Science.gov

Sample records for beam current transformer

  1. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  2. LANSCE beam current limiter

    NASA Astrophysics Data System (ADS)

    Gallegos, Floyd R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  3. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}

  4. A new method to calculate the beam charge for an integrating current transformer

    SciTech Connect

    Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  5. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  6. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  7. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  8. LANSCE Beam Current Limiter (XL)

    SciTech Connect

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device.

  9. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  10. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  11. Converging beam optical Fourier transforms

    NASA Astrophysics Data System (ADS)

    Puang-ngern, Srisuda; Almeida, Silverio P.

    1985-08-01

    The classical, most often used, system for performing the optical Fourier transform is by using parallel coherent beam illumination. Lenses used in this method can become quite costly. In this paper we present results obtained using converging beam illumination which is suitable for many applications and is less expensive than the parallel beam method. The input objects for which the Fourier transforms were made are transparencies of snowflakes.

  12. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  13. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  14. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  15. 60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER WAS USED TO SENSE HIGH CURRENT BEING GENERATED ON GENERATOR NUMBER 3 AND REDUCE IT TO A LOWER, EXACT ANALOG VALUE THAT COULD BE SAFELY HANDLED AND MONITORED WITH THE CONTROL CIRCUITRY. THE CURRENT TRANSFORMER IS LOCATED IN THE CENTER OF THE PHOTOGRAPH. THE CONNECTING BUS ABOVE THE TRANSFORMER WAS REMOVED FOR SALVAGE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  16. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  17. LEDA beam diagnostics instrumentation: Beam current measurement

    NASA Astrophysics Data System (ADS)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz® electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  18. Perfect vortex beam: Fourier transformation of a Bessel beam.

    PubMed

    Vaity, Pravin; Rusch, Leslie

    2015-02-15

    We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber.

  19. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  20. Effective shielding to measure beam current from an ion source

    SciTech Connect

    Bayle, H.; Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O.

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  1. Normal modes and mode transformation of pure electron vortex beams.

    PubMed

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  2. Normal modes and mode transformation of pure electron vortex beams

    NASA Astrophysics Data System (ADS)

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.; Yuan, J.

    2017-02-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams. This article is part of the themed issue 'Optical orbital angular momentum'.

  3. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  4. Transformation-optical Fan-beam Synthesis

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Kong, Xianghui; Wang, Hui; Su, He; Lei, Zhenya; Wang, Jing; Zhang, Aofang; Chen, Lei

    2016-02-01

    Gradient-index dielectric lenses are generated based on the coordinate transformation by compressing the homogeneous air spaces quasi-conformally towards and outwards the primary source. The three-dimensional modeling is then performed through revolving the prescribed transformational media 180 degrees around the focal point to reach the architecture of barrel-vaults. It is found that all these two- and three-dimensional transformation-optical designs are capable of producing fan-beams efficiently over a broad frequency range with their main lobes possessing the narrow beamwidth in one dimension and the wide beamwidth in the other, while having the great ability of the wide angular scanning. Finally, we propose to construct such four types of fan-beam lenses through multiple-layered dielectrics with non-uniformed perforations and experimentally demonstrate their excellent performances in the fan-beam synthesis.

  5. Transformation-optical Fan-beam Synthesis

    PubMed Central

    Yang, Rui; Kong, Xianghui; Wang, Hui; Su, He; Lei, Zhenya; Wang, Jing; Zhang, Aofang; Chen, Lei

    2016-01-01

    Gradient-index dielectric lenses are generated based on the coordinate transformation by compressing the homogeneous air spaces quasi-conformally towards and outwards the primary source. The three-dimensional modeling is then performed through revolving the prescribed transformational media 180 degrees around the focal point to reach the architecture of barrel-vaults. It is found that all these two- and three-dimensional transformation-optical designs are capable of producing fan-beams efficiently over a broad frequency range with their main lobes possessing the narrow beamwidth in one dimension and the wide beamwidth in the other, while having the great ability of the wide angular scanning. Finally, we propose to construct such four types of fan-beam lenses through multiple-layered dielectrics with non-uniformed perforations and experimentally demonstrate their excellent performances in the fan-beam synthesis. PMID:26847048

  6. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  7. Effect of ABCD transformations on beam paraxiality.

    PubMed

    Vaveliuk, Pablo; Martinez-Matos, Oscar

    2011-12-19

    The limits of the paraxial approximation for a laser beam under ABCD transformations is established through the relationship between a parameter concerning the beam paraxiality, the paraxial estimator, and the beam second-order moments. The applicability of such an estimator is extended to an optical system composed by optical elements as mirrors and lenses and sections of free space, what completes the analysis early performed for free-space propagation solely. As an example, the paraxiality of a system composed by free space and a spherical thin lens under the propagation of Hermite-Gauss and Laguerre-Gauss modes is established. The results show that the the paraxial approximation fails for a certain feasible range of values of main parameters. In this sense, the paraxial estimator is an useful tool to monitor the limits of the paraxial optics theory under ABCD transformations.

  8. Solid-state current transformer

    NASA Technical Reports Server (NTRS)

    Farnsworth, D. L. (Inventor)

    1976-01-01

    A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.

  9. High current beam transport with multiple beam arrays

    SciTech Connect

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed.

  10. Beam coordinate transformations from DICOM to DOSXYZnrc

    NASA Astrophysics Data System (ADS)

    Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.

    2012-12-01

    Digital imaging and communications in medicine (DICOM) format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported in DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for modelling the Linac head and simulating dose delivery in radiotherapy. It has its own definition of beam orientation, which is not in compliance with the one defined in the DICOM standard. MC dose calculations using information from TPS generated plans require transformation of beam orientations to the DOSXYZnrc coordinate system (c.s.) and the transformation is non-trivial. There have been two studies on the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, easily understandable, and easier for computational implementation. The derivation of the polar angle θ and the azimuthal angle φ used by DOSXYZnrc is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of the beam rotation ϕcol for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans. The comparisons between TPS and MC results show very good geometrical agreement for field placements, together with good agreement in dose distributions.

  11. Beam coordinate transformations from DICOM to DOSXYZnrc.

    PubMed

    Zhan, Lixin; Jiang, Runqing; Osei, Ernest K

    2012-12-21

    Digital imaging and communications in medicine (DICOM) format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported in DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for modelling the Linac head and simulating dose delivery in radiotherapy. It has its own definition of beam orientation, which is not in compliance with the one defined in the DICOM standard. MC dose calculations using information from TPS generated plans require transformation of beam orientations to the DOSXYZnrc coordinate system (c.s.) and the transformation is non-trivial. There have been two studies on the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, easily understandable, and easier for computational implementation. The derivation of the polar angle θ and the azimuthal angle φ used by DOSXYZnrc is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of the beam rotation ϕ(col) for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans. The comparisons between TPS and MC results show very good geometrical agreement for field placements, together with good agreement in dose distributions.

  12. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  13. A transmission-loss monitor using current transformers

    SciTech Connect

    Power, J.F.; Gilpatrick, J.D.; Jason, A.J.

    1993-12-01

    A system for measuring the amount of beam-charge loss in a linear-accelerator structure has been developed that uses a pair of beam-current transformers, otherwise used to monitor the linac beam current. This system is necessary to enable the Ground Test Accelerator (GTA) fast-protect system to shut off the accelerated beam in the event of a beam loss that would deposit sufficient energy to damage the accelerator structure. The present GTA accelerator consists of a 2.5-MeV, H{sup {minus}} RFQ, an intermediate matching section (IMS) and a single DTL cavity with an output energy of 3.2-MeV and transmitted current of 35 mA. Based on the RFQ output beam, melting of the copper structures will occur when about 40 nC of beam is deposited in a point loss. For a grazing angle of 30 mrad, up to 640 nC may be tolerated. The beam-current-transmission-loss monitor (BCTLM) system in conjunction with the fast-protect system measures the amount of beam loss between two toroidal beam-current monitors and automatically terminates the macropulse when the integrated loss reaches a predetermined set point. The design and operation of the BCTLM system used in the IMS and DTL section of the accelerator is described.

  14. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  15. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  16. Neutral-beam current drive in tokamaks

    SciTech Connect

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device.

  17. Limiting current in electron-beam welders

    NASA Technical Reports Server (NTRS)

    Spiegel, K. W.

    1981-01-01

    Damage to workpiece by excessive current in electron-beam welder is prevented by mechanism that accurately adjusts anode-to-cathode spacing. Mechanism is installed on standard Sciaky (or equivalent) electron-beam gun with only minimal modification. By turning knurled knob and observing digital readout of anode/cathode separation, machine operator adjusts welder for safe maximum current before welding begins.

  18. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  19. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  20. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  1. Current monitors for intensity modulated beams

    NASA Astrophysics Data System (ADS)

    Ball, Mark; Hamilton, Brett

    1995-05-01

    A beam intensity modulation system (BIMPS), that works in conjunction with the beam splitting system to allow beams of different intensities to be sequentially delivered to two different areas, has already been in use for many years. The operators could not, however, tune the cyclotrons with the BIMPS in operation using the existing beam instrumentation systems in the cyclotron beamlines which consisted mostly of non-electron-suppressed stops. Since the BIMPS duty factor (e.g. as low as 1/100 when operating with a 100 μs high intensity (HI) pulse at 10 Hz) usually exceed the ratio of the HI to LOW beam intensities (varying in the range from 10 to 100), the stops would, to first order, merely read out the LOW beam intensity. Thus there existed no way to monitor the HI beam intensity and transmission efficiency unless operating continuously in the HI beam mode. To allow BIMPS operation at all times, a new system of intercepting and nonintercepting beam current monitors have been added to the cyclotron beamlines. The system consists of electron suppressed stops and nonintercepting beam pickups with high output bandwidth of (10 kHz) signal processors to allow accurate sampling of the short duration HI beam pulses. The electronics for the stops are straightforward; there are, however, important technical trade-off in the design of the nonintercepting system design. The amplifier input voltage noise and relatively low coupling impedance of the nonintercepting pickups cause the minimum detectable HI current to decrease with the square root of the HI beam pulse length; as the pulse length is shortened, the system timing constraints also become more critical. Although the BIMPS is capable of providing beam pulse durations as short at 10 μs, the minimum pulse length for operation was chosen to be 100 μs. The electronics have time constants of 200 μs allowing measurement accuracies of better than a percent. Since the most rapid modulation frequency used for filling the

  2. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  3. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  4. Power threshold for neutral beam current drive

    SciTech Connect

    Politzer, P.A. ); Porter, G.D. )

    1989-10-02

    For fully noninductive current drive in tokamaks using neutral beams, there is a power and density threshold condition, setting a minimum value for P{sup 3/2}/n{sup 2}. If this condition is not met, stationary state cannot occur, and a tokamak discharge will collapse. This is a consequence of the coupling between current and electron temperature, or between current drive efficiency and energy confinement time. 4 figs.

  5. BRIEF COMMUNICATIONS: Transformation of Gaussian beams using a spatially inhomogeneous beam splitter

    NASA Astrophysics Data System (ADS)

    Sakyan, A. S.

    1989-03-01

    A spatially inhomogeneous beam splitter was developed for transformation of the profiles of Gaussian laser beams in a wide range of wavelengths. An experimental investigation of an He-Ne laser showed that a flat-topped beam could be produced in which the relative variation of the distribution of the power density across the beam did not exceed 3%.

  6. Fractional Fourier transform of Lorentz-Gauss beams.

    PubMed

    Zhou, Guoquan

    2009-02-01

    Lorentz-Gauss beams are introduced to describe certain laser sources that produce highly divergent beams. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz-Gauss beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz-Gauss beam passing through an FRFT system has been derived. By using the derived expression, the properties of a Lorentz-Gauss beam in the FRFT plane are graphically illustrated with numerical examples.

  7. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  8. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  9. DC-Compensated Current Transformer

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  10. Beam-current monitor for FMIT

    SciTech Connect

    Chamberlin, D.D.; Brousseau, A.T.

    1981-03-01

    The application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam is described. (GHT)

  11. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  12. Note: A real-time beam current density meter

    SciTech Connect

    Liu Junliang; Yu Deyang; Ruan Fangfang; Xue Yingli; Wang Wei

    2013-03-15

    We have developed a real-time beam current density meter for charged particle beams. It measures the mean current density by collimating a uniform and large diameter primary beam. The suppression of the secondary electrons and the deflection of the beam were simulated, and it was tested with a 105 keV Ar{sup 7+} ion beam.

  13. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, M.

    2013-11-07

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ∼ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  14. Non-uniform beam vibration using Differential Transform Method

    NASA Astrophysics Data System (ADS)

    Shali, S.; Nagaraja, S. R.; Jafarali, P.

    2016-09-01

    The paper focuses on the vibration characteristics of non-uniform Euler- Bernoulli beam using Differential Transform Method (DTM). DTM is a numerical method to solve differential equations where the governing equations are reduced into a set of polynomials. Non-uniformity is considered corresponding to linear variation in breadth and height of the beam. The effect of taper ratio on the fundamental frequency of tapered beams is also analysed. The method has proved to be accurate, simple and effective for eigenvalue analysis. For the two cases of non-uniform beam analysed, the frequency computed by the method of differential transform is found to be comparable with the previously available results.

  15. Spiral-like multi-beam emission via transformation electromagnetics

    SciTech Connect

    Tichit, Paul-Henri; Burokur, Shah Nawaz Lustrac, André de

    2014-01-14

    Transformation electromagnetics offers an unconventional approach for the design of novel radiating devices. Here, we propose an electromagnetic metamaterial able to split an isotropic radiation into multiple directive beams. By applying transformations that modify distance and angles, we show how the multiple directive beams can be steered at will. We describe transformation of the metric space and the calculation of the material parameters. Different transformations are proposed for a possible physical realization through the use of engineered artificial metamaterials. Full wave simulations are performed to validate the proposed approach. The idea paves the way to interesting applications in various domains in microwave and optical regimes.

  16. Spiral-like multi-beam emission via transformation electromagnetics

    NASA Astrophysics Data System (ADS)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2014-01-01

    Transformation electromagnetics offers an unconventional approach for the design of novel radiating devices. Here, we propose an electromagnetic metamaterial able to split an isotropic radiation into multiple directive beams. By applying transformations that modify distance and angles, we show how the multiple directive beams can be steered at will. We describe transformation of the metric space and the calculation of the material parameters. Different transformations are proposed for a possible physical realization through the use of engineered artificial metamaterials. Full wave simulations are performed to validate the proposed approach. The idea paves the way to interesting applications in various domains in microwave and optical regimes.

  17. Hough Transform Based Corner Detection for Laser Beam Positioning

    SciTech Connect

    Awwal, A S

    2005-07-26

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.

  18. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  19. Design and initial tests of beam current monitoring systems for the APS transport lines

    SciTech Connect

    Wang, Xucheng

    1992-12-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included.

  20. Design and initial tests of beam current monitoring systems for the APS transport lines

    SciTech Connect

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included.

  1. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  2. Beam-induced graphitic carbon cage transformation from sumanene aggregates

    SciTech Connect

    Fujita, Jun-ichi Tachi, Masashi; Murakami, Katsuhisa; Sakurai, Hidehiro; Morita, Yuki; Higashibayashi, Shuhei; Takeguchi, Masaki

    2014-01-27

    We found that electron-beam irradiation of sumanene aggregates strongly enhanced their transformation into a graphitic carbon cage, having a diameter of about 20 nm. The threshold electron dose was about 32 mC/cm{sup 2} at 200 keV, but the transformation is still induced at 20 keV. The transformation sequence suggested that the cage was constructed accompanied by the dynamical movement of the transiently linked sumanene molecules in order to pile up inside the shell. Thus, bond excitation in the sumanene molecules rather than a knock-on of carbon atoms seems to be the main cause of the cage transformation.

  3. Transformer ratio saturation in a beam-driven wakefield accelerator

    SciTech Connect

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    2015-12-15

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  4. Triggered beam pulser and current integrator for PIXE analysis

    NASA Astrophysics Data System (ADS)

    Birch, D. T.; Skofronick, G.; Nelson, J. W.

    1987-03-01

    Two auxiliary circuits to facilitate PIXE analyses are described: a triggerable beam pulser tor pile-up reduction and dead time correction; and a versatile voltage to frequency converter for use with a beam current integrator.

  5. Start-to-end beam dynamics simulation of double triangular current profile generation in Argonne Wakefield Accelerator

    SciTech Connect

    Ha, G.; Power, J.; Kim, S. H.; Gai, W.; Kim, K.-J.; Cho, M. H.; Namkung, W.

    2012-12-21

    Double triangular current profile (DT) gives a high transformer ratio which is the determining factor of the performance of collinear wakefield accelerator. This current profile can be generated using the emittance exchange (EEX) beam line. Argonne Wakefield Accelerator (AWA) facility plans to generate DT using the EEX beam line. We conducted start-to-end simulation for the AWA beam line using PARMELA code. Also, we discuss requirements of beam parameters for the generation of DT.

  6. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    SciTech Connect

    Lemery, F.; Piot, P.

    2014-01-01

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structure to realize shape close to the theoretically optimized current profiles.

  7. Solar wind double ions beams and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Feldman, W. C.; Phillips, J. L.; Goldstein, B. E.; Balogh, A.

    1995-01-01

    Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.

  8. Saturation current spikes eliminated in saturable core transformers

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  9. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    PubMed

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  10. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2013-11-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  11. Fractional Fourier transform for off-axis elliptical Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zheng, Chongwei

    2006-03-01

    The fractional Fourier transform (FRT) is applied to off-axis elliptical Gaussian beam (EGB). An analytical formula is derived for the FRT of off-axis EGB in terms of the tensor method. The corresponding tensor ABCD law for performing the FRT of off-axis EGB is also obtained. By using the derived formulae, numerical examples are given. The derived formulae provide a convenient way for analyzing and calculating the FRT of off-axis EGB.

