-up the analyzed implant placement and grafting procedures at the chairside. The current findings suggest that technological and practical methods to visualize radiographic images are invaluable resources to improve training, teaching, networking, and the performance of real-time follow-up of oral and maxillofacial surgical procedures. This article discusses the advantages and disadvantages of introducing this new technology in the clinical routine.

  8. On the regularization for nonlinear tomographic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dai, Jinghang; Yu, Tao; Xu, Lijun; Cai, Weiwei

    2018-02-01

    Tomographic absorption spectroscopy (TAS) has attracted increased research efforts recently due to the development in both hardware and new imaging concepts such as nonlinear tomography and compressed sensing. Nonlinear TAS is one of the emerging modality that bases on the concept of nonlinear tomography and has been successfully demonstrated both numerically and experimentally. However, all the previous demonstrations were realized using only two orthogonal projections simply for ease of implementation. In this work, we examine the performance of nonlinear TAS using other beam arrangements and test the effectiveness of the beam optimization technique that has been developed for linear TAS. In addition, so far only smoothness prior has been adopted and applied in nonlinear TAS. Nevertheless, there are also other useful priors such as sparseness and model-based prior which have not been investigated yet. This work aims to show how these priors can be implemented and included in the reconstruction process. Regularization through Bayesian formulation will be introduced specifically for this purpose, and a method for the determination of a proper regularization factor will be proposed. The comparative studies performed with different beam arrangements and regularization schemes on a few representative phantoms suggest that the beam optimization method developed for linear TAS also works for the nonlinear counterpart and the regularization scheme should be selected properly according to the available a priori information under specific application scenarios so as to achieve the best reconstruction fidelity. Though this work is conducted under the context of nonlinear TAS, it can also provide useful insights for other tomographic modalities.

  9. Split-mouth comparison of the accuracy of computer-generated and conventional surgical guides.

    PubMed

    Farley, Nathaniel E; Kennedy, Kelly; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Recent clinical studies have shown that implant placement is highly predictable with computer-generated surgical guides; however, the reliability of these guides has not been compared to that of conventional guides clinically. This study aimed to compare the accuracy of reproducing planned implant positions with computer-generated and conventional surgical guides using a split-mouth design. Ten patients received two implants each in symmetric locations. All implants were planned virtually using a software program and information from cone beam computed tomographic scans taken with scan appliances in place. Patients were randomly selected for computer-aided design/computer-assisted manufacture (CAD/CAM)-guided implant placement on their right or left side. Conventional guides were used on the contralateral side. Patients underwent operative cone beam computed tomography postoperatively. Planned and actual implant positions were compared using three-dimensional analyses capable of measuring volume overlap as well as differences in angles and coronal and apical positions. Results were compared using a mixed-model repeated-measures analysis of variance and were further analyzed using a Bartlett test for unequal variance (α = .05). Implants placed with CAD/CAM guides were closer to the planned positions in all eight categories examined. However, statistically significant differences were shown only for coronal horizontal distances. It was also shown that CAD/CAM guides had less variability than conventional guides, which was statistically significant for apical distance. Implants placed using CAD/CAM surgical guides provided greater accuracy in a lateral direction than conventional guides. In addition, CAD/CAM guides were more consistent in their deviation from the planned locations than conventional guides.

  10. Tomographic Neutron Imaging using SIRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor, Jens; FINNEY, Charles E A; Toops, Todd J

    2013-01-01

    Neutron imaging is complementary to x-ray imaging in that materials such as water and plastic are highly attenuating while material such as metal is nearly transparent. We showcase tomographic imaging of a diesel particulate filter. Reconstruction is done using a modified version of SIRT called PSIRT. We expand on previous work and introduce Tikhonov regularization. We show that near-optimal relaxation can still be achieved. The algorithmic ideas apply to cone beam x-ray CT and other inverse problems.

  11. TomoBank: a tomographic data repository for computational x-ray science

    DOE PAGES

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...

    2018-02-08

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  12. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer

    PubMed Central

    Tacher, Vania; Radaelli, Alessandro; Lin, MingDe

    2015-01-01

    Cone-beam computed tomography (CBCT) is an imaging technique that provides computed tomographic (CT) images from a rotational scan acquired with a C-arm equipped with a flat panel detector. Utilizing CBCT images during interventional procedures bridges the gap between the world of diagnostic imaging (typically three-dimensional imaging but performed separately from the procedure) and that of interventional radiology (typically two-dimensional imaging). CBCT is capable of providing more information than standard two-dimensional angiography in localizing and/or visualizing liver tumors (“seeing” the tumor) and targeting tumors though precise microcatheter placement in close proximity to the tumors (“reaching” the tumor). It can also be useful in evaluating treatment success at the time of procedure (“assessing” treatment success). CBCT technology is rapidly evolving along with the development of various contrast material injection protocols and multiphasic CBCT techniques. The purpose of this article is to provide a review of the principles of CBCT imaging, including purpose and clinical evidence of the different techniques, and to introduce a decision-making algorithm as a guide for the routine utilization of CBCT during transarterial chemoembolization of liver cancer. © RSNA, 2015 Online supplemental material is available for this article. PMID:25625741

  13. Portable Ultrasound Imaging of the Brain for Use in Forward Battlefield Areas

    DTIC Science & Technology

    2011-03-01

    ultrasound measurement of skull thickness and sound speed, phase correction of beam distortion, the tomographic reconstruction algorithm, and the final...produce a coherent imaging source. We propose a corrective technique that will use ultrasound-based phased -array beam correction [3], optimized...not expected to be a significant factor in the ability to phase -correct the imaging beam . In addition to planning (2.2.1), the data is also be used

  14. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2009-01-01

    We present a technique for 3D imaging of live cells in translational motion without need of axial scanning of objective lens. A set of transmitted electric field images of cells at successive points of transverse translation is taken with a focused beam illumination. Based on Hyugens’ principle, angular plane waves are synthesized from E-field images of a focused beam. For a set of synthesized angular plane waves, we apply a filtered back-projection algorithm and obtain 3D maps of refractive index of live cells. This technique, which we refer to as synthetic aperture tomographic phase microscopy, can potentially be combined with flow cytometry or microfluidic devices, and will enable high throughput acquisition of quantitative refractive index data from large numbers of cells. PMID:18825263

  15. A new apparatus for electron tomography in the scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less

  16. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY-A CADAVERIC STUDY.

    PubMed

    Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C

    2017-03-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.

  17. Automatic repositioning of jaw segments for three-dimensional virtual treatment planning of orthognathic surgery.

    PubMed

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Passeri, Luis Augusto; Attux, Romis Ribeiro de Faissol; Haiter Neto, Francisco

    2017-09-01

    To develop a computer-based method for automating the repositioning of jaw segments in the skull during three-dimensional virtual treatment planning of orthognathic surgery. The method speeds up the planning phase of the orthognathic procedure, releasing surgeons from laborious and time-consuming tasks. The method finds the optimal positions for the maxilla, mandibular body, and bony chin in the skull. Minimization of cephalometric differences between measured and standard values is considered. Cone-beam computed tomographic images acquired from four preoperative patients with skeletal malocclusion were used for evaluating the method. Dentofacial problems of the four patients were rectified, including skeletal malocclusion, facial asymmetry, and jaw discrepancies. The results show that the method is potentially able to be used in routine clinical practice as support for treatment-planning decisions in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Coronary artery screening by electron beam computed tomography. Facts, controversy, and future.

    PubMed

    Wong, N D; Detrano, R C; Abrahamson, D; Tobis, J M; Gardin, J M

    1995-08-01

    Coronary calcium as detected by electron beam computed tomography always signifies at least some atherosclerosis, appears to be correlated with coronary risk factors, cardiac history, and overall angiographic severity of disease, but is inconsistently related to degree of atherosclerotic lesion stenosis in a given artery. Increasing evidence, however, suggests an association between coronary artery calcium, atherosclerosis, and coronary risk. But atherosclerosis is a very common condition, its prevalence increasing with age. No fully validated method for determining the quantity of coronary calcium is available, and we do not know whether the amount of calcium is a consistently accurate reflection of the amount of atherosclerosis or whether the amount of atherosclerosis reflects the degree of risk. Furthermore, the prognostic significance of coronary calcium in any given atherosclerotic lesion is not yet established. What is clear from cohort studies, however, is that at least three quarters of asymptomatic individuals, at least half of whom would have "positive" coronary calcium electron beam computed tomographic scans, will live for at least 10 years without cardiac problems of any kind. Investigation is needed to determine whether medical intervention may impact the clinical outcome of the rest of those identified with a positive scan but destined to suffer future clinical events. Despite lack of validation, this test has widespread appeal, both to the public as a means of being able to find out the condition of their coronary arteries "without injections or dye" and to hospitals and private medical groups who view this both as an innovation in cardiovascular diagnosis and as a potentially profitable diagnostic procedure.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An Analysis for Capital Expenditure Decisions at a Naval Regional Medical Center.

    DTIC Science & Technology

    1981-12-01

    Service Equipment Review Committee 1. Portable defibrilator Computed tomographic scanner and cardioscope 2. ECG cart Automated blood cell counter 3. Gas...system sterilizer Gas system sterilizer 4. Automated blood cell Portable defibrilator and counter cardioscope 5. Computed tomographic ECG cart scanner...dictating and automated typing) systems. e. Filing equipment f. Automatic data processing equipment including data communications equipment. g

  20. TomoBank: a tomographic data repository for computational x-ray science

    NASA Astrophysics Data System (ADS)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  1. Cone-beam Computed Tomographic Study of Root Anatomy and Canal Configuration of Molars in a Spanish Population.

    PubMed

    Pérez-Heredia, Mercedes; Ferrer-Luque, Carmen María; Bravo, Manuel; Castelo-Baz, Pablo; Ruíz-Piñón, Manuel; Baca, Pilar

    2017-09-01

    The aim of this study was to identify morphologic peculiarities of roots and analyze the root canal configuration in maxillary and mandibular first and second molars by means using cone-beam computed tomographic (CBCT) imaging in a Spanish population. A total of 284 maxillary molars and 242 mandibular molars from 112 patients were examined in vivo by CBCT imaging; only untreated molars with healthy and fully matured apices were included in this study. Details regarding the number of roots, number of canals, and root canal configuration were recorded. Maxillary first and second molars had 3 roots in 97.2% and 79%, respectively. In mandibular molars, the frequency of 2 roots was 94% in first molars and 83% in second molars. The canal configuration of the palatal root was 100% Vertucci type I (1-1) in first and second molars. The distobuccal root showed a Vertucci type I configuration in 97% of first and 100% of maxillary second molars. The mesiobuccal root for first molars showed a Vertucci type II configuration (2-1) in 56.5% cases and Vertucci type IV (2-2) in 23.2%. For maxillary second molars, the Vertucci type I configuration reached 52.7%. In mandibular molars, the mesial root showed higher variability. Most frequent was the presence of 2 canals, Vertucci type II for first and second molars. In the distal root, the most common configuration was Vertucci type I in both molars. The greater percentage of fused roots was observed in maxillary molars. Vertucci type II configuration was more frequent than type IV in the mesial root of mandibular molars and the mesiobuccal root of maxillary molars. A third canal in the mesial root of first mandibular molars (6.7%) was higher than expected. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scalemore » (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.« less

  3. External Cervical Resorption: A Comparison of the Diagnostic Efficacy Using 2 Different Cone-beam Computed Tomographic Units and Periapical Radiographs.

    PubMed

    Vaz de Souza, Daniel; Schirru, Elia; Mannocci, Francesco; Foschi, Federico; Patel, Shanon

    2017-01-01

    The aim of this study was to compare the diagnostic efficacy of 2 cone-beam computed tomographic (CBCT) units with parallax periapical (PA) radiographs for the detection and classification of simulated external cervical resorption (ECR) lesions. Simulated ECR lesions were created on 13 mandibular teeth from 3 human dry mandibles. PA and CBCT scans were taken using 2 different units, Kodak CS9300 (Carestream Health Inc, Rochester, NY) and Morita 3D Accuitomo 80 (J Morita, Kyoto, Japan), before and after the creation of the ECR lesions. The lesions were then classified according to Heithersay's classification and their position on the root surface. Sensitivity, specificity, positive predictive values, negative predictive values, and receiver operator characteristic curves as well as the reproducibility of each technique were determined for diagnostic accuracy. The area under the receiver operating characteristic value for diagnostic accuracy for PA radiography and Kodak and Morita CBCT scanners was 0.872, 0.99, and 0.994, respectively. The sensitivity and specificity for both CBCT scanners were significantly better than PA radiography (P < .001). There was no statistical difference between the sensitivity and specificity of the 2 scanners. The percentage of correct diagnoses according to the tooth type was 87.4% for the Kodak scanner, 88.3% for the Morita scanner, and 48.5% for PA radiography.The ECR lesions were correctly identified according to the tooth surface in 87.8% Kodak, 89.1% Morita and 49.4% PA cases. The ECR lesions were correctly classified according to Heithersay classification in 70.5% of Kodak, 69.2% of Morita, and 39.7% of PA cases. This study revealed that both CBCT scanners tested were equally accurate in diagnosing ECR and significantly better than PA radiography. CBCT scans were more likely to correctly categorize ECR according to the Heithersay classification compared with parallax PA radiographs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Warmington, L; Watanabe, Y

    Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less

  5. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  6. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  7. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  8. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    PubMed

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.

    Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.

  10. Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernández, José Jesús

    2012-01-01

    Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768

  11. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  12. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  13. Tomographic image reconstruction using the cell broadband engine (CBE) general purpose hardware

    NASA Astrophysics Data System (ADS)

    Knaup, Michael; Steckmann, Sven; Bockenbach, Olivier; Kachelrieß, Marc

    2007-02-01

    Tomographic image reconstruction, such as the reconstruction of CT projection values, of tomosynthesis data, PET or SPECT events, is computational very demanding. In filtered backprojection as well as in iterative reconstruction schemes, the most time-consuming steps are forward- and backprojection which are often limited by the memory bandwidth. Recently, a novel general purpose architecture optimized for distributed computing became available: the Cell Broadband Engine (CBE). Its eight synergistic processing elements (SPEs) currently allow for a theoretical performance of 192 GFlops (3 GHz, 8 units, 4 floats per vector, 2 instructions, multiply and add, per clock). To maximize image reconstruction speed we modified our parallel-beam and perspective backprojection algorithms which are highly optimized for standard PCs, and optimized the code for the CBE processor. 1-3 In addition, we implemented an optimized perspective forwardprojection on the CBE which allows us to perform statistical image reconstructions like the ordered subset convex (OSC) algorithm. 4 Performance was measured using simulated data with 512 projections per rotation and 5122 detector elements. The data were backprojected into an image of 512 3 voxels using our PC-based approaches and the new CBE- based algorithms. Both the PC and the CBE timings were scaled to a 3 GHz clock frequency. On the CBE, we obtain total reconstruction times of 4.04 s for the parallel backprojection, 13.6 s for the perspective backprojection and 192 s for a complete OSC reconstruction, consisting of one initial Feldkamp reconstruction, followed by 4 OSC iterations.

  14. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  15. Computed tomographic findings of trichuriasis

    PubMed Central

    Tokmak, Naime; Koc, Zafer; Ulusan, Serife; Koltas, Ismail Soner; Bal, Nebil

    2006-01-01

    In this report, we present computed tomographic findings of colonic trichuriasis. The patient was a 75-year-old man who complained of abdominal pain, and weight loss. Diagnosis was achieved by colonoscopic biopsy. Abdominal computed tomography showed irregular and nodular thickening of the wall of the cecum and ascending colon. Although these findings are nonspecific, they may be one of the findings of trichuriasis. These findings, confirmed by pathologic analysis of the biopsied tissue and Kato-Katz parasitological stool flotation technique, revealed adult Trichuris. To our knowledge, this is the first report of colonic trichuriasis indicated by computed tomography. PMID:16830393

  16. CT venography: use in selecting a surgical approach for the treatment of petrous apex cholesterol granulomas.

    PubMed

    Isaacson, Brandon; Kutz, Joe Walter; Mendelsohn, Dianne; Roland, Peter S

    2009-04-01

    To demonstrate the use of computed tomographic (CT) venography in selecting a surgical approach for cholesterol granulomas. Retrospective case review. Tertiary referral center. Three patients presented with symptomatic petrous apex cholesterol granulomas with extensive bone erosion involving the jugular fossa. Computed tomographic venography was performed on each patient before selecting a surgical approach for drainage. Localization of the jugular bulb in relation to the petrous carotid artery and basal turn of the cochlea was ascertained in each subject. Three patients with large symptomatic cholesterol granulomas were identified. Conventional CT demonstrated extensive bone erosion involving the jugular fossa in each patient. The location of the jugular bulb and its proximity to the petrous carotid artery and basal turn of the cochlea could not be determined with conventional temporal bone CT and magnetic resonance imaging. Computed tomographic venography provided the exact location of the jugular bulb in all 3 patients. The favorable position of the jugular bulb in all 3 cases permitted drainage of these lesions using an infracochlear approach. Computed tomographic venography provided invaluable information in 3 patients with large symptomatic cholesterol granulomas. All 3 patients were previously thought to be unsuitable candidates for an infracochlear or infralabyrinthine approach because of the unknown location of the jugular bulb.

  17. Tomographic and analog 3-D simulations using NORA. [Non-Overlapping Redundant Image Array formed by multiple pinholes

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.

    1984-01-01

    The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.

  18. New developments in clinical CARS

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Kellner-Höfer, Marcel; Bückle, Rainer; Darvin, Maxim; Lademann, Juergen; König, Karsten

    2013-02-01

    We combined two-photon fluorescence and coherent anti-Stokes Raman scattering (CARS) imaging in a clinical hybrid multiphoton tomograph for in vivo imaging of human skin. The clinically approved TPEF/CARS system provides simultaneous imaging of endogenous fluorophores and non-fluorescent lipids. The Stokes laser for the two-beam configuration of CARS is based on spectral broadening of femtosecond laser pulses in a photonic crystal fiber (PCF). We report on the highly flexible medical TPEF/CARS tomograph MPTflex®-CARS with an articulated arm and first in vivo measurements on human skin.

  19. Comment on 'Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification'.

    PubMed

    Sitek, Arkadiusz

    2016-12-21

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  20. Comment on ‘Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification’

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2016-12-01

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  1. SIRT-FILTER v1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PELT, DANIEL

    2017-04-21

    Small Python package to compute tomographic reconstructions using a reconstruction method published in: Pelt, D.M., & De Andrade, V. (2017). Improved tomographic reconstruction of large-scale real-world data by filter optimization. Advanced Structural and Chemical Imaging 2: 17; and Pelt, D. M., & Batenburg, K. J. (2015). Accurately approximating algebraic tomographic reconstruction by filtered backprojection. In Proceedings of The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (pp. 158-161).

  2. Label-free tomographic reconstruction of optically thick structures using GLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel

    2017-02-01

    Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.

  3. A cone beam computed tomographic evaluation of the size of the sella turcica in patients with cleft lip and palate.

    PubMed

    Paknahad, Maryam; Shahidi, Shoaleh; Khaleghi, Iman

    2017-09-01

    Changes in the size of the sella turcica are frequently related to pathologies and syndromes. The aim of this was to compare the sella turcica dimensions in patients with unilateral and bilateral cleft lip and palate and non-cleft subjects. Cone beam computed tomography (CBCT) images of three groups consisted of 20 patients with unilateral cleft lip and palate; 20 patients with bilateral cleft lip and palate and a control group consisting of 20 non-cleft subjects were the research population in this pilot study. The sella turcica linear dimensions in terms of length, depth and diameter were measured for all subjects. One-way ANOVA test was used to determine any significant differences among the three groups for the measured parameters. The length, depth and diameter of sella turcica were found to be significantly smaller in the unilateral and bilateral groups compared with the normal age and gender matched group. No significant differences were found in the measured variables between the unilateral and bilateral cleft patients. CBCT images showed a greater likelihood of abnormal sella turcica dimensions in patients with unilateral and bilateral cleft lip and palate. Therefore, the sella turcica dimensions may have an intrinsic relationship to the cleft condition.

  4. Computed tomographic atlas for the new international lymph node map for lung cancer: A radiation oncologist perspective.

    PubMed

    Lynch, Rod; Pitson, Graham; Ball, David; Claude, Line; Sarrut, David

    2013-01-01

    To develop a reproducible definition for each mediastinal lymph node station based on the new TNM classification for lung cancer. This paper proposes an atlas using the new international lymph node map used in the seventh edition of the TNM classification for lung cancer. Four radiation oncologists and 1 diagnostic radiologist were involved in the project to put forward a reproducible radiologic description for the lung lymph node stations. The International Association for the Study of Lung Cancer lymph node definitions for stations 1 to 11 have been described and illustrated on axial computed tomographic scan images using a certified radiotherapy planning system. This atlas will assist both diagnostic radiologists and radiation oncologists in accurately defining the lymph node stations on computed tomographic scan in patients diagnosed with lung cancer. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  5. Fast projection/backprojection and incremental methods applied to synchrotron light tomographic reconstruction.

    PubMed

    de Lima, Camila; Salomão Helou, Elias

    2018-01-01

    Iterative methods for tomographic image reconstruction have the computational cost of each iteration dominated by the computation of the (back)projection operator, which take roughly O(N 3 ) floating point operations (flops) for N × N pixels images. Furthermore, classical iterative algorithms may take too many iterations in order to achieve acceptable images, thereby making the use of these techniques unpractical for high-resolution images. Techniques have been developed in the literature in order to reduce the computational cost of the (back)projection operator to O(N 2 logN) flops. Also, incremental algorithms have been devised that reduce by an order of magnitude the number of iterations required to achieve acceptable images. The present paper introduces an incremental algorithm with a cost of O(N 2 logN) flops per iteration and applies it to the reconstruction of very large tomographic images obtained from synchrotron light illuminated data.

  6. Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

    NASA Astrophysics Data System (ADS)

    Petit, C.; Le Louarn, M.; Fusco, T.; Madec, P.-Y.

    2011-09-01

    Various tomographic control solutions have been proposed during the last decades to ensure efficient or even optimal closed-loop correction to tomographic Adaptive Optics (AO) concepts such as Laser Tomographic AO (LTAO), Multi-Conjugate AO (MCAO). The optimal solution, based on Linear Quadratic Gaussian (LQG) approach, as well as suboptimal but efficient solutions such as Pseudo-Open Loop Control (POLC) require multiple Matrix Vector Multiplications (MVM). Disregarding their respective performance, these efficient control solutions thus exhibit strong increase of on-line complexity and their implementation may become difficult in demanding cases. Among them, two cases are of particular interest. First, the system Real-Time Computer architecture and implementation is derived from past or present solutions and does not support multiple MVM. This is the case of the AO Facility which RTC architecture is derived from the SPARTA platform and inherits its simple MVM architecture, which does not fit with LTAO control solutions for instance. Second, considering future systems such as Extremely Large Telescopes, the number of degrees of freedom is twenty to one hundred times bigger than present systems. In these conditions, tomographic control solutions can hardly be used in their standard form and optimized implementation shall be considered. Single MVM tomographic control solutions represent a potential solution, and straightforward solutions such as Virtual Deformable Mirrors have been already proposed for LTAO but with tuning issues. We investigate in this paper the possibility to derive from tomographic control solutions, such as POLC or LQG, simplified control solutions ensuring simple MVM architecture and that could be thus implemented on nowadays systems or future complex systems. We theoretically derive various solutions and analyze their respective performance on various systems thanks to numerical simulation. We discuss the optimization of their performance and stability issues with respect to classic control solutions. We finally discuss off-line computation and implementation constraints.

  7. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    NASA Astrophysics Data System (ADS)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  8. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  9. Beam tracking phase tomography with laboratory sources

    NASA Astrophysics Data System (ADS)

    Vittoria, F. A.; Endrizzi, M.; Kallon, G. K. N.; Hagen, C. K.; Diemoz, P. C.; Zamir, A.; Olivo, A.

    2018-04-01

    An X-ray phase-contrast laboratory system is presented, based on the beam-tracking method. Beam-tracking relies on creating micro-beamlets of radiation by placing a structured mask before the sample, and analysing them by using a detector with sufficient resolution. The system is used in tomographic configuration to measure the three dimensional distribution of the linear attenuation coefficient, difference from unity of the real part of the refractive index, and of the local scattering power of specimens. The complementarity of the three signals is investigated, together with their potential use for material discrimination.

  10. Early In-Theater Management of Combat-Related Traumatic Brain Injury: A Prospective, Observational Study to Identify Opportunities for Performance Improvement

    DTIC Science & Technology

    2015-05-18

    Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral contusion (51.4%). Hypertonic saline...were common on presentation. Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral con...reported was skull fracture, occurring in 68.9% of patients. The most common type of intracranial hemorrhage was subdural hematoma (54.1%). Multiple

  11. Computer tomographic evaluation of digestive tract non-Hodgkin lymphomas.

    PubMed

    Lupescu, Ioana G; Grasu, Mugur; Goldis, Gheorghe; Popa, Gelu; Gheorghe, Cristian; Vasilescu, Catalin; Moicean, Andreea; Herlea, Vlad; Georgescu, Serban A

    2007-09-01

    Computer Tomographic (CT) study is crucial for defining distribution, characteristics and staging of primary gastrointestinal lymphomas. The presence of multifocal sites, the wall thickening with diffuse infiltration of the affected gastrointestinal (GI) segment in association with regional adenopathies, permit the orientation of the CT diagnosis for primary GI lymphomas. The gold standard for diagnosis remains, in all cases of digestive tract non-Hodgkin lymphomas (NHL), the histological examination, which allows a tissue diagnosis, performed preferably by transmural biopsy.

  12. Tomographic reconstruction of tracer gas concentration profiles in a room with the use of a single OP-FTIR and two iterative algorithms: ART and PWLS.

    PubMed

    Park, D Y; Fessler, J A; Yost, M G; Levine, S P

    2000-03-01

    Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 x 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.

  13. Tomographic Reconstruction of Tracer Gas Concentration Profiles in a Room with the Use of a Single OP-FTIR and Two Iterative Algorithms: ART and PWLS.

    PubMed

    Park, Doo Y; Fessier, Jeffrey A; Yost, Michael G; Levine, Steven P

    2000-03-01

    Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 × 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.

  14. Use of radiography, computed tomography and magnetic resonance imaging for evaluation of navicular syndrome in the horse.

    PubMed

    Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S

    2000-01-01

    Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.

  15. Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.

    2018-03-01

    Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

  16. Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography.

    PubMed

    Nuster, Robert; Gruen, Hubert; Reitinger, Bernhard; Burgholzer, Peter; Gratt, Sibylle; Passler, Klaus; Paltauf, Guenther

    2011-03-15

    An optical detection setup consisting of a focused laser beam fed into a downstream Fabry-Perot interferometer (FPI) for demodulation of acoustically generated optical phase variations is investigated for its applicability in photoacoustic tomography. The device measures the time derivative of acoustic signals integrated along the beam. Compared to a setup where the detection beam is part of a Mach-Zehnder interferometer, the signal-to-noise ratio of the FPI is lower, but the image quality of the two devices is similar. Using the FPI in a photoacoustic tomograph allows scanning the probe beam around the imaging object without moving the latter.

  17. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  18. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    PubMed

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  19. Use of Intraoperative Computed Tomography for Revisional Procedures in Patients with Complex Maxillofacial Trauma

    PubMed Central

    Singh, Mansher; Ricci, Joseph A.

    2015-01-01

    Background: In patients with panfacial fractures and distorted anatomic landmarks of zygomatic and orbital complex, there is a risk of zygomaticomaxillary complex (ZMC) malpositioning even with the best efforts for surgical repair. This results in increased number of additional procedures to achieve accurate positioning. Methods: We describe the usage of intraoperative C-arm cone-beam computed tomographic (CT) scan for ZMC malpositioning in a representative patient with panfacial fractures. Results: We have successfully used intraoperative CT scan for ZMC malpositioning in 3 patients. The representative patient had ZMC malposition after the initial attempt of surgical repair without any intraoperative imaging. On using intraoperative CT scan during the next attempt, we were able to reposition the ZMC accurately. Conclusions: Intraoperative CT scan might improve the accuracy of ZMC positioning and decrease the chances of potential additional surgeries. In patients with distorted anatomical landmarks and panfacial fractures, it can be especially helpful toward correcting ZMC malposition. PMID:26301152

  20. Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke

    PubMed Central

    Mair, Grant; von Kummer, Rüdiger; Adami, Alessandro; White, Philip M.; Adams, Matthew E.; Yan, Bernard; Demchuk, Andrew M.; Farrall, Andrew J.; Sellar, Robin J.; Sakka, Eleni; Palmer, Jeb; Perry, David; Lindley, Richard I.; Sandercock, Peter A.G.

    2017-01-01

    Background and Purpose— Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. Methods— We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. Results— In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18–3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58–1.35; P=0.566) arterial obstruction (P for interaction 0.017). Conclusions— Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. Clinical Trial Registration— URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518. PMID:28008093

  1. Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke.

    PubMed

    Mair, Grant; von Kummer, Rüdiger; Adami, Alessandro; White, Philip M; Adams, Matthew E; Yan, Bernard; Demchuk, Andrew M; Farrall, Andrew J; Sellar, Robin J; Sakka, Eleni; Palmer, Jeb; Perry, David; Lindley, Richard I; Sandercock, Peter A G; Wardlaw, Joanna M

    2017-02-01

    Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18-3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58-1.35; P=0.566) arterial obstruction (P for interaction 0.017). Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518. © 2016 The Authors.

  2. Homogenization of sample absorption for the imaging of large and dense fossils with synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Fernandez, Vincent; Pierce, Stephanie E; Tafforeau, Paul

    2013-09-01

    Propagation phase-contrast synchrotron radiation microtomography (PPC-SRμCT) has proved to be very successful for examining fossils. Because fossils range widely in taphonomic preservation, size, shape and density, X-ray computed tomography protocols are constantly being developed and refined. Here we present a 1-h procedure that combines a filtered high-energy polychromatic beam with long-distance PPC-SRμCT (sample to detector: 4-16 m) and an attenuation protocol normalizing the absorption profile (tested on 13-cm-thick and 5.242 g cm(-3) locally dense samples but applicable to 20-cm-thick samples). This approach provides high-quality imaging results, which show marked improvement relative to results from images obtained without the attenuation protocol in apparent transmission, contrast and signal-to-noise ratio. The attenuation protocol involves immersing samples in a tube filled with aluminum or glass balls in association with a U-shaped aluminum profiler. This technique therefore provides access to a larger dynamic range of the detector used for tomographic reconstruction. This protocol homogenizes beam-hardening artifacts, thereby rendering it effective for use with conventional μCT scanners.

  3. Finite element modelling versus classic beam theory: comparing methods for stress estimation in a morphologically diverse sample of vertebrate long bones

    PubMed Central

    Brassey, Charlotte A.; Margetts, Lee; Kitchener, Andrew C.; Withers, Philip J.; Manning, Phillip L.; Sellers, William I.

    2013-01-01

    Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more time-consuming to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σmin) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r2 = 0.56). Under bending, FEA values of maximum principal stress (σmax) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r2 = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of τtorsion were on average 14 per cent (±5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations. PMID:23173199

  4. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  5. Three-dimensional reconstructions from computed tomographic scans on smartphones and tablets: a simple tutorial for the ward and operating room using public domain software.

    PubMed

    Ketoff, Serge; Khonsari, Roman Hossein; Schouman, Thomas; Bertolus, Chloé

    2014-11-01

    Handling 3-dimensional reconstructions of computed tomographic scans on portable devices is problematic because of the size of the Digital Imaging and Communications in Medicine (DICOM) stacks. The authors provide a user-friendly method allowing the production, transfer, and sharing of good-quality 3-dimensional reconstructions on smartphones and tablets. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Utility of cervical spinal and abdominal computed tomography in diagnosing occult pneumothorax in patients with blunt trauma: Computed tomographic imaging protocol matters.

    PubMed

    Akoglu, Haldun; Akoglu, Ebru Unal; Evman, Serdar; Akoglu, Tayfun; Denizbasi, Arzu; Guneysel, Ozlem; Onur, Ozge; Onur, Ender

    2012-10-01

    Small pneumothoraces (PXs), which are not initially recognized with a chest x-ray film and diagnosed by a thoracic computed tomography (CT), are described as occult PX (OCPX). The objective of this study was to evaluate cervival spine (C-spine) and abdominal CT (ACT) for diagnosing OCPX and overt PX (OVPX). All patients with blunt trauma who presented consecutively to the emergency department during a 26-months period were included. Among all the chest CTs (CCTs) (6,155 patients) conducted during that period, 254 scans were confirmed to have a true PX. The findings in their C-spine CT and ACT were compared with the findings in CCTs. Among these patients, 254 had a diagnosis of PX confirmed with CCT. OCPXs were identified on the chest computed tomographic scan of 128 patients (70.3%), whereas OVPXs were evident in 54 patients (29.7%). Computed tomographic imaging of the C-spine was performed in 74% of patients with OCPX and 66.7% of patients with OVPX trauma. Only 45 (35.2%) cases of OCPX and 42 (77.8%) cases of OVPX were detected by C-spine CT. ACT was performed in almost all patients, and 121 (95.3%) of 127 of these correctly identified an existing OCPX. Sensitivity of C-spine CT and ACT was 35.1% and 96.5%, respectively; specificity was 100% and 100%, respectively. Almost all OCPXs, regardless of intrathoracic location, could be detected by ACT or by combining C-spine and abdominal computed tomographic screening for patients. If the junction of the first and second vertebra is used as the caudad extent, C-spine CT does not have sufficient power to diagnose more than a third of the cases. Diagnostic study, level III.

  7. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  8. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX)

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-01-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning. PMID:26217710

  9. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  10. Cervix Motion in 50 Cervical Cancer Patients Assessed by Daily Cone Beam Computed Tomographic Imaging of a New Type of Marker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langerak, Thomas, E-mail: t.langerak@erasmusmc.nl; Mens, Jan Willem; Quint, Sandra

    Purpose: To evaluate a new type of marker and a new method of marker implantation and to assess interfraction cervix motion for a large population of patients with locally advanced cervical cancer by daily cone beam computed tomographic (CBCT) imaging. Methods and Materials: We investigated the position of markers in 50 patients treated in prone position during at least 23 fractions. To reduce streaking artifacts in the planning CT scan, a new type of polymeric marker was used and compared with conventional gold markers. In addition, a new method of implantation was used in an attempt to reduce marker loss.more » In each fraction, a CT scan was acquired before dose delivery and aligned to the bony anatomy of the planning CT scan, simulating the clinical setup protocol. First, sufficient visibility of the markers was verified. Then, systematic and random displacement of the marker centroids was recorded and analyzed in 3 directions with regard to the planning CT and the first CBCT (to evaluate the presence of a vaginal catheter in the planning CT). Streaking artifacts were quantified with the standard deviation of the mean squared intensity difference in a radius around the marker. Results: Marker loss was minimal during treatment: in only 3 of the 50 patients 1 marker was lost. Streaking artifacts for the new markers were reduced compared with conventional gold markers. For the planning CT, M/Σ/σ were 0.4/3.4/2.2 mm, 1.0/5.5/4.5 mm, and −3.9/5.1/3.6 mm for the left-right, anterior-posterior, and cranial-caudal directions, respectively. With regard to the first CBCT scan, M/Σ/σ were 0.8/2.8/2.1, 0.6/4.4/4.4, and −1.3/4.5/3.6 mm. Conclusions: A new type of marker and implantation method was shown to have significantly reduced marker loss and streaking artifacts compared with gold fiducial markers. The recorded marker displacement confirms results reported in the existing literature but for a larger dataset.« less

  11. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics.

    PubMed

    Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J

    2008-06-01

    Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.

  12. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; He, Yabai; Liu, Jianguo; Chen, Bing; Yang, Chenguang; Yao, Lu; Wei, Min; Zhang, Guangle

    2017-03-01

    We present a system for accurate tomographic reconstruction of the combustion temperature and H2O vapor concentration of a flame based on laser absorption measurements, in combination with an innovative two-step algebraic reconstruction technique. A total of 11 collimated laser beams generated from outputs of fiber-coupled diode lasers formed a two-dimensional 5 × 6 orthogonal beam grids and measured at two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1). The measurement system was designed on a rotation platform to achieve a two-folder improvement in spatial resolution. Numerical simulation showed that the proposed two-step algebraic reconstruction technique for temperature and concentration, respectively, greatly improved the reconstruction accuracy of species concentration when compared with a traditional calculation. Experimental results demonstrated the good performances of the measurement system and the two-step reconstruction technique for applications such as flame monitoring and combustion diagnosis.

  13. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  14. Relationship between the maxillary transverse dimension and palatally displaced canines: A cone-beam computed tomographic study.

    PubMed

    Hong, Wei-Hsin; Radfar, Rebecca; Chung, Chun-Hsi

    2015-05-01

    To examine the relationship between palatally displaced maxillary canines (PDC) and the maxillary transverse dimension using cone-beam computed tomography (CBCT). Thirty-three patients (11 males and 22 females, mean age 18.2 years) with PDC were matched to 66 patients (22 males and 44 females, mean age 18.1 years) without PDC (control) by gender, age, and posterior occlusion. A CBCT image was taken on all the patients prior to any orthodontic treatment. For each patient the maxillary basal bone widths and interdental widths at the maxillary first molars and first and second premolars were measured on axial and coronal sections of CBCT images. In addition, the presence of permanent tooth agenesis and the widths of maxillary incisors were recorded. Similar maxillary transverse dimensions, both skeletally and dentally, were found between the PDC and control groups. In the PDC group, the number of patients with permanent tooth agenesis was six times higher than in the control group. In addition, the maxillary lateral incisors on PDC-affected sides were smaller than those of control group (P < .05). The maxillary transverse dimension, both skeletally and dentally, had no effect on the occurrence of PDC. The higher prevalence of permanent tooth agenesis was found in the PDC group. Moreover, the mean mesiodistal width of maxillary lateral incisors in the PDC group was significantly smaller than in the control group (P < .05).

  15. Application of Neutron Tomography in Culture Heritage research.

    PubMed

    Mongy, T

    2014-02-01

    Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.

  16. Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport-of-intensity equation.

    PubMed

    Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M

    2004-07-20

    We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.

  17. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  18. Analysis of computer images in the presence of metals

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Ingacheva, Anastasia; Prun, Victor; Nikolaev, Dmitry; Chukalina, Marina; Ferrero, Claudio; Asadchikov, Victor

    2018-04-01

    Artifacts caused by intensely absorbing inclusions are encountered in computed tomography via polychromatic scanning and may obscure or simulate pathologies in medical applications. To improve the quality of reconstruction if high-Z inclusions in presence, previously we proposed and tested with synthetic data an iterative technique with soft penalty mimicking linear inequalities on the photon-starved rays. This note reports a test at the tomographic laboratory set-up at the Institute of Crystallography FSRC "Crystallography and Photonics" RAS in which tomographic scans were successfully made of temporary tooth without inclusion and with Pb inclusion.

  19. Nose and Nasal Planum Neoplasia, Reconstruction.

    PubMed

    Worley, Deanna R

    2016-07-01

    Most intranasal lesions are best treated with radiation therapy. Computed tomographic imaging with intravenous contrast is critical for treatment planning. Computed tomographic images of the nose will best assess the integrity of the cribriform plate for central nervous system invasion by a nasal tumor. Because of an owner's emotional response to an altered appearance of their dog's face, discussions need to include the entire family before proceeding with nasal planectomy or radical planectomy. With careful case selection, nasal planectomy and radical planectomy surgeries can be locally curative. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  1. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for this article. PMID:24475803

  2. Relation of aortic valve calcium detected by cardiac computed tomography to all-cause mortality.

    PubMed

    Blaha, Michael J; Budoff, Matthew J; Rivera, Juan J; Khan, Atif N; Santos, Raul D; Shaw, Leslee J; Raggi, Paolo; Berman, Daniel; Rumberger, John A; Blumenthal, Roger S; Nasir, Khurram

    2010-12-15

    Aortic valve calcium (AVC) can be quantified on the same computed tomographic scan as coronary artery calcium (CAC). Although CAC is an established predictor of cardiovascular events, limited evidence is available for an independent predictive value for AVC. We studied a cohort of 8,401 asymptomatic subjects (mean age 53 ± 10 years, 69% men), who were free of known coronary heart disease and were undergoing electron beam computed tomography for assessment of subclinical atherosclerosis. The patients were followed for a median of 5 years (range 1 to 7) for the occurrence of mortality from any cause. Multivariate Cox regression models were developed to predict all-cause mortality according to the presence of AVC. A total of 517 patients (6%) had AVC on electron beam computed tomography. During follow-up, 124 patients died (1.5%), for an overall survival rate of 96.1% and 98.7% for those with and without AVC, respectively (hazard ratio 3.39, 95% confidence interval 2.09 to 5.49). After adjustment for age, gender, hypertension, dyslipidemia, diabetes mellitus, smoking, and a family history of premature coronary heart disease, AVC remained a significant predictor of mortality (hazard ratio 1.82, 95% confidence interval 1.11 to 2.98). Likelihood ratio chi-square statistics demonstrated that the addition of AVC contributed significantly to the prediction of mortality in a model adjusted for traditional risk factors (chi-square = 5.03, p = 0.03) as well as traditional risk factors plus the presence of CAC (chi-square = 3.58, p = 0.05). In conclusion, AVC was associated with increased all-cause mortality, independent of the traditional risk factors and the presence of CAC. Copyright © 2010. Published by Elsevier Inc.

  3. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...

    2017-01-28

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  4. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  5. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time correlation coefficient demonstrates the increased velocity field accuracy of SMTE compared with MART.

  6. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  7. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  8. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  9. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics.

    PubMed

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  10. Estimating crustal heterogeneity from double-difference tomography

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.

    2006-01-01

    Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.

  11. TomoEED: Fast Edge-Enhancing Denoising of Tomographic Volumes.

    PubMed

    Moreno, J J; Martínez-Sánchez, A; Martínez, J A; Garzón, E M; Fernández, J J

    2018-05-29

    TomoEED is an optimized software tool for fast feature-preserving noise filtering of large 3D tomographic volumes on CPUs and GPUs. The tool is based on the anisotropic nonlinear diffusion method. It has been developed with special emphasis in the reduction of the computational demands by using different strategies, from the algorithmic to the high performance computing perspectives. TomoEED manages to filter large volumes in a matter of minutes in standard computers. TomoEED has been developed in C. It is available for Linux platforms at http://www.cnb.csic.es/%7ejjfernandez/tomoeed. gmartin@ual.es, JJ.Fernandez@csic.es. Supplementary data are available at Bioinformatics online.

  12. Prognostic value of coronary computed tomographic angiography findings in asymptomatic individuals: a 6-year follow-up from the prospective multicentre international CONFIRM study.

    PubMed

    Cho, Iksung; Al'Aref, Subhi J; Berger, Adam; Ó Hartaigh, Bríain; Gransar, Heidi; Valenti, Valentina; Lin, Fay Y; Achenbach, Stephan; Berman, Daniel S; Budoff, Matthew J; Callister, Tracy Q; Al-Mallah, Mouaz H; Cademartiri, Filippo; Chinnaiyan, Kavitha; Chow, Benjamin J W; DeLago, Augustin; Villines, Todd C; Hadamitzky, Martin; Hausleiter, Joerg; Leipsic, Jonathon; Shaw, Leslee J; Kaufmann, Philipp A; Feuchtner, Gudrun; Kim, Yong-Jin; Maffei, Erica; Raff, Gilbert; Pontone, Gianluca; Andreini, Daniele; Marques, Hugo; Rubinshtein, Ronen; Chang, Hyuk-Jae; Min, James K

    2018-03-14

    The long-term prognostic benefit of coronary computed tomographic angiography (CCTA) findings of coronary artery disease (CAD) in asymptomatic populations is unknown. From the prospective multicentre international CONFIRM long-term study, we evaluated asymptomatic subjects without known CAD who underwent both coronary artery calcium scoring (CACS) and CCTA (n = 1226). Coronary computed tomographic angiography findings included the severity of coronary artery stenosis, plaque composition, and coronary segment location. Using the C-statistic and likelihood ratio tests, we evaluated the incremental prognostic utility of CCTA findings over a base model that included a panel of traditional risk factors (RFs) as well as CACS to predict long-term all-cause mortality. During a mean follow-up of 5.9 ± 1.2 years, 78 deaths occurred. Compared with the traditional RF alone (C-statistic 0.64), CCTA findings including coronary stenosis severity, plaque composition, and coronary segment location demonstrated improved incremental prognostic utility beyond traditional RF alone (C-statistics range 0.71-0.73, all P < 0.05; incremental χ2 range 20.7-25.5, all P < 0.001). However, no added prognostic benefit was offered by CCTA findings when added to a base model containing both traditional RF and CACS (C-statistics P > 0.05, for all). Coronary computed tomographic angiography improved prognostication of 6-year all-cause mortality beyond a set of conventional RF alone, although, no further incremental value was offered by CCTA when CCTA findings were added to a model incorporating RF and CACS.

  13. Maxillary sinusitis and periapical abscess following periodontal therapy: a case report using three-dimensional evaluation.

    PubMed

    Huang, Chih-Hao; Brunsvold, Michael A

    2006-01-01

    Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  15. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  16. Virtual endoscopic imaging of the spine.

    PubMed

    Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei

    2012-05-20

    Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.

  17. Lamb wave tomographic imaging system for aircraft structural health assessment

    NASA Astrophysics Data System (ADS)

    Schwarz, Willi G.; Read, Michael E.; Kremer, Matthew J.; Hinders, Mark K.; Smith, Barry T.

    1999-01-01

    A tomographic imaging system using ultrasonic Lamb waves for the nondestructive inspection of aircraft components such as wings and fuselage is being developed. The computer-based system provides large-area inspection capability by electronically scanning an array of transducers that can be easily attached to flat and curved surface without moving parts. Images of the inspected area are produced in near real time employing a tomographic reconstruction method adapted from seismological applications. Changes in material properties caused by structural flaws such as disbonds, corrosion, and fatigue cracks can be effectively detected and characterized utilizing this fast NDE technique.

  18. Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients

    PubMed Central

    van Doremalen, Rob F. M.; Melchels, Ferry P. W.; Kolodzynski, Michail N.; Pouran, Behdad; Malda, Jos; Kon, Moshe; Breugem, Corstiaan C.

    2016-01-01

    Background: The limited cranial skin covering auricular implants is an important yet underrated factor in auricular reconstruction for both reconstruction surgery and tissue engineering strategies. We report exact measurements on skin deficiency in microtia patients and propose an accessible preoperative method for these measurements. Methods: Plaster ear models (n = 11; male:female = 2:1) of lobular-type microtia patients admitted to the University Medical Center Utrecht in The Netherlands were scanned using a micro-computed tomographic scanner or a cone-beam computed tomographic scanner. The resulting images were converted into mesh models from which the surface area could be calculated. Results: The mean total skin area of an adult-size healthy ear was 47.3 cm2, with 49.0 cm2 in men and 44.3 cm2 in women. Microtia ears averaged 14.5 cm2, with 15.6 cm2 in men and 12.6 cm2 in women. The amount of skin deficiency was 25.4 cm2, with 26.7 cm2 in men and 23.1 cm2 in women. Conclusions: This study proposes a novel method to provide quantitative data on the skin surface area of the healthy adult auricle and the amount of skin deficiency in microtia patients. We demonstrate that the microtia ear has less than 50% of skin available compared with healthy ears. Limited skin availability in microtia patients can lead to healing problems after auricular reconstruction and poses a significant challenge in the development of tissue-engineered cartilage implants. The results of this study could be used to evaluate outcomes and investigate new techniques with regard to tissue-engineered auricular constructs. PMID:28293505

  19. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less

  20. Understanding External Cervical Resorption in Vital Teeth.

    PubMed

    Mavridou, Athina M; Hauben, Esther; Wevers, Martine; Schepers, Evert; Bergmans, Lars; Lambrechts, Paul

    2016-12-01

    The aim of this study was to investigate the 3-dimensional (3D) structure and the cellular and tissue characteristics of external cervical resorption (ECR) in vital teeth and to understand the phenomenon of ECR by combining histomorphological and radiographic findings. Twenty-seven cases of vital permanent teeth displaying ECR were investigated. ECR diagnosis was based on clinical and radiographic examination with cone-beam computed tomographic imaging. The extracted teeth were further analyzed by using nanofocus computed tomographic imaging, hard tissue histology, and scanning electron microscopy. All examined teeth showed some common characteristics. Based on the clinical and experimental findings, a 3-stage mechanism of ECR was proposed. At the first stage (ie, the initiation stage), ECR was initiated at the cementum below the gingival epithelial attachment. At the second stage (ie, the resorption stage), the resorption invaded the tooth structure 3-dimensionally toward the pulp space. However, it did not penetrate the pulp space because of the presence of a pericanalar resorption-resistant sheet. This layer was observed to consist of predentin, dentin, and occasionally reparative mineralized (bonelike) tissue, having a fluctuating thickness averaging 210 μm. At the last advanced stage (ie, the repair stage), repair took place by an ingrowth and apposition of bonelike tissue into the resorption cavity. During the reparative stage, repair and remodeling phenomena evolve simultaneously, whereas both resorption and reparative stages progress in parallel at different areas of the tooth. ECR is a dynamic and complex condition that involves periodontal and endodontic tissues. Using clinical, histologic, radiographic, and scanning microscopic analysis, a better understanding of the evolution of ECR is possible. Based on the experimental findings, a 3-stage mechanism for the initiation and growth of ECR is proposed. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Time-Resolved C-Arm Computed Tomographic Angiography Derived From Computed Tomographic Perfusion Acquisition: New Capability for One-Stop-Shop Acute Ischemic Stroke Treatment in the Angiosuite.

    PubMed

    Yang, Pengfei; Niu, Kai; Wu, Yijing; Struffert, Tobias; Dorfler, Arnd; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2015-12-01

    Multimodal imaging using cone beam C-arm computed tomography (CT) may shorten the delay from ictus to revascularization for acute ischemic stroke patients with a large vessel occlusion. Largely because of limited temporal resolution, reconstruction of time-resolved CT angiography (CTA) from these systems has not yielded satisfactory results. We evaluated the image quality and diagnostic value of time-resolved C-arm CTA reconstructed using novel image processing algorithms. Studies were done under an Institutional Review Board approved protocol. Postprocessing of data from 21 C-arm CT dynamic perfusion acquisitions from 17 patients with acute ischemic stroke were done to derive time-resolved C-arm CTA images. Two observers independently evaluated image quality and diagnostic content for each case. ICC and receiver-operating characteristic analysis were performed to evaluate interobserver agreement and diagnostic value of this novel imaging modality. Time-resolved C-arm CTA images were successfully generated from 20 data sets (95.2%, 20/21). Two observers agreed well that the image quality for large cerebral arteries was good but was more limited for small cerebral arteries (distal to M1, A1, and P1). receiver-operating characteristic curves demonstrated excellent diagnostic value for detecting large vessel occlusions (area under the curve=0.987-1). Time-resolved CTAs derived from C-arm CT perfusion acquisitions provide high quality images that allowed accurate diagnosis of large vessel occlusions. Although image quality of smaller arteries in this study was not optimal ongoing modifications of the postprocessing algorithm will likely remove this limitation. Adding time-resolved C-arm CTAs to the capabilities of the angiography suite further enhances its suitability as a one-stop shop for care for patients with acute ischemic stroke. © 2015 American Heart Association, Inc.

  2. Replacing Heavily Damaged Teeth by Third Molar Autotransplantation With the Use of Cone-Beam Computed Tomography and Rapid Prototyping.

    PubMed

    Verweij, Jop P; Anssari Moin, David; Wismeijer, Daniel; van Merkesteyn, J P Richard

    2017-09-01

    This article describes the autotransplantation of third molars to replace heavily damaged premolars and molars. Specifically, this article reports on the use of preoperative cone-beam computed tomographic planning and 3-dimensional (3D) printed replicas of donor teeth to prepare artificial tooth sockets. In the present case, an 18-year-old patient underwent autotransplantation of 3 third molars to replace 1 premolar and 2 molars that were heavily damaged after trauma. Approximately 1 year after the traumatic incident, autotransplantation with the help of 3D planning and rapid prototyping was performed. The right maxillary third molar replaced the right maxillary first premolar. The 2 mandibular wisdom teeth replaced the left mandibular first and second molars. During the surgical procedure, artificial tooth sockets were prepared with the help of 3D printed donor tooth copies to prevent iatrogenic damage to the actual donor teeth. These replicas of the donor teeth were designed based on the preoperative cone-beam computed tomogram and manufactured with the help of 3D printing techniques. The use of a replica of the donor tooth resulted in a predictable and straightforward procedure, with extra-alveolar times shorter than 2 minutes for all transplantations. The transplanted teeth were placed in infraocclusion and fixed with a suture splint. Postoperative follow-up showed physiologic integration of the transplanted teeth and a successful outcome for all transplants. In conclusion, this technique facilitates a straightforward and predictable procedure for autotransplantation of third molars. The use of printed analogues of the donor teeth decreases the risk of iatrogenic damage and the extra-alveolar time of the transplanted tooth is minimized. This facilitates a successful outcome. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. The use of computed tomographic three-dimensional reconstructions to develop instructional models for equine pelvic ultrasonography.

    PubMed

    Whitcomb, Mary Beth; Doval, John; Peters, Jason

    2011-01-01

    Ultrasonography has gained increased utility to diagnose pelvic fractures in horses; however, internal pelvic contours can be difficult to appreciate from external palpable landmarks. We developed three-dimensional (3D) simulations of the pelvic ultrasonographic examination to assist with translation of pelvic contours into two-dimensional (2D) images. Contiguous 1mm transverse computed tomography (CT) images were acquired through an equine femur and hemipelvis using a single slice helical scanner. 3D surface models were created using a DICOM reader and imported into a 3D modeling and animation program. The bone models were combined with a purchased 3D horse model and the skin made translucent to visualize pelvic surface contours. 3D models of ultrasound transducers were made from reference photos, and a thin sector shape was created to depict the ultrasound beam. Ultrasonographic examinations were simulated by moving transducers on the skin surface and rectally to produce images of pelvic structures. Camera angles were manipulated to best illustrate the transducer-beam-bone interface. Fractures were created in multiple configurations. Animations were exported as QuickTime movie files for use in presentations coupled with corresponding ultrasound videoclips. 3D models provide a link between ultrasonographic technique and image generation by depicting the interaction of the transducer, ultrasound beam, and structure of interest. The horse model was important to facilitate understanding of the location of pelvic structures relative to the skin surface. While CT acquisition time was brief, manipulation within the 3D software program was time intensive. Results were worthwhile from an instructional standpoint based on user feedback. © 2011 Veterinary Radiology & Ultrasound.

  4. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985. Invited Presentations 1. N. Farhat, "Tomographic...Optical Computing", DARPA Briefing, ~~April 1985. ... -7--.. , 1% If .% P . .% .% *-. 7777~14e 7-7. K-7 77 Theses 0 P.V. Frangos , "The Electromagnetic

  5. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  6. DART, a platform for the creation and registration of cone beam digital tomosynthesis datasets.

    PubMed

    Sarkar, Vikren; Shi, Chengyu; Papanikolaou, Niko

    2011-04-01

    Digital tomosynthesis is an imaging modality that allows for tomographic reconstructions using only a fraction of the images needed for CT reconstruction. Since it offers the advantages of tomographic images with a smaller imaging dose delivered to the patient, the technique offers much promise for use in patient positioning prior to radiation delivery. This paper describes a software environment developed to help in the creation of digital tomosynthesis image sets from digital portal images using three different reconstruction algorithms. The software then allows for use of the tomograms for patient positioning or for dose recalculation if shifts are not applied, possibly as part of an adaptive radiotherapy regimen.

  7. Optical nanoscopy of high T c cuprate nanoconstriction devices patterned by helium ion beams

    DOE PAGES

    Gozar, Adrian; Litombe, N. E.; Hoffman, Jennifer E.; ...

    2017-02-06

    Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency,more » we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ~500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Lastly, our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.« less

  8. Evaluating the scattered radiation intensity in CBCT

    NASA Astrophysics Data System (ADS)

    Gonçalves, O. D.; Boldt, S.; Nadaes, M.; Devito, K. L.

    2018-03-01

    In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.

  9. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  10. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  11. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis

    PubMed Central

    Kokosi, Maria; Lo, Pechin; Kim, Hyun J.; Ravenel, James G.; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X.

    2016-01-01

    Rationale: The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. Objectives: To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. Methods: We determined the baseline to 12-month change in computed tomographic image–derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. Measurements and Main Results: There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image–derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. −0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Conclusions: Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying. PMID:26799509

  12. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis.

    PubMed

    Argula, Rahul G; Kokosi, Maria; Lo, Pechin; Kim, Hyun J; Ravenel, James G; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X

    2016-03-01

    The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. We determined the baseline to 12-month change in computed tomographic image-derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image-derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. -0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying.

  13. The Use of Chest Computed Tomographic Angiography in Blunt Trauma Pediatric Population.

    PubMed

    Hasadia, Rabea; DuBose, Joseph; Peleg, Kobi; Stephenson, Jacob; Givon, Adi; Kessel, Boris

    2018-02-05

    Blunt chest trauma in children is common. Although rare, associated major thoracic vascular injuries (TVIs) are lethal potential sequelae of these mechanisms. The preferred study for definitive diagnosis of TVI in stable patients is computed tomographic angiography imaging of the chest. This imaging modality is, however, associated with high doses of ionizing radiation that represent significant carcinogenic risk for pediatric patients. The aim of the present investigation was to define the incidence of TVI among blunt pediatric trauma patients in an effort to better elucidate the usefulness of computed tomographic angiography use in this population. A retrospective cohort study was conducted including all blunt pediatric (age < 14 y) trauma victims registered in Israeli National Trauma Registry maintained by Gertner Institute for Epidemiology and Health Policy Research between the years 1997 and 2015. Data collected included age, sex, mechanism of injury, Glasgow Coma Scale, Injury Severity Score, and incidence of chest named vessel injuries. Statistical analysis was performed using SAS statistical software version 9.2 (SAS Institute Inc, Cary, NC). Among 433,325 blunt trauma victims, 119,821patients were younger than 14 years. Twelve (0.0001%, 12/119821) of these children were diagnosed with TVI. The most common mechanism in this group was pedestrian hit by a car. Mortality was 41.7% (5/12). Thoracic vascular injury is exceptionally rare among pediatric blunt trauma victims but does contribute to the high morbidity and mortality seen with blunt chest trauma. Computed tomographic angiography, with its associated radiation exposure risk, should not be used as a standard tool after trauma in injured children. Clinical protocols are needed in this population to minimize radiation risk while allowing prompt identification of life-threatening injuries.

  14. Influence of using a single facial vein as outflow in full-face transplantation: A three-dimensional computed tomographic study.

    PubMed

    Rodriguez-Lorenzo, Andres; Audolfsson, Thorir; Wong, Corrine; Cheng, Angela; Arbique, Gary; Nowinski, Daniel; Rozen, Shai

    2015-10-01

    The aim of this study was to evaluate the contribution of a single unilateral facial vein in the venous outflow of total-face allograft using three-dimensional computed tomographic imaging techniques to further elucidate the mechanisms of venous complications following total-face transplant. Full-face soft-tissue flaps were harvested from fresh adult human cadavers. A single facial vein was identified and injected distally to the submandibular gland with a radiopaque contrast (barium sulfate/gelatin mixture) in every specimen. Following vascular injections, three-dimensional computed tomographic venographies of the faces were performed. Images were viewed using TeraRecon Software (Teracon, Inc., San Mateo, CA, USA) allowing analysis of the venous anatomy and perfusion in different facial subunits by observing radiopaque filling venous patterns. Three-dimensional computed tomographic venographies demonstrated a venous network with different degrees of perfusion in subunits of the face in relation to the facial vein injection side: 100% of ipsilateral and contralateral forehead units, 100% of ipsilateral and 75% of contralateral periorbital units, 100% of ipsilateral and 25% of contralateral cheek units, 100% of ipsilateral and 75% of contralateral nose units, 100% of ipsilateral and 75% of contralateral upper lip units, 100% of ipsilateral and 25% of contralateral lower lip units, and 50% of ipsilateral and 25% of contralateral chin units. Venographies of the full-face grafts revealed better perfusion in the ipsilateral hemifaces from the facial vein in comparison with the contralateral hemifaces. Reduced perfusion was observed mostly in the contralateral cheek unit and contralateral lower face including the lower lip and chin units. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Computed tomographic analysis of temporal maxillary stability and pterygomaxillary generate formation following pediatric Le Fort III distraction advancement.

    PubMed

    Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette

    2010-11-01

    Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.

  16. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performed for selected nuclides administered in nuclear medicine.

  17. Hierarchical multimodal tomographic x-ray imaging at a superbend

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Mikuljan, G.; Jefimovs, K.; Trtik, P.; Vila-Comamala, J.; David, C.; Abela, R.

    2008-08-01

    Over the last decade, synchrotron-based X-ray tomographic microscopy has established itself as a fundamental tool for non-invasive, quantitative investigations of a broad variety of samples, with application ranging from space research and materials science to biology and medicine. Thanks to the brilliance of modern third generation sources, voxel sizes in the micrometer range are routinely achieved by the major X-ray microtomography devices around the world, while the isotropic 100 nm barrier is reached and trespassed only by few instruments. The beamline for TOmographic Microscopy and Coherent rAdiology experiments (TOMCAT) of the Swiss Light Source at the Paul Scherrer Institut, operates a multimodal endstation which offers tomographic capabilities in the micrometer range in absorption contrast - of course - as well as phase contrast imaging. Recently, the beamline has been equipped with a full field, hard X-rays microscope with a theoretical pixel size down to 30 nm and a field of view of 50 microns. The nanoscope performs well at X-ray energies between 8 and 12 keV, selected from the white beam of a 2.9 T superbend by a [Ru/C]100 fixed exit multilayer monochromator. In this work we illustrate the experimental setup dedicated to the nanoscope, in particular the ad-hoc designed X-ray optics needed to produce a homogeneous, square illumination of the sample imaging plane as well as the magnifying zone plate. Tomographic reconstructions at 60 nm voxel size will be shown and discussed.

  18. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    NASA Astrophysics Data System (ADS)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  19. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.« less

  20. Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke.

    PubMed

    d'Esterre, Christopher D; Boesen, Mari E; Ahn, Seong Hwan; Pordeli, Pooneh; Najm, Mohamed; Minhas, Priyanka; Davari, Paniz; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V; Zini, Andrea; Frayne, Richard; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Forkert, Nils D; Goyal, Mayank; Lee, Ting Y; Menon, Bijoy K

    2015-12-01

    Among patients with acute ischemic stroke, we determine computed tomographic perfusion (CTP) thresholds associated with follow-up infarction at different stroke onset-to-CTP and CTP-to-reperfusion times. Acute ischemic stroke patients with occlusion on computed tomographic angiography were acutely imaged with CTP. Noncontrast computed tomography and magnectic resonance diffusion-weighted imaging between 24 and 48 hours were used to delineate follow-up infarction. Reperfusion was assessed on conventional angiogram or 4-hour repeat computed tomographic angiography. Tmax, cerebral blood flow, and cerebral blood volume derived from delay-insensitive CTP postprocessing were analyzed using receiver-operator characteristic curves to derive optimal thresholds for combined patient data (pooled analysis) and individual patients (patient-level analysis) based on time from stroke onset-to-CTP and CTP-to-reperfusion. One-way ANOVA and locally weighted scatterplot smoothing regression was used to test whether the derived optimal CTP thresholds were different by time. One hundred and thirty-two patients were included. Tmax thresholds of >16.2 and >15.8 s and absolute cerebral blood flow thresholds of <8.9 and <7.4 mL·min(-1)·100 g(-1) were associated with infarct if reperfused <90 min from CTP with onset <180 min. The discriminative ability of cerebral blood volume was modest. No statistically significant relationship was noted between stroke onset-to-CTP time and the optimal CTP thresholds for all parameters based on discrete or continuous time analysis (P>0.05). A statistically significant relationship existed between CTP-to-reperfusion time and the optimal thresholds for cerebral blood flow (P<0.001; r=0.59 and 0.77 for gray and white matter, respectively) and Tmax (P<0.001; r=-0.68 and -0.60 for gray and white matter, respectively) parameters. Optimal CTP thresholds associated with follow-up infarction depend on time from imaging to reperfusion. © 2015 American Heart Association, Inc.

  1. Pineal region tumors: computed tomographic-pathologic spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible andmore » is recommended for treatment planning.« less

  2. Normal cord in infants and children examined with computed tomographic metrizamide myelography.

    PubMed

    Resjö, I M; Harwood-Nash, D C; Fitz, C R; Chuang, S

    1979-03-01

    Computed tomographic metrizamide myelography (CTMM) was performed on 25 infants and children and 2 adults with normal spinal cords. Both the cord and the cauda equina were precisely outlined. The most detailed information was obtained with a small window setting, with the image subsequently magnified and color-reversed. Hounsfield-unit measurements alone were inaccurate. Advantages of CTMM include: high accuracy in demonstrating the intrathecal contents of the spine; less need for general anesthesia; and the need for a smaller amount of water-soluble contrast material than in conventional myelography. In selected cases of intraspinal abnormality in children, CTMM is recommended.

  3. Continuous Regional Arterial Infusion Therapy for Acute Necrotizing Pancreatitis Due to Mycoplasma pneumoniae Infection in a Child

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Motoo, E-mail: lmloltlolol@gmail.com; Ogino, Hiroyuki; Shimohira, Masashi

    2009-05-15

    A case of acute necrotizing pancreatitis due to Mycoplasma pneumoniae infection was treated in an 8-year-old girl. She experienced acute pancreatitis during treatment for M. pneumoniae. Contrast-enhanced computed tomographic scan revealed necrotizing pancreatitis. The computed tomographic severity index was 8 points (grade E). A protease inhibitor, ulinastatin, was provided via intravenous infusion but was ineffective. Continuous regional arterial infusion therapy was provided with gabexate mesilate (FOY-007, a protease inhibitor) and meropenem trihydrate, and the pancreatitis improved. This case suggests that infusion therapy is safe and useful in treating necrotizing pancreatitis in children.

  4. Contralateral decubitus positioning enhances computed tomographic angiographic evaluation of pulmonary vasculature in a patient with a pulmonary arteriovenous malformation.

    PubMed

    Tafti, Bashir Akhavan; Berenji, Gholam R; Santiago, Silverio; Barack, Bruce M

    2012-11-01

    Computed tomographic pulmonary angiography has become the diagnostic procedure of choice in patients suspected of having a pulmonary embolus. However, intrapulmonary shunting of blood in a variety of pathologic conditions can cause suboptimal opacification of the pulmonary arterial circulation and result in a suboptimal or even nondiagnostic study. Radiologists should be aware of these conditions and be familiar with positioning techniques to minimize such shunting. We report a patient suspected of having pulmonary embolism, in whom a preexisting unilateral arteriovenous malformation prevented adequate evaluation of the pulmonary circulation. Positioning the patient in the contralateral decubitus position significantly enhanced image quality.

  5. Lumbar artery perforators: an anatomical study based on computed tomographic angiography imaging.

    PubMed

    Sommeling, Casper Emile; Colebunders, Britt; Pardon, Heleen E; Stillaert, Filip B; Blondeel, Phillip N; van Landuyt, Koenraad

    2017-08-01

    The free lumbar artery perforator flap has recently been introduced as a potentially valuable option for autologous breast reconstruction in a subset of patients. Up to date, few anatomical studies, exploring the lumbar region as a donor site for perforator- based flaps, have been conducted. An anatomical study of the position of the dominant lumbar artery perforator was performed, using the preoperative computed tomographic angiography images of 24 autologous breast reconstruction patients. In total, 61 dominant perforators were determined, 28 on the left and 33 on the right side. A radiologist defined the position of the perforator as coordinates in an xy-grid. Dominant perforators were shown to originate from the lumbar arteries at the level of lumbar vertebrae three or four. Remarkably, approximately 85% of these lumbar artery perforators enter the skin at 7-10 cm lateral from the midline (mean left 8.6 cm, right 8.2 cm). This study concludes a rather constant position of the dominant perforator. Therefore, preoperative-computed tomographic angiography is not always essential to find this perforator and Doppler ultrasound could be considered as an alternative, thereby carefully assessing all advantages and disadvantages inherent to either of these imaging methods.