  12. Three-dimensional phase transformation by impedance-matched dielectric slabs and generation of hollow beams based on transformation optics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Shuaisai; Tang, Zhixiang; Shu, Weixing

    2016-10-01

    We propose a three-dimensional (3D) phase transformation method by an impedance-matched dielectric slab and apply it to generating hollow beams. We first employ transformation optics to establish a method for the transformation between two arbitrary 3D wavefronts through a flat dielectric and impedance-matched material. Then the method is used to convert a solid beam into a hollow beam with desired wavefront. By tuning the transformation surface, different hollow beams can be produced. The results are further validated by 3D finite-difference time-domain simulations.

  13. Gaussian laser beam transformation into an optical vortex beam by helical lens

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2016-01-01

    In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.

  14. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  15. Electron trapping in high-current ion beam pipes

    SciTech Connect

    Herrmannsfeldt, W.B.

    2000-03-01

    The space charge voltage depression in a drifting heavy ion beam during the final stages of current pulse compression can be hundreds of kilovolts. For example, a 1kA beam of ions at beta = v/c = 0.4 would have a beam center-to-edge potential difference of 75kV. With suitable clearance from beam edge to the beam pipe, this amount is typically increased by a factor of 2 to 3 by the (1 + 2 ln(b/a)) term that accounts for the ratio of pipe radius to beam radius. Such high voltages, and resulting high electric fields at the pipe wall, will result in electrons being pulled into the beam pipe. These electrons which are emitted from the grounded beam pipe, will pass through the ion beam at high velocity and then turn around without (usually) striking the wall and continue to pass through the beam on repeated oscillations. It is possible to control the longitudinal motion of these trapped electrons by suitably varying the pipe size while considering the beam diameter. A segment of the beam pipe that has a larger diameter will result in a potential well that traps the electrons longitudinally. In a constant current scenario in a uniform pipe, the electrons will drift in the direction of the beam. However, the head and especially the tail of the ion beam will have a dramatic effect on the electrons, causing them to be pulled into the ion beam. These complex processes will continue until the ion beam passes through an optical element such as a beam transport magnet that will effectively block the motion of the electron clouds following the ions. In this paper, the authors will show examples of how electrons can be trapped and controlled by varying the conditions determining their emission and confinement. Ray tracing simulations using the EGN2[1] computer code will be used to model the electron trajectories in the presence of a high current heavy ion beam. The self magnetic field of the ion beam, while not sufficient to affect the ions themselves significantly, has a strong

  16. 59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN THE SIGNAL POWER CONDITIONING ROOM. THE CURRENT TRANSFORMER (UPPER RIGHT) IS AN INDUCTION COUPLED SENSOR WHICH IS USED TO REDUCE HIGH CURRENT TO ANALOGOUS LOW VALUES SAFE TO USE IN CONTROL ROOM CIRCUITRY. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  17. Low ratio current transformer models in the electromagnetic transients program

    SciTech Connect

    Wrate, G.T.; Mork, B.; Mustaphi, K.

    1995-09-01

    Low ratio current transformers are sometimes applied for both overload and fault protection. If sized for overload or neutral imbalance protection of a circuit, the current transformer can be driven deeply into saturation during faults. This could have an effect on the ability of its associated relay to operate properly. To investigate this effect, an EMTP model of a current transformer is developed using a duality derivation. Unlike other models in the literature, this model includes only a small impedance on the primary.

  18. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  19. Drift distance survey in DPIS for high current beam production

    SciTech Connect

    Kanesue,T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2009-09-20

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between laser target and beam extraction position. In direct plasma injection scheme (DPIS), which uses a laser ion source and Radio Frequency Quadrupole (RFQ) linac, we can apply relatively higher electric field at the beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration like several tens of mA, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that the matching condition can be improved by controlling plasma drift distance.

  20. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  1. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  2. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  3. DEVELOPMENT OF ACCELERATOR DATA REPORTING SYSTEM AND ITS APPLICATION TO TREND ANALYSIS OF BEAM CURRENT DATA

    SciTech Connect

    Padilla, M.J.; Blokland, W.

    2009-01-01

    Detailed ongoing information about the ion beam quality is crucial to the successful operation of the Spallation Neutron Source at Oak Ridge National Laboratory. In order to provide the highest possible neutron production time, ion beam quality is monitored to isolate possible problems or performance-related issues throughout the accelerator and accumulator ring. For example, beam current monitor (BCM) data is used to determine the quality of the beam transport through the accelerator. In this study, a reporting system infrastructure was implemented and used to generate a trend analysis report of the BCM data. The BCM data was analyzed to facilitate the identifi cation of monitor calibration issues, beam trends, beam abnormalities, beam deviations and overall beam quality. A comparison between transformed BCM report data and accelerator log entries shows promising results which represent correlations between the data and changes made within the accelerator. The BCM analysis report is one of many reports within a system that assist in providing overall beam quality information to facilitate successful beam operation. In future reports, additional data manipulation functions and analysis can be implemented and applied. Built-in and user-defi ned analytic functions are available throughout the reporting system and can be reused with new data.

  4. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  5. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  6. Amending the uniformity of ion beam current density profile

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Xu, Dequan; Liu, Ying; Xu, Xiangdong; Fu, Shaojun

    2008-03-01

    The uniformity of ion beam current density profile has been amended by changing the flow of the gas and making a new beam channel. The platform scanned in the horizontal orientation in this experiment, so the horizontal ion beam current distribution had hardly any effect on the etching uniformity and amending the ion beam current density profile in the vertical orientation was sufficient for the purpose of plat etching profile. The ratio of the ion source's working gas inputs has some effect for the uniformity and a ratio of 6.50sccm: 8.00sccm: 9.60sccm of the three gas inputs flow1: flow2: flow3 will lead to a more uniform profile. According to the horizontal distribution and the original vertical ion beam current density distribution measured by Faraday Cup, a new beam channel was made. The uniformity of ion beam current density profile is enhanced from +/-4.31%to +/-1.96% in this experiment.

  7. Polymorphic beams and Nature inspired circuits for optical current

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2016-10-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  8. Polymorphic beams and Nature inspired circuits for optical current

    PubMed Central

    Rodrigo, José A.; Alieva, Tatiana

    2016-01-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams. PMID:27734940

  9. Polymorphic beams and Nature inspired circuits for optical current.

    PubMed

    Rodrigo, José A; Alieva, Tatiana

    2016-10-13

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  10. Heat extraction from targets in high current electron beams

    NASA Astrophysics Data System (ADS)

    Bubb, Ernest; Altemus, Rosemary; McCarthy, James; Biron, Don

    1982-12-01

    Various aspects of heat extraction from targets in high current electron beams are examined, among which are the dependences on boundary temperature, beam current density, and convective effects from an ambient gaseous environment. The design of a cooling system which extracts heat by forcing hydrogen (or helium) gas at a pressure of several Torr at near sonic velocities across a target surface is described. Boundary layer theory calculations and empirical measurements of the average heat transfer coefficient for the system are presented.

  11. Solenoid transport of beams with current-dependent initial conditions

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Poole, B. R.; Lewellen, J. W.

    2017-09-01

    Intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beam current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.

  12. Direct-Current Monitor With Flux-Reset Transformer Coupling

    NASA Technical Reports Server (NTRS)

    Canter, Stanley

    1993-01-01

    Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.

  13. Q-compensated beam migration with multiscale Gabor transform

    NASA Astrophysics Data System (ADS)

    Liu, Shaoyong; Gu, Hanming; Yan, Zhe; Li, Hui; Wang, Huazhong

    2017-08-01

    Anelastic attenuation often causes amplitude decrease and phase distortion in seismic data. Seismic migration of such attenuated data often yields poor images of subsurface structures, especially under high-attenuation areas. Previous studies have been focusing on the compensation of attenuation to obtain higher resolution images. However, it is still challenging to achieve a good ray-based Q-compensated migration for seismic data. In this paper, we firstly introduce the multiscale Gabor transform to obtain a local time-frequency data for Q-dependent compensation, where the local lengths of filtering windows varied from frequencies are computed automatically. Then, we propose an efficient Q-compensated beam migration based on the multiscale Gabor transform. The attenuation of seismic wave is compensated based on Q-dependent traveltimes before imaging loop, and the Q-dependent traveltimes are purchased using the spatial variant Q models within imaging loop. The proposed Q-compensated migration has similar computational cost as the traditional beam migrations, because the frequency integral loop in the imaging process is solved in our implementation scheme. Both synthetic and real data examples show the effectiveness and efficiency of the proposed method.

  14. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    SciTech Connect

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R.; Zhong, Weiping; Petrović, Milan S.; Zhang, Yanpeng

    2015-12-15

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.

  15. Neutral beam current drive scaling in DIII-D

    SciTech Connect

    Porter, G.D.; Bhadra, D.K.; Burrell, K.H.; Callis, R.W.; Colleraine, A.P.; Ferron, J.R.; James, R.A.; Kellman, A.G.; Kim, J.; Matsuoka, M.

    1989-03-01

    Neutral beam current drive scaling experiments have been carried out on the DIII-D tokamak at General Atomics. These experiments were performed using up to 10 MW of 80 keV hydrogen beams. Previous current drive experiments on DIII-D have demonstrated beam driven currents up to 340 kA. In the experiments reported here we achieved beam driven currents of at least 500 kA, and have obtained operation with record values of poloidal beta (epsilon..beta../sub p/ = 1.4). The beam driven current reported here is obtained from the total plasma current by subtracting an estimate of the residual Ohmic current determined from the measured loop voltage. In this report we discuss the scaling of the current drive efficiency with plasma conditions. Using hydrogen neutral beams, we find the current drive efficiency is similar in Deuterium and Helium target plasmas. Experiments have been performed with plasma electron temperatures up to T/sub e/ = 3 keV, and densities in the range 2 /times/ 10/sup 19/m/sup /minus/3/ < n/sub e/ < 4 /times/ 10/sup 19/m/sup /minus/3/. The current drive efficiency (nIR/P) is observed to scale linearly with the energy confinement time on DIII-D to a maximum of 0.05 /times/ 10/sup 20/m/sup /minus/2/ A/W. The measured efficiency is consistent with a 0-D theoretical model. In addition to comparison with this simple model, detailed analysis of several shots using the time dependent transport code ONETWO is discussed. This analysis indicates that bootstrap current contributes approximately 10--20% of the the total current. Our estimates of this effect are somewhat uncertain due to limited measurements of the radial profile of the density and temperatures. 4 refs., 1 fig., 1 tab.

  16. Current transformer based on optical fiber fluorescent thermometry

    NASA Astrophysics Data System (ADS)

    Jia, Danping; Jia, Ting; He, Liang; Lin, Yingwen

    2008-12-01

    In the paper a review on the potential advantages of optical current transformers points out that it is the technology trend on the development of current transformer. But there are many more difficulties to be resolved, innovative ideas of developing optical current transformers must be strengthened. A high voltage current transformer project based on current thermal effect was introduced, which combined the current thermal effects and the optical fiber thermometry technology. Fiber optic temperature sensor was the earlier and mature product among fiber optic sensors in commercial, current thermal effects technology is more general applied, so the new project has the advantages over other current transformer projects which are now meeting the difficulties hardly to resolve. The relationship between the instantaneous value of measured current and the temperature rise was deduced, and the mathematical model of the current transformer was established. By use of the mathematical model, in theory, the instantaneous value of current can be tracked by the temperature output of sensor accurately, so that it can be used to measure instantaneous value of current. The technical data and features required of the main devices and components can be provided by use of the mathematical model for technical design of the project, simulation method and experiment tests were used to prove the availability.

  17. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-11-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS.

  18. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1995-05-05

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Solenoid transport of beams with current-dependent initial conditions

    DOE PAGES

    Harris, J. R.; Poole, B. R.; Lewellen, J. W.

    2017-09-06

    We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less

  20. Current correlations in a Majorana beam splitter

    NASA Astrophysics Data System (ADS)

    Haim, Arbel; Berg, Erez; von Oppen, Felix; Oreg, Yuval

    2015-12-01

    We study current correlations in a T junction composed of a grounded topological superconductor and of two normal-metal leads which are biased at a voltage V . We show that the existence of an isolated Majorana zero mode in the junction dictates a universal behavior for the cross correlation of the currents through the two normal-metal leads of the junction. The cross correlation is negative and approaches zero at high bias voltages as -1 /V . This behavior is robust in the presence of disorder and multiple transverse channels, and persists at finite temperatures. In contrast, an accidental low-energy Andreev bound state gives rise to nonuniversal behavior of the cross correlation. We employ numerical transport simulations to corroborate our conclusions.

  1. Microbial steroid transformations: current state and prospects.

    PubMed

    Donova, Marina V; Egorova, Olga V

    2012-06-01

    Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.

  2. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  3. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect

    Leung Shingyu; Qian Jianliang

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  4. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  5. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  6. Photoacoustic transformation of Bessel light beams in magnetoactive superlattices

    SciTech Connect

    Mityurich, G. S.; Chernenok, E. V.; Sviridova, V. V.; Serdyukov, A. N.

    2015-03-15

    Photoacoustic transformation of the TE mode of a Bessel light beam (BLB) has been studied for piezoelectric detection in short-period superlattices formed by magnetoactive crystals of bismuth germanate (Bi{sub 12}GeO{sub 20}) and bismuth silicate (Bi{sub 12}SiO{sub 20}) types. It is shown that the resulting signal amplitude can be controlled using optical schemes of BLB formation with a tunable cone angle. A resonant increase in the signal amplitude has been found in the megahertz range of modulation frequencies and its dependences on the BLB modulation frequency, geometric sizes of the two-layer structure and piezoelectric transducer, radial coordinate of the polarization BLB mode, and dissipative superlattice parameters are analyzed.

  7. Conceptual design of a beam steering lens through transformation electromagnetics.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; de Lustrac, André

    2015-05-18

    In this paper, based on transformation electromagnetics, the design procedure of a lens antenna, which steers the radiated beam of a patch array, is presented. Laplace's equation is adopted to construct the mapping between the virtual space and the physical space. The two dimensional (2D) design method can be extended to a potential three-dimensional (3D) realization, and with a proper parameter simplification, the lens can be further realized by common metamaterials or isotropic graded refractive index (GRIN) materials. Full wave simulations are performed to validate the proposed concept. It is observed that by placing the lens on a feeding source, we are able to steer the radiation emitted by the latter source.

  8. Nanosecond response ''gasket-type'' magnetic loop current monitor for relativistic electron beam current measurements.

    PubMed

    Copeland, R L; Adamski, J L; Doggett, W O; Morrow, D L; Bennett, W H

    1979-02-01

    A fast response magnetic loop current monitor has been developed to measure relativistic electron beam return currents. The monitor has a rise time of about a nanosecond and a high degree of symmetry with moderate sensitivity, variable from about 1 to 10 V/kA. This simple monitor, with a thickness of 0.254 mm or less, is thin enough to be placed between segments of return current path in the diode or drift tube regions, is insensitive to flashover, beam and plasma bombardment, and radiation effects, and measures net current, thus offering some advantages over conventional magnetic probes, since the main components are outside of the vacuum region. Design criteria, an equivalent circuit analysis, and typical calibration waveforms are presented. Experimental current measurements for a pinched electron beam diode configuration using both conventional magnetic probes and ''gasket-type''current monitors with the FX-75 relativistic electron beam accelerator are presented.

  9. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  10. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  11. Current limiting mechanisms in electron and ion beam experiments

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1990-01-01

    The emission and collection of current from satellites or rockets in the ionosphere is a process which, at equilibrium, requires a balance between inward and outward currents. In most active experiments in the ionosphere and magnetosphere, the emitted current exceeds the integrated thermal current by one or more orders of magnitude. The system response is typically for the emitted current to be limited by processes such as differential charging of insulating surfaces, interactions between an emitted beam and the local plasma, and interactions between the beam and local neutral gas. These current limiting mechanisms have been illustrated for 20 years in sounding rocket and satellite experiments, which are reviewed here. Detailed presentations of the Spacecraft Charging at High Altitude (SCATHA) electron and ion gun experiments are used to demonstrate the general range of observed phenomena.

  12. Return Current Effects on Electron Beam Focusing in Plasma Lenses

    NASA Astrophysics Data System (ADS)

    Govil, R.; Backhaus, E. Y.; Wurtele, J. S.; Leemans, W. P.

    1998-11-01

    Relativistic electron beams can be focused in field-free plasmas due to magnetic self-pinching(P. Chen, Particle Accelerators, 20, p. 171 (1987).). If the plasma density is sufficiently high, plasma return current can weaken the beam self-pinching by reducing the net current. The return current effect is important when the plasma wavelength is small compared to transverse beam size, namely, k_pσr agt 1. An overdense plasma lens experiment(R. Govil and W.P. Leemans, Proc. of the Advanced Accelerator Workshop, Baltimore, MD (1998), to be published.) was conducted at the Beam Test Facility(W.P. Leemans et al., Proc. of the Particle Accelerator Conference, p. 83 (1993).) at LBNL to examine the reduction in focusing due to return currents induced in the plasma. In the experiment, plasma lenses were produced with k_pσr ranging from 0.3 to 1.1. Simulation results, based on beam envelope model, are shown to agree with measurements in both regimes. In addition, focusing is examined in plasmas with dimensions comparable to transverse bunch size and plasma wavelength.

  13. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  14. High-Voltage Current Transformers With Optical Signal Transmission

    NASA Astrophysics Data System (ADS)

    Malewski, Ryszard

    1981-02-01

    Existing prototype optical current transformers are reviewed and their design as well as their functional characteristics are analyzed in the light of the practical requirements dictated by operating conditions in an extra-high-voltage (EHV) switchyard. A perspective of the development of a new magneto-optic current transformer is explored. The feasibility of such apparatus depends on technological progress in manufacturing mono-mode optical fibers which will not depolarize the transmitted light.