  6. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  7. Osteochondroma of the mandibular condyle: a classification system based on computed tomographic appearances.

    PubMed

    Chen, Min-jie; Yang, Chi; Qiu, Ya-ting; Zhou, Qin; Huang, Dong; Shi, Hui-min

    2014-09-01

    The objectives of this study were to introduce the classification of osteochondroma of the mandibular condyle based on computed tomographic images and to present our treatment experiences. From January 2002 and December 2012, a total of 61 patients with condylar osteochondroma were treated in our division. Both clinical and radiologic aspects were reviewed. The average follow-up period was 24.3 months with a range of 6 to 120 months. Two types of condylar osteochondroma were presented: type 1 (protruding expansion) in 50 patients (82.0%) and type 2 (globular expansion) in 11 patients (18.0%). Type 1 condylar osteochondroma presented 5 forms: anterior/anteromedial (58%), posterior/posteromedial (6%), medial (16%), lateral (6%), and gigantic (14%). Local resection was performed on patients with type 1 condylar osteochondroma. Subtotal condylectomy/total condylectomy using costochondral graft reconstruction with/without orthognathic surgeries was performed on patients with type 2 condylar osteochondroma. During the follow-up period, tumor reformation, condyle absorption, and new deformity were not detected. The patients almost reattained facial symmetry. Preoperative classification based on computed tomographic images will help surgeons to choose the suitable surgical procedure to treat the condylar osteochondroma.

  8. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  9. Evaluation of New Cone-beam Computed Tomographic Criteria for Radiographic Healing Evaluation after Apical Surgery: Assessment of Repeatability and Reproducibility.

    PubMed

    von Arx, Thomas; Janner, Simone F M; Hänni, Stefan; Bornstein, Michael M

    2016-02-01

    Conventional 2-dimensional radiography uses defined criteria for outcome assessment of apical surgery. However, these radiographic healing criteria are not applicable for 3-dimensional radiography. The present study evaluated the repeatability and reproducibility of new cone-beam computed tomographic (CBCT)-based healing criteria for the judgment of periapical healing 1 year after apical surgery. CBCT scans taken 1 year after apical surgery (61 roots of 54 teeth in 54 patients, mean age = 54.4 years) were evaluated by 3 blinded and calibrated observers using 4 different indices. Reformatted buccolingual CBCT sections through the longitudinal axis of the treated roots were analyzed. Radiographic healing was assessed at the resection plane (R index), within the apical area (A index), of the cortical plate (C index), and regarding a combined apical-cortical area (B index). All readings were performed twice to calculate the intraobserver agreement (repeatability). Second-time readings were used for analyzing the interobserver agreement (reproducibility). Various statistical tests (Cohen, kappa, Fisher, and Spearman) were performed to measure the intra- and interobserver concurrence, the variability of score ratios, and the correlation of indices. For all indices, the rates of identical first- and second-time scores were always higher than 80% (intraobserver Cohen κ values ranging from 0.793 to 0.963). The B index (94.0%) showed the highest intraobserver agreement. Regarding interobserver agreement, the highest rate was found for the B index (72.1%). The Fleiss' κ values for R and B indices exhibited substantial agreement (0.626 and 0.717, respectively), whereas the values for A and C indices showed moderate agreement (0.561 and 0.573, respectively). The Spearman correlation coefficients for R, A, C, and B indices all exhibited a moderate to very strong correlation with the highest correlation found between C and B indices (rs = 0.8069). All indices showed an excellent intraobserver agreement (repeatability). With regard to interobserver agreement (reproducibility), the B index (healing of apical and cortical defects combined) and the R index (healing on the resection plane) showed substantial congruence and thus are to be recommended in future studies when using buccolingual CBCT sections for radiographic outcome assessment of apical surgery. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Usefulness of Cone-Beam Computed Tomography During Ultraselective Transcatheter Arterial Chemoembolization for Small Hepatocellular Carcinomas that Cannot be Demonstrated on Angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyayama, Shiro, E-mail: s-miyayama@fukui.saiseikai.or.jp; Yamashiro, Masashi; Okuda, Miho

    2009-03-15

    This study evaluated the usefulness of cone-beam computed tomography (CBCT) during ultraselective transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCC) that could not be demonstrated on angiography. Twenty-eight patients with 33 angiographically occult tumors (mean diameter 1.3 {+-} 0.3 cm) were enrolled in the study. The ability of CBCT during arterial portography (CBCTAP), during hepatic arteriography (CBCTHA), and after iodized oil injection (LipCBCT) to detect HCC lesions was retrospectively analyzed. The technical success of TACE was divided into three grades: complete (the embolized area included the entire tumor with at least a 5-mm wide margin), adequate (the embolized area includedmore » the entire tumor but without a 5-mm wide margin in parts), and incomplete (the embolized area did not include the entire tumor) according to computed axial tomographic (CAT) images obtained 1 week after TACE. Local tumor progression was also evaluated. CBCTAP, CBCTHA, and LipCBCT detected HCC lesions in 93.9% (31 of 33), 96.7% (29 of 30), and 100% (29 of 29) of patients, respectively. A single branch was embolized in 28 tumors, and 2 branches were embolized in five tumors. Twenty-seven tumors (81.8%) were classed as complete, and 6 (18.2%) were classed as adequate. None of the tumors were classed as incomplete. Twenty-five tumors (75.8%) had not recurred during 12.0 {+-} 6.2 months. Eight tumors (24.2%), 5 (18.5%) of 27 complete success and 3 (50%) of 6 adequate success, recurred during 10.1 {+-} 6.2 months. CBCT during TACE is useful in detecting and treating small HCC lesions that cannot not be demonstrated on angiography.« less

  11. Preparation of nanowire specimens for laser-assisted atom probe tomography

    NASA Astrophysics Data System (ADS)

    Blumtritt, H.; Isheim, D.; Senz, S.; Seidman, D. N.; Moutanabbir, O.

    2014-10-01

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  12. Coronary Plaque Morphology and the Anti-Inflammatory Impact of Atorvastatin: A Multicenter 18F-Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Study.

    PubMed

    Singh, Parmanand; Emami, Hamed; Subramanian, Sharath; Maurovich-Horvat, Pal; Marincheva-Savcheva, Gergana; Medina, Hector M; Abdelbaky, Amr; Alon, Achilles; Shankar, Sudha S; Rudd, James H F; Fayad, Zahi A; Hoffmann, Udo; Tawakol, Ahmed

    2016-12-01

    Nonobstructive coronary plaques manifesting high-risk morphology (HRM) associate with an increased risk of adverse clinical cardiovascular events. We sought to test the hypothesis that statins have a greater anti-inflammatory effect within coronary plaques containing HRM. In this prospective multicenter study, 55 subjects with or at high risk for atherosclerosis underwent 18 F-fluorodeoxyglucose positron emission tomographic/computed tomographic imaging at baseline and after 12 weeks of treatment with atorvastatin. Coronary arterial inflammation ( 18 F-fluorodeoxyglucose uptake, expressed as target-to-background ratio) was assessed in the left main coronary artery (LMCA). While blinded to the PET findings, contrast-enhanced computed tomographic angiography was performed to characterize the presence of HRM (defined as noncalcified or partially calcified plaques) in the LMCA. Arterial inflammation (target-to-background ratio) was higher in LMCA segments with HRM than those without HRM (mean±SEM: 1.95±0.43 versus 1.67±0.32 for LMCA with versus without HRM, respectively; P=0.04). Moreover, atorvastatin treatment for 12 weeks reduced target-to-background ratio more in LMCA segments with HRM than those without HRM (12 week-baseline Δtarget-to-background ratio [95% confidence interval]: -0.18 [-0.35 to -0.004] versus 0.09 [-0.06 to 0.26]; P=0.02). Furthermore, this relationship between coronary plaque morphology and change in LMCA inflammatory activity remained significant after adjusting for baseline low-density lipoprotein and statin dose (β=-0.27; P=0.038). In this first study to evaluate the impact of statins on coronary inflammation, we observed that the anti-inflammatory impact of statins is substantially greater within coronary plaques that contain HRM features. These findings suggest an additional mechanism by which statins disproportionately benefit individuals with more advanced atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00703261. © 2016 The Authors.

  13. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  14. Browsing Software of the Visible Korean Data Used for Teaching Sectional Anatomy

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Chung, Min Suk; Park, Hyo Seok; Park, Jin Seo; Hwang, Sung Bae

    2011-01-01

    The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and…

  15. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less

  16. Rapidly converging multigrid reconstruction of cone-beam tomographic data

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.

    2016-10-01

    In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.

  17. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less

  18. Conventional metrizamide myelography (MM) and computed tomographic metrizamide myelography (CTMM) in scoliosis: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, H.; Harwood-Nash, D.C.; Fitz, C.R.

    1982-01-01

    A retrospective examination was performed to assess the accuracy of metrizamide myelography (MM) and computed tomographic metrizamide myelography (CTMM) in scoliosis. Of 81 consecutive scoliotic children studied by myelography, 30 had only MM while the remaining 51 had CTMM immediately afterward. CTMM added esential diagnostic information in 13 cases of dysraphism and 4 cases, both methods gave the same imformation. The outhors conclude that in patients with severe scoliosis, dysraphism, and scoliosis with localized neurological disturbances, CTMM should always be added to MM or be the only examination; while in idiopathic scoliosis with vague neurological disturbances a survey of themore » entire spine is essential, preferably with MM.« less

  19. Root Canal Treatment of Mandibular Second Premolar with Three Separate Roots and Canals Using Spiral Computed Tomographic

    PubMed Central

    Hariharavel, V. P.; Kumar, A. Ashok; Ganesh, C.; Aravindhan, R.

    2014-01-01

    Anatomic and internal morphology of a root canal system is more complex and differs for each individual tooth of which mandibular premolars have earned the reputation for having aberrant anatomy. The occurrence of three canals with three separate foramina in mandibular second premolars is very rare. A wider knowledge on both clinical and radiological anatomy especially spiral computed tomographic is absolutely essential for the success of endodontic treatment. These teeth may require skillful and special root canal special shaping and obturating techniques. This paper reports an unusual case of a mandibular second premolar with atypical canal pattern that was successfully treated endodontically. PMID:25101187

  20. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  1. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  2. Longitudinal phase space tomography using a booster cavity at PITZ

    NASA Astrophysics Data System (ADS)

    Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.

    2017-11-01

    The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.

  3. Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

    PubMed

    Leblond, Guillaume; Gaitero, Luis; Moens, Noel M M; Zur Linden, Alex; James, Fiona M K; Monteith, Gabrielle J; Runciman, John

    2017-11-01

    Objectives  Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendations for optimal implant placements and (2) to compare anatomical data obtained in non-affected Toy breed dogs, affected Toy breed dogs suffering from atlantoaxial instability and non-affected Beagle dogs. Methods  Anatomical data were collected from a prospectively recruited population of 27 dogs using a previously validated method of optimal safe implantation corridor analysis using computed tomographic images. Results  Optimal implant positions and three-dimensional numerical data were generated successfully in all cases. Anatomical landmarks could be used to generate objective definitions of optimal insertion points which were applicable across all three groups. Overall the geometrical distribution of all implant sites was similar in all three groups with a few exceptions. Clinical Significance  This study provides extensive anatomical data available to facilitate surgical planning of implant placement for atlantoaxial stabilization. Our data suggest that non-affected Toy breed dogs and non-affected Beagle dogs constitute reasonable research models to study atlantoaxial stabilization constructs. Schattauer GmbH Stuttgart.

  4. Carotid-bulb atypical fibromuscular dysplasia in young Afro-Caribbean patients with stroke.

    PubMed

    Joux, Julien; Chausson, Nicolas; Jeannin, Séverine; Saint-Vil, Martine; Mejdoubi, Mehdi; Hennequin, Jean-Luc; Deschamps, Lydia; Smadja, Didier; Olindo, Stéphane

    2014-12-01

    An atypical form of fibromuscular dysplasia located in the internal carotid-bulb (CaFMD) is thought to be uncommon and is poorly described as a cause of ischemic stroke in the young. This study aimed to obtain a better description of CaFMD in Afro-Caribbean population, who could be particularly affected by it. This study included consecutive patients <55 years consulting at Fort-de-France University Hospital Stroke Center (Martinique, FWI) found to have CaFMD as the only cause after a comprehensive work-up. CaFMD was diagnosed when computed tomographic angiography showed a bulbar spur without calcification. Twenty-five patients with stroke and CaFMD were identified. Computed tomographic angiography showed 2 CaFMD patterns: a thin (n=15) or thick (n=10) spur. Three patients initial computed tomographic angiography images showed a mural thrombus overlying the CaFMD. CaFMD was surgically removed from 7 of 25 and 20 of 25 patients who received antiplatelet therapy; after mean follow-up of 25.3±19.5 months, their respective recurrence rates were 0% and 30%. CaFMD could be a common condition in young Afro-Caribbeans with carotid-territory ischemic stroke. Recurrences were frequent under antiplatelet treatment, while surgical CaFMD removal seemed more effective. © 2014 American Heart Association, Inc.

  5. Comparison of mathematic models for assessment of glomerular filtration rate with electron-beam CT in pigs.

    PubMed

    Daghini, Elena; Juillard, Laurent; Haas, John A; Krier, James D; Romero, Juan C; Lerman, Lilach O

    2007-02-01

    To prospectively compare in pigs three mathematic models for assessment of glomerular filtration rate (GFR) on electron-beam (EB) computed tomographic (CT) images, with concurrent inulin clearance serving as the reference standard. This study was approved by the institutional animal care and use committee. Inulin clearance was measured in nine pigs (18 kidneys) and compared with single-kidney GFR assessed from renal time-attenuation curves (TACs) obtained with EB CT before and after infusion of the vasodilator acetylcholine. CT-derived GFR was calculated with the original and modified Patlak methods and with previously validated extended gamma variate modeling of first-pass cortical TACs. Statistical analysis was performed to assess correlation between CT methods and inulin clearance for estimation of GFR with least-squares regression analysis and Bland-Altman graphical representation. Comparisons within groups were performed with a paired t test. GFR assessed with the original Patlak method indicated poor correlation with inulin clearance, whereas GFR assessed with the modified Patlak method (P < .001, r = 0.75) and with gamma variate modeling (P < .001, r = 0.79) correlated significantly with inulin clearance and indicated an increase in response to acetylcholine. CT-derived estimates of GFR can be significantly improved by modifications in image analysis methods (eg, use of a cortical region of interest). (c) RSNA, 2007.

  6. Multi-scale structural analysis of gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  7. BPF-type region-of-interest reconstruction for parallel translational computed tomography.

    PubMed

    Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin

    2017-01-01

    The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.

  8. Interdisciplinary Study of Egyptian Mummies from the Pushkin State Museum of Fine Arts Collection at the National Research Centre ``Kurchatov Institute''

    NASA Astrophysics Data System (ADS)

    Yatsishina, E. B.; Kovalchuk, M. V.; Loshak, M. D.; Vasilyev, S. V.; Vasilieva, O. A.; Dyuzheva, O. P.; Pojidaev, V. M.; Ushakov, V. L.

    2018-05-01

    Nine ancient Egyptian mummies (dated preliminarily to the period from the 1st mill. BCE to the first centuries CE) from the collection of the State Pushkin Museum of Fine Arts have been studied at the National Research Centre "Kurchatov Institute" (NRC KI) on the base of the complex of NBICS technologies. Tomographic scanning is performed using a magneto-resonance tomograph (3 T) and a hybrid positron emission tomography/computed tomography (PET-CT) scanner. Three-dimensional reconstructions of mummies and their anthropological measurements are carried out. Some medical conclusions are drawn based on the tomographic data. In addition, the embalming composition and tissue of one of the mummies are preliminarily analyzed.

  9. Tomographic Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2014-04-01

    Positron annihilation lifetime spectroscopy serves as a perfect tool for studies of open-volume defects in solid materials such as vacancies, vacancy agglomerates, and dislocations. Moreover, structures in porous media can be investigated ranging from 0.3 nm to 30 nm employing the variation of the Positronium lifetime with the pore size. While lifetime measurements close to the material's surface can be performed at positron-beam installations bulk materials, fluids, bio-materials or composite structures cannot or only destructively accessed by positron beams. Targeting those problems, a new method of non-destructive positron annihilation lifetime spectroscopy has been developed which features even a 3-dimensional tomographic reconstruction of the spatial lifetime distribution. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for lifetime studies. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. The detector system will be described and results for experiments using samples with increasing complexity will be presented. The Lu2SiO5:Ce scintillation crystals allow resolving the total energy to 5.1 % (root-mean-square, RMS) and the annihilation lifetime to 225 ps (RMS). 3-dimensional annihilation lifetime maps have been created in an offline-analysis employing well-known techniques from PET.

  10. Singular value decomposition: a diagnostic tool for ill-posed inverse problems in optical computed tomography

    NASA Astrophysics Data System (ADS)

    Lanen, Theo A.; Watt, David W.

    1995-10-01

    Singular value decomposition has served as a diagnostic tool in optical computed tomography by using its capability to provide insight into the condition of ill-posed inverse problems. Various tomographic geometries are compared to one another through the singular value spectrum of their weight matrices. The number of significant singular values in the singular value spectrum of a weight matrix is a quantitative measure of the condition of the system of linear equations defined by a tomographic geometery. The analysis involves variation of the following five parameters, characterizing a tomographic geometry: 1) the spatial resolution of the reconstruction domain, 2) the number of views, 3) the number of projection rays per view, 4) the total observation angle spanned by the views, and 5) the selected basis function. Five local basis functions are considered: the square pulse, the triangle, the cubic B-spline, the Hanning window, and the Gaussian distribution. Also items like the presence of noise in the views, the coding accuracy of the weight matrix, as well as the accuracy of the accuracy of the singular value decomposition procedure itself are assessed.

  11. The Diagnostic Efficacy of Cone-beam Computed Tomography in Endodontics: A Systematic Review and Analysis by a Hierarchical Model of Efficacy.

    PubMed

    Rosen, Eyal; Taschieri, Silvio; Del Fabbro, Massimo; Beitlitum, Ilan; Tsesis, Igor

    2015-07-01

    The aim of this study was to evaluate the diagnostic efficacy of cone-beam computed tomographic (CBCT) imaging in endodontics based on a systematic search and analysis of the literature using an efficacy model. A systematic search of the literature was performed to identify studies evaluating the use of CBCT imaging in endodontics. The identified studies were subjected to strict inclusion criteria followed by an analysis using a hierarchical model of efficacy (model) designed for appraisal of the literature on the levels of efficacy of a diagnostic imaging modality. Initially, 485 possible relevant articles were identified. After title and abstract screening and a full-text evaluation, 58 articles (12%) that met the inclusion criteria were analyzed and allocated to levels of efficacy. Most eligible articles (n = 52, 90%) evaluated technical characteristics or the accuracy of CBCT imaging, which was defined in this model as low levels of efficacy. Only 6 articles (10%) proclaimed to evaluate the efficacy of CBCT imaging to support the practitioner's decision making; treatment planning; and, ultimately, the treatment outcome, which was defined as higher levels of efficacy. The expected ultimate benefit of CBCT imaging to the endodontic patient as evaluated by its level of diagnostic efficacy is unclear and is mainly limited to its technical and diagnostic accuracy efficacies. Even for these low levels of efficacy, current knowledge is limited. Therefore, a cautious and rational approach is advised when considering CBCT imaging for endodontic purposes. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Association between the Presence of Apical Periodontitis and Clinical Symptoms in Endodontic Patients Using Cone-beam Computed Tomography and Periapical Radiographs.

    PubMed

    Weissman, Jake; Johnson, James D; Anderson, Melissa; Hollender, Lars; Huson, Tim; Paranjpe, Avina; Patel, Shanon; Cohenca, Nestor

    2015-11-01

    Cone-beam computed tomographic (CBCT) imaging is a valuable adjunct to endodontic practice. Among the endodontic applications of CBCT imaging, it aids in the diagnosis of apical periodontitis, often in cases in which there is no evidence of pathosis identified by conventional imaging. The purpose of this study was to correlate the presence of apical periodontitis of teeth evaluated with 2-dimensional periapical (PA) radiographs and 3-dimensional CBCT volumes with clinical signs and symptoms. Clinical records were reviewed from patients examined at the graduate endodontics clinic. The examination included clinical examination, sensibility tests, PA radiographs, and limited field-of-view CBCT scans. Of 498 cases, 67 fulfilled the inclusion criteria and were evaluated for apical periodontitis and symptomology. CBCT slices and PA radiographs were evaluated by 2 board-certified endodontists and a board-certified oral and maxillofacial radiologist for the presence of apical periodontitis. Thirty eight of 67 teeth showed the presence of apical radiolucencies on PA radiographs and on CBCT imaging, whereas 14 teeth had no evidence of apical radiolucencies on either imaging modality. Fifteen cases showed the presence of apical radiolucencies visible on CBCT imaging that were not visible on PA radiographic images. The presence of apical radiolucencies on CBCT slices and PA radiographic images was correlated with clinical signs and symptoms, including the chief complaint. This research has important implications to prevent overexposure to radiation and to provide treatment for those patients with persistent symptoms lacking proper diagnosis based on conventional (2D) radiographs. Copyright © 2015. Published by Elsevier Inc.

  13. Influence of Cone-beam Computed Tomography on Endodontic Retreatment Strategies among General Dental Practitioners and Endodontists.

    PubMed

    Rodríguez, Gustavo; Patel, Shanon; Durán-Sindreu, Fernando; Roig, Miguel; Abella, Francesc

    2017-09-01

    Treatment options for endodontic failure include nonsurgical or surgical endodontic retreatment, intentional replantation, and extraction with or without replacement of the tooth. The aim of the present study was to determine the impact of cone-beam computed tomographic (CBCT) imaging on clinical decision making among general dental practitioners and endodontists after failed root canal treatment. A second objective was to assess the self-reported level of difficulty in making a treatment choice before and after viewing a preoperative CBCT scan. Eight patients with endodontically treated teeth diagnosed as symptomatic apical periodontitis, acute apical abscess, or chronic apical abscess were selected. In the first session, the examiners were given the details of each case, including any relevant radiographs, and were asked to choose 1 of the proposed treatment alternatives and assess the difficulty of making a decision. One month later, the examiners reviewed randomly the same 8 cases with the additional information from the CBCT data. The examiners altered their treatment plan after viewing the CBCT scan in 49.8% of the cases. A significant difference in the treatment plan between the 2 imaging modalities was recorded for endodontists and general practitioners (P < .05). After CBCT evaluation, neither group altered their self-reported level of difficulty when choosing a treatment plan (P = .0524). The extraction option rose significantly to 20% after viewing the CBCT scan (P < .05). CBCT imaging directly influences endodontic retreatment strategies among general dental practitioners and endodontists. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Utilization of Cone-Beam Computed Tomographic Angiography in Planning for Gamma Knife Radiosurgery of Arteriovenous Malformations: A Case Series and Early Report

    PubMed Central

    Safain, Mina G.; Rahal, Jason P.; Raval, Ami; Rivard, Mark J.; Mignano, John; Wu, Julian; Malek, Adel M.

    2014-01-01

    Background The effectiveness of Gamma Knife radiosurgery (GKR) for cerebral arteriovenous malformations (AVM) is predicated on inclusion of the entire nidus while excluding normal tissue. As such, GKR may be limited by the resolution and accuracy of the imaging modality used in targeting. Objective We present the first case series to demonstrate the feasibility of utilizing ultra-high-resolution C-arm cone beam computed tomography angiography (CBCT-A) in AVM targeting. Methods From June 2009 to June 2013, CBCT-A was utilized for targeting of all patients with AVMs treated with GKR at our institution. Patients underwent Leksell stereotactic head frame placement followed by catheter-based biplane 2-D digital subtraction angiography (DSA), 3-D rotational angiography (3DRA), as well as CBCT-A. The CBCT-A dataset was used for stereotactic planning for GKR. Patients were followed up at 1, 3, 6, and 12 months, and then annually thereafter. Results CBCT-A-based targeting was used in twenty-two consecutive patients. CBCT-A provided detailed spatial resolution and sensitivity of nidal angioarchitecture enabling treatment. The average radiation dose to the margin of the AVM nidus corresponding to the 50% percent isodose line was 15.6 Gy. No patient had treatment-associated hemorrhage. At early follow-up (mean=16 months), 84% of patients had a decreasing or obliterated AVM nidus. Conclusion CBCT-A-guided radiosurgery is feasible and useful because it provides sufficient detailed resolution and sensitivity for imaging brain AVMs. PMID:24584136

  15. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    PubMed

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  16. Evaluation of the reliability and accuracy of using cone-beam computed tomography for diagnosing periapical cysts from granulomas.

    PubMed

    Guo, Jing; Simon, James H; Sedghizadeh, Parish; Soliman, Osman N; Chapman, Travis; Enciso, Reyes

    2013-12-01

    The purpose of this study was to evaluate the reliability and accuracy of cone-beam computed tomographic (CBCT) imaging against the histopathologic diagnosis for the differential diagnosis of periapical cysts (cavitated lesions) from (solid) granulomas. Thirty-six periapical lesions were imaged using CBCT scans. Apicoectomy surgeries were conducted for histopathological examination. Evaluator 1 examined each CBCT scan for the presence of 6 radiologic characteristics of a cyst (ie, location, periphery, shape, internal structure, effects on surrounding structure, and perforation of the cortical plate). Not every cyst showed all radiologic features (eg, not all cysts perforate the cortical plate). For the purpose of finding the minimum number of diagnostic criteria present in a scan to diagnose a lesion as a cyst, we conducted 6 receiver operating characteristic curve analyses comparing CBCT diagnoses with the histopathologic diagnosis. Two other independent evaluators examined the CBCT lesions. Statistical tests were conducted to examine the accuracy, inter-rater reliability, and intrarater reliability of CBCT images. Findings showed that a score of ≥4 positive findings was the optimal scoring system. The accuracies of differential diagnoses of 3 evaluators were moderate (area under the curve = 0.76, 0.70, and 0.69 for evaluators 1, 2, and 3, respectively). The inter-rater agreement of the 3 evaluators was excellent (α = 0.87). The intrarater agreement was good to excellent (κ = 0.71, 0.76, and 0.77). CBCT images can provide a moderately accurate diagnosis between cysts and granulomas. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Accuracy of both virtual and printed 3-dimensional models for volumetric measurement of alveolar clefts before grafting with alveolar bone compared with a validated algorithm: a preliminary investigation.

    PubMed

    Kasaven, C P; McIntyre, G T; Mossey, P A

    2017-01-01

    Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Investigating the dose distribution in the uncompressed breast with a dedicated CT mammotomography system

    NASA Astrophysics Data System (ADS)

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2010-04-01

    A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.

  19. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  20. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana), common tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, Tommaso; Selleri, Paolo; Veladiano, Irene A; Martin, Andrea; Zanetti, Emanuele; Zotti, Alessandro

    2012-05-11

    Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of: 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (-20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species.

  1. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana) , common tegu ( Tupinambis merianae) and bearded dragon ( Pogona vitticeps)

    PubMed Central

    2012-01-01

    Background Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. Results 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of : 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (−20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. Conclusions The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species. PMID:22578088

  2. Computed Tomography Angiography in Microsurgery: Indications, Clinical Utility, and Pitfalls

    PubMed Central

    Lee, Gordon K.; Fox, Paige M.; Riboh, Jonathan; Hsu, Charles; Saber, Sepideh; Rubin, Geoffrey D.; Chang, James

    2013-01-01

    Objective: Computed tomographic angiography (CTA) can be used to obtain 3-dimensional vascular images and soft-tissue definition. The goal of this study was to evaluate the reliability, usefulness, and pitfalls of CTA in preoperative planning of microvascular reconstructive surgery. Methods: A retrospective review of patients who obtained preoperative CTA in preparation for planned microvascular reconstruction was performed over a 5-year period (2001–2005). The influence of CTA on the original operative plan was assessed for each patient, and CTA results were correlated to the operative findings. Results: Computed tomographic angiography was performed on 94 patients in preparation for microvascular reconstruction. In 48 patients (51%), vascular abnormalities were noted on CTA. Intraoperative findings correlated with CTA results in 97% of cases. In 42 patients (45%), abnormal CTA findings influenced the original operative plan, such as the choice of vessels, side of harvest, or nature of the reconstruction (local flap instead of free tissue transfer). Technical difficulties in performing CTA were encountered in 5 patients (5%) in whom interference from external fixation devices was the main cause. Conclusions: This large study of CTA obtained for preoperative planning of reconstructive microsurgery at both donor and recipient sites study demonstrates that CTA is safe and highly accurate. Computed tomographic angiography can alter the surgeon's reconstructive plan when abnormalities are noted preoperatively and consequently improve results by decreasing vascular complication rates. The use of CTA should be considered for cases of microsurgical reconstruction where the vascular anatomy may be questionable. PMID:24023972

  3. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  4. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.

    PubMed

    Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S

    2013-09-24

    Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils.

  5. False-Positive Cases of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomographic Scans in Metastasis of Esophageal Cancer

    PubMed Central

    Yamatsuji, Tomoki; Ishida, Naomasa; Takaoka, Munenori; Hayashi, Jiro; Yoshida, Kazuhiro; Shigemitsu, Kaori; Urakami, Atsushi; Haisa, Minoru; Naomoto, Yoshio

    2017-01-01

    Of 129 esophagectomies at our institute from June 2010 to March 2015, we experienced three preoperative positron emission tomography-computed tomographic (PET/CT) false positives. Bone metastasis was originally suspected in 2 cases, but they were later found to be bone metastasis negative after a preoperative bone biopsy and clinical course observation. The other cases suspected of mediastinal lymph node metastasis were diagnosed as inflammatory lymphadenopathy by a pathological examination of the removed lymph nodes. Conducting a PET/CT is useful when diagnosing esophageal cancer metastasis, but we need to be aware of the possibility of false positives. Therapeutic decisions should be made based on appropriate and accurate diagnoses, with pathological diagnosis actively introduced if necessary. PMID:28469502

  6. Using the technique of computed tomography for nondestructive analysis of pharmaceutical dosage forms

    NASA Astrophysics Data System (ADS)

    de Oliveira, José Martins, Jr.; Mangini, F. Salvador; Carvalho Vila, Marta Maria Duarte; ViníciusChaud, Marco

    2013-05-01

    This work presents an alternative and non-conventional technique for evaluatingof physic-chemical properties of pharmaceutical dosage forms, i.e. we used computed tomography (CT) technique as a nondestructive technique to visualize internal structures of pharmaceuticals dosage forms and to conduct static and dynamical studies. The studies were conducted involving static and dynamic situations through the use of tomographic images, generated by the scanner at University of Sorocaba - Uniso. We have shown that through the use of tomographic images it is possible to conduct studies of porosity, densities, analysis of morphological parameters and performing studies of dissolution. Our results are in agreement with the literature, showing that CT is a powerful tool for use in the pharmaceutical sciences.

  7. Nephroureterectomy and ureteroneocystostomy in an alpaca with bilateral ectopic ureters diagnosed by computed tomographic excretory urography.

    PubMed

    Polf, Holly D; Smith, Shasta; Simpson, Katharine M; Rochat, Mark C

    2015-01-01

    To report diagnosis and treatment of urinary incontinence in a female Huacaya alpaca. Clinical case report. Female intact Huacaya alpaca (n = 1) METHODS: Computed tomographic (CT) excretory urography and vaginourethrography were performed to diagnose the cause of urinary incontinence. Bilateral ectopic ureters and left hydronephrosis and hydroureter were diagnosed. Left nephroureterectomy and right ureteroneocystostomy were performed with subsequent resolution of clinical signs. Pyelonephritis was identified by culture of the resected left kidney. CT excretory urography was helpful in the diagnosis of bilateral ectopic ureters in an alpaca and provided information for surgical planning. Surgical repair by ureteroneocystostomy and unilateral nephroureterectomy was successful in resolving clinical signs. © Copyright 2014 by The American College of Veterinary Surgeons.

  8. Computed-tomographic and conventional linear-tomographic evaluation of tracheobronchial lesions for laser photoresection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearlberg, J.L.; Sandler, M.A.; Kvale, P.

    1985-03-01

    Laser therapy is a new modality for treatment of airway lesions. The authors examined 18 patients prior to laser photoresection of tracheobronchial lesions. Thirteen had cancers involving the distal trachea, carina, and/or proximal bronchi; five had benign lesions of the middle or proximal trachea. Each patient was examined by conventional linear tomography (CLT) and computed tomography (CT). CT was valuable in patients who had lesions of the distal trachea, carina, and/or proximal bronchi. Its particular usefulness, and its advantage relative to CLT, consisted in its ability to delineate vascular structures adjacent to the planned area of photoresection. Neither CLT normore » CT was helpful in evaluation of benign lesions of the proximal trachea.« less

  9. Proton radiography based on near-threshold Cerenkov radiation

    DOEpatents

    van Bibber, Karl A.; Dietrich, Frank S.

    2003-01-01

    A Cerenkov imaging system for charged particle radiography that determines the energy loss of the charged particle beam passing through an object. This energy loss information provides additional detail on target densities when used with traditional radiographic techniques like photon or x-ray radiography. In this invention a probe beam of 800 MeV to 50 GeV/c charged particles is passed through an object to be imaged, an imaging magnetic spectrometer, to a silicon aerogel Cerenkov radiator where the charged particles emitted Cerenkov light proportional to their velocity. At the same beam focal plane, a particle scintillator produces a light output proportional to the incident beam flux. Optical imaging systems relay the Cerenkov and scintillator information to CCD's or other measurement equipment. A ratio between the Cerenkov and scintillator is formed, which is directly proportional to the line density of the object for each pixel measured. By rotating the object, tomographic radiography may be performed. By applying pulses of beam, discrete time-step movies of dynamic objects may be made.

  10. Microtomographic imaging in the process of bone modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph

    1999-09-01

    Micro-computed tomography ((mu) CT) is an emerging technique to nondestructively image and quantify trabecular bone in three dimensions. Where the early implementations of (mu) CT focused more on technical aspects of the systems and required equipment not normally available to the general public, a more recent development emphasized practical aspects of micro- tomographic imaging. That system is based on a compact fan- beam type of tomograph, also referred to as desktop (mu) CT. Desk-top (mu) CT has been used extensively for the investigation of osteoporosis related health problems gaining new insight into the organization of trabecular bone and the influence of osteoporotic bone loss on bone architecture and the competence of bone. Osteoporosis is a condition characterized by excessive bone loss and deterioration in bone architecture. The reduced quality of bone increases the risk of fracture. Current imaging technologies do not allow accurate in vivo measurements of bone structure over several decades or the investigation of the local remodeling stimuli at the tissue level. Therefore, computer simulations and new experimental modeling procedures are necessary for determining the long-term effects of age, menopause, and osteoporosis on bone. Microstructural bone models allow us to study not only the effects of osteoporosis on the skeleton but also to assess and monitor the effectiveness of new treatment regimens. The basis for such approaches are realistic models of bone and a sound understanding of the underlying biological and mechanical processes in bone physiology. In this article, strategies for new approaches to bone modeling and simulation in the study and treatment of osteoporosis and age-related bone loss are presented. The focus is on the bioengineering and imaging aspects of osteoporosis research. With the introduction of desk-top (mu) CT, a new generation of imaging instruments has entered the arena allowing easy and relatively inexpensive access to the three-dimensional microstructure of bone, thereby giving bone researchers a powerful tool for the exploration of age-related bone loss and osteoporosis.

  11. A proposed-standard format to represent and distribute tomographic models and other earth spatial data

    NASA Astrophysics Data System (ADS)

    Postpischl, L.; Morelli, A.; Danecek, P.

    2009-04-01

    Formats used to represent (and distribute) tomographic earth models differ considerably and are rarely self-consistent. In fact, each earth scientist, or research group, uses specific conventions to encode the various parameterizations used to describe, e.g., seismic wave speed or density in three dimensions, and complete information is often found in related documents or publications (if available at all) only. As a consequence, use of various tomographic models from different authors requires considerable effort, is more cumbersome than it should be and prevents widespread exchange and circulation within the community. We propose a format, based on modern web standards, able to represent different (grid-based) model parameterizations within the same simple text-based environment, easy to write, to parse, and to visualise. The aim is the creation of self-describing data-structures, both human and machine readable, that are automatically recognised by general-purpose software agents, and easily imported in the scientific programming environment. We think that the adoption of such a representation as a standard for the exchange and distribution of earth models can greatly ease their usage and enhance their circulation, both among fellow seismologists and among a broader non-specialist community. The proposed solution uses semantic web technologies, fully fitting the current trends in data accessibility. It is based on Json (JavaScript Object Notation), a plain-text, human-readable lightweight computer data interchange format, which adopts a hierarchical name-value model for representing simple data structures and associative arrays (called objects). Our implementation allows integration of large datasets with metadata (authors, affiliations, bibliographic references, units of measure etc.) into a single resource. It is equally suited to represent other geo-referenced volumetric quantities — beyond tomographic models — as well as (structured and unstructured) computational meshes. This approach can exploit the capabilities of the web browser as a computing platform: a series of in-page quick tools for comparative analysis between models will be presented, as well as visualisation techniques for tomographic layers in Google Maps and Google Earth. We are working on tools for conversion into common scientific format like netCDF, to allow easy visualisation in GEON-IDV or gmt.

  12. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri-Beam system combines the benefits of laser based material removal (speed, low-damage, automated) with detectors that collect chemical, structural, and topological information. Multi-modal sectioning information was collected after many laser scanning passes demonstrating the capability of the Tri-Beam system.

  13. Pre-eruptive intracoronal resorption in a third upper molar: clinical, tomographic and histological analysis.

    PubMed

    Lenzi, R; Marceliano-Alves, M F; Alves, Frf; Pires, F R; Fidel, S

    2017-06-01

    Radiolucent or hypodense lesions in the crown of unerupted teeth may be due to pre-eruptive intracoronal resorption. Clinicians must be aware of this risk so that they can diagnose and appropriately treat this condition. The purpose of this study is to present a well-documented clinical case of pre-eruptive intracoronal resorption in an impacted third upper left molar of a 63 year old female patient. This was an unexpected finding, which occurred after cone-beam computed tomography was used to investigate the first upper left molar, which had an acute periradicular abscess. A multidisciplinary team followed up the case to describe clinical, radiographic and histological findings. The available treatment options were discussed, and the tooth extraction was the option chosen. Previous case studies describing such resorption in third upper molars have not been reported. This case shows that all permanent teeth in a pre-eruptive stage must be analysed radiographically to detect early pre-eruptive intracoronal resorption. © 2016 Australian Dental Association.

  14. Cone beam tomographic imaging anatomy of the maxillofacial region.

    PubMed

    Angelopoulos, Christos

    2008-10-01

    Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.

  15. Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy

    NASA Astrophysics Data System (ADS)

    Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara

    2016-04-01

    In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and maximum number of isotropic layers). The non-uniqueness of the problem can be addressed by adding high frequency data such as receiver functions, able to map first order discontinuities. We show with synthetic tests that this method enables us to distinguish between intrinsic and apparent anisotropy in tomographic models, as layers with intrinsic anisotropy are only present when required by the data. A real data example is presented based on the latest global model produced at Berkeley.

  16. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    NASA Astrophysics Data System (ADS)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  17. syris: a flexible and efficient framework for X-ray imaging experiments simulation.

    PubMed

    Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo

    2017-11-01

    An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.

  18. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  19. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law

    PubMed Central

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027

  20. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A fast multi-resolution approach to tomographic PIV

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Astarita, Tommaso

    2012-03-01

    Tomographic particle image velocimetry (Tomo-PIV) is a recently developed three-component, three-dimensional anemometric non-intrusive measurement technique, based on an optical tomographic reconstruction applied to simultaneously recorded images of the distribution of light intensity scattered by seeding particles immersed into the flow. Nowadays, the reconstruction process is carried out mainly by iterative algebraic reconstruction techniques, well suited to handle the problem of limited number of views, but computationally intensive and memory demanding. The adoption of the multiplicative algebraic reconstruction technique (MART) has become more and more accepted. In the present work, a novel multi-resolution approach is proposed, relying on the adoption of a coarser grid in the first step of the reconstruction to obtain a fast estimation of a reliable and accurate first guess. A performance assessment, carried out on three-dimensional computer-generated distributions of particles, shows a substantial acceleration of the reconstruction process for all the tested seeding densities with respect to the standard method based on 5 MART iterations; a relevant reduction in the memory storage is also achieved. Furthermore, a slight accuracy improvement is noticed. A modified version, improved by a multiplicative line of sight estimation of the first guess on the compressed configuration, is also tested, exhibiting a further remarkable decrease in both memory storage and computational effort, mostly at the lowest tested seeding densities, while retaining the same performances in terms of accuracy.

  2. Aging of the midface bony elements: a three-dimensional computed tomographic study.

    PubMed

    Shaw, Robert B; Kahn, David M

    2007-02-01

    The face loses volume as the soft-tissue structures age. In this study, the authors demonstrate how specific bony aspects of the face change with age in both men and women and what impact this may have on the techniques used in facial cosmetic surgery. Facial bone computed tomographic scans were obtained from 60 Caucasian patients (30 women and 30 men). The authors' study population consisted of 10 male and 10 female subjects in each of three age categories. Each computed tomographic scan underwent three-dimensional reconstruction with volume rendering, and the following measurements were obtained: glabellar angle (maximal prominence of glabella to nasofrontal suture), pyriform angle (nasal bone to lateral inferior pyriform aperture), and maxillary angle (superior to inferior maxilla at the articulation of the inferior maxillary wing and alveolar arch). The pyriform aperture area was also obtained. The t test was used to identify any trends between age groups. The glabellar and maxillary angle in both the male and female subjects showed a significant decrease with increasing age. The pyriform angle did not show a significant change between age groups for either sex. There was a significant increase in pyriform aperture area from the young to the middle age group for both sexes. These results suggest that the bony elements of the midface change dramatically with age and, coupled with soft-tissue changes, lead to the appearance of the aged face.

  3. Rapid prototyping in aortic surgery.

    PubMed

    Bangeas, Petros; Voulalas, Grigorios; Ktenidis, Kiriakos

    2016-04-01

    3D printing provides the sequential addition of material layers and, thus, the opportunity to print parts and components made of different materials with variable mechanical and physical properties. It helps us create 3D anatomical models for the better planning of surgical procedures when needed, since it can reveal any complex anatomical feature. Images of abdominal aortic aneurysms received by computed tomographic angiography were converted into 3D images using a Google SketchUp free software and saved in stereolithography format. Using a 3D printer (Makerbot), a model made of polylactic acid material (thermoplastic filament) was printed. A 3D model of an abdominal aorta aneurysm was created in 138 min, while the model was a precise copy of the aorta visualized in the computed tomographic images. The total cost (including the initial cost of the printer) reached 1303.00 euros. 3D imaging and modelling using different materials can be very useful in cases when anatomical difficulties are recognized through the computed tomographic images and a tactile approach is demanded preoperatively. In this way, major complications during abdominal aorta aneurysm management can be predicted and prevented. Furthermore, the model can be used as a mould; the development of new, more biocompatible, less antigenic and individualized can become a challenge in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Can macrocirculation changes predict nonhealing diabetic foot ulcers?

    PubMed

    Lee, Ye-Na; Kim, Hyon-Surk; Kang, Jeong-A; Han, Seung-Kyu

    2014-01-01

    Transcutaneous partial oxygen tension (TcpO2) is considered the gold standard for assessment of tissue oxygenation, which is an essential factor for wound healing. The purpose of this study was to evaluate the association between macrocirculation and TcpO2 in persons with diabetes mellitus. Ninety-eight patients with diabetic foot ulcers participated in the study (61 men and 37 women). The subjects had a mean age of 66.6 years (range, 30-83 years) and were treated at the Diabetic Wound Center of Korea University Guro Hospital, Seoul, Republic of Korea. Macrocirculation was evaluated using 2 techniques: computed tomographic angiography and Doppler ultrasound. Macrocirculation scores were based on the patency of the two tibial arteries in 98 patients. Computed tomographic angiography and Doppler ultrasound scores (0-4 points) were given according to intraluminal filling defects and arterial pulse waveform of each vessel, respectively. Tissue oxygenation was measured by TcpO2. Macrocirculation scores were statistically analyzed as a function of the TcpO2. Statistical analysis revealed no significant linear trend between the macrocirculation status and TcpO2. Biavariate analysis using the Fisher exact test, Mantel-Haenszel tests, and McNemar-Bowker tests also found no significant relationship between macrocirculation and TcpO2. Computed tomographic angiography and Doppler ultrasound are not sufficiently reliable substitutes for TcpO2 measurements in regard to determining the optimal treatment for diabetic patients.

  5. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  6. Computed tomography manifestation of a triple-barreled aortic dissection: the Mercedes-Benz mark sign.

    PubMed

    Shin, M S; Zorn, G L; Ho, K J

    1988-04-01

    Computed tomographic (CT) findings of a rare case of triple-barreled aortic dissection was described. CT demonstrated the extent of dissection, a communication between two channels, and three lumens separated by the intimal flap and a thin undetached tunica media, resembling a Mercedes-Benz mark.

  7. The early development of medial coronoid disease in growing Labrador retrievers: radiographic, computed tomographic, necropsy and micro-computed tomographic findings.

    PubMed

    Lau, S F; Wolschrijn, C F; Hazewinkel, H A W; Siebelt, M; Voorhout, G

    2013-09-01

    Medial coronoid disease (MCD) encompasses lesions of the entire medial coronoid process (MCP), both of the articular cartilage and the subchondral bone. To detect the earliest signs of MCD, radiography and computed tomography were used to monitor the development of MCD in 14 Labrador retrievers, from 6 to 7 weeks of age until euthanasia. The definitive diagnosis of MCD was based on necropsy and micro-computed tomography findings. The frequency of MCD in the dogs studied was 50%. Radiographic findings did not provide evidence of MCD, ulnar subtrochlear sclerosis or blunting of the cranial edge of the MCP. Computed tomography was more sensitive (30.8%) than radiography (0%) in detecting early MCD, with the earliest signs detectable at 14 weeks of age. A combination of the necropsy and micro-computed tomography findings of the MCP showed that MCD was manifested as a lesion of only the subchondral bone in dogs <18 weeks of age. In all dogs (affected and unaffected), there was close contact between the base of the MCP and the proximal radial head in the congruent joints. Computed tomography and micro-computed tomography findings indicated that the lesions of MCD probably originated at the base of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Murder, insanity, and medical expert witnesses.

    PubMed

    Ciccone, J R

    1992-06-01

    Recent advances in the ability to study brain anatomy and function and attempts to link these findings with human behavior have captured the attention of the legal system. This had led to the increasing use of the "neurological defense" to support a plea of not guilty by reason of insanity. This article explores the history of the insanity defense and explores the role of the medical expert witnesses in integrating clinical and laboratory findings, eg, computed tomographic scans, magnetic resonance scans, and single-photon emission computed tomographic scans. Three cases involving murder and brain dysfunction are discussed: the first case involves a subarachnoid hemorrhage resulting in visual perceptual and memory impairment; the second case, a diagnosis of Alzheimer's disease; and the third case, the controverted diagnosis of complex partial seizures in a serial killer.

  9. Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).

    PubMed

    Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison

    2014-03-01

    The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.

  10. How does electromagnetic navigation stack up against infrared navigation in minimally invasive total knee arthroplasties?

    PubMed

    Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L

    2008-06-01

    Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.

  11. Successful Removal of Malpositioned Chest Drain Within the Liver by Embolization of the Transhepatic Track

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Paul; Waheed, Umeer; Bell, Suzanne, E-mail: drsuzy29@hotmail.co

    2009-07-15

    The insertion of a chest drain catheter for the management of a pneumothorax in an 82-year-old woman resulted in the unusual complication of liver penetration. The position of the drain was assessed by contrast-enhanced computed tomographic scan. Because the patient was hemodynamically stable and no damage to major vessels was seen on computed tomographic scan, the patient was treated in a nonoperative manner. A procedure was performed under controlled conditions using techniques used during transhepatic liver biopsies but with the addition of a balloon catheter. Embolization of the liver track was performed during chest drain removal. The drain was successfullymore » removed without the complication of bleeding in a patient unsuitable for a general anesthetic.« less

  12. IMAGING DIAGNOSIS: COMPUTED TOMOGRAPHIC FINDINGS IN A CASE OF ADENOSQUAMOUS CARCINOMA OF THE HEAD AND NECK IN A CAT.

    PubMed

    Chow, Kathleen Ella; Krockenberger, Mark; Collins, David

    2016-01-01

    A 15-year-old female spayed domestic long-haired cat was referred for trismus, hypersalivation, and bilateral ocular discharge. On examination, the cat showed pain on palpation of the left zygomatic arch, palpable crepitus of the frontal region, and limited retropulsion of both globes. A contrast-enhanced sinonasal computed tomographic study was performed, showing facial distortion and extensive osteolysis of the skull, extending beyond the confines of the sinonasal and paranasal cavities. Additionally, soft tissue and fluid accumulation were observed in the nasal cavities and paranasal sinuses. Postmortem biopsy samples acquired from the calvarium yielded a histologic diagnosis of sinonasal adenosquamous carcinoma, a rare and particularly aggressive neoplasm previously only reported in the esophagus of one cat. © 2015 American College of Veterinary Radiology.

  13. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  14. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  15. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  16. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  17. Toward regional-scale adjoint tomography in the deep earth

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.

    2013-12-01

    Thanks to the development of efficient numerical computation methods, such as the Spectral Element Method (SEM) and to the increasing power of computer clusters, it is now possible to obtain regional-scale images of the Earth's interior using adjoint-tomography (e.g. Tape, C., et al., 2009). As for now, these tomographic models are limited to the upper layers of the earth, i.e., they provide us with high-resolution images of the crust and the upper part of the mantle. Given the gigantic amount of calculation it represents, obtaing similar models at the global scale (i.e. images of the entire Earth) seems out of reach at the moment. Furthermore, it's likely that the first generation of such global adjoint tomographic models will have a resolution significantly smaller than the current regional models. In order to image regions of interests in the deep Earth, such as plumes, slabs or large low shear velocity provinces (LLSVPs), while keeping the computation tractable, we are developing new tools that will allow us to perform regional-scale adjoint-tomography at arbitrary depths. In a recent study (Masson et al., 2013), we showed that a numerical equivalent of the time reversal mirrors used in experimental acoustics permits to confine the wave propagation computations (i.e. using SEM simulations) inside the region to be imaged. With this ability to limit wave propagation modeling inside a region of interest, obtaining the adjoint sensitivity kernels needed for tomographic imaging is only two steps further. First, the local wavefield modeling needs to be coupled with field extrapolation techniques in order to obtain synthetic seismograms at the surface of the earth. These seismograms will account for the 3D structure inside the region of interest in a quasi-exact manner. We will present preliminary results where the field-extrapolation is performed using Green's function computed in a 1D Earth model thanks to the Direct Solution Method (DSM). Once synthetic seismograms can be obtained, it is possible to evaluate the misfit between observed and computed seismograms. The second step will then be to extrapolate the misfit function back into the SEM region in order to compute local adjoint sensitivity kernels. When available, these kernels will allow us to perform regional-scale adjoint tomography at arbitrary locations inside the earth. Masson Y., Cupillard P., Capdeville Y., & Romanowicz B., 2013. On the numerical implementation of time-reversal mirrors for tomographic imaging, Journal of Geophysical Research (under review). Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.

  18. Tomographic assessment of the spine in children with spondylocostal dysotosis syndrome.

    PubMed

    Kaissi, Ali Al; Klaushofer, Klaus; Grill, Franz

    2010-01-01

    The aim of this study was to perform a detailed tomographic analysis of the skull base, craniocervical junction, and the entire spine in seven patients with spondylocostal dysostosis syndrome. Detailed scanning images have been organized in accordance with the most prominent clinical pathology. The reasons behind plagiocephaly, torticollis, short immobile neck, scoliosis and rigid back have been detected. Radiographic documentation was insufficient modality. Detailed computed tomography scans provided excellent delineation of the osseous abnormality pattern in our patients. This article throws light on the most serious osseous manifestations of spondylocostal dysostosissyndrome.

  19. Cryo-tomography Tilt-series Alignment with Consideration of the Beam-induced Sample Motion

    PubMed Central

    Fernandez, Jose-Jesus; Li, Sam; Bharat, Tanmay A. M.; Agard, David A.

    2018-01-01

    Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET. PMID:29410148

  20. The NOVA project: maximizing beam time efficiency through synergistic analyses of SRμCT data

    NASA Astrophysics Data System (ADS)

    Schmelzle, Sebastian; Heethoff, Michael; Heuveline, Vincent; Lösel, Philipp; Becker, Jürgen; Beckmann, Felix; Schluenzen, Frank; Hammel, Jörg U.; Kopmann, Andreas; Mexner, Wolfgang; Vogelgesang, Matthias; Jerome, Nicholas Tan; Betz, Oliver; Beutel, Rolf; Wipfler, Benjamin; Blanke, Alexander; Harzsch, Steffen; Hörnig, Marie; Baumbach, Tilo; van de Kamp, Thomas

    2017-09-01

    Beamtime and resulting SRμCT data are a valuable resource for researchers of a broad scientific community in life sciences. Most research groups, however, are only interested in a specific organ and use only a fraction of their data. The rest of the data usually remains untapped. By using a new collaborative approach, the NOVA project (Network for Online Visualization and synergistic Analysis of tomographic data) aims to demonstrate, that more efficient use of the valuable beam time is possible by coordinated research on different organ systems. The biological partners in the project cover different scientific aspects and thus serve as model community for the collaborative approach. As proof of principle, different aspects of insect head morphology will be investigated (e.g., biomechanics of the mouthparts, and neurobiology with the topology of sensory areas). This effort is accomplished by development of advanced analysis tools for the ever-increasing quantity of tomographic datasets. In the preceding project ASTOR, we already successfully demonstrated considerable progress in semi-automatic segmentation and classification of internal structures. Further improvement of these methods is essential for an efficient use of beam time and will be refined in the current NOVAproject. Significant enhancements are also planned at PETRA III beamline p05 to provide all possible contrast modalities in x-ray imaging optimized to biological samples, on the reconstruction algorithms, and the tools for subsequent analyses and management of the data. All improvements made on key technologies within this project will in the long-term be equally beneficial for all users of tomography instrumentations.

  1. Periapical and endodontic status scale based on periapical bone lesions and endodontic treatment quality evaluation using cone-beam computed tomography.

    PubMed

    Venskutonis, Tadas; Plotino, Gianluca; Tocci, Luigi; Gambarini, Gianluca; Maminskas, Julius; Juodzbalys, Gintaras

    2015-02-01

    The purpose of this study was to present a new periapical and endodontic status scale (PESS) that is based on the complex periapical index (COPI), which was designed for the identification and classification of periapical bone lesions in cases of apical periodontitis, and the endodontically treated tooth index, which was designed for endodontic treatment quality evaluation by means of cone-beam computed tomographic (CBCT) analysis. Periapical and endodontic status parameters were selected from the already known indexes and scientific literature for radiologic evaluation. Radiographic images (CBCT imaging, digital orthopantomography [DOR], and digital periapical radiography) from 55 patients were analyzed. All parameters were evaluated on CBCT, DOR, and digital periapical radiographic images by 2 external observers. The statistical analysis was performed with software SPSS version 19.0 (SPSS Inc, Chicago, IL). Chi-square tests were used to compare frequencies of qualitative variables. The level of significance was set at P ≤ .05. Overall intraobserver and interobserver agreements were very good and good, respectively. CBCT analysis found more lesions and lesions of bigger dimension (P < .001). CBCT imaging was also superior in locating lesions in the apical part on the side compared with DOR and in the diagnosis of cortical bone destruction compared with both methods (P < .001). Through CBCT analysis, more root canals and more canals associated with lesions were found. The most informative and reproducible periapical and endodontic status parameters were selected, and a new PESS was proposed. The classification proposed in the present study seems to be reproducible and objective and adds helpful information with respect to the existing indexes. Future studies need to be conducted to validate PESS. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Detection of Fractured Endodontic Instruments in Root Canals: Comparison between Different Digital Radiography Systems and Cone-beam Computed Tomography.

    PubMed

    Ramos Brito, Ana Caroline; Verner, Francielle Silvestre; Junqueira, Rafael Binato; Yamasaki, Mayra Cristina; Queiroz, Polyane Mazucato; Freitas, Deborah Queiroz; Oliveira-Santos, Christiano

    2017-04-01

    This study compared the detection of fractured instruments in root canals with and without filling by periapical radiographs from 3 digital systems and cone-beam computed tomographic (CBCT) images with different resolutions. Thirty-one human molars (80 canals) were used. Root canals were divided into the following groups: the control group, without fillings; the fracture group, without fillings and with fractured files; the fill group, filled; and the fill/fracture group, filled and with fractured files. Digital radiographs in ortho-, mesio-, and distoradial directions were performed in 2 semidirect systems (VistaScan [Dürr Dental, Beitigheim-Bissinger, Germany] and Express [Instrumentarium Imaging, Tuusula, Finland]) and a direct system (SnapShot [Instrumentarium Imaging]). CBCT images were acquired with 0.085-mm and 0.2-mm voxel sizes. All images were assessed and reassessed by 4 observers for the presence or absence of fractured files on a 5-point scale. The sensitivity, specificity, and accuracy were calculated. In the absence of filling, accuracy values were high, and there were no statistical differences among the radiographic techniques, different digital systems, or the different CBCT voxels sizes. In the presence of filling, the accuracy of periapical radiographs was significantly higher than CBCT images. In general, SnapShot showed higher accuracy than VistaScan and Express. Periapical radiographs in 1 incidence were accurate for the detection of fractured endodontic instruments inside the root canal in the absence or presence of filling, suggesting that this technique should be the first choice as well as the direct digital radiographic system. In the presence of filling, the decision to perform a CBCT examination must take into consideration its low accuracy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Influence of Tube Current Settings on Diagnostic Detection of Root Fractures Using Cone-beam Computed Tomography: An In Vitro Study.

    PubMed

    Tangari-Meira, Ricardo; Vancetto, José Ricardo; Dovigo, Lívia Nordi; Tosoni, Guilherme Monteiro

    2017-10-01

    This study assessed the influence of tube current settings (milliamperes [mA]) on the diagnostic detection of root fractures (RFs) using cone-beam computed tomographic (CBCT) imaging. Sixty-eight human anterior and posterior teeth were submitted to root canal preparation, and 34 root canals were filled. The teeth were divided into 2 groups: the control group and the fractured group. RFs were induced using a universal mechanical testing machine; afterward, the teeth were placed in a phantom. Images were acquired using a Scanora 3DX unit (Soredex, Tuusula, Finland) with 5 different mA settings: 4.0, 5.0, 6.3, 8.0, and 10.0. Two examiners (E1 and E2) classified the images according to a 5-point confidence scale. Intra- and interexaminer reproducibility was assessed using the kappa statistic; diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC). Intra- and interexaminer reproducibility showed substantial (κE1 = 0.791 and κE2 = 0.695) and moderate (κE1 × E2 = 0.545) agreement, respectively. AUROC was significantly higher (P ≤ .0389) at 8.0 and 10.0 mA and showed no statistical difference between the 2 tube current settings. Tube current has a significant influence on the diagnostic detection of RFs in CBCT images. Despite the acceptable diagnosis of RFs using 4.0 and 5.0 mA, those settings had lower discrimination abilities when compared with settings of 8.0 and 10.0 mA. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation.

    PubMed

    Park, Eun-Ah; Lee, Whal; Chung, Se-Young; Yin, Yong Hu; Chung, Jin Wook; Park, Jae Hyung

    2010-01-01

    To determine the optimal scan timing and adequate intravenous route for patients having undergone the Fontan operation. A total of 88 computed tomographic images in 49 consecutive patients who underwent the Fontan operation were retrospectively evaluated and divided into 7 groups: group 1, bolus-tracking method with either intravenous route (n = 20); group 2, 1-minute-delay scan with single antecubital route (n = 36); group 3, 1-minute-delay scan with both antecubital routes (n = 2); group 4, 1-minute-delay scan with foot vein route (n = 3); group 5, 1-minute-delay scan with simultaneous infusion via both antecubital and foot vein routes (n = 2); group 6, 3-minute-delay scan with single antecubital route (n = 22); and group 7, 3-minute-delay scan with foot vein route (n = 3). The presence of beam-hardening artifact, uniform enhancement, and optimal enhancement was evaluated at the right pulmonary artery (RPA), left pulmonary artery (LPA), and Fontan tract. Optimal enhancement was determined when evaluation of thrombus was possible. Standard deviation was measured at the RPA, LPA, and Fontan tract. Beam-hardening artifacts of the RPA, LPA, and Fontan tract were frequently present in groups 1, 4, and 5. The success rate of uniform and optimal enhancement was highest (100%) in groups 6 and 7, followed by group 2 (75%). An SD of less than 30 Hounsfield unit for the pulmonary artery and Fontan tract was found in groups 3, 6, and 7. The optimal enhancement of the pulmonary arteries and Fontan tract can be achieved by a 3-minute-delay scan irrespective of the intravenous route location.

  5. Evaluation of proximity of mandibular molars and second premolar to inferior alveolar nerve canal among central Indians: A cone-beam computed tomographic retrospective study.

    PubMed

    Hiremath, Hemalatha; Agarwal, Rolly; Hiremath, Vishwanath; Phulambrikar, Tushar

    2016-01-01

    A study was done to assess the average distances of root apices of mandibular first molar, second molar, and second premolar to inferior alveolar nerve canal (IANC), among males and females in central India. High-resolution full-volume cone-beam computed tomography (CBCT) scans were obtained from the radiology database at the Sri Aurobindo College of Dentistry, Indore. After scrutinizing the database, CBCT of 40 males and 40 females that conformed to the inclusion and exclusion criteria were selected for the study. All the data were analyzed using SPSS, Version 16. Descriptive statistics of the variables and measurements are presented using Students t-test (paired and unpaired), and correlation between age was tabled by Karl Pearson's correlation coefficient method. For the second premolar, the average distance to the IANC was 0.88-13.03 mm for males and 0.00-5.49 mm for females. The average distance of IANC to the mesial root apex of first molar was 1.46-13.23 mm for males and 0.93-8.03 mm for females. For the second molar, the average distance was 1.31-14.71 mm for males and 0.00-6.91 mm for females (values on left side were shorter as compared to right side). In the overall population, only second molar exhibited significant difference in the distance from root apex to IANC when compared bilaterally. In addition to gender differences, age-related differences were found to be significant for the first molar on left side and second molar on the right side of the population (P< 0.05).

  6. Cone-Beam Computed Tomography Analysis of Mucosal Thickening in Unilateral Cleft Lip and Palate Maxillary Sinuses.

    PubMed

    Kula, Katherine; Hale, Lindsay N; Ghoneima, Ahmed; Tholpady, Sunil; Starbuck, John M

    2016-11-01

      To compare maxillary mucosal thickening and sinus volumes of unilateral cleft lip and palate subjects (UCLP) with noncleft (nonCLP) controls.   Randomized, retrospective study of cone-beam computed tomographs (CBCT).   University.   Fifteen UCLP subjects and 15 sex- and age-matched non-CLP controls, aged 8 to 14 years.   Following institutional review board approval and reliability tests, Dolphin three-dimensional imaging software was used to segment and slice maxillary sinuses on randomly selected CBCTs. The surface area (SA) of bony sinus and airspace on all sinus slices was determined using Dolphin and multiplied by slice thickness (0.4 mm) to calculate volume. Mucosal thickening was the difference between bony sinus and airspace volumes. The number of slices with bony sinus and airspace outlines was totaled. Right and left sinus values for each group were pooled (t tests, P > .05; n = 30 each group). All measures were compared (principal components analysis, multivariate analysis of variance, analysis of variance) by group and age (P ≤ .016 was considered significant).   Principal components analysis axis 1 and 2 explained 89.6% of sample variance. Principal components analysis showed complete separation based on the sample on axis 1 only. Age groups showed some separation on axis 2. Unilateral cleft lip and palate subjects had significantly smaller bony sinus and airspace volumes, fewer bony and airspace slices, and greater mucosal thickening and percentage mucosal thickening when compared with controls. Older subjects had significantly greater bony sinus and airspace volumes than younger subjects.   Children with UCLP have significantly more maxillary sinus mucosal thickening and smaller sinuses than controls.

  7. Experimental Actinobacillus pleuropneumoniae challenge in swine: Comparison of computed tomographic and radiographic findings during disease

    PubMed Central

    2012-01-01

    Background In pigs, diseases of the respiratory tract like pleuropneumonia due to Actinobacillus pleuropneumoniae (App) infection have led to high economic losses for decades. Further research on disease pathogenesis, pathogen-host-interactions and new prophylactic and therapeutic approaches are needed. In most studies, a large number of experimental animals are required to assess lung alterations at different stages of the disease. In order to reduce the required number of animals but nevertheless gather information on the nature and extent of lung alterations in living pigs, a computed tomographic scoring system for quantifying gross pathological findings was developed. In this study, five healthy pigs served as control animals while 24 pigs were infected with App, the causative agent of pleuropneumonia in pigs, in an established model for respiratory tract disease. Results Computed tomographic (CT) findings during the course of App challenge were verified by radiological imaging, clinical, serological, gross pathology and histological examinations. Findings from clinical examinations and both CT and radiological imaging, were recorded on day 7 and day 21 after challenge. Clinical signs after experimental App challenge were indicative of acute to chronic disease. Lung CT findings of infected pigs comprised ground-glass opacities and consolidation. On day 7 and 21 the clinical scores significantly correlated with the scores of both imaging techniques. At day 21, significant correlations were found between clinical scores, CT scores and lung lesion scores. In 19 out of 22 challenged pigs the determined disease grades (not affected, slightly affected, moderately affected, severely affected) from CT and gross pathological examination were in accordance. Disease classification by radiography and gross pathology agreed in 11 out of 24 pigs. Conclusions High-resolution, high-contrast CT examination with no overlapping of organs is superior to radiography in the assessment of pneumonic lung lesions after App challenge. The new CT scoring system allows for quantification of gross pathological lung alterations in living pigs. However, computed tomographic findings are not informative of the etiology of respiratory disease. PMID:22546414

  8. [Multispiral computed tomographic semiotics of laryngeal cancer].

    PubMed

    Vasil'ev, P V; Iudin, A L; Sdvizhkov, A M; Kozhanov, L G

    2007-01-01

    Multispiral computed tomography (MSCT) with intravenous bolus contrasting is a currently available method for radiodiagnosis of laryngeal cancer. MSCT is of much higher informative value in estimating the extent of a tumorous lesion than the traditional radiodiagnostic techniques: linear tomography, lateral X-ray study, roentgenoscopy and roentgenography of the laryngopharynx and esophagus with barium meal.

  9. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  10. Natural pixel decomposition for computational tomographic reconstruction from interferometric projection: algorithms and comparison

    NASA Astrophysics Data System (ADS)

    Cha, Don J.; Cha, Soyoung S.

    1995-09-01

    A computational tomographic technique, termed the variable grid method (VGM), has been developed for improving interferometric reconstruction of flow fields under ill-posed data conditions of restricted scanning and incomplete projection. The technique is based on natural pixel decomposition, that is, division of a field into variable grid elements. The performances of two algorithms, that is, original and revised versions, are compared to investigate the effects of the data redundancy criteria and seed element forming schemes. Tests of the VGMs are conducted through computer simulation of experiments and reconstruction of fields with a limited view angel of 90 degree(s). The temperature fields at two horizontal sections of a thermal plume of two interacting isothermal cubes, produced by a finite numerical code, are analyzed as test fields. The computer simulation demonstrates the superiority of the revised VGM to either the conventional fixed grid method or the original VGM. Both the maximum and average reconstruction errors are reduced appreciably. The reconstruction shows substantial improvement in the regions with dense scanning by probing rays. These regions are usually of interest in engineering applications.