  15. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  16. Low Starting Electron Beam Current in Degenerate Band Edge Oscillators

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-06-01

    We propose a new principle of operation in vacuum electron-beam-based oscillators that leads to a low beam current for starting oscillations. The principle is based on super synchronous operation of an electron beam interacting with four degenerate electromagnetic modes in a slow-wave structure (SWS). The four mode super synchronous regime is associated with a very special degeneracy condition in the dispersion diagram of a cold periodic SWS called degenerate band edge (DBE). This regime features a giant group delay in the finitelength SWS and low starting-oscillation beam current. The starting beam current is at least an order of magnitude smaller compared to a conventional backward wave oscillator (BWO) of the same length. As a representative example we consider a SWS conceived by a periodically-loaded metallic waveguide supporting a DBE, and investigate starting-oscillation conditions using Pierce theory generalized to coupled transmission lines (CTL). The proposed super synchronism regime can be straightforwardly adapted to waveguide geometries others than the periodically-loaded waveguide considered here since DBE is a general property that can be realized in a variety of structures.

  17. An EBIC equation for solar cells. [Electron Beam Induced Current

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.

    1983-01-01

    When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.

  18. Beam Dynamics Aspects of High Current Beams in a Superconducting Proton Linac

    NASA Astrophysics Data System (ADS)

    Bellomo, Giovanni; Pagani, Carlo; Pierini, Paolo

    1997-05-01

    High current CW proton linac accelerators have been recently proposed for nuclear waste transmutation and concurrent energy production. In most of the designs the high energy part (100 MeV up to 1-2 GeV) of the linac employs low frequency superconducting structures (352-700 MHz). Here we present beam dynamics issues for the high current (10-50 mA) beams in the superconducting section of such an accelerator, based on 352 MHz β-graded, LEP style cavities, as proposed at Linac 96(C. Pagani, G. Bellomo, P. Pierini, ``A High Current Proton Linac with 352 MHz SC Cavities'', Proceedings of the XVIII Int. Linear Acc. Conf., eds. C. Hill, M. Vretenar, CERN 96-07, 15 November 1996). In particular, smooth beam propagation along the linac has been reached with decreasing phase advances along the linac, and the design has been updated to match the beam dynamics results. Mismatching oscillations are discussed, as they are considered to cause beam halo and, consequently, beam losses.

  19. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  20. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    PubMed

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  1. Feasibility study on superconducting fault current limiting transformer (SFCLT)

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Chigusa, S.; Kashima, N.; Nagaya, S.; Okubo, H.

    2000-04-01

    This paper proposes a "superconducting fault current limiting transformer (SFCLT)" with functions of both superconducting fault current limiters and superconducting transformers. Concepts of the SFCLT are as follows: (1) When a fault occurs in a power system, the SFCLT acts as a fault current limiter with limiting impedance due to quench of the SFCLT windings, which improves the transient stability of the power system. (2) In the normal condition, the SFCLT behaves as a transformer with lower leakage impedance, which increases the static stability and the transmission capacity of the power system. (3) The limiting and leakage impedance of the SFCLT can simultaneously be optimized in the power system. Electro-magnetic transients program (EMTP) analyses revealed that the SFCLT could exhibit the multifunction of fault current limitation and power system stability improvement in a simplified model system.

  2. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  3. Stray dc transit currents and their effect on transformers

    SciTech Connect

    Sheil, G.A.; Singh, B.N.

    1994-12-31

    Stray DC currents from transit systems have been known to create problems for electrical utility transformers. An overview of the effect of DC currents generated from the transit system owned and operated by the Toronto Transit Commission (TTC) on North York Hydro (NYH) transformers has been presented. The paper compares the early results from the time the negative DC rail was solidly tied to the NYH neutral with those obtained after mitigative measures were put in place. The mitigative measures were aimed at increasing the electrical isolation of the negative DC rail from ground. Results indicate that the mitigative measures did reduce the level of stray DC on the NYH transformers along the subway lines. However, present DC levels are such that the cyclic transformer noise is still very audible. Concerns regarding core heating, lamination displacement, and primary winding loading still exist. Further mitigative measures and solutions to the problem have been proposed.

  4. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.

    1988-01-01

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.

  5. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, R.L.; Guilford, R.P.; Stichman, J.H.

    1987-06-29

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.

  6. Vibration attenuation of conductive beams by inducing eddy currents

    NASA Astrophysics Data System (ADS)

    Irazu, L.; Elejabarrieta, M. J.

    2016-09-01

    The increasing requirements for structural vibration control in many industries, require innovative attenuation techniques. In this work, the phenomenon of eddy currents is proposed to reduce the vibration of conductive and non-magnetic beam-like structures without modifying the system, neither the weight nor the stiffness. The motion of a conductive material in a stationary magnetic field induces eddy currents, which in turn generate a repulsive force and attenuate the vibration. In this study, the vibrational response of a thin aluminium beam under a partial and stationary magnetic field is analysed. The influence of the eddy currents is experimentally studied in the bandwidth from 0 to 1 kHz and a preliminary numerical model is proposed. The results show the vibration of all the length of the beam can be attenuated by inducing eddy currents, whereas the natural frequencies of the system remain unmodified. The attenuation of the vibration is more remarkable at low frequencies and when the position of the magnetic field coincides with a maximum vibration of a mode.

  7. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 {mu}s. For accurate beam transport, the center of charge must be located to within {plus_minus} 100 {mu}m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  8. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 [mu]s. For accurate beam transport, the center of charge must be located to within [plus minus] 100 [mu]m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  9. Transformational leadership in sport: current status and future directions.

    PubMed

    Arthur, Calum A; Bastardoz, Nicolas; Eklund, Robert

    2017-08-01

    Borrowed from organizational psychology, the concept of transformational leadership has now been applied to a sport context for a decade. Our review covers and critically discusses empirical articles published on this growing topic. However, because the majority of studies used cross-sectional designs and single-source questionnaires to tap what has been a fuzzy construct, current theoretical and methodological issues impede understanding of whether transformational leadership matters for sport outcomes. To make a difference to applied practice and policy, the transformational leadership construct requires a refined definition and stronger empirical tests allowing for robust causal inference. We highlight avenues for advancing research on transformational leadership in the sport context. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  11. Generation of dark hollow beams by using a fractional radial Hilbert transform system

    NASA Astrophysics Data System (ADS)

    Xie, Qiansen; Zhao, Daomu

    2007-07-01

    The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.

  12. Removing Beam Current Artifacts in Helium Ion Microscopy: A Comparison of Image Processing Techniques.

    PubMed

    Barlow, Anders J; Portoles, Jose F; Sano, Naoko; Cumpson, Peter J

    2016-10-01

    The development of the helium ion microscope (HIM) enables the imaging of both hard, inorganic materials and soft, organic or biological materials. Advantages include outstanding topographical contrast, superior resolution down to <0.5 nm at high magnification, high depth of field, and no need for conductive coatings. The instrument relies on helium atom adsorption and ionization at a cryogenically cooled tip that is atomically sharp. Under ideal conditions this arrangement provides a beam of ions that is stable for days to weeks, with beam currents in the order of picoamperes. Over time, however, this stability is lost as gaseous contamination builds up in the source region, leading to adsorbed atoms of species other than helium, which ultimately results in beam current fluctuations. This manifests itself as horizontal stripe artifacts in HIM images. We investigate post-processing methods to remove these artifacts from HIM images, such as median filtering, Gaussian blurring, fast Fourier transforms, and principal component analysis. We arrive at a simple method for completely removing beam current fluctuation effects from HIM images while maintaining the full integrity of the information within the image.

  13. LASER MODES AND BEAMS: Tunable fractional-order Fourier transformer

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2006-01-01

    A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a in [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a.

  14. Current transformers and coupling-capacitor voltage transformers in real-time simulations

    SciTech Connect

    Marti, J.R.; Linares, L.R.; Dommel, H.W.

    1997-01-01

    This paper describes two models: a saturable current transformer model (CT) and a wide-band coupling capacitor voltage transformer suitable for real-time transients simulation. By using very efficient network reduction and network synthesis techniques, the operations count for these models is kept to a minimum. The accuracy of the models has been tested in connection with the real-time transients simulator RTNS and compared to conventional EMTP models.

  15. Amplification of S-1 Spheromak current by an inductive current transformer

    SciTech Connect

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ..integral.. A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy.

  16. Effect of current density on enhanced transformation of naphthalene.

    PubMed

    Alshawabkeh, Akram N; Sarahney, Hussam

    2005-08-01

    The effect of current density on electrochemically enhanced transformation of naphthalene is evaluated. Electrochemical reactors, composed of an anode and a cathode separated by a Nafion membrane, were used to evaluatethe effect of three current densities (1,9, and 18 mA/ L) on the transformation of naphthalene at two concentration levels (13 and 25 mg/L). Transformation rates varied based on the concentration and current density. Almost 88% of the 13 mg/L naphthalene is degraded after 8 h of treatment under 18.2 mA/L. At the same time, more than 90 h was required to degrade the same amount under 9 mA/ L. The results show that most of the naphthalene degradation occurred in the first 4 h under transformation rates of 2.24 and 1.11 mg/L h under applied currents of 18.2 and 9 mA/L, respectively. Increasing the naphthalene concentration to 25 mg/L produced similar results. Under 18.2 mA/L, the redox potential increased significantly at the anolyte in the first 8 h to about 900 mV. After that, the redox potential continued to increase, but at a lower rate, until it reached 1380 mV at the end of processing. Similar behavior is noted for the anolyte pH, which decreased significantly in the first 8 h to less than 2.5 and continued to decrease until it reached a pH value of 1.86 at the end of testing. Naphthalene transformation can be attributed to electrochemically enhanced oxidation at the anolyte by chlorine gas produced by electrolysis.

  17. First test of BNL electron beam ion source with high current density electron beam

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  18. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  19. Cone beam CT: a current overview of devices

    PubMed Central

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers’ official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region. PMID:23818529

  20. Bunched-beam measurements of very smaller currents at ASTRID

    SciTech Connect

    Abildskov, F.; Mo/ller, S.P.

    1997-01-01

    Stored currents in low-energy ion storage rings, like ASTRID, are often very small. Absolute current measurements are nevertheless important for absolute measurements of cross sections and also for machine operation purposes. Experimental results, using a beam charge monitor (BCM) from Bergoz, are shown for both light ions (H{sup {minus}}) and heavy ions (N{sub 2}{sup +}). The velocities are low, {beta}{approximately}0.001 to 0.05, and the detected currents are in the 0.1- to 2-{mu}A range. The storage ring ASTRID, where the measurements are made, will be described. The principle of the BCM will be briefly mentioned, and the obtained performance (resolution, stability, noise, etc.) will be given. {copyright} {ital 1997 American Institute of Physics.}

  1. Cone beam CT: a current overview of devices.

    PubMed

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers' official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region.

  2. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    SciTech Connect

    Politzer, P.A.

    2005-10-15

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f{sub bs}). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached {approx}80% bootstrap current in stationary discharges without inductive current drive. The remaining current is {approx}20% NBCD. This is achieved at {beta}{sub N} [approximately equal to] {beta}{sub p} > 3, but at relatively high q{sub 95} ({approx}10). In lower q{sub 95} Advanced Tokamak plasmas, f{sub bs} {approx} 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high {beta}{sub p} and {beta}{sub N} plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing {beta}, limiting the achievable average {beta} and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory.

  3. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  4. Analysis on current limiting characteristics of a transformer type SFCL with two triggering current levels

    NASA Astrophysics Data System (ADS)

    Lim, Sung-Hun; Ko, Seckcheol; Han, Tae-Hee

    2013-01-01

    In this paper, the transformer type superconducting fault current limiter (SFCL) with two triggering current levels was suggested and its current limiting characteristics were analyzed. The structure of the suggested transformer type SFCL with two triggering current levels largely consists of two parts. One is the transformer with two magnetically coupled coils, which correspond to the primary winding and the secondary one connected with one high-TC superconducting (HTSC) element. The other is third coil, or, another secondary winding with one HTSC element, which is wound on the same iron core together with two coils. This suggested transformer type SFCL can limit the fault current by generating its limiting impedance with two different amplitudes, which are dependent on the initial amplitude of the fault current in case of the fault occurrence. To confirm the usefulness of the proposed SFCL, the current limiting tests of the SFCL according to the fault angle, one of the effective fault conditions to affect the amplitude of the initial fault current, were carried out and its effective limiting operations were discussed.

  5. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  6. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    PubMed

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  7. Perturbation-minimized triangular bunch for high-transformer ratio using a double dogleg emittance exchange beam line

    NASA Astrophysics Data System (ADS)

    Ha, G.; Cho, M. H.; Gai, W.; Kim, K.-J.; Namkung, W.; Power, J. G.

    2016-12-01

    The longitudinal shape, i.e., the current profile, of an electron bunch determines the transformer ratio in a collinear wakefield accelerator and thus methods are sought to control the longitudinal bunch shape. The emittance exchange (EEX) appears to be promising for creating a precisely controlled longitudinal bunch shapes. The longitudinal shape is perturbed by two sources: higher-order terms in the beam line optics and collective effects and these perturbations can lead to a significant drop of the transformer ratio. In this paper, we analytically and numerically investigate the perturbation to an ideal triangular longitudinal bunch shape and propose methods to minimize it.

  8. Damage detection of simply supported reinforced concrete beam by S transform

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Xi, Jiaxin; Zhang, Xuebing; Liu, Zhenzhou

    2017-08-01

    Signal processing is the key component of vibration-based structural damage detection. The S transform is variable window of short time Fourier transform (STFT) or an extension of wavelet transform (WT). The goal of using S transform is to extract subtle changes in the vibration signals in order to detect and quantify the damage in the structure. This paper presents the concentrated load is applied to the simply supported reinforced concrete beam and adopting the stepwise loading method, the vibration signals of each loading and unloading state is obtained by using the hammer impact. Then the vibration data of the reinforced concrete beam pre-damage and post-damage is analysed by S transform. Experimental result shows the potential ability of S transform in identifying peak energy changes and multiple reflections with different loading force state.

  9. Depletion region surface effects in electron beam induced current measurements

    PubMed Central

    Haney, Paul M.; Yoon, Heayoung P.; Gaury, Benoit; Zhitenev, Nikolai B.

    2016-01-01

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials. PMID:27881882

  10. Depletion region surface effects in electron beam induced current measurements

    SciTech Connect

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.; Gaury, Benoit

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

  11. High-energy tritium beams as current drivers in tokamak reactors

    SciTech Connect

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  12. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    NASA Astrophysics Data System (ADS)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  13. Effects of Electron Beam Loading on an Operating Piezoelectric Transformer

    DTIC Science & Technology

    2013-06-01

    The setup of the optical diagnostic that was used to measure the internal stress and electric field within the PT is shown in Figure 5. A helium ... neon (HeNe) laser with a wavelength of 632.8 nm was used as the light source. A linear polarizer was used to ensure that the beam was linearly

  14. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  15. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  16. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  17. Current correlations in an interacting Cooper-pair beam splitter

    NASA Astrophysics Data System (ADS)

    Rech, J.; Chevallier, D.; Jonckheere, T.; Martin, T.

    2012-01-01

    We propose an approach allowing the computation of currents and their correlations in interacting multiterminal mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism relies on the expression of branching currents and noise crossed correlations in terms of one- and two-particle Green's functions for the dots electrons, which are then evaluated self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter , Nature (London)NATUAS0028-083610.1038/nature08432 461, 960 (2009); Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.136801 107, 136801 (2011); L. G. Herrmann , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.026801 104, 026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where the dots have opposite energies with respect to the superconducting chemical potential).

  18. First demonstration of simultaneous measurement of beam current, beam position, and beam tilt on induction linac using combined B-dot monitor

    NASA Astrophysics Data System (ADS)

    He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong

    2017-06-01

    The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.

  19. Current understanding and issues on electron beam injection in space

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Szuszczewicz, E. P.

    1988-01-01

    The status of the physics understanding involved in electron beam injection in space is reviewed. The paper examines our understanding of beam plasma interactions and their associated wave and energized particle spectra of the processes involved in the beam plasma discharge, and of the vehicle charge neutralization. 'Strawman' models are presented for comparison with experimental observations.

  20. Current understanding and issues on electron beam injection in space

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Szuszczewicz, E. P.

    1988-01-01

    The status of the physics understanding involved in electron beam injection in space is reviewed. The paper examines our understanding of beam plasma interactions and their associated wave and energized particle spectra of the processes involved in the beam plasma discharge, and of the vehicle charge neutralization. 'Strawman' models are presented for comparison with experimental observations.

  1. Design of proton beam optics to realize beam distribution transformation in C-ADS HTBT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Qi; Luo, Huan-Li; Hao, Hao; Tang, Jing-Yu; Li, Wei-Min; Xu, Hong-Liang

    2013-02-01

    The linac to the transmuter beam transport line (LTBT) connecting the end of the linac to the spallation target is a critical sub-system in the accelerator driven system (ADS). It has the function of transporting the accelerated high power proton beam to the target with a beam footprint satisfying the special requirements of the minor actinide (MA) transmuter. In this paper, a preliminary conceptual design of the hurling magnet to transmuter beam transport section (HTBT), as a part of the LTBT, for the China ADS (C-ADS) system is proposed and developed. In this design, a novel hurling magnet with a two dimensional amplitude modulation (AM) of 1 kHz and scanning of more than 10 kHz at 360° in transverse directions is used to realize a 300 mm diameter uniform distribution of beam on target. The preliminary beam optics design of C-ADS HTBT optimized to minimize the beam loss on the vacuum chamber and the radiation damage caused by back-scattering neutrons will be reported.

  2. Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics

    SciTech Connect

    Zhang, Kuang; Ding, Xumin; Meng, Fanrong; Wu, Qun; Wo, Deliang

    2016-02-01

    A general design of metalenses for N-beam emissions is proposed based on transformation optics. A linear mapping function is adopted to achieve the homogeneous characterization of the transforming medium, which is therefore easy to be achieved compared with previous designs limited by inhomogeneity based on transformation optics. To verify the theoretical design, a four-beam antenna constructed with ultrathin, homogenous, and uniaxial anisotropic metalens is designed, fabricated, and measured. It is shown that the realized gain of the four-beam antenna is increased by 6 dB compared with the single dipole source, while working frequency and relative bandwidth are kept unchanged. The measured far-field pattern verifies theoretical design procedure.

  3. Developing High Brightness and High Current Beams for HIF Injectors

    SciTech Connect

    Ahle, L; Kwan, J W

    2002-05-10

    The US Heavy Ion Fusion Virtual National Laboratory is continuing research into ion sources and injectors that simultaneously provide high current (0.5-1.0 Amps) and high brightness (normalized emittance better than 1.0 {pi}-mm-mr). The central issue of focus is whether to carry on the traditional approach of large surface ionization sources or to adopt a multi-aperture approach that transports many smaller ''beamlets'' separately at low energies before allowing them to merge. For the large surface source, the recent commissioning of the 2-MeV injector for the High Current experiment has increased our understanding of the beam quality limitations for these sources. We have also improved our techniques for fabricating large diameter aluminosilicate sources to improve lifetime and emission uniformity. For the multi-aperture approach we are continuing to study the feasibility of small surface sources and a RF induced plasma source in preparation for beamlet merging experiments, while continuing to run computer simulations for better understanding of this alternate concept. Experiments into both architectures will be performed on a newly commissioned ion source test stand at LLNL called the STS-500. This stand test provides a platform for testing a variety of ion sources and accelerating structures with 500 kV, 17-microsecond pulses. Recent progress in these areas will be discussed as well as plans for future experiments.

  4. Developing high brightness and high current beams for HIF injectors

    SciTech Connect

    Ahle, Larry; Grote, Dave; Kwan, Joe

    2002-05-24

    The US Heavy Ion Fusion Virtual National Laboratory is continuing research into ion sources and injectors that simultaneously provide high current (0.5-1.0 Amps) and high brightness (normalized emittance better than 1.0 {pi}-mm-mr). The central issue of focus is whether to continue pursuing the traditional approach of large surface ionization sources or to adopt a multiaperture approach that transports many smaller ''beamlets'' separately at low energies before allowing them to merge. For the large surface source concept, the recent commissioning of the 2-MeV injector for the High Current eXperiment has increased our understanding of the beam quality limitations for these sources. We have also improved our techniques for fabricating large diameter aluminosilicate sources to improve lifetime and emission uniformity. For the multiaperture approach, we are continuing to study the feasibility of small surface sources and a RF induced plasma source in preparation for beamlet merging experiments, while continuing to run computer simulations for better understanding of this alternate concept. Experiments into both architectures will be performed on a newly commissioned ion source test stand at LLNL called STS-500. This stand test provides a platform for testing a variety of ion sources and accelerating structures with 500 kV, 17-microsecond pulses. Recent progress in these areas will be discussed as well as plans for future experiments.

  5. Structure-based, high transformer ratio collinear two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A novel concept for a structure-based collinear two-beam accelerator is described. By employing a structure composed of multi-harmonic detuned cavities, this new accelerator can provide a high acceleration gradient with a high transformer ratio and a low breakdown probability. An experimental research project, with theoretical and computational support, is being conducted at the Yale University Beam Physics Laboratory. Furthermore, this project will support construction of a unique university-based facility for exploring a range of beam-driven acceleration ideas, including plasma and dielectric wakefield concepts.

  6. Fractional Fourier transform for partially coherent off-axis Gaussian Schell-model beam.

    PubMed

    Zheng, Chongwei

    2006-09-01

    The fractional Fourier transform (FRT) is applied to a partially coherent off-axis Gaussian Schell-model (GSM) beam, and an analytical formula is derived for the FRT of a partially coherent off-axis GSM beam. The corresponding tensor ABCD law for performing the FRT of a partially coherent off-axis GSM beam is also obtained. As an application example, the FRT of a partially coherent linear laser array that is expanded as a sum of off-axis GSM beams is studied. The derived formulas are used to provide numerical examples. The formulas provide a convenient way to analyze and calculate the FRT of a partially coherent off-axis GSM beam.

  7. Generalised Hermite-Gaussian beams and mode transformations

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-05-01

    Generalised Hermite-Gaussian modes (gHG modes), an extended notion of Hermite-Gaussian modes (HG modes), are formed by the summation of normal HG modes with a characteristic function α, which can be used to unite conventional HG modes and Laguerre-Gaussian modes (LG modes). An infinite number of normalised orthogonal modes can thus be obtained by modulation of the function α. The gHG mode notion provides a useful tool in analysis of the deformation and transformation phenomena occurring in propagation of HG and LG modes with astigmatic perturbation.

  8. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    SciTech Connect

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  9. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-07-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or "wobbled" beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  10. Experimental study on superconducting fault current limiting transformer for fault current suppression and system stability improvement

    NASA Astrophysics Data System (ADS)

    Kagawa, H.; Hayakawa, N.; Kashima, N.; Nagaya, S.; Okubo, H.

    2002-08-01

    We have been developing a superconducting fault current limiting transformer (SFCLT) with 3-phase, 500/275 kV, 625 MVA and optimized the main parameters by EMTP simulation. In this paper, we designed and fabricated an experimental scale-down model of SFCLT with 3-phase, 275/105 V, 6.25 kVA, using NbTi superconducting wire. We introduced the experimental model SFCLT into a transient network analyzer consisted of synchronous generators, transformers, transmission lines, circuit breakers and an infinite bus. It was revealed that experimental model had effective function-parameters as was simulated and experimental results clarified the effectiveness of SFCLT having both functions of the fault current suppression and the system stability improvement in a future superconducting power system.

  11. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    SciTech Connect

    Kim, S. H. )

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  12. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1more » and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  13. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  14. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1 and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  15. Simulation of Propagation and Transformation of THz Bessel Beams with Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choporova, Yulia; Knyazev, Boris; Mitkov, Mikhail; Osintseva, Natalya; Pavelyev, Vladimir

    Recently, terahertz Bessel beams with angular orbital momentum ("vortex beams") with topological charges l = ±1 and l = ±2 were generated for the first time using radiation of the Novosibirsk free electron laser (NovoFEL) and silicon binary phase axicons (Knyazev et al., Phys. Rev. Letters, vol. 115, Art. 163901, 2015). Such beams are prospective for application in wireless communication and remote sensing. In present paper, numerical modelling of generation and transformation of vortex beams based on the scalar diffraction theory has been performed. It was shown that the Bessel beams with the diameters of the first ring of 1.7 and 3.2 mm for topological charges ±1 and ±2, respectively, propagate at a distance up to 160 mm without dispersion. Calculation showed that the propagation distance can be increased by reducing of the radiation wavelength or using a telescopic system. In the first case, the propagation distance grows up inversely proportional to the wavelength, whereas, in the latter case the propagation distance increases as a square of a ratio of the telescope lenses foci. Modelling of the passing of the vortex Bessel beams through a random phase screen and amplitude obstacles showed the self-healing ability of the beams. Even if an obstacle with a diameter of 10 mm blocks several central rings of Bessel beam, it reconstructs itself after passing a length of about 100 mm. Results of the simulations are in a good agreement with the experimental data, when the latter exist.

  16. Proton beam therapy in Japan: current and future status.

    PubMed

    Sakurai, Hideyuki; Ishikawa, Hitoshi; Okumura, Toshiyuki

    2016-10-01

    The number of patients treated by proton beam therapy in Japan since 2000 has increased; in 2016, 11 proton facilities were available to treat patients. Notably, proton beam therapy is very useful for pediatric cancer; since the pediatric radiation dose to normal tissues should be reduced as much as possible because of the effect of radiation on growth, intellectual development, endocrine organ function and secondary cancer development. Hepatocellular carcinoma is common in Asia, and most of the studies of proton beam therapy for liver cancer have been reported by Japanese investigators. Proton beam therapy is also a standard treatment for nasal and paranasal lesions and lesions at the base of the skull, because the radiation dose to critical organs such as the eyes, optic nerves and central nervous system can be reduced with proton beam therapy. For prostate cancer, comparative studies that address adverse effects, safety, patient quality of life and socioeconomic issues should be performed to determine the appropriate use of proton beam therapy for prostate cancer. Regarding new proton beam therapy applications, experience with proton beam therapy combined with chemotherapy is limited, although favorable outcomes have been recently reported for locally advanced lung cancer, esophageal cancer and pancreatic cancer. Therefore, 'chemoproton' therapy appears to be a very attractive field for further clinical investigations. In conclusion, there are cost issues and considerations regarding national insurance for the use of proton beam therapy in Japan. Further studies and discussions are needed to address the use of proton beam therapy for several types of cancers, and for maintaining the quality of life of patients while retaining a high cure rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Eigenfunctions and eigenoperators of cyclic integral transforms with application to Gaussian beam propagation

    NASA Astrophysics Data System (ADS)

    McCallum, Matthew S.

    An integral transform which reproduces a transformable input function after a finite number N of successive applications is known as a cyclic transform. Of course, such a transform will reproduce an arbitrary transformable input after N applications, but it also admits eigenfunction inputs which will be reproduced after a single application of the transform. These transforms and their eigenfunctions appear in various applications, and the systematic determination of eigenfunctions of cyclic integral transforms has been a problem of interest to mathematicians since at least the early twentieth century. In this work we review the various approaches to this problem, providing generalizations of published expressions from previous approaches. We then develop a new formalism, differential eigenoperators, that reduces the eigenfunction problem for a cyclic transform to an eigenfunction problem for a corresponding ordinary differential equation. In this way we are able to relate eigenfunctions of integral equations to boundary-value problems, which are typically easier to analyze. We give extensive examples and discussion via the specific case of the Fourier transform. We also relate this approach to two formalisms that have been of interest to the mathematical physics community---hyperdifferential operators and linear canonical transforms. We show how this new approach reproduces known results of Fourier optics regarding free-space diffractive propagation of Gaussian beams in both one and two dimensions. Finally we discuss the group-theoretical aspects of the formalism and describe an isomorphism between roots of the identity transform and complex roots of unity. In the appendix we derive several technical results related to integrability and transformability of solutions in the Fourier transform case, and we prove two theorems---one of them new---on polynomial roots. We conclude that the formalism offers a new and equally valuable perspective on an interesting

  18. Mechanisms of microstructure formations in M50 steel melted layer by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Tang, Guangze; Xu, Fangjun; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2012-10-01

    In the present paper, surface melting of the M50 steel was carried out by high current pulsed electron beam (HCPEB). The microstructure evolution in the melted layer was observed using TEM. It is confirmed that the dissolution of the carbides and the diffusion of alloy elements play a determining role on the microstructure evolution. After one pulse irradiation, a mixture of twinned martensite and irregular cellular domains of austenite is observed in the melted layer due to the insufficient diffusion of alloy elements around initial carbides. The zone around initial carbides with high alloy elements content keeps as residual austenite, the zone with low alloy elements content transform into twinned martensite. When the irradiation number increases to 30 pulses, the alloy elements will diffuse into the whole melted layer. And the melted layer consists completely of cellular austenite grains with a diameter of about 150 nm. The boundary between austenite grains is amorphous structure with little higher alloy elements content.

  19. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  20. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  1. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    PubMed

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  2. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    PubMed Central

    Zhang, Wang; Su, Tao

    2016-01-01

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed. PMID:27669242

  3. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    NASA Astrophysics Data System (ADS)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  4. Direct Measurement of Electron Beam Induced Currents in p-type Silicon

    SciTech Connect

    Han, M.G.; Zhu, Y.; Sasaki, K.; Kato, T.; Fisher, C.A.J.; Hirayama, T.

    2010-08-01

    A new method for measuring electron beam induced currents (EBICs) in p-type silicon using a transmission electron microscope (TEM) with a high-precision tungsten probe is presented. Current-voltage (I-V) curves obtained under various electron-beam illumination conditions are found to depend strongly on the current density of the incoming electron beam and the relative distance of the beam from the point of probe contact, consistent with a buildup of excess electrons around the contact. This setup provides a new experimental approach for studying minority carrier transport in semiconductors on the nanometer scale.

  5. Sparse imaging of cortical electrical current densities via wavelet transforms.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna

    2012-11-07

    While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.

  6. Sparse imaging of cortical electrical current densities via wavelet transforms

    NASA Astrophysics Data System (ADS)

    Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna

    2012-11-01

    While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.

  7. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  8. Propagation of broadband gaussian Schell-model beams in the apertured fractional Fourier transformation systems.

    PubMed

    Mao, Haidan; Du, Xinyue; Chen, Linfei; Zhao, Daomu

    2011-06-01

    On the basis of the fact that a hard-edged aperture function can be expressed as finite matrices with different weighting coefficients, we obtain the analytical formula for the propagation of the broadband gaussian Schell-model (BGSM) beam through the apertured fractional Fourier transformation (AFrFT) system. It is shown by numerical examples that the intensity distribution in the plane of a small fractional order is obviously influenced by the bandwidth when the BGSM beams propagate through the AFrFT system. Further extensions are also pointed out.

  9. Experimental validation of a transformation optics based lens for beam steering

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; de Lustrac, André

    2015-10-01

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  10. Experimental validation of a transformation optics based lens for beam steering

    SciTech Connect

    Yi, Jianjia; Burokur, Shah Nawaz Lustrac, André de

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  11. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR

    SciTech Connect

    Blokland, Willem; Peters, Charles C

    2013-01-01

    A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errant Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.

  12. Beam physics design strategy for a high-current rf linac

    SciTech Connect

    Reiser, M.

    1995-10-01

    The high average beam power of an rf linac system for transmutation of nuclear waste puts very stringent requirements on beam quality and beam control. Fractional beam losses along the accelerator must be kept at extremely low levels to assure {open_quotes}hands-on{close_quotes} maintenance. Hence, halo formation and large-amplitude tails in the particle distribution due to beam mismatch and equipartitioning effects must be avoided. This implies that the beam should ideally be in near-perfect thermal equilibrium from injection to full energy - in contrast to existing rf linacs in which the transverse temperature, T {sub {perpendicular}}, is higher than the longitudinal temperature, T{sub {parallel}}. The physics and parameter scaling for such a system will be reviewed using the results of recent work on high-intensity bunched beams. A design strategy for a high-current rf linac with equilibrated beam will be proposed.

  13. Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Xiang; Huang, Ming-Guang; Liu, Shu-Qing; Liu, Jin-Yue; Hao, Bao-Liang; Du, Chao-Hai; Liu, Pu-Kun

    2013-02-01

    The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented.

  14. Increasing Extracted Beam Current Density in Ion Thrusters through Plasma Potential Modification

    NASA Astrophysics Data System (ADS)

    Arthur, Neil; Foster, John

    2015-09-01

    A gridded ion thruster's maximum extractable beam current is determined by the space charge limit. The classical formulation does not take into account finite ion drift into the acceleration gap. It can be shown that extractable beam current can be increased beyond the conventional Child-Langmuir law if the ions enter the gap at a finite drift speed. In this work, ion drift in a 10 cm thruster is varied by adjusting the plasma potential relative to the potential at the extraction plane. Internal plasma potential variations are achieved using a novel approach involving biasing the magnetic cusps. Ion flow variations are assessed using simulated beam extraction in conjunction with a retarding potential analyzer. Ion beam current density changes at a given total beam voltage in full beam extraction tests are characterized as a function of induced ion drift velocity as well.

  15. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  16. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  17. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Andonian, G.; Barber, S.; O'Shea, F. H.; Fedurin, M.; Kusche, K.; Swinson, C.; Rosenzweig, J. B.

    2017-02-01

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  18. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  19. Auger electron spectroscopy at high spatial resolution and nA primary beam currents

    NASA Technical Reports Server (NTRS)

    Todd, G.; Poppa, H.; Moorhead, D.; Bales, M.

    1975-01-01

    An experimental Auger microprobe system is described which incorporates a field-emission electron gun and total beam currents in the nanoampere range. The distinguishing characteristics of this system include a large multistation UHV specimen chamber, pulse counting and fully digital Auger signal-processing techniques, and digital referencing methods to eliminate the effects of beam instabilities. Some preliminary results obtained with this system are described, and it is concluded that field-emission electron sources can be used for high-resolution Auger electron spectroscopy with primary-beam spots of less than 100 nm and beam currents of the order of 1 nA.

  20. Topological phase for spin-orbit transformations on a laser beam.

    PubMed

    Souza, C E R; Huguenin, J A O; Milman, P; Khoury, A Z

    2007-10-19

    We investigate the topological phase associated with the double connectedness of the SO(3) representation in terms of maximally entangled states. An experimental demonstration is provided in the context of polarization and spatial mode transformations of a laser beam carrying orbital angular momentum. The topological phase is evidenced through interferometric measurements, and a quantitative relationship between the concurrence and the fringes visibility is derived. Both the quantum and the classical regimes were investigated.

  1. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling.

    PubMed

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-08-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A new method of rapid power measurement for MW-scale high-current particle beams

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Hu, Chundong; Xie, Yuanlai; Liu, Zhimin; Xie, Yahong; Liu, Sheng; Liang, Lizheng; Jiang, Caichao; Sheng, Peng; Yu, Ling

    2015-09-01

    MW-scale high current particle beams are widely applied for plasma heating in the magnetic confinement fusion devices, in which beam power is an important indicator for efficient heating. Generally, power measurement of MW-scale high current particle beam adopts water flow calorimetry (WFC). Limited by the principles of WFC, the beam power given by WFC is an averaged value. In this article a new method of beam power for MW-scale high-current particle beams is introduced: (1) the temperature data of thermocouples embedded in the beam stopping elements were obtained using high data acquire system, (2) the surface heat flux of the beam stopping elements are calculated using heat transfer, (3) the relationships between positions and heat flux were acquired using numerical simulation, (4) the real-time power deposited on the beam stopping elements can be calculated using surface integral. The principle of measurement was described in detail and applied to the EAST neutral beam injector for demonstration. The result is compared with that measured by WFC. Comparison of the results shows good accuracy and applicability of this measuring method.