  11. Apical root resorption during orthodontic treatment. A prospective study using cone beam CT.

    PubMed

    Lund, Henrik; Gröndahl, Kerstin; Hansen, Ken; Gröndahl, Hans-Göran

    2012-05-01

    To investigate the incidence and severity of root resorption during orthodontic treatment by means of cone beam computed tomography (CBCT) and to explore factors affecting orthodontically induced inflammatory root resorption (OIIRR). CBCT examinations were performed on 152 patients with Class I malocclusion. All roots from incisors to first molars were assessed on two or three occasions. At treatment end, 94% of patients had ≥1 root with shortening >1 mm, and 6.6% had ≥1 tooth where it exceeded 4 mm. Among teeth, 56.3% of upper lateral incisors had root shortening >1 mm. Of upper incisors and the palatal root of upper premolars, 2.6% showed root shortenings >4 mm. Slanted surface resorptions of buccal and palatal surfaces were found in 15.1% of upper central and 11.5% of lateral incisors. Monthly root shortening was greater after 6-month control than before. Upper jaw teeth and anterior teeth were significantly associated with the degree of root shortening. Gender, root length at baseline, and treatment duration were not. Practically all patients and up to 91% of all teeth showed some degree of root shortening, but few patients and teeth had root shortenings >4 mm. Slanted root resorption was found on root surfaces that could be evaluated only by a tomographic technique. A CBCT technique can provide more valid and accurate information about root resorption.

  12. Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note.

    PubMed

    Shin, John H; Hoh, Daniel J; Kalfas, Iain H

    2012-03-01

    Iliac screw fixation is a powerful tool used by spine surgeons to achieve fusion across the lumbosacral junction for a number of indications, including deformity, tumor, and pseudarthrosis. Complications associated with screw placement are related to blind trajectory selection and excessive soft tissue dissection. To describe the technique of iliac screw fixation using computed tomographic (CT)-based image guidance. Intraoperative registration and verification of anatomic landmarks are performed with the use of a preoperatively acquired CT of the lumbosacral spine. With the navigation probe, the ideal starting point for screw placement is selected while visualizing the intended trajectory and target on a computer screen. Once the starting point is selected and marked with a burr, a drill guide is docked within this point and the navigation probe re-inserted, confirming the trajectory. The probe is then removed and the high-speed drill reinserted within the drill guide. Drilling is performed to a depth measured on the computer screen and a screw is placed. Confirmation of accurate placement of iliac screws can be performed with standard radiographs. CT-guided navigation allows for 3-dimensional visualization of the pelvis and minimizes complications associated with soft-tissue dissection and breach of the ilium during screw placement.

  13. Gross, computed tomographic and histological findings in mandibular cheek teeth extracted from horses with clinical signs of pulpitis due to apical infection.

    PubMed

    Casey, M B; Pearson, G R; Perkins, J D; Tremaine, W H

    2015-09-01

    The most prevalent type of equine dental pulpitis due to apical infection is not associated with coronal fractures or periodontal disease. The pathogenesis of this type of pulpitis is not fully understood. Computed tomography (CT) is increasingly used to investigate equine dental disorders. However, gross, tomographic and histopathological changes in equine dental pulpitis have not been compared previously. To compare gross, CT and histological appearances of sectioned mandibular cheek teeth extracted from horses with clinical signs of pulpitis without coronal fractures or periodontal disease. To contribute to understanding the pathogenesis of equine dental pulpitis. Descriptive study using diseased and healthy teeth. Mandibular cheek teeth extracted from horses with clinical signs of pulpitis (cases), and from cadavers with no history of dental disease (controls), were compared using CT in the transverse plane at 1 mm intervals. Teeth were then sectioned transversely, photographed and processed for histopathological examination. Tomographs were compared with corresponding gross and histological sections. Cement, dentine and bone had similar ranges of attenuation (550-2000 Hounsfield Units, HU) in tomographs but could be differentiated from pulp (-400 to 500 HU) and enamel (> 2500 HU). Twelve discrete dental lesions were identified grossly, 10 of which were characterised histologically. Reactive and reparative dentinogenesis and extensive pulpar mineralisation, previously undescribed, were identified. Pulpar oedema, neutrophilic inflammation, cement and enamel defects, and reactive cemental deposition were also observed. The CT and pathological findings corresponded well where there was mineralised tissue deposited, defects in mineralised tissue, or food material in the pulpar area. Pulpar and dentinal necrosis and cement destruction, evident grossly and histologically, did not correspond to CT changes. Computed tomography is useful for identifying deposition and defects of mineralised material but less useful for identifying inflammation and tissue destruction. The equine dentine-pulp complex responds to insult with reactive and reparative changes. © 2014 EVJ Ltd.

  14. Optimized x-ray source scanning trajectories for iterative reconstruction in high cone-angle tomography

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.

    2016-10-01

    With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.

  15. Vertical augmentation of the posterior atrophic mandible by interpositional grafts in a split-mouth design: a human tomography evaluation pilot study.

    PubMed

    Domingues, Eduardo Pinheiro; Ribeiro, Rafael Fernandes; Horta, Martinho Campolina Rebello; Manzi, Flávio Ricardo; Côsso, Maurício Greco; Zenóbio, Elton Gonçalves

    2017-10-01

    Using computed tomography, to compare vertical and volumetric bone augmentation after interposition grafting with bovine bone mineral matrix (GEISTLICH BIO-OSS ® ) or hydroxyapatite/tricalcium phosphate (STRAUMANN ® BONECERAMIC) for atrophic posterior mandible reconstruction through segmental osteotomy. Seven patients received interposition grafts in the posterior mandible for implant rehabilitation. The computed tomography cone beam images were analysed with OsiriX Imaging Software 6.5 (Pixmeo Geneva, Switzerland) in the pre-surgical period (T0), at 15 days post-surgery (T1) and at 180 days post-surgery (T2). The tomographic analysis was performed by a single trained and calibrated radiologist. Descriptive statistics and nonparametric methods were used to analyse the data. There was a significant difference in vertical and volume augmentation with both biomaterials using the technique (P < 0.05). There were no significant differences (P > 0.05) in volume change of the graft, bone volume augmentation, or augmentation of the maximum linear vertical distance between the two analysed biomaterials. The GEISTLICH BIO-OSS ® and STRAUMANN ® BONECERAMIC interposition grafts exhibited similar and sufficient dimensional stability and volume gain for short implants in the atrophic posterior mandible. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Preliminary study on X-ray fluorescence computed tomography imaging of gold nanoparticles: Acceleration of data acquisition by multiple pinholes scheme

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya

    2018-04-01

    Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.

  17. Computed tomographic features of canine nonparenchymal hemangiosarcoma.

    PubMed

    Fukuda, Shoko; Kobayashi, Tetsuya; Robertson, Ian D; Oshima, Fukiko; Fukazawa, Eri; Nakano, Yuko; Ono, Shin; Thrall, Donald E

    2014-01-01

    The purpose of this retrospective study was to describe pre- and postcontrast computed tomographic (CT) characteristics of confirmed nonparenchymal hemangiosarcoma in a group of dogs. Medical records were searched during the period of July 2003 and October 2011 and dogs with histologically confirmed nonparenchymal hemangiosarcoma and pre- and postcontrast CT images were recruited. Two observers recorded a consensus opinion for the following CT characteristics for each dog: largest transverse tumor diameter, number of masses, general tumor shape, character of the tumor margin, precontrast appearance, presence of dystrophic calcification, presence of postcontrast enhancement, pattern of postcontrast enhancement, presence of regional lymphadenopathy, and presence of associated cavitary fluid. A total of 17 dogs met inclusion criteria. Tumors were located in the nasal cavity, muscle, mandible, mesentery, subcutaneous tissue, and retroperitoneal space. Computed tomographic features of nonparenchymal hemangiosarcoma were similar to those of other soft tissue sarcomas, with most tumors being heterogeneous in precontrast images, invasive into adjacent tissue, and heterogeneously contrast enhancing. One unexpected finding was the presence of intense foci of contrast enhancement in 13 of the 17 tumors (76%). This appearance, which is not typical of other soft tissue sarcomas, was consistent with contrast medium residing in vascular channels. Findings indicated that there were no unique distinguishing CT characteristics for nonparenchymal hemangiosarcoma in dogs; however, the presence of highly attenuating foci of contrast enhancement may warrant further investigation in prospective diagnostic sensitivity and treatment outcome studies. © 2014 American College of Veterinary Radiology.

  18. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro-Computed Tomographic Study.

    PubMed

    de Almeida, Bernardo Corrêa; Ormiga, Fabíola; de Araújo, Marcos César Pimenta; Lopes, Ricardo Tadeu; Lima, Inayá Corrêa Barbosa; dos Santos, Bernardo Camargo; Gusman, Heloisa

    2015-12-01

    The aim of this study was to make a 3-dimensional comparison of the canal transportation and changes in apical geometry using micro-computed tomographic imaging after canal preparation with K3 (SybronEndo, Orange, CA) and K3XF (SybronEndo) file systems. Twenty-eight mandibular molars were randomly divided into 2 groups according to the rotary system used in instrumentation: K3 or K3XF. The specimens were scanned by micro-computed tomographic imaging before and after instrumentation. Images before and after instrumentation from each group were compared with regard to canal volume, surface area, and structure model index (SMI) (paired t test, P < .05). After instrumentation, the canals from each group were compared regarding the changes in volume, surface area, SMI, and canal transportation in the last 4 apical mm (t test, P < .05). Instrumentation with the 2 rotary systems significantly changed the canal volume, surface area, and SMI (P < .05). There were no significant differences between instrument types concerning these parameters (P > .05). There were no significant differences between the 2 groups with regard to canal transportation in the last 4 apical mm (P > .05). Both rotary systems showed adequate canal preparations with reduced values of canal transportation. Heat treatment did not influence changes in root canal geometry in the apical region. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Computed tomographic features of idiopathic fibrosing interstitial pneumonia: comparison with pulmonary fibrosis related to collagen vascular disease.

    PubMed

    Hwang, Jeong-Hwa; Misumi, Shigeki; Sahin, Hakan; Brown, Kevin K; Newell, John D; Lynch, David A

    2009-01-01

    To compare the computed tomographic (CT) features of idiopathic fibrosing interstitial pneumonia with those of pulmonary fibrosis related to collagen vascular disease (CVD). We reviewed the CT scans of 177 patients with diffuse interstitial pulmonary fibrosis, of which 97 had idiopathic fibrosing interstitial pneumonia and 80 had CVD. The CT images were systematically scored for the presence and extent of pulmonary and extrapulmonary abnormalities. Computed tomographic diagnosis of usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP) was assigned. A CT pattern of UIP was identified in 59 (60.8%) of patients with idiopathic fibrosing interstitial pneumonia compared with 15 (18.7%) of those patients with CVD; conversely, the CT diagnosis of NSIP was made in 51 (64%) of patients with CVD compared with 36 (37%) of patients with idiopathic disease (P < 0.01). In 113 patients who had lung biopsy, the CT diagnoses of UIP and NSIP were concordant with the histologic diagnoses in 36 of 50 patients and 34 of 41 patients, respectively. Pleural effusions, esophageal dilation, and pericardial abnormalities were more frequent in patients with CVD than in patients with idiopathic fibrosing interstitial pneumonia. Compared with patients with CVD, those patients with an idiopathic fibrosing interstitial pneumonia showed a higher prevalence of a UIP pattern and lower prevalence of an NSIP pattern as determined by CT. Identification of coexisting extrapulmonary abnormalities on CT can support a diagnosis of CVD.

  20. Visual computed tomographic scoring of emphysema and its correlation with its diagnostic electrocardiographic sign: the frontal P vector.

    PubMed

    Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David H

    2012-03-01

    Verticalization of the frontal P vector in patients older than 45 years is virtually diagnostic of pulmonary emphysema (sensitivity, 96%; specificity, 87%). We investigated the correlation of P vector and the computed tomographic visual score of emphysema (VSE) in patients with established diagnosis of chronic obstructive pulmonary disease/emphysema. High-resolution computed tomographic scans of 26 patients with emphysema (age, >45 years) were reviewed to assess the type and extent of emphysema using the subjective visual scoring. Electrocardiograms were independently reviewed to determine the frontal P vector. The P vector and VSE were compared for statistical correlation. Both P vector and VSE were also directly compared with the forced expiratory volume at 1 second. The VSE and the orientation of the P vector (ÂP) had an overall significant positive correlation (r = +0.68; P = .0001) in all patients, but the correlation was very strong in patients with predominant lower-lobe emphysema (r = +0.88; P = .0004). Forced expiratory volume at 1 second and ÂP had almost a linear inverse correlation in predominant lower-lobe emphysema (r = -0.92; P < .0001). Orientation of the P vector positively correlates with visually scored emphysema. Both ÂP and VSE are strong reflectors of qualitative lung function in patients with predominant lower-lobe emphysema. A combination of more vertical ÂP and predominant lower-lobe emphysema reflects severe obstructive lung dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comparison of computed tomography with radiography as a noninvasive diagnostic technique for chronic nasal disease in dogs.

    PubMed

    Codner, E C; Lurus, A G; Miller, J B; Gavin, P R; Gallina, A; Barbee, D D

    1993-04-01

    Computed tomography was evaluated as a noninvasive technique for the diagnosis of chronic nasal disease in dogs. Computed tomographic images, radiographs, and histopathologic findings were compared in 11 dogs with chronic nasal disease. Definitive diagnosis was made following traumatic nasal flush, exploratory surgery, or necropsy. The study included 8 dogs with intranasal tumors, 2 dogs with bacterial rhinitis (Pasteurella sp), and 1 dog with mycotic rhinitis (Aspergillus sp). Computed tomography was superior to radiography in defining the extent of the disease process and in differentiating infectious rhinitis from nasal neoplasms. It defined lesions in the palate, nasopharyngeal meatus, maxillary sinus, caudal ethmoturbinates, and periorbital tissues that were difficult to demonstrate by use of conventional radiography. Tumors appeared as space-occupying lesions that obliterated the turbinates, caused deviation of the nasal septum, and eroded bone. Rhinitis appeared as a cavitating lesion that spared the paranasal sinuses, thickened and distorted the turbinates, and widened the meatus. Although morphologically distinct on computed tomographic images, infectious rhinitis and nasal neoplasms could not be differentiated by attenuation measurements or degree of contrast enhancement. Computed tomography appeared to be a reliable, noninvasive technique for the diagnosis of chronic nasal disease in dogs, and a promising alternative to diagnostic techniques currently in use.

  2. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  3. Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    NASA Astrophysics Data System (ADS)

    Jardin, A.; Mazon, D.; O'Mullane, M.; Mlynar, J.; Loffelmann, V.; Imrisek, M.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.; Bourdelle, C.; Malard, P.

    2016-07-01

    The tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start operating by the end of 2016 as a test bed for the ITER divertor components in long pulse operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus reliable tools are required to monitor the local impurity density and avoid W accumulation. The WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm developed for Tore Supra and upgraded for WEST are investigated, in particular through a set of emissivity phantoms and the standard WEST scenario including reconstruction errors, influence of noise as well as computational time.

  4. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  5. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Engel, James R.; Vaillancourt, Robert; Todd, Lori; Mottus, Kathleen

    2008-04-01

    OPTRA and University of North Carolina are developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach will be considered as a candidate referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize progress to date and overall system performance projections based on the instrument, spectroscopy, and tomographic reconstruction accuracy. We then present a preliminary optical design of the I-OP-FTIR.

  6. Diagnostic X-Multi-Axis Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C

    Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by aboutmore » 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.« less

  7. Pseudoephedrine and guaifenesin urolithiasis: widening the differential diagnosis of radiolucent calculi on abdominal radiograph.

    PubMed

    Song, G Y; Lockhart, M E; Smith, J K; Burns, J R; Kenney, P J

    2005-01-01

    Unenhanced helical computed tomography has played an increasingly important role in the management of urinary tract stones, guiding diagnosis and control of calculus disease. We report computed tomographic and radiographic appearances of a renal calculus composed of pseudoephedrine and guaifenesin in a patient who abused over-the-counter allergy medication.

  8. Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes

    DTIC Science & Technology

    2014-04-13

    Interfaces   ( BCIs ),   and   other   systems   in   the   same   computational   framework.   Figure   11   below   shows...Improving  Brain-­‐Computer   Interfaces  Using   Independent  Component   Analysis,  In:  Towards  Future   BCIs ,  2012

  9. Application of gray level mapping in computed tomographic colonography: a pilot study to compare with traditional surface rendering method for identification and differentiation of endoluminal lesions

    PubMed Central

    Chen, Lih-Shyang; Hsu, Ta-Wen; Chang, Shu-Han; Lin, Chih-Wen; Chen, Yu-Ruei; Hsieh, Chin-Chiang; Han, Shu-Chen; Chang, Ku-Yaw; Hou, Chun-Ju

    2017-01-01

    Objective: In traditional surface rendering (SR) computed tomographic endoscopy, only the shape of endoluminal lesion is depicted without gray-level information unless the volume rendering technique is used. However, volume rendering technique is relatively slow and complex in terms of computation time and parameter setting. We use computed tomographic colonography (CTC) images as examples and report a new visualization technique by three-dimensional gray level mapping (GM) to better identify and differentiate endoluminal lesions. Methods: There are 33 various endoluminal cases from 30 patients evaluated in this clinical study. These cases were segmented using gray-level threshold. The marching cube algorithm was used to detect isosurfaces in volumetric data sets. GM is applied using the surface gray level of CTC. Radiologists conducted the clinical evaluation of the SR and GM images. The Wilcoxon signed-rank test was used for data analysis. Results: Clinical evaluation confirms GM is significantly superior to SR in terms of gray-level pattern and spatial shape presentation of endoluminal cases (p < 0.01) and improves the confidence of identification and clinical classification of endoluminal lesions significantly (p < 0.01). The specificity and diagnostic accuracy of GM is significantly better than those of SR in diagnostic performance evaluation (p < 0.01). Conclusion: GM can reduce confusion in three-dimensional CTC and well correlate CTC with sectional images by the location as well as gray-level value. Hence, GM increases identification and differentiation of endoluminal lesions, and facilitates diagnostic process. Advances in knowledge: GM significantly improves the traditional SR method by providing reliable gray-level information for the surface points and is helpful in identification and differentiation of endoluminal lesions according to their shape and density. PMID:27925483

  10. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.

    PubMed

    Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.

  11. Objective Assessment of the Interfrontal Angle for Severity Grading and Operative Decision-Making in Metopic Synostosis.

    PubMed

    Anolik, Rachel A; Allori, Alexander C; Pourtaheri, Navid; Rogers, Gary F; Marcus, Jeffrey R

    2016-05-01

    The purpose of this study was to evaluate the utility of a previously validated interfrontal angle for classification of severity of metopic synostosis and as an aid to operative decision-making. An expert panel was asked to study 30 cases ranging from minor to severe metopic synostosis. Based on computed tomographic images of the skull and clinical photographs, they classified the severity of trigonocephaly (1 = normal, 2 = mild, 3 = moderate, and 4 = severe) and management (0 = nonoperative and 1 = operative). The severity scores and management reported by experts were then pooled and matched with the interfrontal angle computed from each respective computed tomographic scan. A threshold was identified at which most experts agree on operative management. Expert severity scores were higher for more acute interfrontal angles. There was a high concordance at the extremes of classifications, severe (4) and normal (1) (p < 0.0001); however, between interfrontal angles of 114.3 and 136.1 degrees, there exists a "gray zone," with severe discordance in expert rankings. An operative threshold of 118.2 degrees was identified, with the interfrontal angle able to predict the expert panel's decision to proceed with surgery 87.6 percent of the time. The interfrontal angle has been previously validated as a simple, accurate, and reproducible means for diagnosing trigonocephaly, but must be obtained from computed tomographic data. In this article, the authors demonstrate that the interfrontal angle can be used to further characterize the severity of trigonocephaly. It also correlated with expert decision-making for operative versus nonoperative management. This tool may be used as an adjunct to clinical decision-making when the decision to proceed with surgery may not be straightforward. Diagnostic, V.

  12. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars

    PubMed Central

    Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    ABSTRACT Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. Aims: To evaluate by computed tomography—the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. Materials and methods: A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. Results: All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. Conclusion: The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207. PMID:26628855

  13. Design and development of an electrically-controlled beam steering mirror for microwave tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayebi, A., E-mail: tayebiam@msu.edu; Tang, J.; Paladhi, P. Roy

    2015-03-31

    Microwave tomography has gained significant attention due to its reliability and unhazardous nature in the fields of NDE and medical industry. A new microwave tomography system is presented in this paper, which significantly reduces the design and operational complexities of traditional microwave imaging systems. The major component of the proposed system is a reconfigurable reflectarray antenna which is used for beam steering in order to generate projections from multiple angles. The design, modeling and fabrication of the building block of the antenna, a tunable unit cell, are discussed in this paper. The unit cell is capable of dynamically altering themore » phase of the reflected field which results in beam steering ability of the reflectarray antenna. A tomographically reconstructed image of a dielectric sample using this new microwave tomography system is presented in this work.« less

  14. Characterization of the new neutron imaging and materials science facility IMAT

    NASA Astrophysics Data System (ADS)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  15. Tomographic assessment of the spine in children with spondylocostal dysotosis syndrome

    PubMed Central

    Kaissi, Ali Al; Klaushofer, Klaus; Grill, Franz

    2010-01-01

    OBJECTIVE: The aim of this study was to perform a detailed tomographic analysis of the skull base, craniocervical junction, and the entire spine in seven patients with spondylocostal dysostosis syndrome. METHOD: Detailed scanning images have been organized in accordance with the most prominent clinical pathology. The reasons behind plagiocephaly, torticollis, short immobile neck, scoliosis and rigid back have been detected. Radiographic documentation was insufficient modality. RESULTS: Detailed computed tomography scans provided excellent delineation of the osseous abnormality pattern in our patients. CONCLUSION: This article throws light on the most serious osseous manifestations of spondylocostal dysostosis syndrome. PMID:21120293

  16. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  17. MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.

    PubMed

    Dong, Chengdong; Jin, Yuanwei

    2013-03-01

    This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.

  18. Computer-aided interpretation approach for optical tomographic images

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  19. Creating three-dimensional tooth models from tomographic images.

    PubMed

    Lima da Silva, Isaac Newton; Barbosa, Gustavo Frainer; Soares, Rodrigo Borowski Grecco; Beltrao, Maria Cecilia Gomes; Spohr, Ana Maria; Mota, Eduardo Golcalves; Oshima, Hugo Mitsuo Silva; Burnett, Luiz Henrique

    2008-01-01

    The use of Finite Element Analysis (FEA) is becoming very frequent in Dentistry. However, most of the three-dimensional models presented by the literature for teeth are limited in terms of geometry. Discrepancy in shape and dimensions can cause wrong results to occur. Sharp cusps and faceted contour can produce stress concentrations, which are incoherent with the reality. The aim of this study was the processing of tomographic images in order to develop an advanced three-dimensional reconstruction of the anatomy of a molar tooth and the integration of the resulting solid with commercially available CAD/CAE software. Computed tomographic images were obtained from 0.5 mm thick slices of mandibular molar and transferred to commercial cad software. Once the point cloud data have been generated, the work on these points started to get to the solid model of the tooth with Pro/Engineer software. The obtained tooth model showed very accurate shape and dimensions, as it was obtained from real tooth data with error of 0.0 to -0.8 mm. The methodology presented was efficient for creating a biomodel of a tooth from tomographic images that realistically represented its anatomy.

  20. Application of modern computer-aided technologies in the production of individual bone graft: A case report.

    PubMed

    Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana

    2015-12-01

    An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.

  1. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  2. Conservative orthodontic treatment of mandibular bilateral condyle fracture.

    PubMed

    Gašpar, Goran; Brakus, Ivan; Kovačić, Ivan

    2014-09-01

    Maxillofacial trauma is rare in children younger than the age of 5 years (range 0.6%-1.2%), and they can require different clinical treatment strategies compared with fractures in the adult population because of concerns regarding mandibular growth and development of dentition. A 5-year-old girl with a history of falling from a bicycle 7 hours earlier was referred to the department of oral and maxillofacial surgery. Multislice computed tomographic examination demonstrated a bilateral fracture of the mandibular condyle neck associated with minimal fracture of the alveolar ridge of the maxilla. The multislice computed tomographic scan also demonstrated dislocation on the right condyle neck and, on the left side, a medial inclination of approximately 45 degrees associated with greenstick fracture of the right parasymphysis region. In this particular case, orthodontic rubber elastics in combination with fixed orthodontic brackets provided good results in the treatment of bilateral condyle neck fractures associated with greenstick fracture of parasymphysis.

  3. A tomographic technique for aerodynamics at transonic speeds

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1985-01-01

    Computer aided tomography (CAT) provides a means of noninvasively measuring the air density distribution around an aerodynamic model. This technique is global in that a large portion of the flow field can be measured. A test of the applicability of CAT to transonic velocities was studied. A hemispherical-nose cylinder afterbody model was tested at a Mach number of 0.8 with a new laser holographic interferometer at the 2- by 2-Foot Transonic Wind Tunnel. Holograms of the flow field were taken and were reconstructed into interferograms. The fringe distribution (a measure of the local densities) was digitized for subsequent data reduction. A computer program based on the Fourier-transform technique was developed to convert the fringe distribution into three-dimensional densities around the model. Theoretical aerodynamic densities were calculated for evaluating and assessing the accuracy of the data obtained from the tomographic method.

  4. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  5. Computed tomographic evidence of atherosclerosis in the mummified remains of humans from around the world.

    PubMed

    Thompson, Randall C; Allam, Adel H; Zink, Albert; Wann, L Samuel; Lombardi, Guido P; Cox, Samantha L; Frohlich, Bruno; Sutherland, M Linda; Sutherland, James D; Frohlich, Thomas C; King, Samantha I; Miyamoto, Michael I; Monge, Janet M; Valladolid, Clide M; El-Halim Nur El-Din, Abd; Narula, Jagat; Thompson, Adam M; Finch, Caleb E; Thomas, Gregory S

    2014-06-01

    Although atherosclerosis is widely thought to be a disease of modernity, computed tomographic evidence of atherosclerosis has been found in the bodies of a large number of mummies. This article reviews the findings of atherosclerotic calcifications in the remains of ancient people-humans who lived across a very wide span of human history and over most of the inhabited globe. These people had a wide range of diets and lifestyles and traditional modern risk factors do not thoroughly explain the presence and easy detectability of this disease. Nontraditional risk factors such as the inhalation of cooking fire smoke and chronic infection or inflammation might have been important atherogenic factors in ancient times. Study of the genetic and environmental risk factors for atherosclerosis in ancient people may offer insights into this common modern disease. Copyright © 2014 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  6. Optical tomographic detection of rheumatoid arthritis with computer-aided classification schemes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe; Beuthan, Jürgen; Hielscher, Andreas H.

    2009-02-01

    A recent research study has shown that combining multiple parameters, drawn from optical tomographic images, leads to better classification results to identifying human finger joints that are affected or not affected by rheumatic arthritis RA. Building up on the research findings of the previous study, this article presents an advanced computer-aided classification approach for interpreting optical image data to detect RA in finger joints. Additional data are used including, for example, maximum and minimum values of the absorption coefficient as well as their ratios and image variances. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index and area under the curve AUC. Results were compared to different benchmarks ("gold standard"): magnet resonance, ultrasound and clinical evaluation. Maximum accuracies (AUC=0.88) were reached when combining minimum/maximum-ratios and image variances and using ultrasound as gold standard.

  7. Crustal Rock: Recorder of Oblique Impactor Meteoroid Trajectories

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2005-07-01

    Oblique impact experiments in which 2g lead bullets strike samples of San Marcos granite and Bedford limestone at 1.2 km/s induce zones of increased crack density (termed shocked damage) which result in local decreases in bulk and shear moduli that results in maximum decreases of 30-40% in compressional and shear wave velocity (Budianski and O'Connell). Initial computer simulation of oblique impacts of meteorites (Pierazzo and Melosh) demonstrate the congruence of peak shock stress trajectory with the pre-impact meteoroid trajectory. We measure (Ai and Ahrens) via multi-beam (˜ 300) tomographic inversion, the sub-impact surface distribution of damage from the decreases in compressional wave velocity in the 20 x 20 x 15 cm rock target. The damage profiles for oblique impacts are markedly asymmetric (in plane of pre-impact meteoroid pre-impact trajectory) beneath the nearly round excavated craters. Thus, meteorite trajectory information can be recorded in planetary surfaces. Asymmetric sub-surface seismic velocity profiles beneath the Manson (Iowa) and Ries (Germany) impact craters demonstrate that pre-impact meteoroid trajectories records remain accessible for at least ˜ 10 ^ 8 years.

  8. Periapical cemento-osseous dysplasia: clinicopathological features.

    PubMed

    Roghi, Marco; Scapparone, Chiara; Crippa, Rolando; Silvestrini-Biavati, Armando; Angiero, Francesca

    2014-05-01

    Periapical cemento-osseous dysplasia (PCOD) is a rare benign lesion, often asymptomatic, in which fibrous tissue replaces the normal bone tissue, with metaplasic bone and neo-formed cement. We present a rare case of mandibular PCOD in a woman of 55 years, who presented with moderate swelling and mobility of teeth 32-33-34. Endoral radiography showed that these teeth had been devitalized; they had deep periodontal pockets and marked radicular radiotransparency; the root apices exhibited mixed radiotransparency and radio-opacity. Clinical and radiographical findings led to a diagnosis of periapical rarefying osteitis, and the three teeth were thus extracted. Due to the persistence of swelling and slight pain post-extraction, a cone-beam computed tomographic scan was taken; this showed a mixed radiotransparent and radio-opaque lesion in the area of the extracted teeth. A bone biopsy of the affected area was taken for histopathological evaluation; a diagnosis of PCOD was rendered. This case demonstrates the importance of a full investigation when a patient presents after tooth extraction with non-healing socket, pain, and swelling. A multidisciplinary approach is required to manage these rare cases.

  9. Ultrafast X-ray Imaging of Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  10. Assessment of skeletal maturation based on cervical vertebrae in CBCT.

    PubMed

    Shim, Jocelyne J; Heo, Giseon; Lagravère, Manuel O

    2012-12-01

    Diagnosis of skeletal age in adolescents helps orthodontists select and time treatments. Currently this is done using lateral cephalometric radiographs. This study evaluates the application of the conventional method in cone-beam computer tomographic (CBCT) images to bring forth assessment of skeletal maturation in three-dimensions. Ninety-eight lateral cephalometric radiographs and CBCT scans were collected from orthodontic patients between 11 to 17 years of age over an 18-month period. CBCT scans were examined in seven sagittal slices based on cervical vertebral maturation staging (CVMS). Collected CVMS values were compared with those from corresponding lateral cephalometric radiograph. CVMS measured from CBCT and lateral cephalometric radiographs were the same on average. However, they were not consistent with each other and scored interclass correlation coefficient of 0.155 in validity test. Interoperator reliability was weak (0.581). Adaptation of cervical vertebrae maturation staging in CBCT requires further clarifications or modifications to become consistent with lateral cephalometric examinations and to become a reliable method. Alternatively, a completely new method may be developed consisting of maturational indicators or landmarks unique to CBCT imaging. Copyright © 2012. Published by Elsevier Masson SAS.

  11. Associations Between Collateral Status and Thrombus Characteristics and Their Impact in Anterior Circulation Stroke.

    PubMed

    Alves, Heitor C; Treurniet, Kilian M; Dutra, Bruna G; Jansen, Ivo G H; Boers, Anna M M; Santos, Emilie M M; Berkhemer, Olvert A; Dippel, Diederik W J; van der Lugt, Aad; van Zwam, Wim H; van Oostenbrugge, Robert J; Lingsma, Hester F; Roos, Yvo B W E M; Yoo, Albert J; Marquering, Henk A; Majoie, Charles B L M

    2018-02-01

    Thrombus characteristics and collateral score are associated with functional outcome in patients with acute ischemic stroke. It has been suggested that they affect each other. The aim of this study is to evaluate the association between clot burden score, thrombus perviousness, and collateral score and to determine whether collateral score influences the association of thrombus characteristics with functional outcome. Patients with baseline thin-slice noncontrast computed tomography and computed tomographic angiography images from the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands) were included (n=195). Collateral score and clot burden scores were determined on baseline computed tomographic angiography. Thrombus attenuation increase was determined by comparing thrombus density on noncontrast computed tomography and computed tomographic angiography using a semiautomated method. The association of collateral score with clot burden score and thrombus attenuation increase was evaluated with linear regression. Mediation and effect modification analyses were used to assess the influence of collateral score on the association of clot burden score and thrombus attenuation increase with functional outcome. A higher clot burden score (B=0.063; 95% confidence interval, 0.008-0.118) and a higher thrombus attenuation increase (B=0.014; 95% confidence interval, 0.003-0.026) were associated with higher collateral score. Collateral score mediated the association of clot burden score with functional outcome. The association between thrombus attenuation increase and functional outcome was modified by the collateral score, and this association was stronger in patients with moderate and good collaterals. Patients with lower thrombus burden and higher thrombus perviousness scores had higher collateral score. The positive effect of thrombus perviousness on clinical outcome was only present in patients with moderate and high collateral scores. URL: http://www.trialregister.nl. Unique identifier: NTR1804 and URL: http://www.controlled-trials.com Unique identifier: ISRCTN10888758. © 2018 The Authors.

  12. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm.

    PubMed

    Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2013-08-07

    Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.

  13. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the figure of merit as a function of median redshift is higher for the 3D SFB method than for the 2D tomographic method. Conclusions: Constraints from the 3D SFB analysis are less sensitive to unavoidable systematics stemming from a redshift- and scale-dependent galaxy bias. Even for surveys that are optimised with tomography in mind, a 3D SFB analysis is more powerful. In addition, for survey optimisation, the figure of merit for the 3D SFB method increases more rapidly with redshift, especially at higher redshifts, suggesting that the 3D SFB method should be preferred for designing and analysing future wide-field spectroscopic surveys. CosmicPy, the Python package developed for this paper, is freely available at https://cosmicpy.github.io. Appendices are available in electronic form at http://www.aanda.org

  14. Magnetic resonance and computed tomographic features of 4 cases of canine congenital thoracic vertebral anomalies

    PubMed Central

    Berlanda, Michele; Zotti, Alessandro; Brandazza, Giada; Poser, Helen; Calò, Pietro; Bernardini, Marco

    2011-01-01

    Magnetic resonance and computed tomography features of 4 cases of canine congenital vertebral anomalies (CVAs) are discussed. Two of the cases represent unusual presentations for such anomalies that commonly affect screw-tail or toy breeds. Moreover, the combination of CVAs and a congenital peritoneo-pericardial diaphragmatic hernia has never before been imaged. PMID:22654139

  15. [Prostatic abscess. Contribution of the x-ray computed tomography. Apropos of a case].

    PubMed

    Husain, A; Touzard, D

    1988-01-01

    We reported a case of prostatic abscess due to staphylococeus aureus developed in a chronic alcoholic patient. The clinical symptoms and signs were largely masked by prior antibiotic therapy. Computed axial tomographic scanning of the pelvis made the diagnosis and demonstrated the resolution of the prostatic abscess following antibiotic therapy and spontaneous rupture to the urethra.

  16. Complex facial deformity reconstruction with a surgical guide incorporating a built-in occlusal stent as the positioning reference.

    PubMed

    Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong

    2013-05-01

    Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.

  17. New Severity Indices for Quantifying Single-suture Metopic Craniosynostosis

    PubMed Central

    Ruiz-Correa, Salvador; Starr, Jacqueline R.; Lin, H. Jill; Kapp-Simon, Kathleen A.; Sze, Raymond W.; Ellenbogen, Richard G.; Speltz, Matthew L.; Cunningham, Michael L.

    2012-01-01

    OBJECTIVE To describe novel severity indices with which to quantify severity of trigonocephaly malformation in children diagnosed with isolated metopic synostosis. METHODS Computed tomographic scans of the cranium were obtained from 38 infants diagnosed with isolated metopic synostosis and 53 age-matched control patients. Volumetric reformations of the cranium were used to trace two-dimensional planes defined by the cranium-base plane and well-defined brain landmarks. For each patient, novel trigonocephaly severity indices (TSI) were computed from outline cranium shapes on each of these planes. The metopic severity index based on measurements of interlandmark distances was also computed and a receiver operating characteristic analysis used to compare the accuracy of classification based on TSIs versus that based on the metopic severity index. RESULTS The proposed TSIs are a sensitive measure of trigonocephaly malformation that can provide a classification accuracy of 96% with a specificity of 95%, in contrast with 82% of the metopic severity index at the same specificity level. CONCLUSIONS We completed exploratory analysis of outline-based severity measurements computed from computed tomographic image planes of the cranium. These TSIs enable quantitative analysis of cranium features in isolated metopic synostosis that may not be accurately detected by analytic tools derived from a sparse set of traditional interlandmark and semilandmark distances. PMID:18797362

  18. Anisakiasis presenting to the ED: clinical manifestations, time course, hematologic tests, computed tomographic findings, and treatment.

    PubMed

    Takabayashi, Takeshi; Mochizuki, Toshiaki; Otani, Norio; Nishiyama, Kei; Ishimatsu, Shinichi

    2014-12-01

    The prevalence of anisakiasis is rare in the United States and Europe compared with that in Japan, with few reports of its presentation in the emergency department (ED). This study describes the clinical, hematologic, computed tomographic (CT) characteristics, and treatment in gastric and small intestinal anisakiasis patients in the ED. We retrospectively reviewed the data of 83 consecutive anisakiasis presentations in our ED between 2003 and 2012. Gastric anisakiasis was endoscopically diagnosed with the Anisakis polypide. Small intestinal anisakiasis was diagnosed based on both hematologic (Anisakis antibody) and CT findings. Of the 83 cases, 39 had gastric anisakiasis and 44 had small intestinal anisakiasis based on our diagnostic criteria. Although all patients had abdominal pain, the gastric anisakiasis group developed symptoms significantly earlier (peaking within 6 hours) than the small intestinal anisakiasis group (peaking within 48 hours), and fewer patients with gastric anisakiasis needed admission therapy (5% vs 57%, P<.01). All patients in the gastric and 40 (91%) in the small intestinal anisakiasis group had a history of raw seafood ingestion. Computed tomographic findings revealed edematous wall thickening in all patients, and ascites and phlegmon of the mesenteric fat were more frequently observed in the small intestinal anisakiasis group. In the ED, early and accurate diagnosis of anisakiasis is important to treat and explain to the patient, and diagnosis can be facilitated by a history of raw seafood ingestion, evaluation of the time-to-symptom development, and classic CT findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  20. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    PubMed

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  1. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li

    2002-01-01

    Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.

  2. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.

  3. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.

    PubMed

    Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir

    2016-06-01

    This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.

  4. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-06-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  5. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  6. Including Short Period Constraints In the Construction of Full Waveform Tomographic Models

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2015-12-01

    Thanks to the introduction of the Spectral Element Method (SEM) in seismology, which allows accurate computation of the seismic wavefield in complex media, the resolution of regional and global tomographic models has improved in recent years. However, due to computational costs, only long period waveforms are considered, and only long wavelength structure can be constrained. Thus, the resulting 3D models are smooth, and only represent a small volumetric perturbation around a smooth reference model that does not include upper-mantle discontinuities (e.g. MLD, LAB). Extending the computations to shorter periods, necessary for the resolution of smaller scale features, is computationally challenging. In order to overcome these limitations and to account for layered structure in the upper mantle in our full waveform tomography, we include information provided by short period seismic observables (receiver functions and surface wave dispersion), sensitive to sharp boundaries and anisotropic structure respectively. In a first step, receiver functions and dispersion curves are used to generate a number of 1D radially anisotropic shear velocity profiles using a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm. These 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) beneath selected stationsand are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) interpolation between the available 1D profiles, and 2) homogeneization of the layered 1D models to obtain an equivalent smooth 3D starting model in the period range of interest for waveform inversion. The waveforms used in the inversion are collected for paths contained in the region of study and filtered at periods longer than 40s. We use the spectral element code "RegSEM" (Cupillard et al., 2012) for forward computations and a quasi-Newton inversion approach in which kernels are computed using normal mode perturbation theory. We present here the first reults of such an approach after successive iterations of a full waveform tomography of the North American continent.

  7. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun

    2006-02-15

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, andmore » manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and stylized ORNL phantom. The armless KTMAN-1 can be applied to dosimetry for computed tomography or lateral x-ray examination, while the whole body KTMAN-2 can be used for radiation protection dosimetry.« less

  8. Bilateral mandibular pyogranulomatous lymphadenitis and pulmonary nodules in a dog with Bartonella henselae bacteremia

    PubMed Central

    Tucker, Melissa D.; Sellon, Rance K.; Tucker, Russell L.; Wills, Tamara B.; Simonsen, Andrea; Maggi, Ricardo G.; Breitschwerdt, Edward B.

    2014-01-01

    This report describes a 2-year-old collie dog with pulmonary nodules, visualized by computed tomographic (CT) scan, with evidence of Bartonella henselae bacteremia and pyogranulomatous lymphadenitis. Clinical signs resolved with antimicrobial therapy. PMID:25320386

  9. Procedures for Geometric Data Reduction in Solid Log Modelling

    Treesearch

    Luis G. Occeña; Wenzhen Chen; Daniel L. Schmoldt

    1995-01-01

    One of the difficulties in solid log modelling is working with huge data sets, such as those that come from computed axial tomographic imaging. Algorithmic procedures are described in this paper that have successfully reduced data without sacrificing modelling integrity.

  10. Application of statistical shape analysis for the estimation of bone and forensic age using the shapes of the 2nd, 3rd, and 4th cervical vertebrae in a young Japanese population.

    PubMed

    Rhee, Chang-Hoon; Shin, Sang Min; Choi, Yong-Seok; Yamaguchi, Tetsutaro; Maki, Koutaro; Kim, Yong-Il; Kim, Seong-Sik; Park, Soo-Byung; Son, Woo-Sung

    2015-12-01

    From computed tomographic images, the dentocentral synchondrosis can be identified in the second cervical vertebra. This can demarcate the border between the odontoid process and the body of the 2nd cervical vertebra and serve as a good model for the prediction of bone and forensic age. Nevertheless, until now, there has been no application of the 2nd cervical vertebra based on the dentocentral synchondrosis. In this study, statistical shape analysis was used to build bone and forensic age estimation regression models. Following the principles of statistical shape analysis and principal components analysis, we used cone-beam computed tomography (CBCT) to evaluate a Japanese population (35 males and 45 females, from 5 to 19 years old). The narrowest prediction intervals among the multivariate regression models were 19.63 for bone age and 2.99 for forensic age. There was no significant difference between form space and shape space in the bone and forensic age estimation models. However, for gender comparison, the bone and forensic age estimation models for males had the higher explanatory power. This study derived an improved objective and quantitative method for bone and forensic age estimation based on only the 2nd, 3rd and 4th cervical vertebral shapes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Photoacoustic imaging with planoconcave optical microresonator sensors: feasibility studies based on phantom imaging

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.

    2017-03-01

    The planar Fabry-Pérot (FP) sensor provides high quality photoacoustic (PA) images but beam walk-off limits sensitivity and thus penetration depth to ≍1 cm. Planoconcave microresonator sensors eliminate beam walk-off enabling sensitivity to be increased by an order-of-magnitude whilst retaining the highly favourable frequency response and directional characteristics of the FP sensor. The first tomographic PA images obtained in a tissue-realistic phantom using the new sensors are described. These show that the microresonator sensors provide near identical image quality as the planar FP sensor but with significantly greater penetration depth (e.g. 2-3cm) due to their higher sensitivity. This offers the prospect of whole body small animal imaging and clinical imaging to depths previously unattainable using the FP planar sensor.

  12. Cross sections for the exclusive photon electroproduction on the proton and Generalized Parton Distributions

    DOE PAGES

    Jo, Hyon -Suk

    2015-11-17

    Unpolarized and beam-polarized four-fold cross sectionsmore » $$\\frac{d^4 \\sigma}{dQ^2 dx_B dt d\\phi}$$ for the $$ep\\to e^\\prime p^\\prime \\gamma$$ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 ($$Q^2,x_B,t$$) bins over the widest phase space ever explored in the valence-quark region. Several models of Generalized Parton Distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD $H$, expected to be the dominant contributor to these observables. Thus, through a leading-twist extraction of Compton Form Factors, these results reveal a tomographic image of the nucleon.« less

  13. Computed tomographic angiography in stroke imaging: fundamental principles, pathologic findings, and common pitfalls.

    PubMed

    Gupta, Rajiv; Jones, Stephen E; Mooyaart, Eline A Q; Pomerantz, Stuart R

    2006-06-01

    The development of multidetector row computed tomography (MDCT) now permits visualization of the entire vascular tree that is relevant for the management of stroke within 15 seconds. Advances in MDCT have brought computed tomography angiography (CTA) to the frontline in evaluation of stroke. CTA is a rapid and noninvasive modality for evaluating the neurovasculature. This article describes the role of CTA in the management of stroke. Fundamentals of contrast delivery, common pathologic findings, artifacts, and pitfalls in CTA interpretation are discussed.

  14. Corkscrew basilar artery as an incidental finding on neuroimaging.

    PubMed

    Moser, Franklin G; Sarnat, Harvey B; Maya, Marcel M; Menkes, John H

    2007-11-01

    We report on an incidental finding of a markedly tortuous basilar artery in a 6-year-old child. The child underwent a computed tomography scan for minor head trauma, and a basilar artery abnormality was discovered, i.e., a markedly tortuous basilar artery without any other congenital anomalies or syndromes. After an exhaustive workup including computed tomography, magnetic resonance imaging, magnetic resonance angiography, computed tomographic angiography, and genetic tests for associated genetic syndromes, no intervention was deemed necessary. The embryonic etiology and clinical implications are discussed.

  15. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk, and (3) generate MPEG movies for inclusion in presentations, publications, websites, etc. Both are freely available as run-time ('.sav') versions that can be run using the free IDL Virtual Machine TM, available from ITT Visual Information Solutions: http://www.ittvis.com/ProductServices/IDL/VirtualMachine.aspx The run-time versions of 'tomo_display' and 'vol_tools' can be downloaded from: http://cars.uchicago.edu/software/idl/tomography.html http://sites.google.com/site/voltools/

  16. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  17. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  18. Impedance computations and beam-based measurements: A problem of discrepancy

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  19. Tomographic phase analysis to detect the site of accessory conduction pathway in Wolff-Parkinson-White syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, K.; Bunko, H.; Tada, A.

    1984-01-01

    Phase analysis has been applied to Wolff-Parkinson-White syndrome (WPW) to detect the site of accessory conduction pathway (ACP); however, there was a limitation to estimate the precise location of ACP by planar phase analysis. In this study, the authors applied phase analysis to gated blood pool tomography. Twelve patients with WPW who underwent epicardial mapping and surgical division of ACP were studied by both of gated emission computed tomography (GECT) and routine gated blood pool study (GBPS). The GBPS was performed with Tc-99m red blood cells in multiple projections; modified left anterior oblique, right anterior oblique and/or left lateral views.more » In GECT, short axial, horizontal and vertical long axial blood pool images were reconstructed. Phase analysis was performed using fundamental frequency of the Fourier transform in both GECT and GBPS images, and abnormal initial contractions on both the planar and tomographic phase analysis were compared with the location of surgically confirmed ACPs. In planar phase analysis, abnormal initial phase was identified in 7 out of 12 (58%) patients, while in tomographic phase analysis, the localization of ACP was predicted in 11 out of 12 (92%) patients. Tomographic phase analysis is superior to planar phase images in 8 out of 12 patients to estimate the location of ACP. Phase analysis by GECT can avoid overlap of blood pool in cardiac chambers and has advantage to identify the propagation of phase three-dimensionally. Tomographic phase analysis is a good adjunctive method for patients with WPW to estimate the site of ACP.« less

  20. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar.

    PubMed

    Filpo-Perez, Carolina; Bramante, Clovis Monteiro; Villas-Boas, Marcelo Haas; Húngaro Duarte, Marco Antonio; Versiani, Marco Aurélio; Ordinola-Zapata, Ronald

    2015-02-01

    The aim of this study was to evaluate the morphologic aspects of the root canal anatomy of the distal root of a mandibular first molar using micro-computed tomographic analysis. One-hundred distal roots of mandibular first molars were scanned using a micro-computed tomographic device at an isotropic resolution of 19.6 μm. The percentage frequency distribution of the morphologic configuration of the root canal was performed according to the Vertucci classification system. Two-dimensional parameters (area, perimeter, roundness, aspect ratio, and major and minor diameters) and the cross-sectional shape of the root canal were analyzed in the apical third at every 1-mm interval from the main apical foramen in roots presenting Vertucci types I and II configurations (n = 79). Data were statistically compared using the Kruskal-Wallis and Dunn tests with a significance level set at 5%. Seventy-six percent of the distal roots had a single root canal. Two, three, and four canals were found in 13%, 8%, and 3% of the sample, respectively. In 13 specimens, the configuration of the root canal did not fit into Vertucci's classification. Overall, 2-dimensional parameter values significantly increased at the 3-mm level (P < .05). The prevalence of oval canals was higher at the 1-mm level and decreased at the 5-mm level in which long oval and flattened canals were more prevalent. The distal roots of the mandibular first molars showed a high prevalence of single root canals. The prevalence of long oval and flattened canals increased in the coronal direction. In 13% of the samples, canal configurations that were not included in Vertucci's configuration system were found. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Computed tomographic features of apical infection of equine maxillary cheek teeth: a retrospective study of 49 horses.

    PubMed

    Bühler, M; Fürst, A; Lewis, F I; Kummer, M; Ohlerth, S

    2014-07-01

    Computed tomographic (CT) studies evaluating the relevance of individual CT features of apical infection in maxillary cheek teeth are lacking. To study the prevalence and relationship of single CT features in horses with and without clinical evidence of apical infection in maxillary cheek teeth. Retrospective case-control study. Multislice CT scans of the head of 49 horses were evaluated retrospectively. Changes of the infundibulum, pulp, root, lamina dura, periodontal space and alveolar bone in maxillary cheek teeth were recorded. Single CT changes were much more prevalent in the 28 horses with clinical signs. However, infundibular changes and a nondetectable lamina dura were also common in the 21 horses without clinical evidence of apical infection. Computed tomographic abnormalities of the pulp, root, periapical bone and periodontal space and the presence of a tooth fracture were significantly related. Infundibular changes were not associated with other CT signs of apical infection. Although nondetectable lamina dura was the most frequent CT change in all teeth in both studied groups, it was most commonly a solitary feature in otherwise normal teeth. Apical infections, defined as ≥3 CT changes, occurred mainly in the 108/208, 109/209 and 110/210 (Triadan numbers) and were found only in horses with clinical evidence of apical infection, except in one horse without clinical signs that had one affected root. Combined CT changes of the pulp, root, lamina dura, periapical bone and periodontal space and the presence of a tooth fracture appear to be reliable features to diagnose apical infection in maxillary cheek teeth. As a solitary feature, a nondetectable lamina dura should be interpreted cautiously and may even be considered normal due to its minor thickness and/or too low resolution of the imaging modality. © 2013 EVJ Ltd.

  2. Micro-computed Tomographic Analysis of Apical Microcracks before and after Root Canal Preparation by Hand, Rotary, and Reciprocating Instruments at Different Working Lengths.

    PubMed

    de Oliveira, Bruna Paloma; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes

    2017-07-01

    This study aimed to compare apical microcrack formation after root canal shaping by hand, rotary, and reciprocating files at different working lengths using micro-computed tomographic analysis. Sixty mandibular incisors were randomly divided into 6 experimental groups (n = 10) according to the systems and working lengths used for the root canal preparation: ProTaper Universal for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), HyFlex CM (Coltene-Whaledent, Allstetten, Switzerland), and Reciproc (VDW, Munich, Germany) files working at the apical foramen (AF) and 1 mm short of the AF (AF - 1 mm). The teeth were imaged with micro-computed tomographic scanning at an isotropic resolution of 14 μm before and after root canal preparation, and the cross-sectional images generated were assessed to detect microcracks in the apical portion of the roots. Overall, 17 (28.3%) specimens presented microcracks before instrumentation. Apical microcracks were present in 1 (ProTaper Universal for Hand Use), 3 (Hyflex CM), and 2 (Reciproc) specimens when the instrumentation terminated at the AF. When instrumentation was terminated at AF - 1 mm, apical microcracks were detected in 3 (ProTaper Universal for Hand Use) and 4 (Hyflex CM and Reciproc) specimens. All these microcracks detected after root canal preparation were already present before instrumentation, and no new apical microcrack was visualized. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal shaping with ProTaper Universal for Hand Use, HyFlex CM, and Reciproc systems, regardless of the working length, did not produce apical microcracks. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis.

    PubMed

    Hecht, Harvey S; Narula, Jagat; Fearon, William F

    2016-07-08

    Invasive fractional flow reserve (FFR) is now the gold standard for intervention. Noninvasive functional imaging analyses derived from coronary computed tomographic angiography (CTA) offer alternatives for evaluating lesion-specific ischemia. CT-FFR, CT myocardial perfusion imaging, and transluminal attenuation gradient/corrected contrast opacification have been studied using invasive FFR as the gold standard. CT-FFR has demonstrated significant improvement in specificity and positive predictive value compared with CTA alone for predicting FFR of ≤0.80, as well as decreasing the frequency of nonobstructive invasive coronary angiography. High-risk plaque characteristics have also been strongly implicated in abnormal FFR. Myocardial computed tomographic perfusion is an alternative method with promising results; it involves more radiation and contrast. Transluminal attenuation gradient/corrected contrast opacification is more controversial and may be more related to vessel diameter than stenosis. Important considerations remain: (1) improvement of CTA quality to decrease unevaluable studies, (2) is the diagnostic accuracy of CT-FFR sufficient? (3) can CT-FFR guide intervention without invasive FFR confirmation? (4) what are the long-term outcomes of CT-FFR-guided treatment and how do they compare with other functional imaging-guided paradigms? (5) what degree of stenosis on CTA warrants CT-FFR? (6) how should high-risk plaque be incorporated into treatment decisions? (7) how will CT-FFR influence other functional imaging test utilization, and what will be the effect on the practice of cardiology? (8) will a workstation-based CT-FFR be mandatory? Rapid progress to date suggests that CTA-based lesion-specific ischemia will be the gatekeeper to the cardiac catheterization laboratory and will transform the world of intervention. © 2016 American Heart Association, Inc.

  4. Effect of ProTaper Gold, Self-Adjusting File, and XP-endo Shaper Instruments on Dentinal Microcrack Formation: A Micro-computed Tomographic Study.

    PubMed

    Bayram, H Melike; Bayram, Emre; Ocak, Mert; Uygun, Ahmet Demirhan; Celik, Hakan Hamdi

    2017-07-01

    The aim of the present study was to evaluate the frequency of dentinal microcracks observed after root canal preparation with ProTaper Universal (PTU; Dentsply Tulsa Dental Specialties, Tulsa, OK), ProTaper Gold (PTG; Dentsply Tulsa Dental Specialties), Self-Adjusting File (SAF; ReDent Nova, Ra'anana, Israel), and XP-endo Shaper (XP; FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments using micro-computed tomographic (CT) analysis. Forty extracted human mandibular premolars having single-canal and straight root were randomly assigned to 4 experimental groups (n = 10) according to the different nickel-titanium systems used for root canal preparation: PTU, PTG, SAF, and XP. In the SAF and XP groups, the canals were first prepared with a K-file until #25 at the working length, and then the SAF or XP files were used. The specimens were scanned using high-resolution micro-computed tomographic imaging before and after root canal preparation. Afterward, preoperative and postoperative cross-sectional images of the teeth were screened to identify the presence of dentinal defects. For each group, the number of microcracks was determined as a percentage rate. The McNemar test was used to determine significant differences before and after instrumentation. The level of significance was set at P ≤ .05. The PTU system significantly increased the percentage rate of microcracks compared with preoperative specimens (P < .05). No new dentinal microcracks were observed in the PTG, SAF, or XP groups. Root canal preparations with the PTG, SAF, and XP systems did not induce the formation of new dentinal microcracks on straight root canals of mandibular premolars. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography.

    PubMed

    Nakanishi, Rine; Baskaran, Lohendran; Gransar, Heidi; Budoff, Matthew J; Achenbach, Stephan; Al-Mallah, Mouaz; Cademartiri, Filippo; Callister, Tracy Q; Chang, Hyuk-Jae; Chinnaiyan, Kavitha; Chow, Benjamin J W; DeLago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Cury, Ricardo; Feuchtner, Gudrun; Kim, Yong-Jin; Leipsic, Jonathon; Kaufmann, Philipp A; Maffei, Erica; Raff, Gilbert; Shaw, Leslee J; Villines, Todd C; Dunning, Allison; Marques, Hugo; Pontone, Gianluca; Andreini, Daniele; Rubinshtein, Ronen; Bax, Jeroen; Jones, Erica; Hindoyan, Niree; Gomez, Millie; Lin, Fay Y; Min, James K; Berman, Daniel S

    2017-08-01

    Hypertension is an atherosclerosis factor and is associated with cardiovascular risk. We investigated the relationship between hypertension and the presence, extent, and severity of coronary atherosclerosis in coronary computed tomographic angiography and cardiac events risk. Of 17 181 patients enrolled in the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) who underwent ≥64-detector row coronary computed tomographic angiography, we identified 14 803 patients without known coronary artery disease. Of these, 1434 hypertensive patients were matched to 1434 patients without hypertension. Major adverse cardiac events risk of hypertension and non-hypertensive patients was evaluated with Cox proportional hazards models. The prognostic associations between hypertension and no-hypertension with increasing degree of coronary stenosis severity (nonobstructive or obstructive ≥50%) and extent of coronary artery disease (segment involvement score of 1-5, >5) was also assessed. Hypertension patients less commonly had no coronary atherosclerosis and more commonly had nonobstructive and 1-, 2-, and 3-vessel disease than the no-hypertension group. During a mean follow-up of 5.2±1.2 years, 180 patients experienced cardiac events, with 104 (2.0%) occurring in the hypertension group and 76 (1.5%) occurring in the no-hypertension group (hazard ratios, 1.4; 95% confidence intervals, 1.0-1.9). Compared with no-hypertension patients without coronary atherosclerosis, hypertension patients with no coronary atherosclerosis and obstructive coronary disease tended to have higher risk of cardiac events. Similar trends were observed with respect to extent of coronary artery disease. Compared with no-hypertension patients, hypertensive patients have increased presence, extent, and severity of coronary atherosclerosis and tend to have an increase in major adverse cardiac events. © 2017 American Heart Association, Inc.

  6. The Collaborative Seismic Earth Model Project

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.

    2017-12-01

    We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.

  7. Solving large tomographic linear systems: size reduction and error estimation

    NASA Astrophysics Data System (ADS)

    Voronin, Sergey; Mikesell, Dylan; Slezak, Inna; Nolet, Guust

    2014-10-01

    We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.

  8. Linear Optimization and Image Reconstruction

    DTIC Science & Technology

    1994-06-01

    final example is again a novel one. We formulate the problem of computer assisted tomographic ( CAT ) image reconstruction as a linear optimization...possibility that a patient, Fred, suffers from a brain tumor. Further, the physician opts to make use of the CAT (Computer Aided Tomography) scan device...and examine the inside of Fred’s head without exploratory surgery. The CAT scan machine works by projecting a finite number of X-rays of known

  9. A Detailed Study of Sonar Tomographic Imaging

    DTIC Science & Technology

    2013-08-01

    BPA ) to form an object image. As the data is collected radially about the axis of rotation, one computation method computes an inverse Fourier...images are not quite as sharp. It is concluded UNCLASSIFIED iii DSTO–RR–0394 UNCLASSIFIED that polar BPA processing requires an appropriate choice of...attenuation factor to reduce the effect of the specular reflections, while for the 2DIFT BPA approach the degrading effect from these reflections is

  10. Cardiac metastases of Ewing sarcoma detected by 18F-FDG PET/CT.

    PubMed

    Coccia, Paola; Ruggiero, Antonio; Rufini, Vittoria; Maurizi, Palma; Attinà, Giorgio; Marano, Riccardo; Natale, Luigi; Leccisotti, Lucia; Calcagni, Maria L; Riccardi, Riccardo

    2012-04-01

    Positron emission tomography (PET) is widely used in the diagnostic evaluation and staging of different malignant tumors. The role of PET/computed tomographic scan in detecting distant metastases in the workup of Ewing sarcoma in children or young adults is less well defined. We report a case of a boy affected by a metastatic Ewing sarcoma with cardiac asymptomatic metastasis detected by F-FDG PET/computed tomography.

  11. Computed tomographic identification of calcified optic nerve drusen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, H.; Blatt, E.S.; Hibri, N.S.

    1983-07-01

    Four cases of optic disk drusen were accurately diagnosed with orbital computed tomography (CT). The radiologist should be aware of the characteristic CT finding of discrete calcification within an otherwise normal optic disk. This benign process is easily differentiated from lesions such as calcific neoplastic processes of the posterior globe. CT identification of optic disk drusen is essential in the evaluation of visual field defects, migraine-like headaches, and pseudopapilledema.

  12. Feasibility of simultaneous computed tomographic colonography and fully automated bone mineral densitometry in a single examination.

    PubMed

    Summers, Ronald M; Baecher, Nicolai; Yao, Jianhua; Liu, Jiamin; Pickhardt, Perry J; Choi, J Richard; Hill, Suvimol

    2011-01-01

    To show the feasibility of calculating the bone mineral density (BMD) from computed tomographic colonography (CTC) scans using fully automated software. Automated BMD measurement software was developed that measures the BMD of the first and second lumbar vertebrae on computed tomography and calculates the mean of the 2 values to provide a per patient BMD estimate. The software was validated in a reference population of 17 consecutive women who underwent quantitative computed tomography and in a population of 475 women from a consecutive series of asymptomatic patients enrolled in a CTC screening trial conducted at 3 medical centers. The mean (SD) BMD was 133.6 (34.6) mg/mL (95% confidence interval, 130.5-136.7; n = 475). In women aged 42 to 60 years (n = 316) and 61 to 79 years (n = 159), the mean (SD) BMDs were 143.1 (33.5) and 114.7 (28.3) mg/mL, respectively (P < 0.0001). Fully automated BMD measurements were reproducible for a given patient with 95% limits of agreement of -9.79 to 8.46 mg/mL for the mean difference between paired assessments on supine and prone CTC. Osteoporosis screening can be performed simultaneously with screening for colorectal polyps.

  13. 3D multimodal cardiac data reconstruction using angiography and computerized tomographic angiography registration.

    PubMed

    Moosavi Tayebi, Rohollah; Wirza, Rahmita; Sulaiman, Puteri S B; Dimon, Mohd Zamrin; Khalid, Fatimah; Al-Surmi, Aqeel; Mazaheri, Samaneh

    2015-04-22

    Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography. In this study, coronary arteries from two modalities are registered in order to create a 3D reconstruction of the stenosis position. The proposed method starts with coronary artery segmentation and labeling for both modalities. Then, stenosis and relevant labeled artery in X-ray angiography image are marked by a specialist. Proper control points for the marked artery in both modalities are automatically detected and normalized. Then, a geometrical transformation function is computed using these control points. Finally, this function is utilized to register the marked artery from the X-ray angiography image on the computerized tomographic angiography and get the 3D position of the stenosis lesion. The result is a 3D informative model consisting of stenosis and coronary arteries' information from the X-ray angiography and computerized tomographic angiography modalities. The results of the proposed method for coronary artery segmentation, labeling and 3D reconstruction are evaluated and validated on the dataset containing both modalities. The advantage of this method is to aid specialists to determine a visual relationship between the correspondent coronary arteries from two modalities and also set up a connection between stenosis points from an X-ray angiography along with their 3D positions on the coronary arteries from computerized tomographic angiography. Moreover, another benefit of this work is that the medical acquisition standards remain unchanged, which means that no calibration in the acquisition devices is required. It can be applied on most computerized tomographic angiography and angiography devices.

  14. High resolution x-ray CMT: Reconstruction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.K.

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less

  15. Normal-pressure hydrocephalus and the saga of the treatable dementias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, R.P.

    1989-11-10

    A case study of a 74-year-old woman is presented which illustrates the difficulty of understanding dementing illnesses. A diagnosis of normal-pressure hydrocephalus (NPH) was made because of the development of abnormal gait, with urinary incontinence and severe, diffuse, white matter lesions on the MRI scan. Computed tomographic, MRI scans and positron emission tomographic images of glucose use are presented. The treatable dementias are a large, multifaceted group of illnesses, of which NPH is one. The author proposes a new term for this disorder commonly known as NPH because the problem with the term normal-pressure hydrocephalus is that the cerebrospinal fluidmore » pressure is not always normal in the disease.« less

  16. Determining organ doses from computed tomography scanners using cadaveric subjects

    NASA Astrophysics Data System (ADS)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  17. Childhood Psychosis and Computed Tomographic Brain Scan Findings.

    ERIC Educational Resources Information Center

    Gillberg, Christopher; Svendsen, Pal

    1983-01-01

    Computerized tomography (CT) of the brain was used to examine 27 infantile autistic children, 9 children with other kinds of childhood psychoses, 23 children with mental retardation, and 16 normal children. Gross abnormalities were seen in 26 percent of the autism cases. (Author/SEW)

  18. Fulminant cerebral infarction of anterior and posterior cerebral circulation after ascending type of facial necrotizing fasciitis.

    PubMed

    Lee, Jun Ho; Choi, Hui-Chul; Kim, Chulho; Sohn, Jong Hee; Kim, Heung Cheol

    2014-01-01

    Necrotizing fasciitis is a soft tissue infection that is characterized by extensive necrosis of the subcutaneous fat, neurovascular structures, and fascia. Cerebral infarction after facial necrotizing fasciitis has been rarely reported. A 61-year-old woman with diabetes was admitted with painful swelling of her right cheek. One day later, she was stuporous and quadriplegic. A computed tomographic scan of her face revealed right facial infection in the periorbital soft tissue, parotid, buccal muscle, and maxillary sinusitis. A computed tomographic scan of the brain revealed cerebral infarction in the right hemisphere, left frontal area, and both cerebellum. Four days later, she died from cerebral edema and septic shock. Involvement of the cerebral vasculature, such as the carotid or vertebral artery by necrotizing fasciitis, can cause cerebral infarction. Facial necrotizing fasciitis should be treated early with surgical treatment and the appropriate antibiotic therapy. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Multislice coronary computed tomographic angiography in emergency department presentations of unsuspected acute myocardial infarction.

    PubMed

    Hecht, Harvey S; Bhatti, Tandeep

    2009-01-01

    Coronary computed tomographic angiography (CCTA) is not indicated in the setting of acute myocardial infarction in the emergency department (ED). Nonetheless, acute coronary syndromes may have atypical presentations, and CCTA may be inadvertently performed in this setting. This study was designed to determine the frequency and characteristics of CCTA imaging of unsuspected acute myocardial infarction in the ED. All CCTAs performed in the ED at Lenox Hill Hospital were reviewed for clinical indications and subsequent course; patients with documented acute myocardial infarction were identified. Of the 500 CCTAs performed on ED patients in the Lenox Hill laboratory, 5 patients (1%) were imaged during the initial phase of an unsuspected acute myocardial infarction; in all cases the CCTAs were key to the diagnosis. The imaging characteristics were (1) total or subtotal occlusion and (2) transmural hypodensity in the infarct area. Although acute myocardial infarction on CCTA in ED patients is an infrequent event, proper and prompt recognition is critical for appropriate patient care, particularly as applications to the ED increase.

  20. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    PubMed Central

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P < 0.05) in ProTaper and K3XF groups when compared to LSX group. Canal transportation was significantly more (P < 0.05) in ProTaper group when compared to K3XF and LSX groups. There was no significant difference (P > 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  1. Diagnostic Accuracy of Cone-beam Computed Tomography and Conventional Radiography on Apical Periodontitis: A Systematic Review and Meta-analysis.