  3. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    SciTech Connect

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  4. Performance of Current-Mode Ion Chambers as Beam Monitors in a Pulsed Cold Neutron Beam for the NPDGamma experiment

    NASA Astrophysics Data System (ADS)

    Gillis, R. Chad

    2006-10-01

    The NPDGamma collaboration has built and commissioned an apparatus to measure the parity-violating gamma asymmetry A in the low energy np capture process n+p->d+ γ. The asymmetry in question is a 10-8 correlation between the spin of the incident (polarized) neutron and the outgoing 2.2 MeV gamma ray. A set of purpose-built, 3He-filled ionization chambers read out in current mode is used to monitor the incident neutron flux, the beam polarization, and the transmission of the liquid para-hydrogen target during the NPDGamma measurements. As will be described in the talk, these beam monitors are simple, reliable, low-noise detectors that have performed excellently for NPDGamma. We have verified that the beam monitor signals can be interpreted to reproduce the known time-of-flight dependence of beam flux from the LANSCE pulsed cold neutron source, and that the neutron beam polarization can be measured at the 2% level from direct measurements of the transmission of the beam through the beam polarizer.

  5. Follicular lymphomas and their transformation: Past and current research.

    PubMed

    Mendez, Miriam; Torrente, Maria; Provencio, Mariano

    2017-06-01

    Follicular lymphoma (FL) is the second most common type of non-Hodgkin lymphoma (NHL). Histological transformation (HT) refers to the evolution of a clinically indolent NHL to a clinically aggressive one, defined as those lymphomas in which survival is limited to a few months when untreated. Areas covered: HT is associated with rapid progression of lymphadenopathy, infiltration of extranodal sites, development of systemic symptoms, and elevated serum level of lactate dehydrogenase (LDH). It is frequently related to a poor prognosis, and the median survival after transformation is less than 2 years. Transformation to diffuse large B cell lymphoma (DLBCL) in patients with FL occurs at an annual rate of approximately 3% for the first 15 years, after which the risk of HT falls for reasons that remain unclear. Expert commentary: Although it has long been assumed that transformation reflects the emergence of an aggressive subclone of cells from the primary FL, recent studies suggest that FL transformation might also arise by divergent evolution from a more immature common progenitor cell. Studies on genomic changes and DNA sequencing have shed some light onto the process of transformation. Nowadays, we know that HT is a complex process where several molecular pathways are involved.

  6. Space-charge limiting currents in magnetically focused intense relativistic beams with an ion channel

    SciTech Connect

    Li Jianqing; Mo Yuanlong

    2006-12-15

    The intense relativistic beam propagation through the drift tube filled with background plasma is investigated. The self-consistent differential equations, which describe the laminar-flow equilibria state in magnetically focused relativistic beams with an ion channel, are presented. By solving these equations using the Runge-Kutta method, the azimuthal velocity, the axial velocity, and the electron beam density, which are functions of radial position, can be calculated. Then the space-charge limiting current and the externally applied magnetic field can be obtained for solid beams and hollow beams. In the case of plasma fill, the axial velocity of the laminar flow is a nonuniform radial profile. The simulated results show that the background plasma can increase the space-charge limiting current, reduce the externally applied magnetic field, and improve the electron beam propagation through the drift tube.

  7. Deflection by the image current and charges of a beam scraper

    SciTech Connect

    Bane, K.L.F.; Morton, P.L.

    1986-05-01

    Scrapers are often used in storage rings and accelerators to clean the transverse profile of the beam. When the beam is not exactly midway between the jaws of the scraper the transverse electric and magnetic fields produced by the image charges and currents are asymmetric. For a relativistic beam traveling through a longitudinally uniform tube with infinitely conducting walls the transverse force from the electric field is canceled by the transverse force from the magnetic field. When an off-center particle bunch passes by a longitudinal discontinuity in the beam tube the transverse force from the electric field are no longer cancelled by the transverse force from the magnetic field and particles in the bunch experience a transverse momentum kick which is independent of energy. It is shown that scrapers that pass close by high peak current beams can significantly degrade the beam emittance. A circular scraper was chosen for computer simulation. (LEW)

  8. Transport and Measurements of High-Current Electron Beams from X pinches

    SciTech Connect

    Agafonov, Alexey V.; Mingaleev, Albert R.; Romanova, Vera M.; Tarakanov, Vladimir P.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Blesener, Isaac C.; Kusse, Bruce R.; Hammer, David A.

    2009-01-21

    Generation of electron beams is an unavoidable property of X-pinches and other pulsed-power-driven pinches of different geometry. Some issues concerning high-current electron beam transport from the X pinch to the diagnostic system and measurements of the beam current by Faraday cups with different geometry's are discussed. Of particular interest is the partially neutralized nature of the beam propagating from the X-pinch to a diagnostic system. Two scenarios of electron beam propagation from X-pinch to Faraday cup are analyzed by means of computer simulation using the PIC-code KARAT. The first is longitudinal neutralization by ions extracted from plasma at an output window of the X-pinch diode; the second is the beam transport through a plasma background between the diode and a diagnostic system.

  9. Cone beam CT in orthodontics: the current picture.

    PubMed

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored.

  10. Studies in High Current Beam Propagation at Reduced Pressures.

    DTIC Science & Technology

    1985-01-31

    43 3.2.2 Beam-Driven Chemistry in the Low-Density Regime..... 44 3.2.3 Non-Local, Non-Ohmic Conductivity Model ............. 45... chemistry processes (especially recombina- tion), and the role of radiative cooling in determining the onset of Spitzer conduction. Progress in...represent the cynamics of the two lower-energy groups, and a detailed air- chemistry reaction scheme also modifies the population of the low-energy group

  11. Surface modification of structural materials by low-energy high-current pulsed electron beam treatment

    SciTech Connect

    Panin, A. V. E-mail: kms@ms.tsc.ru; Kazachenok, M. S. E-mail: kms@ms.tsc.ru; Sinyakova, E. A.; Borodovitsina, O. M.; Ivanov, Yu. F.; Leontieva-Smirnova, M. V.

    2014-11-14

    Microstructure formation in surface layers of pure titanium and ferritic-martensitic steel subjected to electron beam treatment is studied. It is shown that low energy high-current pulsed electron beam irradiation leads to the martensite structure within the surface layer of pure titanium. Contrary, the columnar ferrite grains grow during solidification of ferritic-martensitic steel. The effect of electron beam energy density on the surface morphology and microstructure of the irradiated metals is demonstrated.

  12. Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam.

    PubMed

    Wang, Fei; Cai, Yangjian; Lin, Qiang

    2008-08-01

    The truncated fractional Fourier transform (FRT) is applied to a partially coherent Gaussian Schell-model (GSM) beam. The analytical propagation formula for a partially coherent GSM beam propagating through a truncated FRT optical system is derived by using a tensor method. Furthermore, we report the experimental observation of the truncated FRT for a partially coherent GSM beam. The experimental results are consistent with the theoretical results. Our results show that initial source coherence, fractional order, and aperture width (i.e., truncation parameter) have strong influences on the intensity and coherence properties of the partially coherent beam in the FRT plane. When the aperture width is large, both the intensity and the spectral degree of coherence in the FRT plane are of Gaussian distribution. As the aperture width decreases, the diffraction pattern gradually appears in the FRT plane, and the spectral degree of coherence becomes of non-Gaussian distribution. As the coherence of the initial GSM beam decreases, the diffraction pattern for the case of small aperture widths gradually disappears.

  13. Nuclear microprobe performance in high-current proton beam mode for micro-PIXE

    NASA Astrophysics Data System (ADS)

    Vavpetič, P.; Kelemen, M.; Jenčič, B.; Pelicon, P.

    2017-08-01

    The performance of a nuclear microprobe is dominantly determined by the brightness of the injected ion beam. At Jožef Stefan Institute (JSI), negative hydrogen ion beams are created in a multicusp ion source and injected into a 2 MV tandetron accelerator. The output characteristics of the multicusp ion source were tuned in order to obtain matching proton beam intensities for the ion accelerator and for the object slits as well. For the optimal focusing of the proton beam in a high-current mode (I > 100 pA) to the sub-micrometer dimensions, dedicated thin nanostructures with sharp edges have been manufactured. Set of nanostructures was micromachined by focused ion beam (FIB) at film reference material, produced by Institute for Reference Materials and Measurements (IRMM) and constituted of 57 μg/cm2 of titanium on vitreous carbon substrate. The proton beam profiles were measured by beam scans across the nanostructures over long measuring times, indicating eventual slow drifts of the sample from a reference beam direction. Overall, proton beam dimensions of 600 nm were obtained, demonstrating appropriate stability for micro-PIXE (micro-Particle Induced X-ray Emission) at sub-micrometer resolution for elemental analysis of biological tissue samples prepared in a freeze-dried state or in a frozen-hydrated state. The resulting performance required for micro-PIXE analysis in a high current mode with a 3 MeV proton beam is presented.

  14. Drift distance survey in direct plasma injection scheme for high current beam production

    SciTech Connect

    Kanesue, T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2010-02-15

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  15. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    SciTech Connect

    Yu, Deyang Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  16. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  17. Effects of beam-driven poloidal rotation on the neoclassical bootstrap current

    SciTech Connect

    Lin-Liu, Y.R.; Hinton, F.L.

    1996-12-31

    Unbalanced neutral beam injection drives toroidal and poloidal rotations in a tokamak plasma. The beam toroidal momentum input drives the toroidal rotation, and the parallel friction between the thermal ions and fast ions induces the poloidal rotation. A theory of the beam-driven poloidal rotation and its effects on energy transport was given recently by Hinton and Kim. In this work, we extend their considerations to the effects on the neoclassical bootstrap current. For parameters of interest in present neutral beam heated tokamaks, the magnitude of the beam-driven poloidal rotation can be significantly larger than that of the standard neoclassical value due to the ion temperature gradient. The presence of this driven poloidal rotation will manifest itself in modification of the neoclassical bootstrap current. In the case of coinjection, the driven poloidal rotation is in the opposite direction to the rotation driven by the temperature gradient, therefore it enhances the bootstrap current. In comparison with the standard theoretical predictions of the neutral beam-driven current, that enhancement in the bootstrap current varies with the beam and plasma parameters. A calculation of the parallel transport coefficients associated with the driven poloidal flow in finite-aspect ratio tokamaks will be presented. Experimental conditions for observing the enhancement in bootstrap current will be discussed.

  18. Improvement of Electron Beam Lithography modeling for overdose exposures by using Dill transformation

    NASA Astrophysics Data System (ADS)

    Abaidi, Mohamed; Saib, Mohamed; Tortai, Jean-Hervé; Schiavone, Patrick

    2016-09-01

    In Electron Beam Lithography (EBL), the modeling of the Proximity Effects (PE) is the key to successfully print patterns of different size and density at the desired dimension. Although current PE models are increasingly efficient for nominal process conditions, they do not allow covering a broad exposure dose range, which would be interesting for extending the process window, for instance. This paper shows how to improve the accuracy of the dimension estimations of overexposed patterns by EBL by adding a new term to the existing compact model. This advanced compact model was inspired by the chemical mechanisms that activate the acid generator embedded in the resist during the EBL exposure. Most of the existing compact models use the electronic Aerial Image (E AEI) calculated by the convolution product of the patterns geometry with a Point Spread Function (PSF) and extract pattern contours using a threshold value to model the non-linear resist behavior [1]. Here the patterns contours are simulated using an Acid Aerial Image (A AEI) calculated from the initial E_AEI complemented by the Dill transformation [1]. A strong impact is expected at high exposure doses but no changes should occur on patterns exposed close to their nominal dose. The modeling and calibration capabilities of Inscale® software was used to validate the new model with experimental measurements. Calibration and simulations obtained with both standard model and advanced model were compared on a test design. First it shows that after calibration the PSF of the two models are similar, meaning that physics is consistent for both models. The new advanced model allows maintaining the accuracy at nominal dose but increases the overall accuracy by 62 % for a process window of dose with latitude extended up to 20%.

  19. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    SciTech Connect

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-06-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 {times} 10{sup 10} to greater than 4 {times} 10{sup 10} particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized.

  20. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    SciTech Connect

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator.

  1. Study of brightness and current limitations in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Reiser, M.; Guharay, S.

    1993-06-01

    Over the past several years of ONR support for our research program we have mainly studied the various schemes for intense, high-brightness H(-) beam transport and focusing in the context of its application in space defense. Detailed theoretical studies revealed that the conventional gas focusing system is not suitable as a low-energy beam transport (LEBT) system and also that there are too many unknown parameters to model accurately the behavior of partially charge-neutralized particle beams. We concluded that the electrostatic quadrupole lens system will be a good choice. We have developed a large number of simulation codes and also accessed into the existing codes in the accelerator community (e.g., PARMILA, SNOW-2D, PARMTEQ, etc.) to strengthen our analysis. During the 1992-93 contract period we focused our attention to the experimental activities on H(-) beam characterization and on the installation of a LEBT system for beam transport experiments. We have simultaneously improved our code by incorporating many practical features that we encountered during the analysis of experimental data. We have studied H(-) beams from two types of ion sources: a volume ionization type and a magnetron type source. One of the major problems in this work is to transform a highly diverging beam from the source into a highly converging one so that the output beam from the LEBT can be matched into the acceptance ellipse of an RFQ. Furthermore, the emittance budget is quite restricted.

  2. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Leung, Shingyu; Qian, Jianliang

    2010-11-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in [12]. In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  3. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    SciTech Connect

    Spethmann, A. Trottenberg, T. Kersten, H.

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  4. Limiting electron beam current for cyclic induction acceleration in a constant guide field

    SciTech Connect

    Kanunnikov, V.N.

    1982-09-01

    Theoretical relations are derived for the limiting beam current in a cyclic induction accelerator (CIA) with a constant guide field. The calculations are in agreement with the available experimental data. It is shown that the limiting average beam current in a CIA is of the order of 100 microamperes, i.e., the level attained in microtrons and linear accelerators. The CIA may find industrial applications.

  5. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Pourbaix, J. C.; Ainsley, C. G.; Dolney, D.; Carabe, A.

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ˜9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  6. Wear resistance improvement of a commercially pure titanium by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong; Wang, Xiaoying; Li, Fangfang; Xiao, Hong

    2017-03-01

    A commercially pure titanium was selected as target material and treated by high current pulsed electron beam. The phase and structure changes occurring in the modified surface layers were observed with optical microscopy, scanning electron microscope, and transmission electron microscope. The increase in the wear resistance was observed for the pure titanium samples after pulsed electron beam surface melting. The mechanism for wear resistance modification was discussed. The results indicated that the presence of ultrafine martensite and defects in the treated surface layer were key factors for the improvement of the wear properties of pure titanium treated by high current pulsed beam treatment.

  7. Ion beam transformation with corn DNA alters proteinase expression in rice seedling roots.

    PubMed

    Li, W C; Ji, S D; Wang, X C; Li, Z K; Zhang, H C; Tian, C Z; Liu, Y L; Duan, C X

    2015-06-29

    Corn DNA was introduced into dry seeds of rice (cv. 'YuJing-6') by ion beam irradiation. Proteinase activities in rice seedling roots were subsequently analyzed by renaturation electrophoresis at pH 4.5, 7.0, and 8.5. Proteinase activity was more pronounced on gels at higher pH. Irradiation of rice seedling roots caused the loss of some proteinase bands at all pH conditions although a novel 50-kDa band was found at both pH 7.0 and 8.5. No new proteinase activity was detected at pH 4.5. However, novel bands and bands showing stronger activity were observed at pH 7.0 and 8.5. The data indicate that the expression of proteinases in rice seedling roots was altered following low energy ion beam mediated transformation with corn DNA.

  8. Exploring the energy/beam current parameter space for the isotope production facility (IPF) at LANSCE

    SciTech Connect

    Gulley, Mark S; Bach, Hong; Nortier, Francis M; Pillai, Chandra; Bitteker, Leo J; John, Kevin D; Valdez, Frank O; Seifter, Achim

    2010-09-07

    IPF has recently investigated isotope production with proton beams at energies other than the 100-MeV currently available to the IPF beam line. To maximize the yield of a particular isotope, it is necessary to measure the production rate and cross section versus proton beam energy. Studies were conducted at 800 MeV and 197 MeV to determine the cross section of Tb-159. Also, the ability to irradiate targets at different proton beam energies opens up the possibility of producing other radioisotopes. A proof-of-principle test was conducted to develop a 40-MeV tune in the 100-MeV beam line. Another parameter explored was the beam current, which was raised from the normal limit of 250 {mu}A up to 356 {mu}A via both power and repetition rate increase. This proof-of-principle test demonstrated the capability of the IPF beam line for high current operation with potential for higher isotope yields. For the full production mode, system upgrades will need to be in place to operate at high current and high duty factor. These activities are expected to provide the data needed for the development of a new and unique isotope production capability complementing the existing 100-MeV IPF facility.

  9. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  10. Comment on paper: "Generation of dark hollow beams by using a fractional radial Hilbert transform system"

    NASA Astrophysics Data System (ADS)

    Ez-zariy, L.; Nebdi, H.; Belafhal, A.

    2015-12-01

    This paper comments on a recently published work dealing with: "Generation of dark hollow beams by using a radial Hilbert transform system" by Q. Xie and D. Zhao, Opt. Commun. 275 (2007) 394. The authors have applied an integral, valid only for the integer orders, in cases of fractional ones. In addition, in their main result established by Eq. (11), the authors have neglected the dependence of some terms on the parameter summation. So, in the actual comment, we will give the main exact closed-form of the considered theory.

  11. Genetic transformation of fruit trees: current status and remaining challenges.

    PubMed

    Gambino, Giorgio; Gribaudo, Ivana

    2012-12-01

    Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.

  12. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    PubMed

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar.