    PubMed

    Leonardi Dutra, Kamile; Haas, Letícia; Porporatti, André Luís; Flores-Mir, Carlos; Nascimento Santos, Juliana; Mezzomo, Luis André; Corrêa, Márcio; De Luca Canto, Graziela

    2016-03-01

    Endodontic diagnosis depends on accurate radiographic examination. Assessment of the location and extent of apical periodontitis (AP) can influence treatment planning and subsequent treatment outcomes. Therefore, this systematic review and meta-analysis assessed the diagnostic accuracy of conventional radiography and cone-beam computed tomographic (CBCT) imaging on the discrimination of AP from no lesion. Eight electronic databases with no language or time limitations were searched. Articles in which the primary objective was to evaluate the accuracy (sensitivity and specificity) of any type of radiographic technique to assess AP in humans were selected. The gold standard was the histologic examination for actual AP (in vivo) or in situ visualization of bone defects for induced artificial AP (in vitro). Accuracy measurements described in the studies were transformed to construct receiver operating characteristic curves and forest plots with the aid of Review Manager v.5.2 (The Nordic Cochrane Centre, Copenhagen, Denmark) and MetaDisc v.1.4. software (Unit of Clinical Biostatistics Team of the Ramón y Cajal Hospital, Madrid, Spain). The methodology of the selected studies was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Only 9 studies met the inclusion criteria and were subjected to a qualitative analysis. A meta-analysis was conducted on 6 of these articles. All of these articles studied artificial AP with induced bone defects. The accuracy values (area under the curve) were 0.96 for CBCT imaging, 0.73 for conventional periapical radiography, and 0.72 for digital periapical radiography. No evidence was found for panoramic radiography. Periapical radiographs (digital and conventional) reported good diagnostic accuracy on the discrimination of artificial AP from no lesions, whereas CBCT imaging showed excellent accuracy values. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies.

  3. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  4. Prevalence and Size of Periapical Radiolucencies Using Cone-beam Computed Tomography in Teeth without Apparent Intraoral Radiographic Lesions: A New Periapical Index with a Clinical Recommendation.

    PubMed

    Torabinejad, Mahmoud; Rice, Dwight D; Maktabi, Omar; Oyoyo, Udochukwu; Abramovitch, Kenneth

    2018-03-01

    The purpose of this study was to determine the prevalence and size of periapical radiolucencies using cone-beam computed tomographic (CBCT) imaging in teeth without apparent signs of intraoral radiographic lesions. One hundred twenty roots from 53 patients who had been determined to have no signs of intraoral radiographic lesions were included in this study. Limited-volume CBCT scans were taken at 0.125-mm 3 voxel size. The widest area of apical radiolucency of each root canal-treated tooth was measured and assigned a numeric score based on the CBCT-Endodontic Radiolucency Index (ERI). CBCT data were evaluated by 2 radiologists with an interclass correlation coefficient of 0.96. The majority of roots (53.3%) had periodontal ligament widths ≤0.5 mm; 26.7% had radiolucency widths of 0.5 < x ≤ 1 mm, 15.0% had radiolucency widths of 1.0 < x ≤ 1.5 mm, 0.8% had radiolucency widths of 1.5 < x ≤ 2.0 mm, 1.7% had radiolucency widths of 2.0 < x ≤ 2.5 mm, and 2.5% had radiolucency widths of >2.5 mm. Patient age, recall interval, tooth type, and arch type had no statistically significant effect on the ERI distribution. Twenty percent of teeth with successful root canal treatment based on conventional periapical imaging had CBCT radiolucencies measuring greater than 1 mm. Because these radiolucencies may not be pathological changes, clinicians are cautioned against overtreatment of them before determining the true nature of these findings. Clinical studies with long follow-up times are needed to determine the proper course of actions for these cases. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    PubMed

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  6. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    NASA Astrophysics Data System (ADS)

    Bodey, A. J.; Rau, C.

    2017-06-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.

  7. Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

    PubMed Central

    Wang, Shijun; McKenna, Matthew T.; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Sahiner, Berkman

    2012-01-01

    In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods. PMID:22552333

  8. Assessment of Normal Eyeball Protrusion Using Computed Tomographic Imaging and Three-Dimensional Reconstruction in Korean Adults.

    PubMed

    Shin, Kang-Jae; Gil, Young-Chun; Lee, Shin-Hyo; Kim, Jeong-Nam; Yoo, Ja-Young; Kim, Soon-Heum; Choi, Hyun-Gon; Shin, Hyun Jin; Koh, Ki-Seok; Song, Wu-Chul

    2017-01-01

    The aim of the present study was to assess normal eyeball protrusion from the orbital rim using two- and three-dimensional images and demonstrate the better suitability of CT images for assessment of exophthalmos. The facial computed tomographic (CT) images of Korean adults were acquired in sagittal and transverse views. The CT images were used in reconstructing three-dimensional volume of faces using computer software. The protrusion distances from orbital rims and the diameters of eyeballs were measured in the two views of the CT image and three-dimensional volume of the face. Relative exophthalmometry was calculated by the difference in protrusion distance between the right and left sides. The eyeball protrusion was 4.9 and 12.5 mm in sagittal and transverse views, respectively. The protrusion distances were 2.9 mm in the three-dimensional volume of face. There were no significant differences between right and left sides in the degree of protrusion, and the difference was within 2 mm in more than 90% of the subjects. The results of the present study will provide reliable criteria for precise diagnosis and postoperative monitoring using CT imaging of diseases such as thyroid-associated ophthalmopathy and orbital tumors.

  9. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction

    PubMed Central

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  10. Roles of Transesophageal Echocardiography and Cardiac Computed Tomography for Evaluation of Left Atrial Thrombus and Associated Pathology: A Review and Critical Analysis.

    PubMed

    Pathan, Faraz; Hecht, Harvey; Narula, Jagat; Marwick, Thomas H

    2018-04-01

    Evaluation of the left atrium and left atrial appendage for the presence of thrombus prior to cardioversion and pulmonary vein isolation, and of the entire heart for embolic sources in the setting of cryptogenic stroke, has long been standard medical care. Guidelines have uniformly recommended transesophageal echocardiography (TEE) to accomplish these goals. In recent years, computed tomographic angiography has demonstrated diagnostic accuracy similar to that of TEE for the detection of thrombus. Analysis of the pertinent data and relative merits of the 2 technologies leads to the conclusions that: 1) both modalities have some unique, nonoverlapping capabilities that may dictate their use in specific situations; 2) computed tomographic angiography is a reasonable alternative to TEE when the primary aim is to exclude left atrial and left atrial appendage thrombus and in patients in whom the risks associated with TEE outweigh the benefits; and 3) both options should be discussed with the patient in the setting of shared decision making. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE PAGES

    Smaluk, Victor

    2018-04-21

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  12. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  13. Improved Gaussian Beam-Scattering Algorithm

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1995-01-01

    The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.

  14. Digital holographic tomography based on spectral interferometry.

    PubMed

    Yu, Lingfeng; Chen, Zhongping

    2007-10-15

    A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.

  15. Limited-angle tomography for analyzer-based phase-contrast X-ray imaging

    PubMed Central

    Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G

    2014-01-01

    Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume. PMID:24898008

  16. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume.

  17. East Pacific Rise axial structure from a joint tomographic inversion of traveltimes picked on downward continued and standard shot gathers collected by 3D MCS surveying

    NASA Astrophysics Data System (ADS)

    Newman, Kori; Nedimović, Mladen; Delescluse, Matthias; Menke, William; Canales, J. Pablo; Carbotte, Suzanne; Carton, Helene; Mutter, John

    2010-05-01

    We present traveltime tomographic models along closely spaced (~250 m), strike-parallel profiles that flank the axis of the East Pacific Rise at 9°41' - 9°57' N. The data were collected during a 3D (multi-streamer) multichannel seismic (MCS) survey of the ridge. Four 6-km long hydrophone streamers were towed by the ship along three along-axis sail lines, yielding twelve possible profiles over which to compute tomographic models. Based on the relative location between source-receiver midpoints and targeted subsurface structures, we have chosen to compute models for four of those lines. MCS data provide for a high density of seismic ray paths with which to constrain the model. Potentially, travel times for ~250,000 source-receiver pairs can be picked over the 30 km length of each model. However, such data density does not enhance the model resolution, so, for computational efficiency, the data are decimated so that ~15,000 picks per profile are used. Downward continuation of the shot gathers simulates an experimental geometry in which the sources and receivers are positioned just above the sea floor. This allows the shallowest sampling refracted arrivals to be picked and incorporated into the inversion whereas they would otherwise not be usable with traditional first-arrival travel-time tomographic techniques. Some of the far-offset deep-penetrating 2B refractions cannot be picked on the downward continued gathers due to signal processing artifacts. For this reason, we run a joint inversion by also including 2B traveltime picks from standard shot gathers. Uppermost velocity structure (seismic layer 2A thickness and velocity) is primarily constrained from 1D inversion of the nearest offset (<500 m) source-receiver travel-time picks for each downward continued shot gather. Deeper velocities are then computed in a joint 2D inversion that uses all picks from standard and downward continued shot gathers and incorporates the 1D results into the starting model. The resulting velocity models extend ~1 km into the crust. Preliminary results show thicker layer 2A and faster layer 2A velocities at fourth order ridge segment boundaries. Additionally, layer 2A thickens north of 9° 52' N, which is consistent with earlier investigations of this ridge segment. Slower layer 2B velocities are resolved in the vicinity of documented hydrothermal vent fields. We anticipate that additional analyses of the results will yield further insight into fine scale variations in near-axis mid-ocean ridge structure.

  18. Computed tomography in cases of coccidioidal meningitis, with clinical correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetter, A.G.; Fischer, D.W.; Flom, R.A.

    1985-06-01

    Cranial computed tomographic (CT) scans of 22 patients with coccidioidal meningitis were reviewed and their clinical course was analyzed. Abnormalities of the ventricular system or the basilar cisterns or both were present in 16 instances. Although it is not a definitive diagnostic tool, the CT scan is helpful in suggesting a diagnosis of coccidioidal meningitis and in predicting the prognosis of patients affected by the disease. 19 references, 4 figures, 2 tables.

  19. Microfocus computed tomography in medicine

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.

    2018-02-01

    Recent advances in the field of high-frequency power schemes for X-ray devices allow the creation of high-resolution instruments. At the department of electronic devices and Equipment of the St. Petersburg State Electrotechnical University, a model of a microfocus computer tomograph was developed. Used equipment allows to receive projection data with an increase up to 100 times. A distinctive feature of the device is the possibility of implementing various schemes for obtaining projection data.

  20. Operational control of large-sized polymer composite units of U-profile circular beam type by X-ray method

    NASA Astrophysics Data System (ADS)

    Kavalerov, B. V.; Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.; Obodovskiy, A. V.

    2018-02-01

    The advantages of using the method of microfocus radiography in the non-destructive testing of aviation products are considered in the paper, using the example of a circular beam of a U-shaped profile made of polymer composite materials. The basic types of characteristic defects of parts arising in such a type are described both in the process of their manufacture and in the process of their exploitation, namely interlayer delaminations, pores and folds. Peculiarities of obtaining pseudo-volumetric images, which allow to increase the informativity about the structure of the object of control, as well as to identify the arising heterogeneities are given. A model of a robotic system is described that makes it possible to realize a small or multi-angle survey scheme, and, in particular, to carry out tomographic studies.

  1. A Novel Procedure for the Immediate Reconstruction of Severely Resorbed Alveolar Sockets for Advanced Periodontal Disease.

    PubMed

    Aimetti, Mario; Manavella, Valeria; Cricenti, Luca; Romano, Federica

    2017-01-01

    Background. Several clinical techniques and a variety of biomaterials have been introduced over the years in an effort to overcome bone remodeling and resorption after tooth extraction. However, the predictability of these procedures in sockets with severely resorbed buccal/lingual plate due to periodontal disease is still unknown. Case Description. A patient with advanced periodontitis underwent extraction of upper right lateral and central incisors. The central incisor exhibited complete buccal bone plate loss and a 9 mm vertical bone deficiency on its palatal side. The alveolar sockets were filled with collagen sponge and covered with a nonresorbable high-density PTFE membrane. Primary closure was not attained and any rigid scaffold material was not used. Histologic analysis provided evidence of new bone formation. At 12 months a cone-beam computed tomographic scan revealed enough bone volume to insert two conventional dental implants in conjunction with minor horizontal bone augmentation procedures. Clinical Implications. This case report would seem to support the potential of the proposed reconstructive approach in changing the morphology of severely resorbed alveolar sockets, minimizing the need for advanced bone regeneration procedures during implant placement.

  2. A Novel Procedure for the Immediate Reconstruction of Severely Resorbed Alveolar Sockets for Advanced Periodontal Disease

    PubMed Central

    2017-01-01

    Background. Several clinical techniques and a variety of biomaterials have been introduced over the years in an effort to overcome bone remodeling and resorption after tooth extraction. However, the predictability of these procedures in sockets with severely resorbed buccal/lingual plate due to periodontal disease is still unknown. Case Description. A patient with advanced periodontitis underwent extraction of upper right lateral and central incisors. The central incisor exhibited complete buccal bone plate loss and a 9 mm vertical bone deficiency on its palatal side. The alveolar sockets were filled with collagen sponge and covered with a nonresorbable high-density PTFE membrane. Primary closure was not attained and any rigid scaffold material was not used. Histologic analysis provided evidence of new bone formation. At 12 months a cone-beam computed tomographic scan revealed enough bone volume to insert two conventional dental implants in conjunction with minor horizontal bone augmentation procedures. Clinical Implications. This case report would seem to support the potential of the proposed reconstructive approach in changing the morphology of severely resorbed alveolar sockets, minimizing the need for advanced bone regeneration procedures during implant placement. PMID:28250998

  3. Immediate impact of rapid maxillary expansion on upper airway dimensions and on the quality of life of mouth breathers.

    PubMed

    Izuka, Edna Namiko; Feres, Murilo Fernando Neuppmann; Pignatari, Shirley Shizue Nagata

    2015-01-01

    To assess short-term tomographic changes in the upper airway dimensions and quality of life of mouth breathers after rapid maxillary expansion (RME). A total of 25 mouth breathers with maxillary atresia and a mean age of 10.5 years old were assessed by means of cone-beam computed tomography (CBCT) and a standardized quality of life questionnaire answered by patients' parents/legal guardians before and immediately after rapid maxillary expansion. Rapid maxillary expansion resulted in similar and significant expansion in the width of anterior (2.8 mm, p < 0.001) and posterior nasal floor (2.8 mm, p < 0.001). Although nasopharynx and nasal cavities airway volumes significantly increased (+1646.1 mm3, p < 0.001), oropharynx volume increase was not statistically significant (+1450.6 mm3, p = 0.066). The results of the quality of life questionnaire indicated that soon after rapid maxillary expansion, patients' respiratory symptoms significantly decreased in relation to their initial respiratory conditions. It is suggested that RME produces significant dimensional increase in the nasal cavity and nasopharynx. Additionally, it also positively impacts the quality of life of mouth-breathing patients with maxillary atresia.

  4. Sensitivity and specificity of radiographic methods for predicting insertion torque of dental implants.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Eimar, Hazem; Barbosa, Jorge de Sá; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh

    2015-05-01

    Subjective radiographic classifications of alveolar bone have been proposed and correlated with implant insertion torque (IT). The present diagnostic study aims to identify quantitative bone features influencing IT and to use these findings to develop an objective radiographic classification for predicting IT. Demographics, panoramic radiographs (taken at the beginning of dental treatment), and cone-beam computed tomographic scans (taken for implant surgical planning) of 25 patients receiving 31 implants were analyzed. Bone samples retrieved from implant sites were assessed with dual x-ray absorptiometry, microcomputed tomography, and histology. Odds ratio, sensitivity, and specificity of all variables to predict high peak IT were assessed. A ridge cortical thickness >0.75 mm and a normal appearance of the inferior mandibular cortex were the most sensitive variables for predicting high peak IT (87.5% and 75%, respectively). A classification based on the combination of both variables presented high sensitivity (90.9%) and specificity (100%) for predicting IT. Within the limitations of this study, the results suggest that it is possible to predict IT accurately based on radiographic findings of the patient. This could be useful in the treatment plan of immediate loading cases.

  5. Numb chin syndrome as a manifestation of possible breast cancer metastasis around dental implants.

    PubMed

    Orhan, Kaan; Bayndr, Hakan; Aksoy, Seçil; Seker, Basak Kusakci; Berberoğlu, Atilla; Ozan, Oğuz

    2011-05-01

    Numb chin syndrome, sometimes called numb lip syndrome, is an uncommon but well-recognized symptom in medical oncology. It may be a metastatic neurologic manifestation of malignancy, often with no clinically visible pathologic finding. The authors report a numb chin syndrome as a manifestation possible breast cancer metastasis around dental implants in a 69-year-old woman. The patient was presented with complaint of numbness in the lower jaw. Medical anamnesis revealed a metastatic breast carcinoma (CA). Radiographic imaging with conventional panoramic radiography and cone beam computed tomographic examination, revealed a moth-eaten shape, radiolucent, and radiopaque mixed appearance around the dental implants that was related with possible metastasis of the breast cancer. Numb chin syndrome is almost unknown within the dental and oral and maxillofacial community, despite being well reported in the medical literature. General dentists, oral medicine specialists, and oral and maxillofacial surgeons must be aware of this condition to consider metastatic cancer in patients with unexplained facial hypoesthesia. Moreover, although the development of metastatic lesions around implants is an uncommon pathologic finding, the examination of peri-implant lesion should be performed carefully considering the entire pathologic situations.

  6. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  7. Drive-by large-region acoustic noise-source mapping via sparse beamforming tomography.

    PubMed

    Tuna, Cagdas; Zhao, Shengkui; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2016-10-01

    Environmental noise is a risk factor for human physical and mental health, demanding an efficient large-scale noise-monitoring scheme. The current technology, however, involves extensive sound pressure level (SPL) measurements at a dense grid of locations, making it impractical on a city-wide scale. This paper presents an alternative approach using a microphone array mounted on a moving vehicle to generate two-dimensional acoustic tomographic maps that yield the locations and SPLs of the noise-sources sparsely distributed in the neighborhood traveled by the vehicle. The far-field frequency-domain delay-and-sum beamforming output power values computed at multiple locations as the vehicle drives by are used as tomographic measurements. The proposed method is tested with acoustic data collected by driving an electric vehicle with a rooftop-mounted microphone array along a straight road next to a large open field, on which various pre-recorded noise-sources were produced by a loudspeaker at different locations. The accuracy of the tomographic imaging results demonstrates the promise of this approach for rapid, low-cost environmental noise-monitoring.

  8. Extending Three-Dimensional Weighted Cone Beam Filtered Backprojection (CB-FBP) Algorithm for Image Reconstruction in Volumetric CT at Low Helical Pitches

    PubMed Central

    Hsieh, Jiang; Nilsen, Roy A.; McOlash, Scott M.

    2006-01-01

    A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to reconstruct tomographic images with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1: 1 (namely extended 3D weighted helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 2π + Δβ] into a union of full scans corresponding to an angular range of [0, 2π], the extended 3D weighted function is a summation of all 3D weighting functions corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1: 1, while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB reconstruction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive applications in CT medical imaging. PMID:23165031

  9. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study.

    PubMed

    Shin, Han-Back; Yoon, Do-Kun; Jung, Joo-Young; Kim, Moo-Sub; Suh, Tae Suk

    2016-10-01

    The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Pneumorachis caused by metastatic gas gangrene.

    PubMed

    Thompson, George R; Crawford, George E

    2009-01-01

    Pneumorachis has previously been described only after spread from a contiguous site or after a traumatic event. Our patient experienced sepsis due to multiple enteric organisms, and gas was identified within the spinal canal on computed tomographic imaging. We present the 1st case of pneumorachis caused by disseminated infection.

  11. Various origins of the duplicated middle cerebral artery.

    PubMed

    Tutar, Nihal Uslu; Töre, Hüseyin Gürkan; Kirbaş, Ismail; Tarhan, Nefise Cağla; Coşkun, Mehmet

    2008-10-01

    We describe the features of a duplicated middle cerebral artery identified by computed tomographic angiography that originates from a previously undefined origin, ie, from the petrous portion of the internal carotid artery. Recognition of this anomaly is important in patients with a possible aneurysm, which was not present in our patient.

  12. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  13. Focal fibrocartilaginous dysplasia and tibia vara: a case report.

    PubMed

    Cockshott, W P; Martin, R; Friedman, L; Yuen, M

    1994-07-01

    A 2-year-old black boy with focal fibrocartilaginous dysplasia is described with illustrations of the typical radiographic appearances supplemented by computed tomographic and magnetic resonance images. Since this rare condition is self-correcting, diagnosis is important so that surgical intervention and biopsy can be avoided and conservative management instituted.

  14. Reversible suprasellar pituitary mass secondary to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atchison, J.A.; Lee, P.A.; Albright, A.L.

    1989-12-08

    Sellar enlargement and suprasellar extension of a pituitary mass, demonstrated by magnetic resonance imaging or computed tomographic scanning in three children with primary hypothyroidism, resolved after treatment with levothyroxine sodium. This condition, a logical consequence of the pathogenesis of primary hypothyroidism, must be considered in patients with pituitary and suprasellar masses.

  15. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    NASA Astrophysics Data System (ADS)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified. Mechanical precompression stress was significantly higher for STBS (141 kPa) than STWS (38 kPa). In addition, the CT image cross sections and the computed tomographic parameters confirmed the mechanically more stable soil structure observed under STBS with a higher initial average pore size but lower porosity and connectivity values compared to STWS. The reason for this is the lack of tillage. On the other hand, tillage at STWS created a loosened, porous and connective substrate. For all variants, the increasing load application led to progressive homogenization processes of the soil structure. At the same time, as stress application increased in all variants, the increase in dry bulk density led to a decrease in average pore size, porosity, and connectivity, while anisotropy increased. It was possible to confirm that strip tillage combines the advantages of no-till and a deeper conservation primary tillage, since on the one hand MT and STWS and on the other hand STBS and NT showed very similar soil structures. The computed tomographic parameters therefore provide valuable information about the impact of tillage on microscopic pore space attributes that improve our understanding about soil functional behavior at much larger scales.

  16. Advanced Ultrasonic Tomograph of Children's Bones

    NASA Astrophysics Data System (ADS)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  17. Computation in generalised probabilisitic theories

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Barrett, Jonathan

    2015-08-01

    From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that {{BQP}}\\subseteq {{AWPP}}, where {{AWPP}} is a classical complexity class (known to be included in {{PP}}, hence {{PSPACE}}). This work investigates limits on computational power that are imposed by simple physical, or information theoretic, principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that multipartite states and transformations can be characterized by local measurements), efficient computations are contained in {{AWPP}}. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class, {{PostBQP}}, is equal to {{PP}}. Given only the assumption of tomographic locality, the inclusion in {{PP}} still holds for post-selected computation in general theories. Hence in a world with post-selection, quantum theory is optimal for computation in the space of all operational theories. We then consider whether one can obtain relativized complexity results for general theories. It is not obvious how to define a sensible notion of a computational oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption does not include {{NP}}.

  18. Ultrasoft x-ray imaging system for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.

    1999-01-01

    A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (<2 Å) and throughput (⩾tens of kHz) miniature monochromators, and based on multilayer mirrors and absolute photodiodes, is being designed for the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.

  19. Direct integration of the inverse Radon equation for X-ray computed tomography.

    PubMed

    Libin, E E; Chakhlov, S V; Trinca, D

    2016-11-22

    A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.

  20. Differentiation of nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger with multi-detector row computed tomography.

    PubMed

    Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae

    2010-01-01

    To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (1.5 cm), surface (smooth or irregular), shape (pedunculated or sessile), accompanying wall thickening, basal indentation, perception on unenhanced images, and enhancement pattern between 2 groups were compared using univariate and multivariate analyses. On univariate analysis, age 55 years or older (P = 0.0019), size bigger than 1.5 cm (P < 0.0001), irregular surface (P = 0.0033), sessile shape (P = 0.0016), accompanying wall thickening (P = 0.0056), basal indentation (P = 0.0236), and perception on unenhanced images (P < 0.0001) were significantly more frequent in neoplastic polyps as compared with nonneoplastic polyps. On multivariate analysis, size bigger than 1.5 cm (P = 0.0260), sessile shape (P = 0.0397), and perception on unenhanced images (P < 0.0001) were statistically significant. Size bigger than 1.5 cm, sessile shape, and perception on unenhanced images are the main factors that differentiate neoplastic from nonneoplastic gallbladder polyps 1 cm or bigger.

  1. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braak, Sicco J., E-mail: sjbraak@gmail.com; Herder, Gerarda J. M., E-mail: j.herder@antoniusziekenhuis.nl; Heesewijk, Johannes P. M. van, E-mail: j.heesewijk@antoniusziekenhuis.nl

    2012-12-15

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24-85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registeredmore » fluoroscopy time, room time, interventional time, dose-area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0-93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1-7). Mean fluoroscopy time was 161 (range 104-551) s, room time was 34 (range 15-79) min, mean DAP value was 25.9 (range 3.9-80.5) Gy{center_dot}cm{sup -2}, and interventional time was 18 (range 5-65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86-96), 100% (95% CI 82-100), 100% (95% CI 96-100), 66.7% (95% CI 55-83), and 91.7% (95% CI 86-96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.« less

  2. Potential for Higher Treatment Failure in Obese Patients: Correlation of Elevated Body Mass Index and Increased Daily Prostate Deviations From the Radiation Beam Isocenters in an Analysis of 1,465 Computed Tomographic Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, James R.; Gao Zhanrong; Merrick, Scott

    2009-09-01

    Purpose: Recent clinical outcome studies on prostate cancer have reported the influence of patient's obesity on the biochemical failure rates after various treatment modalities. In this study, we investigated the effect of patient's physical characteristics on prostate shift in external beam radiotherapy (EBRT) and hypothesized that there maybe a correlation between patient physique and tumor shift. Methods and Materials: A retrospective analysis was performed using data for 117 patients who received image-guided radiation therapy (IGRT) for prostate cancer between January 2005 and April 2007. A total of 1,465 CT scans were analyzed. The standard deviations (SDs) of prostate shifts formore » all patients, along with patient weight, body mass index (BMI), and subcutaneous adipose-tissue thickness (SAT), were determined. Spearman rank correlation analysis was performed. Results: Of the 117 patients, 26.5% were considered normal weight, 48.7% were overweight, 17.9% were mildly obese, and 6.9% were moderately to severely obese. Notably 1.3%, 1.5%, 2.0%, and 21.2% of the respective shifts were greater than 10 mm in the left-right (LR) direction for the four patient groups, whereas in the anterior-posterior direction the shifts are 18.2%, 12.6%, 6.7%, and 21.0%, respectively. Strong correlations were observed between SAT, BMI, patient weight, and SDs of daily shifts in the LR direction (p < 0.01). Conclusions: The strong correlation between obesity and shift indicates that without image-guided radiation therapy, the target volume (prostate with or without seminal vesicles) may not receive the intended dose for patients who are moderate to severely obese. This may explain the higher recurrence rate with conventional external beam radiation therapy.« less

  3. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Silin, Dmitriy

    2004-08-19

    For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed,more » a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.« less

  4. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Low-coherence terahertz tomography based on spatially separated counterpropagating beams with allowance for probe radiation absorption in the medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandrosov, V I

    2015-10-31

    This paper analyses low-coherence tomography of absorbing media with the use of spatially separated counterpropagating object and reference beams. A probe radiation source based on a broadband terahertz (THz) generator that emits sufficiently intense THz waves in the spectral range 90 – 350 μm and a prism spectroscope that separates out eight narrow intervals from this range are proposed for implementing this method. This allows media of interest to be examined by low-coherence tomography with counterpropagating beams in each interval. It is shown that, according to the Rayleigh criterion, the method is capable of resolving inhomogeneities with a size nearmore » one quarter of the coherence length of the probe radiation. In addition, the proposed tomograph configuration allows one to determine the average surface asperity slope and the refractive index and absorption coefficient of inhomogeneities 180 to 700 mm in size, and obtain spectra of such inhomogeneities in order to determine their chemical composition. (laser applications and other topics in quantum electronics)« less

  6. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.

    2010-08-01

    Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.

  7. Reconstruction methods for phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raven, C.

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less

  8. Misalignments calibration in small-animal PET scanners based on rotating planar detectors and parallel-beam geometry.

    PubMed

    Abella, M; Vicente, E; Rodríguez-Ruano, A; España, S; Lage, E; Desco, M; Udias, J M; Vaquero, J J

    2012-11-21

    Technological advances have improved the assembly process of PET detectors, resulting in quite small mechanical tolerances. However, in high-spatial-resolution systems, even submillimetric misalignments of the detectors may lead to a notable degradation of image resolution and artifacts. Therefore, the exact characterization of misalignments is critical for optimum reconstruction quality in such systems. This subject has been widely studied for CT and SPECT scanners based on cone beam geometry, but this is not the case for PET tomographs based on rotating planar detectors. The purpose of this work is to analyze misalignment effects in these systems and to propose a robust and easy-to-implement protocol for geometric characterization. The result of the proposed calibration method, which requires no more than a simple calibration phantom, can then be used to generate a correct 3D-sinogram from the acquired list mode data.

  9. CT Imaging of Hardwood Logs for Lumber Production

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1996-01-01

    Hardwood sawmill operators need to improve the conversion of raw material (logs) into lumber. Internal log scanning provides detailed information that can aid log processors in improving lumber recovery. However, scanner data (i.e. tomographic images) need to be analyzed prior to presentation to saw operators. Automatic labeling of computer tomography (CT) images is...

  10. Diagnostic cardiology: Noninvasive imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  11. Histological and computed tomographic evaluation of a parasitic conjoined twin in hybrid catfish (Ictalurus punctatus [rafinesque] X Ictalurus furcatus [lesueur])

    USDA-ARS?s Scientific Manuscript database

    There is growing use of hybrid catfish (Ictalurus punctatus ' X Ictalurus furcatus ') in commercial aquaculture to utilize hybrid vigour to improve production A conjoined twin specimen found during the course of production studies by the United States Department of Agriculture Catfish Genetic Resear...

  12. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  13. Frequency and Relevance of Acute Peritraumatic Pulmonary Thrombus Diagnosed by Computed Tomographic Imaging in Combat Casualties

    DTIC Science & Technology

    2013-08-01

    variable. Tourniquet and tranexamic acid (TXA) use before CT imaging were also recorded. Admission temperature and systolic blood pressure (SBP) were...Trauma Data Bank. Ann Surg. 2004;240:490Y498. 11. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military appli- cation of tranexamic acid in

  14. [A Case of Pancreatic Neuroendocrine Tumor with Necrolytic Migratory Erythema].

    PubMed

    Hijikawa, Takeshi; Kitade, Hiroaki; Yanagida, Hidesuke; Yamada, Masanori; Yoshioka, Kazuhiko; Shijimaya, Takako; Kiyohara, Takahiro; Uemura, Yoshiko; Kon, Masanori

    2017-10-01

    A 45-year-old man was admitted because of necrolytic migratory erythema. A computed tomographic scan of the abdomen revealed a 4.5cm mass in the tail of the pancreas. We performed distal pancreatectomy and splenectomy, and a definitive diagnosis of pancreatic neuroendocrine tumor(WHO class grade 2)was made histopathologically.

  15. Misdiagnosis of acute peripheral vestibulopathy in central nervous ischemic infarction.

    PubMed

    Braun, Eva Maria; Tomazic, Peter Valentin; Ropposch, Thorsten; Nemetz, Ulrike; Lackner, Andreas; Walch, Christian

    2011-12-01

    Vertigo is a very common symptom at otorhinolaryngology (ENT), neurological, and emergency units, but often, it is difficult to distinguish between vertigo of peripheral and central origin. We conducted a retrospective analysis of a hospital database, including all patients admitted to the ENT University Hospital Graz after neurological examination, with a diagnosis of peripheral vestibular vertigo and subsequent diagnosis of central nervous infarction as the actual cause for the vertigo. Twelve patients were included in this study. All patients with acute spinning vertigo after a thorough neurological examination and with uneventful computed tomographic scans were referred to our ENT department. Nine of them presented with horizontal nystagmus. Only 1 woman experienced additional hearing loss. The mean diagnostic delay to the definite diagnosis of a central infarction through magnetic resonance imaging was 4 days (SD, 2.3 d). A careful otologic and neurological examination, including the head impulse test and caloric testing, is mandatory. Because ischemic events cannot be diagnosed in computed tomographic scans at an early stage, we strongly recommend to perform cranial magnetic resonance imaging within 48 hours from admission if vertigo has not improved under conservative treatment.

  16. Long-term efficacy of biomodeled polymethyl methacrylate implants for orbitofacial defects.

    PubMed

    Groth, Michael J; Bhatnagar, Aparna; Clearihue, William J; Goldberg, Robert A; Douglas, Raymond S

    2006-01-01

    To report the long-term efficacy of custom polymethyl methacrylate implants using high-resolution computed tomographic modeling in the reconstruction of complex orbitofacial defects secondary to trauma. Nine patients with complex orbitofacial bone defects after trauma were evaluated for this retrospective, nonrandomized, noncomparative study. All the patients underwent reconstruction using custom, heat-cured polymethyl methacrylate implants. Patients were followed up postoperatively and evaluated for complications. Nine consecutive patients (5 men and 4 women) aged 28 to 63 years who underwent surgical reconstruction using prefabricated, heat-cured polymethyl methacrylate implants were included in the study. The interval between injury and presentation ranged from 1 month to 40 years. There were no significant complications, including infection, extrusion, or displacement of the implant. In all of the patients, wound healing was uneventful, with antibiotic drugs administered perioperatively. Mean follow-up was 4.3 years from the first visit (range, 6 months to 10 years). Computed tomographic biomodeled, prefabricated, heat-cured polymethyl methacrylate implants are well tolerated in the long term. Their advantages include customized design, long-term biocompatibility, and excellent aesthetic results.

  17. The use of laparoscopy in the diagnosis and treatment of blunt and penetrating abdominal injuries: 10-year experience at a level 1 trauma center.

    PubMed

    Johnson, Jeremy J; Garwe, Tabitha; Raines, Alexander R; Thurman, Joseph B; Carter, Sandra; Bender, Jeffrey S; Albrecht, Roxie M

    2013-03-01

    Diagnostic laparoscopy (DL) has decreased the rate of nontherapeutic laparotomy for patients suffering from penetrating injuries. We evaluated whether DL similarly lowers the rate of nontherapeutic laparotomy for patients with blunt injuries. All patients undergoing DL over a 10-year period (ie, 2001-2010) in a single level 1 trauma center were classified by the mechanism of injury. Demographic and perioperative data were compared using the Student t and Fisher exact tests. There were 131 patients included, 22 of whom sustained blunt injuries. Patients suffering from blunt injuries were more severely injured (Injury Severity Score 18.0 vs 7.3, P = .0001). The most common indication for DL after blunt injury was a computed tomographic scan concerning for bowel injury (59.1%). The rate of nontherapeutic laparotomy for patients sustaining penetrating vs blunt injury was 1.8% and nil, respectively. DL, when coupled with computed tomographic findings, is an effective tool for the initial management of patients with blunt injuries. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Is magnetic resonance imaging in addition to a computed tomographic scan necessary to identify clinically significant cervical spine injuries in obtunded blunt trauma patients?

    PubMed

    Fisher, Brian M; Cowles, Steven; Matulich, Jennifer R; Evanson, Bradley G; Vega, Diana; Dissanaike, Sharmila

    2013-12-01

    Guidelines are in place directing the clearance of the cervical spine in patients who are awake, alert, and oriented, but a gold standard has not been recognized for patients who are obtunded. Our study is designed to determine if magnetic resonance imaging (MRI) detects clinically significant injuries not seen on computed tomographic (CT) scans. The trauma registry was used to identify and retrospectively review medical records of blunt trauma patients from January 1, 2005, to March 30, 2012. Only obtunded patients with a CT scan and MRI of the cervical spine were included. The study cohort consisted of 277 patients. In 13 (5%) patients, MRI detected clinically significant cervical spine injuries that were missed by CT scans, and in 7 (3%) these injuries required intervention. The number needed to screen with MRI to prevent 1 missed injury was 21. The findings suggest that the routine use of MRI in clearing the cervical spine in the obtunded blunt trauma patient. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Evaluation of hepatic arterial anatomy by multidetector computed tomographic angiography in living donor liver transplantation.

    PubMed

    Keles, Papatya; Yuce, Ihsan; Keles, Sait; Kantarci, Mecit

    2016-06-01

    The aim of this study was to define the different courses and percentages of hepatic artery that were detected during preoperative evaluation of living liver donors by multidetector computed tomographic angiography (MDCTA). We evaluated 150 donors before hepatic transplantation. All of the donors were evaluated by multislice CT scan with 256 detectors. For each patient, arterial, portal and venous phase images were obtained. The hepatic arterial variations were evaluated by the same radiologist according to Michels' classification. Common hepatic arterial anatomy (type I) was observed in 95 donors (63.3%). Other arterial variations were determined in the remaining 55 donors (36.6%). The second common variation was type XI which did not match with the description of Michels' classification variation in 15 donors (10%). The remaining variations described in Michels' classification were seen at lower rates. Type VII or X variation was not seen. MDCTA is a useful method to identify the blood supply of the liver before the liver transplantations, and surgeons can make their plan on the basis of CT data.

  20. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    PubMed

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  1. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery

    PubMed Central

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-01-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function. PMID:23460599

  2. Left main coronary artery stenosis: severity evaluation and implications for management.

    PubMed

    Habibi, Susan E; Shah, Rahman; Berzingi, Chalak O; Melchior, Ryan; Sumption, Kevin F; Jovin, Ion S

    2017-03-01

    The significant stenosis of the left main coronary artery is associated with poor outcomes and is considered a strong indication for revascularization. However, deciding whether the stenosis is significant can sometimes be challenging, especially when the degree of stenosis is intermediate, and can necessitate additional tests and imaging modalities. Areas covered: We did a literature search using keywords like 'left main', 'imaging', 'intravascular ultrasound', 'fractional flow reserve', 'computed tomographic angiography' and 'magnetic resonance imaging'. The most commonly used methods for better characterizing intermediate left main coronary stenoses are intravascular ultrasound and fractional flow reserve, while optical coherence tomography is the newer technique that provides better images, but for which not as much data is available. The noninvasive techniques are coronary computed tomographic angiography and, to a lesser degree, coronary magnetic resonance imaging. Expert commentary: Accurately determining the severity of left main coronary stenosis can mean the difference between a major intervention and conservative therapy. The reviewed newer imaging modalities give us greater confidence that patients with left main stenosis are assigned to the right treatment modality.

  3. Cone beam computed tomography in the diagnosis of dental disease.

    PubMed

    Tetradis, Sotirios; Anstey, Paul; Graff-Radford, Steven

    2011-07-01

    Conventional radiographs provide important information for dental disease diagnosis. However, they represent 2-D images of 3-D objects with significant structure superimposition and unpredictable magnification. Cone beam computed tomography, however, allows true 3-D visualization of the dentoalveolar structures, avoiding major limitations of conventional radiographs. Cone beam computed tomography images offer great advantages in disease detection for selected patients. The authors discuss cone beam computed tomography applications in dental disease diagnosis, reviewing the pertinent literature when available.

  4. First-in-Man Computed Tomography-Guided Percutaneous Revascularization of Coronary Chronic Total Occlusion Using a Wearable Computer: Proof of Concept.

    PubMed

    Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Szpak, Marcin; Staruch, Adam D; Kepka, Cezary; Witkowski, Adam

    2016-06-01

    We report a case of successful computed tomography-guided percutaneous revascularization of a chronically occluded right coronary artery using a wearable, hands-free computer with a head-mounted display worn by interventional cardiologists in the catheterization laboratory. The projection of 3-dimensional computed tomographic reconstructions onto the screen of virtual reality glass allowed the operators to clearly visualize the distal coronary vessel, and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. This case provides proof of concept that wearable computers can improve operator comfort and procedure efficiency in interventional cardiology. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Two methods of Haustral fold detection from computed tomographic virtual colonoscopy images

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ananda S.; Tan, Sovira; Yao, Jianhua; Linguraru, Marius G.; Summers, Ronald M.

    2009-02-01

    Virtual colonoscopy (VC) has gained popularity as a new colon diagnostic method over the last decade. VC is a new, less invasive alternative to the usually practiced optical colonoscopy for colorectal polyp and cancer screening, the second major cause of cancer related deaths in industrial nations. Haustral (colonic) folds serve as important landmarks for virtual endoscopic navigation in the existing computer-aided-diagnosis (CAD) system. In this paper, we propose and compare two different methods of haustral fold detection from volumetric computed tomographic virtual colonoscopy images. The colon lumen is segmented from the input using modified region growing and fuzzy connectedness. The first method for fold detection uses a level set that evolves on a mesh representation of the colon surface. The colon surface is obtained from the segmented colon lumen using the Marching Cubes algorithm. The second method for fold detection, based on a combination of heat diffusion and fuzzy c-means algorithm, is employed on the segmented colon volume. Folds obtained on the colon volume using this method are then transferred to the corresponding colon surface. After experimentation with different datasets, results are found to be promising. The results also demonstrate that the first method has a tendency of slight under-segmentation while the second method tends to slightly over-segment the folds.

  6. Dynamic Computed Tomographic Features of Adult Renal Cell Carcinoma Associated With Xp11.2 Translocation/TFE3 Gene Fusions: Comparison With Clear Cell Renal Cell Carcinoma.

    PubMed

    He, Jian; Gan, Weidong; Liu, Song; Zhou, Kefeng; Zhang, Gutian; Guo, Hongqian; Zhu, Bin

    2015-01-01

    To investigate the dynamic contrast-enhanced computed tomography (CT) characteristics of renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusion (Xp11.2 RCC) by comparison with clear cell renal cell carcinoma (CCRCC). Dynamic contrast-enhanced CT images and clinical and pathological records of 20 adult patients with Xp11.2 RCC confirmed by TFE3 immunohistochemical and fluorescence in situ hybridization assay were retrospectively analyzed and compared with the findings of 21 contemporary CCRCCs. Renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusions often occurred in young (30.6 ± 8.6 years) patients with hematuria (9/20). They presented as well-defined (17/20) cystic-solid (17/20) mass with hemorrhage (8/20) and circular/rim calcifications (6/20). Dynamic contrast-enhanced CT showed heterogeneous moderate prolonged enhancement. A tumor-to-cortex attenuation ratio in corticomedullary phase less than 0.62 gave a sensitivity of 90.0% and a specificity of 92.9% in differentiating Xp11.2 RCC from CCRCC (area under the receiver operating characteristic curve = 0.957, P < 0.001). Computed tomographic characteristics and dynamic contrast-enhanced patterns and index can differentiate Xp11.2 RCC from CCRCC.

  7. Seismic tomography of the southern California crust based on spectral-element and adjoint methods

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen

    2010-01-01

    We iteratively improve a 3-D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3-D model is provided by the Southern California Earthquake Center. The data set comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal model, m16, is described in terms of independent shear (VS) and bulk-sound (VB) wave speed variations. It exhibits strong heterogeneity, including local changes of +/-30 per cent with respect to the initial 3-D model. The model reveals several features that relate to geological observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.

  8. Adjoint Tomography of the Southern California Crust (Invited) (Invited)

    NASA Astrophysics Data System (ADS)

    Tape, C.; Liu, Q.; Maggi, A.; Tromp, J.

    2009-12-01

    We iteratively improve a three-dimensional tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3D model is provided by the Southern California Earthquake Center. The dataset comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations and a total of 0.8 million CPU hours. The new crustal model, m16, is described in terms of independent shear (Vs) and bulk-sound (Vb) wavespeed variations. It exhibits strong heterogeneity, including local changes of ±30% with respect to the initial 3D model. The model reveals several features that relate to geologic observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.

  9. Segmentation and Estimation of the Histological Composition of the Tumor Mass in Computed Tomographic Images of Neuroblastoma

    DTIC Science & Technology

    2001-10-25

    a CT image, each voxel contains an integer number which is the CT value, in Hounsfield units (HU), of the voxel. Therefore, the standard method of...Task Number Work Unit Number Performing Organization Name(s) and Address(es) Department of Electrical and Computer Engineering, University of...34, Journal of Pediatric Surgery, vol 24(7), pp. 708-711, 1989. [4] I. N. Bankman, editor, Handbook of Medical Image Analysis, Academic Press, London, UK

  10. Computed tomographic analysis of deformity and dimensional changes in the eyeball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, D.R.; Foulks, G.N.

    1984-12-01

    Computed tomography (CT) was performed in 40 patients with a confirmed ophthalmic diagnosis and a change in the dimensions or configuration of the eyeball. Abnormalities studied included coloboma, microphthalmus, buphthalmos, axial myopia, macrophthalmus, phthisis bulbi, trauma, neoplasm, posterior staphyloma, granuloma, pseudotumor, and surgicalscleral banding for retinal detachment. CT findings could be grouped into three categories depending upon whether the eye was small, large, or normal in size, with the findings in each group allowing distinction of most disease processes.

  11. Computer tomography of flows external to test models

    NASA Technical Reports Server (NTRS)

    Prikryl, I.; Vest, C. M.

    1982-01-01

    Computer tomographic techniques for reconstruction of three-dimensional aerodynamic density fields, from interferograms recorded from several different viewing directions were studied. Emphasis is on the case in which an opaque object such as a test model in a wind tunnel obscures significant regions of the interferograms (projection data). A method called the Iterative Convolution Method (ICM), existing methods in which the field is represented by a series expansions, and analysis of real experimental data in the form of aerodynamic interferograms are discussed.

  12. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  13. Advances in target imaging of deep Earth structure

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.; Clouzet, P.

    2015-12-01

    A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where neither earthquakes nor seismological stations are present within the region of interest, such as would be desireable for the study of a region in the deep mantle. We present benchmark tests showing how the uncertainties in the reference 3D model employed outside of the target region affects the quality of the regional tomographic images obtained.

  14. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  15. Portable imaging system method and apparatus

    DOEpatents

    Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.

    2006-07-25

    An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.

  16. PET imaging for treatment verification of ion therapy: Implementation and experience at GSI Darmstadt and MGH Boston

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Bortfeld, Thomas; Enghardt, Wolfgang; Fiedler, Fine; Knopf, Antje; Paganetti, Harald; Pawelke, Jörg; Shakirin, Georgy; Shih, Helen

    2008-06-01

    Ion beams offer the possibility of improved conformation of the dose delivered to the tumor with better sparing of surrounding tissue and critical structures in comparison to conventional photon and electron external radiation treatment modalities. Full clinical exploitation of this advantage can benefit from in vivo confirmation of the actual beam delivery and, in particular, of the ion range in the patient. During irradiation, positron emitters like 15O (half-life T1/2≈2 min) and 11C ( T1/2≈20 min) are formed in nuclear interactions between the ions and the tissue. Detection of this transient radioactivity via positron emission tomography (PET) and comparison with the expectation based on the prescribed beam application may serve as an in vivo, non-invasive range validation method of the whole treatment planning and delivery chain. For technical implementation, PET imaging during irradiation (in-beam) requires the development of customized, limited angle detectors with data acquisition synchronized with the beam delivery. Alternatively, commercial PET or PET/CT scanners in close proximity to the treatment site enable detection of the residual activation from long-lived emitters shortly after treatment (offline). This paper reviews two clinical examples using a dedicated in-beam PET scanner for verification of carbon ion therapy at GSI Darmstadt, Germany, as well as a commercial offline PET/CT tomograph for post-radiation imaging of proton treatments at Massachusetts General Hospital, Boston, USA. Challenges as well as pros and cons of the two imaging approaches in dependence of the different ion type and beam delivery system are discussed.

  17. Accuracy of Computed Tomographic Perfusion in Diagnosis of Brain Death: A Prospective Cohort Study.

    PubMed

    Sawicki, Marcin; Sołek-Pastuszka, Joanna; Chamier-Ciemińska, Katarzyna; Walecka, Anna; Bohatyrewicz, Romuald

    2018-05-04

    BACKGROUND This study was designed to determine diagnostic accuracy of computed tomographic perfusion (CTP) compared to computed tomographic angiography (CTA) for the diagnosis of brain death (BD). MATERIAL AND METHODS Whole-brain CTP was performed in patients diagnosed with BD and in patients with devastating brain injury with preserved brainstem reflexes. CTA was derived from CTP datasets. Cerebral blood flow (CBF) and volume (CBV) were calculated in all brain regions. CTP findings were interpreted as confirming diagnosis of BD (positive) when CBF and CBV in all ROIs were below 10 mL/100 g/min and 1.0 mL/100 g, respectively. CTA findings were interpreted using a 4-point system. RESULTS Fifty brain-dead patients and 5 controls were included. In brain-dead patients, CTP results revealed CBF 0.00-9.98 mL/100 g/min and CBV 0.00-0.99 mL/100 g, and were thus interpreted as positive in all patients. CTA results suggested 7 negative cases, providing 86% sensitivity. In the non-brain-dead group, CTP results revealed CBF 2.37-37.59 mL/100 g/min and CBV 0.73-2.34 mL/100 g. The difference between values of CBF and CBV in the brain-dead and non-brain-dead groups was statistically significant (p=0.002 for CBF and p=0.001 for CBV). CTP findings in all non-brain-dead patients were interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTP in the diagnosis of BD. In all non-brain-dead patients, CTA revealed preserved intracranial filling and was interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTA in diagnosis of BD. CONCLUSIONS Whole-brain CTP seems to be a highly sensitive and specific method in diagnosis of BD.

  18. Change of aortic length after closing-opening wedge osteotomy for patients with ankylosing spondylitis with thoracolumbar kyphosis: a computed tomographic study.

    PubMed

    Ji, Ming-Liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Zhu, Ze-zhang; Yu, Yang; Jiang, Jun

    2013-10-15

    A computed tomographic study. To investigate the change in aortic length in patients with ankylosing spondylitis (AS) with thoracolumbar kyphosis after closing-opening wedge osteotomy (COWO). Several previous studies reported that COWO can effectively correct severe thoracolumbar kyphosis caused by AS. However, one disadvantage of COWO is elongation of the aorta, which increases the risk of aortic injury. To date, no studies have analyzed the alteration in aortic length in patients with AS undergoing COWO for thoracolumbar kyphosis. A total of 21 consecutive patients with AS with a mean age of 38.9 years undergoing COWO for the correction of thoracolumbar kyphosis were retrospectively studied. Radiographical measurements included global kyphosis, thoracic kyphosis, lumbar lordosis, angle of fusion levels, local kyphosis, and anterior height of the osteotomized vertebra. The computed tomographic scans of the spine were used to measure the aortic diameter (at the site of the osteotomy) and length (the length between the superior endplate of the upper instrumented vertebra and the inferior endplate of L4). The aortic length increased by an average of 2.2 cm postoperatively. Significant changes in global kyphosis, local kyphosis, angle of fusion levels, lumbar lordosis, anterior height of the osteotomized vertebra, and aortic diameter at the site of the osteotomy were observed (P < 0.01). Significant correlation was noted between aortic length and changes in global kyphosis (r = 0.525, P = 0.015), local kyphosis (r = 0.654, P = 0.001), angle of fusion levels (r = 0.634, P = 0.002), and lumbar lordosis (r = 0.538, P = 0.012). Aortic lengthening after COWO for correction of kyphosis was quantitatively confirmed by this study. Spine surgeons should be aware of the potential risk for the development of aortic injury in patients with AS undergoing COWO for the correction of thoracolumbar kyphosis. 4.

  19. Change in Abdominal Morphology After Surgical Correction of Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis: A Computed Tomographic Study.

    PubMed

    Ji, Ming-Liang; Qian, Bang-Ping; Qiu, Yong; Wang, Bin; Mao, Sai-Hu; Zhu, Ze-Zhang; Yu, Yang

    2015-12-01

    A computed tomographic study. To investigate the change in abdominal morphology in surgically treated patients with ankylosing spondylitis (AS) and thoracolumbar kyphosis. Severe thoracolumbar kyphosis in patients with AS exerts pressure on the abdominal cavity and subsequently causes intra-abdominal complications. Several spinal osteotomy techniques have been widely used to correct AS-related thoracolumbar kyphosis. To date, the changed abdominal morphology in patients with AS undergoing surgical correction of thoracolumbar kyphosis has not been addressed. A total of 29 patients with AS undergoing lumbar pedicle subtraction osteotomy for correction of thoracolumbar kyphosis were retrospectively reviewed. Computed tomographic scans of the spine were used to measure the longitudinal, transverse, and anterior-posterior diameters of the abdominal cavity. Furthermore, the abdominal cavity was considered as an ellipsoid structure, thereby allowing calculation of its volume. Radiographical evaluations included global kyphosis (GK), thoracic kyphosis, lumbar lordosis (LL), and angle of fusion levels (AFL). The longitudinal diameter of abdominal cavity significantly increased (P < 0.01), whereas the transverse and anterior-posterior diameters of the abdominal cavity did not change, postoperatively (P > 0.05). Significant changes in GK, LL, and AFL were observed (P < 0.01). The abdominal cavity volume (ACV) increased by an average of 652  mL. The change in ACV was significantly correlated with the changes in GK (r = 0.453, P = 0.014), LL (r = 0.42, P = 0.023), and AFL (r = 0.388, P = 0.037). The increased ACV after correction of thoracolumbar kyphosis was quantitatively confirmed by this study. Thus, the improvement in digestive function after correction of thoracolumbar kyphosis secondary to AS, which has been previously documented, may be because of an increase in ACV. Moreover, spine surgeons should be aware of the potential risk for the development of abdominal complications caused by the lengthening of longitudinal diameter of the abdominal cavity. 3.

  20. Wave Propagation in Non-Stationary Statistical Mantle Models at the Global Scale

    NASA Astrophysics Data System (ADS)

    Meschede, M.; Romanowicz, B. A.

    2014-12-01

    We study the effect of statistically distributed heterogeneities that are smaller than the resolution of current tomographic models on seismic waves that propagate through the Earth's mantle at teleseismic distances. Current global tomographic models are missing small-scale structure as evidenced by the failure of even accurate numerical synthetics to explain enhanced coda in observed body and surface waveforms. One way to characterize small scale heterogeneity is to construct random models and confront observed coda waveforms with predictions from these models. Statistical studies of the coda typically rely on models with simplified isotropic and stationary correlation functions in Cartesian geometries. We show how to construct more complex random models for the mantle that can account for arbitrary non-stationary and anisotropic correlation functions as well as for complex geometries. Although this method is computationally heavy, model characteristics such as translational, cylindrical or spherical symmetries can be used to greatly reduce the complexity such that this method becomes practical. With this approach, we can create 3D models of the full spherical Earth that can be radially anisotropic, i.e. with different horizontal and radial correlation functions, and radially non-stationary, i.e. with radially varying model power and correlation functions. Both of these features are crucial for a statistical description of the mantle in which structure depends to first order on the spherical geometry of the Earth. We combine different random model realizations of S velocity with current global tomographic models that are robust at long wavelengths (e.g. Meschede and Romanowicz, 2014, GJI submitted), and compute the effects of these hybrid models on the wavefield with a spectral element code (SPECFEM3D_GLOBE). We finally analyze the resulting coda waves for our model selection and compare our computations with observations. Based on these observations, we make predictions about the strength of unresolved small-scale structure and extrinsic attenuation.

  1. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  2. Awake craniotomy for microsurgical obliteration of mycotic aneurysms: technical report of three cases.

    PubMed

    Lüders, Jürgen C; Steinmetz, Michael P; Mayberg, Marc R

    2005-01-01

    Infectious (mycotic) aneurysms that do not resolve with medical treatment require surgical obliteration, usually requiring sacrifice of the parent artery. In addition, patients with mycotic aneurysms frequently need subsequent cardiac valve repair, which often necessitates anticoagulation. Three cases of awake craniotomy for microsurgical clipping of mycotic aneurysms are presented. Awake minimally invasive craniotomy using frameless stereotactic guidance on the basis of computed tomographic angiography enables temporary occlusion of the parent artery with neurological assessment before obliteration of the aneurysm. A 56-year-old woman presented with progressively worsening mitral valve disease and a history of subacute bacterial endocarditis and subarachnoid hemorrhage 30 years previously. A cerebral angiogram revealed a 4-mm left middle cerebral artery (MCA) angular branch aneurysm, which required obliteration before mitral valve replacement. The second patient, a 64-year-old woman with a history of rheumatic fever, had an 8-mm right distal MCA aneurysm diagnosed in the setting of pulmonary abscess and worsening cardiac function as a result of mitral valve disease. The third patient, a 57-year-old man with a history of fevers, night sweats, and progressive mitral valve disease, had an enlarging left MCA angular branch aneurysm despite the administration of antibiotics. Because of their location on distal MCA branches, none of the aneurysms were amenable to preoperative test balloon occlusion. After undergoing stereotactic computed tomographic angiography with fiducial markers, the patients underwent a minimally invasive awake craniotomy with frameless stereotactic navigation. In all cases, the results of the neurological examination were unchanged during temporary parent artery occlusion and the aneurysms were successfully obliterated. Awake minimally invasive craniotomy for an infectious aneurysm located in eloquent brain enables awake testing before permanent clipping or vessel sacrifice. Combining frameless stereotactic navigation with computed tomographic angiography allowed us to perform the operation quickly through a small craniotomy with minimal exploration.

  3. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  4. Computer-aided marginal artery detection on computed tomographic colonography

    NASA Astrophysics Data System (ADS)

    Wei, Zhuoshi; Yao, Jianhua; Wang, Shijun; Liu, Jiamin; Summers, Ronald M.

    2012-03-01

    Computed tomographic colonography (CTC) is a minimally invasive technique for colonic polyps and cancer screening. The marginal artery of the colon, also known as the marginal artery of Drummond, is the blood vessel that connects the inferior mesenteric artery with the superior mesenteric artery. The marginal artery runs parallel to the colon for its entire length, providing the blood supply to the colon. Detecting the marginal artery may benefit computer-aided detection (CAD) of colonic polyp. It can be used to identify teniae coli based on their anatomic spatial relationship. It can also serve as an alternative marker for colon localization, in case of colon collapse and inability to directly compute the endoluminal centerline. This paper proposes an automatic method for marginal artery detection on CTC. To the best of our knowledge, this is the first work presented for this purpose. Our method includes two stages. The first stage extracts the blood vessels in the abdominal region. The eigenvalue of Hessian matrix is used to detect line-like structures in the images. The second stage is to reduce the false positives in the first step. We used two different masks to exclude the false positive vessel regions. One is a dilated colon mask which is obtained by colon segmentation. The other is an eroded visceral fat mask which is obtained by fat segmentation in the abdominal region. We tested our method on a CTC dataset with 6 cases. Using ratio-of-overlap with manual labeling of the marginal artery as the standard-of-reference, our method yielded true positive, false positive and false negative fractions of 89%, 33%, 11%, respectively.

  5. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data.

    PubMed

    Sorensen, Mads Solvsten; Mosegaard, Jesper; Trier, Peter

    2009-06-01

    Existing virtual simulators for middle ear surgery are based on 3-dimensional (3D) models from computed tomographic or magnetic resonance imaging data in which image quality is limited by the lack of detail (maximum, approximately 50 voxels/mm3), natural color, and texture of the source material.Virtual training often requires the purchase of a program, a customized computer, and expensive peripherals dedicated exclusively to this purpose. The Visible Ear freeware library of digital images from a fresh-frozen human temporal bone was segmented, and real-time volume rendered as a 3D model of high-fidelity, true color, and great anatomic detail and realism of the surgically relevant structures. A haptic drilling model was developed for surgical interaction with the 3D model. Realistic visualization in high-fidelity (approximately 125 voxels/mm3) and true color, 2D, or optional anaglyph stereoscopic 3D was achieved on a standard Core 2 Duo personal computer with a GeForce 8,800 GTX graphics card, and surgical interaction was provided through a relatively inexpensive (approximately $2,500) Phantom Omni haptic 3D pointing device. This prototype is published for download (approximately 120 MB) as freeware at http://www.alexandra.dk/ves/index.htm.With increasing personal computer performance, future versions may include enhanced resolution (up to 8,000 voxels/mm3) and realistic interaction with deformable soft tissue components such as skin, tympanic membrane, dura, and cholesteatomas-features some of which are not possible with computed tomographic-/magnetic resonance imaging-based systems.

  6. The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services

    PubMed Central

    Castaño-Díez, Daniel

    2017-01-01

    Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID:28580909

  7. The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services.

    PubMed

    Castaño-Díez, Daniel

    2017-06-01

    Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.

  8. Colonic polyps: application value of computer-aided detection in computed tomographic colonography.

    PubMed

    Zhang, Hui-Mao; Guo, Wei; Liu, Gui-Feng; An, Dong-Hong; Gao, Shuo-Hui; Sun, Li-Bo; Yang, Hai-Shan

    2011-02-01

    Colonic polyps are frequently encountered in clinics. Computed tomographic colonography (CTC), as a painless and quick detection, has high values in clinics. In this study, we evaluated the application value of computer-aided detection (CAD) in CTC detection of colonic polyps in the Chinese population. CTC was performed with a GE 64-row multidetector computed tomography (MDCT) scanner. Data of 50 CTC patients (39 patients positive for at least one polyp of ≥ 0.5 cm in size and the other 11 patients negative by endoscopic detection) were retrospectively reviewed first without computer-aided detection (CAD) and then with CAD by four radiologists (two were experienced and another two inexperienced) blinded to colonoscopy findings. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of detected colonic polyps, as well as the areas under the ROC curves (Az value) with and without CAD were calculated. CAD increased the overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of the colonic polyps detected by experienced and inexperienced readers. The sensitivity in detecting small polyps (5 - 9 mm) with CAD in experienced and inexperienced readers increased from 82% and 44% to 93% and 82%, respectively (P > 0.05 and P < 0.001). With the use of CAD, the overall false positive rate and false negative rate for the detection of polyps by experienced and inexperienced readers decreased in different degrees. Among 13 sessile polyps not detected by CAD, two were ≥ 1.0 cm, eleven were 5 - 9 mm in diameter, and nine were flat-shaped lesions. The application of CAD in combination with CTC can increase the ability to detect colonic polyps, particularly for inexperienced readers. However, CAD is of limited value for the detection of flat polyps.

  9. Which test for CAD should be used in patients with left bundle branch block?

    PubMed

    Xu, Bo; Cremer, Paul; Jaber, Wael; Moir, Stuart; Harb, Serge C; Rodriguez, L Leonardo

    2018-03-01

    Exercise stress electrocardiography is unreliable as a test for obstructive coronary artery disease (CAD) if the patient has left bundle branch block. The authors provide an algorithm for using alternative tests: exercise stress echocardiography, dobutamine echocardiography, computed tomographic (CT) angiography, and nuclear myocardial perfusion imaging. Copyright © 2018 Cleveland Clinic.

  10. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara Illman; Betsy Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  11. [Computed tomographic and clinical validation of the use of endosseous titanium nickelide dental implants].

    PubMed

    Temerkhanov, F T; Garafutdinov, D M; Arkharov, S L

    1997-01-01

    The authors analyze the efficacy of repair of atrophied [correction of arthrophic] alveolar processes of the jaws in the projections of the maxillary sinus and inferior alveolar canal with endosseous implants with porous cone-dilating mesostructure made of TN-1P alloy. Prospects for using the new implant design are outlined.

  12. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill U; Gostick, J. T.; Gunterman, H. P.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  13. Delayed cerebral development in twins with congenital hyperthyroidism.

    PubMed

    Kopelman, A E

    1983-09-01

    Twins had congenital hyperthyroidism and delayed cerebral development manifested as ventriculomegaly, increased space in the interhemispheric fissure, and an exaggerated gyral pattern on cranial computed tomographic scans. At 3 1/2 years of age, both children had delayed development. Fetal and neonatal hyperthyroidism may interfere with normal brain growth and maturation with both neuranatomic and developmental sequelae.

  14. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  15. Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2017-04-01

    The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).

  16. An Innovative Regenerative Endodontic Procedure Using Leukocyte and Platelet-rich Fibrin Associated with Apical Surgery: A Case Report.

    PubMed

    Pinto, Nelson; Harnish, Alexandra; Cabrera, Carolina; Andrade, Catherine; Druttman, Tony; Brizuela, Claudia

    2017-11-01

    Regenerative endodontic procedures (REPs) associated with apical surgery could represent an alternative treatment strategy for patients whose teeth present incomplete root formation and extensive apical lesions. Leukocyte platelet-rich fibrin (L-PRF) has potential benefits in REPs; it could promote apical root formation and optimal bone healing. The aim of this case report was to describe innovative regenerative endodontic therapy using L-PRF in the root canal and an extensive apical lesion in an immature tooth with dens invaginatus and asymptomatic apical periodontitis. A healthy 20-year-old woman was referred to the dental clinic of the Universidad de Los Andes, Santiago, Chile, for endodontic treatment in tooth # 22 with incomplete root development and an extensive apical lesion. The diagnosis was asymptomatic apical periodontitis associated with dens invaginatus type II. The patient was treated with an innovative approach using L-PRF in REPs associated with apical surgery. Follow-ups were performed at 6 months and 1 year later. They included periapical radiographs, cone-beam computed tomographic imaging, sensitivity, and vitality tests. The clinical evaluations performed at 6 months and 1 year revealed an absence of symptoms. The radiographic evaluations showed that the apical lesion was resolved. The cone-beam images indicated that the root length increased and the walls had thickened. The sensitivity tests were positive, and the laser Doppler flowmetry showed positive blood flow after 1 year. The success of the results in this case report indicate that L-PRF can be used as a complement in apical surgery and REPs and could provide an innovative alternative treatment strategy for complex clinical cases like these. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters.

    PubMed

    Kalra, Mannudeep K; Maher, Michael M; Blake, Michael A; Lucey, Brian C; Karau, Kelly; Toth, Thomas L; Avinash, Gopal; Halpern, Elkan F; Saini, Sanjay

    2004-09-01

    To assess the effect of noise reduction filters on detection and characterization of lesions on low-radiation-dose abdominal computed tomographic (CT) images. Low-dose CT images of abdominal lesions in 19 consecutive patients (11 women, eight men; age range, 32-78 years) were obtained at reduced tube currents (120-144 mAs). These baseline low-dose CT images were postprocessed with six noise reduction filters; the resulting postprocessed images were then randomly assorted with baseline images. Three radiologists performed independent evaluation of randomized images for presence, number, margins, attenuation, conspicuity, calcification, and enhancement of lesions, as well as image noise. Side-by-side comparison of baseline images with postprocessed images was performed by using a five-point scale for assessing lesion conspicuity and margins, image noise, beam hardening, and diagnostic acceptability. Quantitative noise and contrast-to-noise ratio were obtained for all liver lesions. Statistical analysis was performed by using the Wilcoxon signed rank test, Student t test, and kappa test of agreement. Significant reduction of noise was observed in images postprocessed with filter F compared with the noise in baseline nonfiltered images (P =.004). Although the number of lesions seen on baseline images and that seen on postprocessed images were identical, lesions were less conspicuous on postprocessed images than on baseline images. A decrease in quantitative image noise and contrast-to-noise ratio for liver lesions was noted with all noise reduction filters. There was good interobserver agreement (kappa = 0.7). Although the use of currently available noise reduction filters improves image noise and ameliorates beam-hardening artifacts at low-dose CT, such filters are limited by a compromise in lesion conspicuity and appearance in comparison with lesion conspicuity and appearance on baseline low-dose CT images. Copyright RSNA, 2004

  18. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multislice spiral CT simulator for dynamic cardiopulmonary studies

    NASA Astrophysics Data System (ADS)

    De Francesco, Silvia; Ferreira da Silva, Augusto M.

    2002-04-01

    We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.

  20. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants

    PubMed Central

    Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco

    2009-01-01

    While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457

Top