  13. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  14. Current Limiting Mechanisms in Electron and Ion Beams Experiments

    DTIC Science & Technology

    1989-08-07

    comparable to the emitted current. The thermal electron flux in the ionosphere is J = e n VkT -iii- - 2 x 10- 4 A/m 2. For a collecting area of 10 m 2...arcjet fires; upper curves follow in time as the shuttle orbiter charges. Figure 3. SPACELAB-1/SEPAC electron distribution functions calculated from the

  15. Diagnostics of a Supersonic Beam Using a Microwave Cavity Fourier Transform Spectrometer.

    NASA Astrophysics Data System (ADS)

    Walters, Adam David

    Available from UMI in association with The British Library. Requires signed TDF. The use of a pulsed Fourier transform microwave cavity spectrometer combined with a synchronous pulsed supersonic nozzle beam is described for spectroscopy and beam diagnostics. The use of an appropriate cylindrical cavity mode was shown to give signals without the Doppler splitting characteristics of similar spectrometers employing Fabry-perot cavities. The high sensitivity of the spectrometer and measured linewidths as low as 20 KHz make it ideally suited to the observation of hyperfine components in multi-quadrupole molecules. The tri-quadrupolar structure of the 3 --> 2 transition of PCl_3 was investigated and a measured Cl-P-Cl bond angle of 104.5(4)^circ, differing significantly from 100.27(9)^circ from electron diffraction measurements led to the conclusion of either some form of axial asymmetry in the bond or "bent bonds". Experiments to determine the vibrational and rotational temperature of spectrally active molecules in the beam are described. The rotational beam temperature for the 3_{03} --> 2_{12} OA transition of ethanal was found to reach less than 2 K for dilute mixes in helium. In marked contrast the vibrational temperature of the CS stretching mode of OCS was found to exceed 230 K, showing a small collision cross section for transfer of vibrational energy to the atoms of the carrier gas. The properties of the beam in the centre and at the leading and trailing edges were investigated and found to differ, with the trailing edge showing collisional decay with the buildup of static gas and a decay time of around 80 mus. The use of cavity modes showing a Doppler splitting produced an additional centre peak not theoretically predicted and showing evidence of fringing fields.

  16. Thermally induced transformations of amorphous carbon nanostructures fabricated by electron beam induced deposition.

    PubMed

    Kulkarni, Dhaval D; Rykaczewski, Konrad; Singamaneni, Srikanth; Kim, Songkil; Fedorov, Andrei G; Tsukruk, Vladimir V

    2011-03-01

    We studied the thermally induced phase transformations of electron-beam-induced deposited (EBID) amorphous carbon nanostructures by correlating the changes in its morphology with internal microstructure by using combined atomic force microscopy (AFM) and high resolution confocal Raman microscopy. These carbon deposits can be used to create heterogeneous junctions in electronic devices commonly known as carbon-metal interconnects. We compared two basic shapes of EBID deposits: dots/pillars with widths from 50 to 600 nm and heights from 50 to 500 nm and lines with variable heights from 10 to 150 nm but having a constant length of 6 μm. We observed that during thermal annealing, the nanoscale amorphous deposits go through multistage transformation including dehydration and stress-relaxation around 150 °C, dehydrogenation within 150-300 °C, followed by graphitization (>350 °C) and formation of nanocrystalline, highly densified graphitic deposits around 450 °C. The later stage of transformation occurs well below commonly observed graphitization for bulk carbon (600-800 °C). It was observed that the shape of the deposits contribute significantly to the phase transformations. We suggested that this difference is controlled by different contributions from interfacial footprints area. Moreover, the rate of graphitization was different for deposits of different shapes with the lines showing a much stronger dependence of its structure on the density than the dots.

  17. Return current effects in passive plasma lenses for relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Govil, Richa

    This thesis presents results of an experimental study of return currents effects on beam focusing in plasma lenses conducted at the Beam Test Facility (BTF) at Lawrence Berkeley National Laboratory (LBNL). Relativistic electron beams can be focused in field-free plasmas due to magnetic self-pinching. However, plasma return currents induced by the changing magnetic flux of a propagating bunch can reduce the total magnetic field and focusing force (Ampere's law). The experiment covered a parameter regime not observed previously, namely, the return current regime, where the collisionless plasma skindepth is small compared to the electron beam size and the focusing strength of the plasma lens is reduced due to return currents. A relativistic electron beam from the BTF, which utilizes the Advanced Light Source (ALS) injector, was used to study the properties of return currents in plasmas. The beam-transport line and experimental chamber were designed to allow measurement of electron beam size continuously along its path, before and after it passed through plasma lenses. For this purpose, an optical transition radiation (OTR) based diagnostic was developed. To ensure plasmas free of external fields, laser- ionization was chosen as the plasma production method. The dependence of plasma density on fill pressure and laser intensity was studied with an in-quadrature Mach- Zehnder radio frequency interferometer. A novel interferometry technique based on evanescent wave detection was developed to measure plasma densities above the cutoff density, for plasmas with a thickness less than the collisionless skin depth. Plasma density was controlled by changing the fill-pressure in the chamber, while the plasma profile was adjusted through the laser intensity. For typical experimental parameters, the electron beam size was observed to reduce in the presence of plasma. Plasma lenses were produced in the return current regime with the ratio of beam size to collisionless plasma

  18. Transforming nursing education: a review of current curricular practices in relation to Benner's latest work.

    PubMed

    Handwerker, Sarah M

    2012-09-12

    Current societal and healthcare system trends highlight the need to transform nursing education to prepare nurses capable of outstanding practice in the 21st century. Patricia Benner and colleagues urged nurse educators to transform their practice in the 2010 publication Educating Nurses, A Call to Radical Transformation. Frequently utilized pedagogical frameworks in nursing education include behaviorism and constructivism. Much of the structure and basis for instruction and evaluation can be found rooted in these philosophies. By first exploring both behaviorism and constructivism and then relating their use in nursing education to the call to transform, educators can be encourage to examine current practice and possibly modify aspects to include more rich experiential learning.

  19. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    DOE PAGES

    Andonian, G.; Barber, S.; O’Shea, F. H.; ...

    2017-02-03

    We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less

  20. RESULTS OF BEAM TESTS ON A HIGH CURRENT EBIS TEST STAND.

    SciTech Connect

    BEEBE,E.; ALESSI,J.; BELLAVIA,S.; HERSHCOVITCH,A.; KPONOU,A.; LOCKEY,R.; PIKIN,A.; PRELEC,K.; KUZNETSOV,G.; TIUNOV,M.

    1999-03-29

    At Brookhaven National Laboratory there is an R&D program to design an Electron Beam Ion Source (EBIS) for use in a compact ion injector to be developed for the relativistic heavy ion collider (RHIC). The BNL effort is directed at developing an EBIS with intensities of 3 x 10{sup 9} particles/pulse of ions such as Au{sup 35+} and U{sup 45+}, and requires an electron beam on the order of 10A. The construction of a test stand (EBTS) with the full electron beam power and 1/3 the length of the EBIS for RHIC is nearing completion. Initial commissioning of the EBTS was made with pulsed electron beams of duration < 1ms and current up to 13 A. Details of the EBTS construction, results of the pulse tests, and preparations for DC electron beam tests are presented.

  1. Extracted beam and electrode currents in the inductively driven surface-plasma negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Ivanov, A.; Sanin, A.; Sotnikov, O.

    2017-08-01

    The data on long-pulsed operation of RF surface-plasma source is presented. The source regularly produces the H- ion beam with current >1A, energy ≥90 keV and pulse duration ≥2 s. The total H- beam curent, transported to the distant Faraday cup and the currents in the circuits of ion-optical system elements were measured. The composition of accelerated and extracted grid currents was clarified. The relatively high level of acceleration grid current 0.4 A was observed. It consists mainly of secondary electrons, emitted from extraction grid apertures and stripped from H- ions and could be decreased by optimization of positive PG bias applied. The test stand experiments on beam transport through the LEBT were carried out. About 90% of the H- ion beam was transported from the source to the distant calorimeter plane. The full size of 93 keV beam, transported to the calorimeter plane, was larger, than the size of the calorimeter inlet window. As a result, ˜ 60% of the initial beam power was registered by the calorimeter with window 24×24 cm2.

  2. BEAM LIFETIME AND EMITTANCE GROWTH MEASUREMENTS OF GOLD BEAMS IN RHIC AT STORAGE.

    SciTech Connect

    FISCHER,W.; DREES,A.; BRENNAN,J.M.; CONNOLLY,R.; FLILLER,R.; TEPIKIAN,S.; VAN ZEIJTS,J.

    2001-06-18

    During stores of gold beams, longitudinal and transverse beam sizes were recorded. Longitudinal profiles were obtained with a wall current monitor. Transverse profiles were reconstructed from gold-gold collision rates at various relative transverse beam positions. The total beam lifetime was measured with a beam current transformer, the bunched beam lifetime with the wall current monitor. Diffusion rates in the beam halo were determined from the change in the loss rate when a scraper is retracted. The measurements are used to determine the lifetime limiting effects. Beam growth measurements are compared with computations of beam-growth times from intra-beam scattering.

  3. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  4. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  5. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  6. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  7. Mapping of ion beam induced current changes in FinFETs

    SciTech Connect

    Weis, C. D.; Schuh, A.; Batra, A.; Persaud, A.; Rangelow, I. W.; Bokor, J.; Lo, C. C.; Cabrini, S.; Olynick, D.; Duhey, S.; Schenkel, T.

    2008-09-30

    We report on progress in ion placement into silicon devices with scanning probealignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 mu m and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.

  8. Stabilization of the gun current of an electron-beam apparatus

    SciTech Connect

    Klyuikov, A.G.; Fedorov, V.L.; Zil'bershtein, I.M.

    1982-03-01

    A current stabilizer is described for the gun of the ELA-50/5 electron-beam apparatus, which is designed for welding. Stabilization is accomplished by means of an automatic variation of the control-electrode potential with respect to the cathode. The current instability amounts to 0.5--1.0%.

  9. ACCELERATORS: Design and simulation of a beam position monitor for the high current proton linac

    NASA Astrophysics Data System (ADS)

    Ruan, Yu-Fang; Xu, Tao-Guang; Fu, Shi-Nian

    2009-03-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low β beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  10. Design of the beam shut-off current monitor upgrade for the Advanced Photon Source

    SciTech Connect

    Pietryla, A.; Decker, G.

    2000-05-05

    Plans to eliminate the positron accumulator ring (PAR) from the Advanced Photon Source (APS) injector complex have created the need for a device to limit the allowable beam charge injected into the APS injector synchrotrons. The beam shut-off current monitor (BESOCM) was chosen to provide this function. This new application of the BESOCM provided the opportunity to explore new design philosophies. Two design goals were to de-emphasize reliance on external signals and to become insensitive to timing variations. Both of these goals were accomplished by deriving the trigger directly from the beam. This paper will discuss the features of the new BESOCM design and present data demonstrating its function.

  11. Analysis of the propagation dynamics and Gouy phase of Airy beams using the fast Fresnel transform algorithm.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Berg, Cassidy A; Freeman, Christopher Li

    2014-04-01

    There is great interest in Airy beams because they appear to propagate in a curved path. These beams are usually generated by inserting a cubic phase mask onto the input plane of a Fourier transform system. Here, we utilize a fast Fresnel diffraction algorithm to easily derive both the propagation dynamics and the Gouy phase shift for these beams. The trajectories of these beams can be modified by adding additional linear and quadratic phase terms onto the cubic phase mask. Finally, we have rewritten the equations regarding the propagating Airy beams completely in laboratory coordinates for use by experimentalists. Experimental results are included. We expect that these results will be of great importance in applications of Airy beams.

  12. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    SciTech Connect

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  13. IEC accelerator beam coordinate transformations for clinical Monte Carlo simulation from a phase space or full BEAMnrc particle source.

    PubMed

    Bush, Karl K; Zavgorodni, Sergei F

    2010-12-01

    Monte Carlo simulation of clinical treatment plans require, in general, a coordinate transformation to describe the incident radiation field orientation on a patient phantom coordinate system. The International Electrotechnical Commission (IEC) has defined an accelerator coordinate system along with positive directions for gantry, couch and collimator rotations. In order to describe the incident beam's orientation with respect to the patient's coordinate system, DOSXYZnrc simulations often require transformation of the accelerator's gantry, couch and collimator angles to describe the incident beam. Similarly, versions of the voxelized Monte Carlo code (VMC(++)) require non-trivial transformation of the accelerator's gantry, couch and collimator angles to standard Euler angles α, β, γ, to describe an incident phase space source orientation with respect to the patient's coordinate system. The transformations, required by each of these Monte Carlo codes to transport phase spaces through a phantom, have been derived with a rotation operator approach. The transformations have been tested and verified against the Eclipse treatment planning system.

  14. Generation of high-current electron beam in a wide-aperture open discharge

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Zakrevsky, Dm. E.; Gugin, P. P.

    2011-10-01

    In the present study, it was examined generation of nanosecond-duration electron-beam (EB) pulses by a wide-aperture open discharge burning in helium or in a mixture of helium with nitrogen and water vapor. In the experiments, a discharge cell with coaxial electrode geometry, permitting radial injection of the electron beam into operating lasing medium, was used, with the cathode having radius 2.5 cm and length 12 cm. It was shown possible to achieve an efficient generation of a high-intensity electron beam (EB pulse power ˜250 MW and EB pulse energy up to 4 J) in the kiloampere range of discharge currents (up to 26 kA at ˜12 kV discharge voltage). The current-voltage characteristics of the discharge proved to be independent of the working-gas pressure. The existence of an unstable dynamic state of EB, conditioned by the presence of an uncompensated space charge accumulated in the discharge cell due to the exponential growth of the current in time during discharge initiation and the hyperbolic growth of current density in the direction towards the tube axis, was revealed. The obtained pulsed electron beam was used to excite the self-terminated laser on He 21P10-21S0 transition. The oscillations developing in the discharge cell at high discharge currents put limit to the pumping energy and emissive power of the laser excited with the radially converging electron beam.

  15. Transformation and Transformational Leadership: A Review of the Current and Relevant Literature for Academic Radiologists.

    PubMed

    Thomson, Norman B; Rawson, James V; Slade, Catherine P; Bledsoe, Martin

    2016-05-01

    With the US healthcare system on an unsustainable course, change is inevitable. Changes in the healthcare landscape impacting radiology include changing payment models, rapid adoption of digital technology, changes in radiology resident certifying exams, and the rise of consumerism in health care. Academic Radiology will be part of that change with none of its missions spared. What matters is not that change is coming but how Academic Radiology responds to change. Do we ignore, adapt, adopt others' practices, or lead change? Change management or transformation is a management skill set that can be learned and developed. Transformational leadership is a leadership style defined by the relationships between the leaders and the followers and the results they are able to achieve together to meet organizational goals. In this paper, we provide a review of key change management theories, as well as practical advice for self-reflection and development of leadership behaviors that promote effective change management and organizational transformation, particularly in a complex industry like Academic Radiology.

  16. Advanced transformational analysis applied to e-beam proximity effect correction

    NASA Astrophysics Data System (ADS)

    Barouch, Eytan; Coifman, Ronald R.; Ma, Jimmy T.; Peckerar, Martin C.; Rokhlin, Vladimir

    1993-06-01

    In this paper we address the problem of dose correction in the data bases consistent with ultra- large-scale integration. It is shown that recent advances in transformation theory provide a natural platform on which to build these dose correctors. Specifically, transformation approaches making use of compactly supported, smooth basis functions are shown to be particularly suitable. This is a natural result of the evolution of mathematically based correctors currently in use. Previous work in Parikh, MacDonald and others employed global transform method to determine the values of 'corrected' dose. In most cases, the mathematical inversion is essentially ill posed, in other words, the exact pattern desired cannot be obtained using a finite Gaussian sum. In this paper a set of smooth basis elements of compact support are employed. The mathematically smooth form of the basis makes it easy to match doses at boundaries without Gibbs phenomenon. Thus the transform field can be partitioned for optimum speed. Consequently, while most transformation complexities are of order N6 (the inversion of an N2 X N2 matrix) where N2 is the number of grid points characterizing the database, we developed an algorithm of complexity N2 log N. A method of dose field bias is employed to stem the requests for negative dose. The heart of the numerical process is essentially based on an adapted fast non-uniform-grid Fourier Transform combined with proper filtering and geometric localization methods. Several examples are given.

  17. Numerical simulation of limiting currents for transport of intense relativistic electron beams in conducting waveguides

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Guillory, J. U.

    1995-11-01

    The space-charge limiting current for an intense, magnetized, relativistic electron beam injected into a grounded metallic pipe is investigated with a 2(1/2)-dimensional particle-in-cell code. Comparisons between the simulation results, the well known Bogdankevich-Rukhadze limiting current, and more recent theoretical estimates of the limiting current are presented. Transmitted currents ≳15% above those predicted by the Bogdankevich-Rukhadze and other limiting current estimates are observed. However, good agreement between the simulation results and the analytic estimates of Uhm [Phys. Fluids B 5, 1919 (1993)] and Fessenden [Lawrence Livermore Lab. Rep. No. UCID-16527 (1974)] is found. For an injected current above the limiting value, a virtual cathode is formed which alters the transmitted current density profile of the beam. A theoretical estimate of the magnitude of the transmitted current under this condition is compared with simulation results. The predicted transmitted current is found to be valid only for injected currents slightly above the limiting current. In addition, the transition between vacuum and ion-focused-regime transport, with and without an applied axial magnetic field is simulated. For ion-focus-regime densities (np ˜ nb), the effect of the virtual cathode in limiting the beam transmission is greatly diminished as expected.

  18. LASER MODES AND BEAMS: Invariance of mode transformation by an astigmatic π/2 converter upon the input-beam displacement and tilt

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2004-10-01

    It is shown theoretically and experimentally that the transformation of modes by an astigmatic π/2 converter is invariant with respect to the input-beam displacement and tilt. The possibility is considered of using this property for manipulating microobjects and simultaneous generation of Laguerre—Gaussian modes of different orders with the help of the same astigmatic π/2 converter.

  19. Studies in electromagnetic compatibility of optical and digital current and voltage transformers

    NASA Astrophysics Data System (ADS)

    Lebedev, V. D.; Yablokov, A. A.

    2017-02-01

    The use of microprocessor devices for relay protection and automation, devices for measuring and determining electric power quality permits the introduction and development of digital circuits leading from primary current and voltage transformers. The use of optical channels for digital circuits addresses the problem of offsetting electromagnetic interference and voltage shift. Creating optical and digital current and voltage transformers with digitization of signals already at high measuring transformer voltage is the best solution for the above problem of mechanical engineering in the field of electromagnetic compatibility of high voltage measuring transformers. However, a difficulty arises in ensuring electromagnetic compatibility of sensors and microelectronic equipment adjoining live parts. The present study is devoted to examining the impact of electromagnetic fields on sensors and solving the problems of electromagnetic compatibility of optical and digital current and voltage transformers.

  20. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  1. Current-voltage relation for a field ionizing He beam detector

    SciTech Connect

    DePonte, D. P.; Elliott, Greg S.; Kevan, S. D.

    2009-02-15

    Emerging interest in utilizing the transverse coherence properties of thermal energy atomic and molecular beams motivates the development of ionization detectors with near unit detection efficiency and adequate spatial resolution to resolve interference fringes of submicron dimension. We demonstrate that a field ionization tip coupled to a charged particle detector meets these requirements. We have systematically studied the current-voltage relationship for field ionization of helium using tungsten tips in diffuse gas and in a supersonic helium beam. For all 16 tips used in this study, the dependence of ion current on voltage for tips of fixed radius was found to differ from that for tips held at constant surface electric field. A scaling analysis is presented to explain this difference. Ion current increased on average to the 2.8 power of voltage for a tip at fixed field and approximately fifth power of voltage for fixed radius for a liquid nitrogen cooled tip in room temperature helium gas. For the helium beam, ion current increased as 2.2 power of voltage with constant surface field. The capture region of the tips was found to be up to 0.1 {mu}m{sup 2} for diffuse gas and 0.02 {mu}m{sup 2} in the beam. Velocity dependence and orientation of tip to beam were also studied.

  2. Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil

    NASA Astrophysics Data System (ADS)

    Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing

    2017-05-01

    The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.

  3. Trapped electron correction to beam driven current in general tokamak equilibria

    SciTech Connect

    Lin-Liu, Y.R.; Hinton, F.L.

    1997-11-01

    In the limit that the electron thermal velocity greatly exceeds the fast ion velocity for electrical currents driven by neutral beams, the trapped electron correction to the Ohkawa current and the electron density gradient contribution to bootstrap current are shown to share the same transport coefficient in the banana regime. Therefore, existing analytic expressions for the bootstrap coefficient valid for arbitrary aspect ratio tokamaks can also be used to calculate the trapped electron effect. {copyright} {ital 1997 American Institute of Physics.}

  4. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current.

    PubMed

    Nagoshi, Kotaro; Honda, Junki; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi

    2009-12-01

    A through hole with a diameter less than 100 nm was fabricated in an Ag foil using only a focused ion beam (FIB) system and in situ measurements of the penetrating ion beam. During the drilling of the foil by a FIB of Ga(+) ions, the transmitted part of the beam was measured with an electrode mounted on the back face of the foil. When the beam current penetrating through the nanopore reached a certain value, irradiation was stopped and the area of the created aperture was measured with a scanning electron microscope. The resulting area was correlated with the current of the penetrating ion beam. This suggests that we can fabricate a nanopore of the desired size by controlling the ion beam via penetrating ion beam measurements. The smallest aperture thus created was circular with diameter of 30 nm.

  5. An Enhanced Vacuum Arc Ion Source for High Current, High Charge State Uranium Beam Production

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Hershcovitch, A.; Brown, I. G.; Leemans, W.; Liu, F.

    1996-05-01

    We plan to carry out an experimental program at LBNL to develop a novel kind of vacuum arc ion source in which the metal ions are further stripped by interaction with an energetic, dense electron beam. Preliminary results obtained by Batalin et al.(V. A. Batalin, Y. N. Volkov, T. V. Kulevoy, and S. V. Petrenko, ITEP, Moscow, Reprints 18-93 (1993), 33-94 (1994); Proc. EPAC 1994, p. 1453.) using this approach have been most promising; the vacuum arc ion source(I.G. Brown, ``Vacuum Arc Ion Sources'', Rev. Sci. Instrum. 65, 3061 (1994).) uranium ion beam output of mostly U^3+ ions was increased significantly, although the yield of high charge state ions was only a small fraction of the original source current. In our experiments the electron beam will propagate antiparallel to the ion beam so as to provide a radially inward Lorentz force to confine and focus the stripped uranium beam, thus maximizing the electron-ion interactions and increasing the ion beam current density. We expect improved performance over the encouraging earlier^1 results. The motivation for this work(Ady Hershcovitch and Brant Johnson, RHIC/DET Note 17 and AGS/ ADD/Tech. Note No. 416) is the desire to eventually inject fully stripped uranium into the Relativistic Heavy Ion Collider (RHIC).

  6. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    NASA Astrophysics Data System (ADS)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  7. Influence of transform-lens focal length on spectral beam combining in an external cavity with a microlens array

    NASA Astrophysics Data System (ADS)

    Zhan, Sheng-bao; Wu, Zhuo-liang; He, Feng; Zhang, Jie; You, Jian-cun; Ma, Ye-wan

    2017-03-01

    An experimental system of spectral beam combining of 3 large-mode-area double-clad fiber lasers has been built on the basis of an external cavity with a microlens array. The analysis models of coupling and combining efficiency, as well as beam quality were established. According to the models, the influences of focal length of transform lens on the coupling, combining efficiency, as well as beam quality were analyzed. The results show that the longer focal length of transform lens increases the number of combined emitters, while hardly affects the combining efficiency. In the tunable experiment of individual fiber laser, the laser can be tuned in a range of 40.62 nm for using transform lens with focal length of 50 mm, slightly wider than that for another one with focal length of 100 mm (40.36 nm). In the combining experiment of three fiber lasers, the measured combining efficiency for the transform lens with focal length of 50 mm was about 77.0%, with the output power of about 1.01 W, and the beam quality factor (Mx2) of 1.318. For another one with focal length of 100 mm, the measured combining efficiency was about 83.3%, with the output power of about 1.09 W, and the beam quality factor (Mx2) of 1.312.

  8. Nanosecond rise time air-core current transformer for long-pulse current measurement in pulsed power

    NASA Astrophysics Data System (ADS)

    Shukla, R.; Shyam, A.; Chaturvedi, S.; Kumar, R.; Lathi, D.; Chaudhary, V.; Verma, R.; Debnath, K.; Sharma, S.; Sonara, J.; Shah, K.; Adhikary, B.

    2005-12-01

    A slow-wave delay line type air-core (nonmagnetic Nylon former) current transformer fabricated using silver epoxy for the measurement of currents of long pulse durations and few nanoseconds rise times is reported in this article. The advantage of using silver epoxy is that it fills all the voids between coil and shield and enhances the proximity of the coil to the shield, leading to a high value of distributed capacitance. Thus the transit time of the coil increases and it can measure fast current pulses of longer durations. Increasing the inductance of the coil can compensate for the resulting reduction in the sensitivity of the coil for matched termination. An easy experimental technique to find the value of the matched terminating resistor is also reported in this article. We have also done simulations of the slow wave current transformer using PSPICE.

  9. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    SciTech Connect

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  10. Ultrahigh-current proton beams from short-pulse laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Antici, P.; Fuchs, J.; Jabłowski, S.; Lancia, L.; Mancic, A.; Parys, P.; Rosiński, M.; Suchańska, R.; Szydłowski, A.; Wołowski, J.

    2008-05-01

    The results of studies of high-current proton beam generation from thin (1-3μm) solid targets irradiated by 0.35-ps laser pulse of intensity up to 2×1019 W/cm2 are reported. It is shown that the proton beams of multi-MA currents and multi-TA/cm2 current densities at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The current and energy spectrum of protons remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 - 0.2μm Au front layer) results in two-fold higher proton currents and higher proton energies than in the case of a plastic target.

  11. Evolution of relativistic electron current beam in a cold plasma with fixed background of ions

    NASA Astrophysics Data System (ADS)

    Rajawat, Roopendra Singh; Sengupta, Sudip; Kaw, Predhiman K.

    2016-10-01

    A numerical study of evolution of relativistic electron current beam in a cold homogeneous plasma with immobile ions has been carried out using one dimensional electrostatic relativistic particle-in-cell code. It is found that the beam current when longitudinally perturbed by imposing a relativistically intense wave, diminishes with time due to phase mixing effects, arising because of spatial variation of relativistic mass. Studies have been conducted for various flow velocities (v0 / c) and relativistic intensities (eE0/mωpe c ) of the perturbed wave. Rate of decay of current decreases with increasing flow velocity for a fixed (eE0/mωpe c ); and for a given initial current the final magnitude of current decreases with increasing relativistic intensity of the perturbed wave.

  12. A detector based on silica fibers for ion beam monitoring in a wide current range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  13. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Ivantsivskii, M. V.; Meshkov, O. I.; Popov, S. S.; Smaluk, V. V.

    2012-03-01

    Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

  14. Application of lateral photovoltage towards contactless light beam induced current measurements and its dependence on the finite beam size

    SciTech Connect

    Abhale, Atul Prakash; Rao, K. S. R. Koteswara

    2014-07-15

    The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L{sub c} of photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps.

  15. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  16. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  17. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  18. Chlorpromazine transformation by exposure to ultraviolet laser beams in droplet and bulk.

    PubMed

    Andrei, Ionut Relu; Tozar, Tatiana; Dinache, Andra; Boni, Mihai; Nastasa, Viorel; Pascu, Mihail Lucian

    2016-01-01

    Multiple drug resistance requires a flexible approach to find medicines able to overcome it. One method could be the exposure of existing medicines to ultraviolet laser beams to generate photoproducts that are efficient against bacteria and/or malignant tumors. This can be done in droplets or bulk volumes. In the present work are reported results about the interaction of 266nm and 355nm pulsed laser radiation with microdroplets and bulk containing solutions of 10mg/ml Chlorpromazine Hydrochloride (CPZ) in ultrapure water. The irradiation effects on CPZ solution at larger time intervals (more than 30min) are similar in terms of generated photoproducts if the two ultraviolet wavelengths are utilized. The understanding of the CPZ parent compound transformation may be better evidenced, as shown in this paper, if studies at shorter than 30minute exposure times are made coupled with properly chosen volumes to irradiate. We show that at exposure to a 355nm laser beam faster molecular modifications of CPZ in ultrapure water solution are produced than at irradiation with 266nm, for both microdroplet and bulk volume samples. These effects are evidenced by thin layer chromatography technique and laser induced fluorescence measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation.

    PubMed

    Knez, Daniel; Thaler, Philipp; Volk, Alexander; Kothleitner, Gerald; Ernst, Wolfgang E; Hofer, Ferdinand

    2017-05-01

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation.

    PubMed

    Knez, Daniel; Thaler, Philipp; Volk, Alexander; Kothleitner, Gerald; Ernst, Wolfgang E; Hofer, Ferdinand

    2016-12-13

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Coherent beam control with an all-dielectric transformation optics based lens

    PubMed Central

    YI, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation. PMID:26729400

  2. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia

    SciTech Connect

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, William J.; Ewing, Rodney C.

    2009-05-26

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared to bulk zirconia counterparts, and it is of particular importance to control the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) at different size regimes. In this paper, we performed ion beam bombardments on bilayers (amorphous and cubic) of pure nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. The irradiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion-beam modification methods provide the means to control the phase stability and structure of zirconia polymorphs.

  3. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.

    PubMed

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, W J; Ewing, Rodney C

    2009-06-17

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs.

  4. Study of transients in the formation of heavy-current nanosecond electron beams

    NASA Astrophysics Data System (ADS)

    Pegel', I. V.

    1996-12-01

    Results are presented from experimental and numerical studies of the spatial and temporal microstructure of a relativistic heavy-current electron beam of nanosecond duration. The beam is formed in a magnetically insulated coaxial diode with an edge-emitting cathode. Microcurrent oscillations and azimuthal nonuniformity of the beam are seen, the scale of the latter depending on the maximum cyclotron radius of the electrons. Two- and three-dimensional numerical calculations performed by the macroparticle method show that space-charge oscillations near the cathode produce these phenomena even in the case of a uniform emission surface. It is shown that the increase in the full current of the beam that occurs during the pulse in a weak magnetic field is connected with the gradual propagation of emission to the cylindrical outside surface of the cathode. A study is made of the effect of the discreteness of the emission surface on the impedance and current of the vacuum diode. The linear increase seen in current during the pulse with a small number of emission centers is attributed to an increase in their size as a result of expansion of the cathode plasma.

  5. Simulations and experiments of intense ion beam current density compression in space and timea)

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Anders, A.; Coleman, J. E.; Leitner, M.; Lidia, S. M.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Yu, S. S.; Welch, D. R.

    2009-05-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ˜300 keV K+ beam and have separately achieved transverse and longitudinal focusing to a radius <2 mm and pulse duration <5 ns, respectively. Simulation predictions and recent experiments demonstrate that a strong solenoid (Bz<100 kG) placed near the end of the drift region can transversely focus the beam to the longitudinal focal plane. This paper reports on simulation predictions and experimental progress toward realizing simultaneous transverse and longitudinal charge bunch focusing. The proposed NDCX-II facility would capitalize on the insights gained from NDCX simulations and measurements in order to provide a higher-energy (>2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  6. Upward electron beams measured by DE-1 - A primary source of dayside region-1 Birkeland currents

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Reiff, P. H.; Sugiura, M.

    1983-01-01

    Measurements made by the High Altitude Plasma Instrument on DE-1 have shown that intense upward electron beams with energies from about 20 eV to about 200 eV are a common feature of the region just equatorward of the morning-side polar cusp. Computations of the currents carried by these beams and by the precipitating cusp electrons show excellent agreement with the simultaneous DE-1 magnetometer measurements for both upward and downward Birkeland currents. The data indicate that cold ionospheric electrons, which carry the downward region-1 Birkeland currents on the morning side, are accelerated upward by potential drops of a few tens of eV at altitudes of several thousand kilometers. This acceleration process allows spacecraft above those altitudes to measure routinely the charge carriers of both downward and upward current systems.

  7. A squid-based beam current monitor for FAIR/CRYRING

    NASA Astrophysics Data System (ADS)

    Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas

    2015-11-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.

  8. Upward electron beams measured by DE-1: A primary source of dayside region-1 Birkeland currents

    SciTech Connect

    Burch, J.L.; Reiff, P.H.; Sugiura, M.

    1983-08-01

    Measurements made by the High Altitude Plasma Instrument on DE-1 have shown that intense upward electron beams with energies from roughly-equal20 eV to roughly-equal200 eV are a common feature of the region just equatorward of the morning-side polar cusp. Computations of the currents carried by these beams and by the precipitating cusp electrons show excellent agreement with the simultaneous DE-1 magnetometer measurements for both upward and downward Birkeland currents. The data indicate that cold ionospheric electrons, which carry the downward region-1 Birkeland currents on the morning side, are accelerated upward by potential drops of a few tens of eV at altitudes of several thousand kilometers. This acceleration process allows spacecraft above those altitudes to measure routinely the charge carriers of both downward and upward current systems.

  9. Upward electron beams measured by DE-1 - A primary source of dayside region-1 Birkeland currents

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Reiff, P. H.; Sugiura, M.

    1983-08-01

    Measurements made by the High Altitude Plasma Instrument on DE-1 have shown that intense upward electron beams with energies from about 20 eV to about 200 eV are a common feature of the region just equatorward of the morning-side polar cusp. Computations of the currents carried by these beams and by the precipitating cusp electrons show excellent agreement with the simultaneous DE-1 magnetometer measurements for both upward and downward Birkeland currents. The data indicate that cold ionospheric electrons, which carry the downward region-1 Birkeland currents on the morning side, are accelerated upward by potential drops of a few tens of eV at altitudes of several thousand kilometers. This acceleration process allows spacecraft above those altitudes to measure routinely the charge carriers of both downward and upward current systems.

  10. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  11. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  12. Current neutralization and focusing of intense ion beams with a plasma-filled solenoidal lens. I

    SciTech Connect

    Oliver, B.V.; Sudan, R.N.

    1996-12-01

    The response of the magnetized plasma in an axisymmetric, plasma-filled, solenoidal magnetic lens, to intense light ion beam injection is studied. The lens plasma fill is modeled as an inertialess, resistive, electron magnetohydrodynamic (EMHD) fluid since characteristic beam times {tau} satisfy 2{pi}/{omega}{sub {ital pe}},2{pi}/{Omega}{sub {ital e}}{lt}{tau}{le}2{pi}/{Omega}{sub {ital i}} ({omega}{sub {ital pe}} is the electron plasma frequency and {Omega}{sub {ital e},{ital i}} are the electron, ion gyrofrequencies). When the electron collisionality satisfies {nu}{sub {ital e}}{lt}{Omega}{sub {ital e}}, the linear plasma response is determined by whistler wave dynamics. In this case, current neutralization of the beam is reduced on the time scale for whistler wave transit across the beam. The transit time is inversely proportional to the electron density and proportional to the angle of incidence of the beam with respect to the applied solenoidal field. In the collisional regime ({nu}{sub {ital e}}{gt}{Omega}{sub {ital e}}) the plasma return currents decay on the normal diffusive time scale determined by the conductivity. The analysis is supported by two-and-one-half dimensional hybrid particle-in-cell simulations. {copyright} {ital 1996 American Institute of Physics.}

  13. Experience with the PEP-II RF System at High Beam Currents

    SciTech Connect

    Corredoura, Paul L.

    2000-07-06

    The PEP-II Factory Low-Level RF System (LLRF) is a fully programmable VXI based design running under an EPICS control environment. Several RF feedback loops are used to control longitudinal coupled-bunch modes driven by the accelerating mode of the RF cavities. This paper updates the performance of the LLRF system as beam currents reach design levels. Modifications which enhance the stability, diagnostics, and overall operational performance are described. Recent data from high current operation is included.

  14. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  15. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Mishra, L.; Kewlani, H.; Patil, D. S.; Mittal, K. C.

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10-3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  16. Beam Filamentation Instability of Interacting Current Sheets in Striped Relativistic Winds: The Origin of Low Sigma?

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    Several lines of evidence suggest that relativistic winds from pulsars have flow energy dominated by kinetic energy at their termination, even though they emerge from the light cylinder as Poynting flux dominated flows. The wind sources are oblique rotators, thus the winds are "striped" - composed of interleaved sectors of oppositely directed B in a wide sector of latitude around the rotational equator. The electric current in the sheets separating the oppositely directed magnetic fields of the stripes, which provide the star's electric return current, is composed of a high energy particle beam, propagating across the magnetic field in an almost unmagnetized channel of thickness comparable to the particles' formal Larmor radius. The beams in neighboring sheets have opposite propagation directions, and interact across the stripes through the long range electromagnetic field. Thus the beams are subject to an electromagnetic shear instability which has strong kinship to Weibel beam filamentation instabilities in unmagnetized plasmas. I outline the physics of this instability, apply it to the pair dominated winds from pulsars, both in the case when the return current is composed of ions or high energy positrons (angle between the angular velocity and the magnetic moment less than 90 degrees, an "acute" pulsar) and also in the electron beam return current case (angle between the angular velocity and the magnetic moment greater than 90 degrees, an "obtuse" pulsar). I argue that the instability saturates through magnetic trapping, which leads to the appearance of an anomalous resistance in the pulsar circuit, and show that this resistance can account for the reduction of the striped component of the winds' magnetic fields, through broadening of the current layers until they merge and the stripes disappear. I discuss some possible observational consequences of this magnetic dissipation in the apparently dark region between the light cylinder and the winds' termination

  17. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  18. Spatially-Resolved Beam Current and Charge-State Distributions for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Pollard, James E.; Diamant, Kevin D.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Plume characterization tests with the 36-cm NEXT ion engine are being performed at The Aerospace Corporation using engineering-model and prototype-model thrusters. We have examined the beam current density and xenon charge-state distribution as functions of position on the accel grid. To measure the current density ratio j++/j+, a collimated Eprobe was rotated through the plume with the probe oriented normal to the accel electrode surface at a distance of 82 cm. The beam current density jb versus radial position was measured with a miniature planar probe at 3 cm from the accel. Combining the j++/j+ and jb data yielded the ratio of total Xe+2 current to total Xe+1 current (J++/J+) at forty operating points in the standard throttle table. The production of Xe+2 and Xe+3 was measured as a function of propellant utilization to support performance and lifetime predictions for an extended throttle table. The angular dependence of jb was measured at intermediate and far-field distances to assist with plume modeling and to evaluate the thrust loss due to beam divergence. Thrust correction factors were derived from the total doubles-to-singles current ratio and from the far-field divergence data

  19. ECWGB: a beam tracing 3D code for EC current drive

    NASA Astrophysics Data System (ADS)

    Farina, D.; Nowak, S.; Ramponi, G.

    2003-10-01

    The existing code, which describes the quasi-optical propagation of a Gaussian beam of electron cyclotron (EC) waves(S.Cirant, S.Nowak, A.Orefice, Wave Dispersion and Resonant Deposition Profiles of Electron Cyclotron Gaussian Beams in Toroidal Plasmas), J. Plasma Physics, 53, 345 (1995) and the relevant absorbed power and driven current,(S.Nowak , E. Lazzaro , G. Ramponi, Self-diffraction effects of electron cyclotron Gaussian beams on noninductively driven current in the International Thermonuclear Experimental Reactor tokamak), Phys. Plasmas 3, 4140 (1996) has been optimized and updated by including a new module for the computation of the EC driven current. Different theoretical approaches for the solution of the linearised neoclassical adjoint problem for the current are compared, and the validity of the different models is discussed. The present version of the ECWGB code is extensively used for calculations of EC driven current in ITER plasmas in the framework of MHD modes control and stabilization by means of localized EC current drive.

  20. Proton beam therapy: clinical utility and current status in prostate cancer

    PubMed Central

    Yamoah, Kosj; Johnstone, Peter AS

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique. PMID:27695349

  1. Proton beam therapy: clinical utility and current status in prostate cancer.

    PubMed

    Yamoah, Kosj; Johnstone, Peter As

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique.

  2. Simulation of 10 A electron beam formation and collection for a high current EBIS

    SciTech Connect

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1997-11-01

    Development of an Electron Beam Ion Source (EBIS) for the Relativistic Heavy Ion Collider (RHIC) at BNL requires operating with a 10 A electron beam, which is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be twisted. It will be reported in a separate paper at this Conference. The design of the 10 A electron gun, drift tubes and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  3. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    SciTech Connect

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  4. Fourier transform large amplitude alternating current voltammetry investigations of the split wave phenomenon in electrocatalytic mechanisms.

    PubMed

    Song, Peng; Ma, Hongkai; Meng, Luwen; Wang, Yian; Nguyen, Hoang Viet; Lawrence, Nathan S; Fisher, Adrian C

    2017-08-29

    Fourier transform large amplitude alternating current voltammetry (FTACV) studies are reported on an electrocatalytic (EC') mechanistic system which exhibits split wave behavior on both macro- and micro-size working electrodes. The electrochemical characteristics of the EC' mechanism were analysed using the fundamental to fourth harmonic components deduced by the Fourier transform algorithm. The effects of the sinusoidal frequencies of the applied potential, electrode geometry and substrate concentrations are investigated. The split wave phenomenon was observed and explored particularly.

  5. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  6. A high-current microwave ion source with permanent magnet and its beam emittance measurement

    SciTech Connect

    Yao Zeen; Tan Xinjian; Du Hongxin; Luo Ben; Liu Zhanwen

    2008-07-15

    The progress of a 2.45 GHz high-current microwave ion source with permanent magnet for T(d,n){sup 4}He reaction neutron generator is reported in this paper. At 600 W microwave power and 22 kV extraction voltage, 90 mA peak hydrogen ion beam is extracted from a single aperture of 6 mm diameter. The beam emittance is measured using a simplified pepper-pot method. The (x,x{sup '}) emittance and the (y,y{sup '}) emittance for 14 keV hydrogen ion beam are 55.3{pi} and 58.2{pi} mm mrad, respectively. The normalized emittances are 0.302{pi} and 0.317{pi} mm mrad, respectively.

  7. Absolute Current Calibration of 1$\\mu$A CW Electron Beam

    SciTech Connect

    Arne Freyberger; Mike Bevins; Anthony Day; Arunava Saha; Stephanie Slachtouski; Ronald Gilman; Pavel Degtiarenko

    2005-06-01

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1 {mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy lost due to electromagnetic and hadronic particle losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and simulations will be presented.

  8. Absolute Current Calibrations of 1muA CW Electron Beam

    SciTech Connect

    A. Freyberger, M.E. Bevins, A.R. Day, P. Degtiarenko, A. Saha, S. Slachtouski, R. Gilman

    2005-06-06

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1{mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy losses due to electromagnetic and hadronic losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and GEANT simulations will be presented.

  9. Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons.

    PubMed

    Bekshaev, Aleksandr; Soskin, Marat

    2006-07-15

    Paraxial beams whose transverse structure rotates upon free propagation (spiral beams) can be treated as analogs of azimuthons recently found in nonlinear media [Phys. Rev. Lett.95, 203904 (2005)]. These linear azimuthons have essentially a nonlocalized character and can possess an almost arbitrary rotation rate independent of the angular momentum of the beam. Such beams can be assimilated into fluent mechanical bodies with intrinsic mass flows determined by transverse energy redistribution over the beam cross section.

  10. Impact of quasi-dc currents on three-phase distribution transformer installations

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Schafer, D.A. )

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  11. Design, fabrication, and testing of superconducting RF cavities for high average beam currents

    NASA Astrophysics Data System (ADS)

    Meidlinger, David Joseph

    For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This dissertation describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TeSLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by a Fourier component of the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a pi-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning. Two prototype two-cell cavities were fabricated and tested at cryogenic temperatures without beam.

  12. Off-axis Neutral Beam Current Drive for Advanced Scenario Development in DIII-D

    SciTech Connect

    Murakami, M; Park, J; Petty, C; Luce, T; Heidbrink, W; Osborne, T; Wade, M; Austin, M; Brooks, N; Budny, R; Challis, C; DeBoo, J; deGrassie, J; Ferron, J; Gohil, P; Hobirk, J; Holcomb, C; Hollmann, E; Hong, R; Hyatt, A; Lohr, J; Lanctot, M; Makowski, M; McCune, D; Politzer, P; Prater, R; John, H S; Suzuki, T; West, W; Unterberg, E; Van Zeeland, M; Yu, J

    2008-10-13

    Modification of the two existing DIII-D neutral beam lines is proposed to allow vertical steering to provide off-axis neutral beam current drive (NBCD) as far off-axis as half the plasma radius. New calculations indicate very good current drive with good localization off-axis as long as the toroidal magnetic field, B{sub T}, and the plasma current, I{sub p}, are in the same direction (for a beam steered downward). The effects of helicity can be large: e.g., ITER off-axis NBCD can be increased by more than 20% if the B{sub T} direction is reversed. This prediction has been tested by an off-axis NBCD experiment using reduced size plasmas that are vertically shifted with the existing NBI on DIII-D. The existence of off-axis NBCD is evident in sawtooth and internal inductance behavior. By shifting the plasma upward or downward, or by changing the sign of the toroidal field, measured off-axis NBCD profiles, determined from MSE data, are consistent with predicted differences (40%-45%) arising from the NBI orientation with respect to the magnetic field lines. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as providing flexible scientific tools for understanding transport, energetic particles and heating and current drive.

  13. Transformation of optical-vortex beams by holograms with embedded phase singularity

    NASA Astrophysics Data System (ADS)

    Bekshaev, A. Ya.; Orlinska, O. V.

    2010-04-01

    Spatial characteristics of diffracted beams produced by the "fork" holograms from incident circular Laguerre-Gaussian modes are studied theoretically. The complex amplitude distribution of a diffracted beam is described by models of the Kummer beam or of the hypergeometric-Gaussian beam. Physically, in most cases its structure is formed under the influence of the divergent spherical wave originating from the discontinuity caused by the hologram's groove bifurcation. Presence of this wave is manifested by the ripple structure in the near-field beam pattern and by the power-law amplitude decay at the beam periphery. Conditions when the divergent wave is not excited are discussed. The diffracted beam carries a screw wavefront dislocation (optical vortex) whose order equals to algebraic sum of the incident beam azimuthal index and the topological charge of the singularity imparted by the hologram. The input beam singularity can be healed when the above sum is zero. In such cases the diffracted beam can provide better energy concentration in the central intensity peak than the Gaussian beam whose initial distribution coincides with the Gaussian envelope of the incident beam. Applications are possible for generation of optical-vortex beams with prescribed properties and for analyzing the optical-vortex beams in problems of information processing.

  14. Production and transformation of ring light beams by means of biaxial crystals

    NASA Astrophysics Data System (ADS)

    Ryzhevich, Anatol A.; Katranji, Evgeni G.; Mashchenko, Aleksander G.

    2001-03-01

    Universal method, permitting to form multi-ring light beams with a required quantity of rings from the circularly polarized Gaussian light beam, is proposed. This method permits to increase or decrease by 1 the order of an input beam wavefront screw dislocation, if beam has it. The method was realized by means of the optical scheme containing a biaxial crystal. Using biaxial KTP and (alpha) -HIO3 (iodic acid) crystals Bessel and multi-ring light beams with the first and the second order dislocations are obtained experimentally. The second harmonic generation by mono-, two- and four-ring light beams possessing WFSD1 in a nonlinear KTP crystal is studied experimentally.

  15. Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors.

    PubMed

    Wang, Xuzhu; Chan, Robert K Y; Cheng, Amelia S K

    2008-12-01

    A near UV-near IR Fourier transform spectrometer based on a beam-folding position-tracking method realized by using retroreflectors is reported. The use of retroreflectors maintains all beams in the beam-fold arrangement in parallel with the incident beams. The beam-folding interferometer used for position tracking is arranged to have optical path symmetry with the measurement interferometer in the zero path difference position of the measurement interferometer, and the vertex of the movable retroreflector in the measurement interferometer is arranged very close to the midpoint of the vertices of two movable retroreflectors in the position-tracking interferometer. These measures keep the equivalent optical axis of the position-tracking interferometer well in line with that of the measurement interferometer even with translational misalignments. Therefore, the change in the optical path difference of the position-tracking interferometer is always synchronous to that of the measurement interferometer during the scanning process. That is, the position-tracking error can be suppressed to very small values during a scan. We have demonstrated a UV-near IR Fourier transform spectrometer with a standard quality ball-bearing translation stage achieving a resolution close to the theoretical resolution of approximately 0.28 cm(-1) at the He-Ne laser wavelength when the scan distance reaches the travel distance of over 2 cm. This was achieved without the need for elaborate optics, sophisticated detecting electronics, and high-precision servomotion control.

  16. Reduction of beam current noise in the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Karns, P. R. Tan, C. Y.

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  17. X-ray diagnostic for current density profiling relativistic electron beams in vacuum and gas

    SciTech Connect

    Slaughter, D.; Koppel, L.; Smith, J.

    1986-02-15

    An x-ray imaging technique has been studied for the purpose of observing the current density profile in a high-current relativistic electron beam (50 MeV, 10 kA). Calculations and measurements of energy spectra and intensities are in good agreement. Results indicate sufficient photon yield for pinhole imaging when the beam deposits a small part of its energy in high-Z gas or a thin high-Z foil. Characteristic L and K x-ray emission is not found not be a reliable technique due to strong L and K shell fluorescence in the presence of intense bremsstrahlung radiation. It is also found that at pressures on the order of one atmosphere, the density of energy deposition in a gas cell is too small to generate sufficient photon yield for time-resolved measurements.

  18. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    SciTech Connect

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-05-15

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.

  19. Optimizing field patching in passively scattered proton therapy with the use of beam current modulation.

    PubMed

    Hill, Patrick M; Klein, Eric E; Bloch, Charles

    2013-08-21

    Treatment plans for patched-field proton therapy may not be clinically acceptable due to the dose heterogeneity introduced in the target when combining the dose distributions from two separate fields. MCNPX simulations were performed for various configurations of the Mevion S250 beamline to determine spread-out Bragg peak dose distributions and patched-field treatment plans delivered using a rotating modulator wheel to depths in the clinically relevant range between 5.0 and 30.0 cm. The dose non-uniformity (DNU) metric was defined as the difference between the maximum and minimum dose relative to the prescription observed in a patched dose distribution. The DNU was first evaluated for dose distributions from a standard delivery using constant beam current and combining through-field lateral dose profiles and with patch-field distal dose profiles. Patch-field distal dose profiles were then optimized using beam current modulation in an attempt to better complement the through-field lateral dose profiles when combined into a patched dose distribution. Using standard deliveries, DNU was 10% or less only when patching lateral profiles 12.5-17.5 cm deep. Significantly greater DNU was observed for patches outside of this range, at times exceeding 35%. Using optimized distal profiles, DNU was reduced to 10% or less for all lateral profiles deeper than 15.0 cm. Optimizing beam current modulation was found to create distal profiles with more gradual dose falloff than found in a standard delivery, allowing optimized distal dose distributions to sum more homogeneously with lateral dose distributions. The hot or cold spots that often appear in patched dose distributions from standard deliveries may therefore be mitigated by optimizing beam current. This method may also be applied to systems other than the Mevion system to further improve patched-field dose homogeneity.

  20. Charged current disappearance measurements in the NuMI off-axis beam

    SciTech Connect

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  1. High-Temperature Kicker Electrodes for High-Beam-Current Operation of PEP-II

    SciTech Connect

    Wienands, U.

    2005-04-11

    The strip line electrodes of the kickers used in the transverse bunch-by-bunch feedback systems see significant power deposition by beam and HOM-induced currents. This leads to elevated temperatures of the aluminum electrodes and will ultimately become a limit for the beam current in the Low Energy Ring. Heat is transported to the environment primarily by radiation from the blackened surface of the electrodes. In order to extend the beam-current range of these kickers, new electrodes have been fabricated from molybdenum which are able to run at significantly higher temperature, thus greatly increasing the efficiency of the radiative cooling of the electrodes. Blackening of the electrodes is achieved by oxidation in air at 530 C (1000 F) using a recipe first applied in aviation research for supersonic aircraft. Emissivity was measured on coupons and a whole electrode to be about 0.6. In addition, the match at the terminations of the electrodes is improved following field calculations and measurements on a model of the kicker.

  2. Open-loop correction for an eddy current dominated beam-switching magnet.

    PubMed

    Koseki, K; Nakayama, H; Tawada, M

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.

  3. Open-loop correction for an eddy current dominated beam-switching magnet

    SciTech Connect

    Koseki, K. Nakayama, H.; Tawada, M.

    2014-04-15

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.

  4. Fast wave current drive in neutral beam heated plasmas on DIII-D

    SciTech Connect

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value.

  5. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  6. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  7. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies.

  8. Experimental Investigation and Validation of Neutral Beam Current Drive for ITER Through ITPA Joint Experiments

    SciTech Connect

    Suzuki, T.; Akers, R. J.; Gates, D.A.; Gunter, S.; Heidbrink, W. W.; Hobirk, J.; Luce, T.C.; Murakami, Masanori; Park, Jin Myung; Turnyanskiy, M.

    2011-01-01

    Joint experiments investigating the off-axis neutral beam current drive (NBCD) capability to be utilized for advanced operation scenario development in ITER were conducted in four tokamaks (ASDEX Upgrade (AUG), DIII-D, JT-60U and MAST) through the international tokamak physics activity (ITPA). The following results were obtained in the joint experiments, where the toroidal field, B(t), covered 0.4-3.7 T, the plasma current, I(p), 0.5-1.2 MA, and the beam energy, E(b), 65-350 keV. A current profile broadened by off-axis NBCD was observed in MAST. In DIII-D and JT-60U, the NB driven current profile has been evaluated using motional Stark effect diagnostics and good agreement between the measured and calculated NB driven current profile was observed. In AUG (at low delta similar to 0.2) and DIII-D, introduction of a fast-ion diffusion coefficient of D(b) similar to 0.3-0.5 m(2) s(-1) in the calculation gave better agreement at high heating power (5 MW and 7.2 MW, respectively), suggesting anomalous transport of fast ions by turbulence. It was found through these ITPA joint experiments that NBCD related physics quantities reasonably agree with calculations (with D(b) = 0-0.5 m(2) s(-1)) in all devices when there is no magnetohydrodynamic (MHD) activity except ELMs. Proximity of measured off-axis beam driven current to the corresponding calculation with D(b) = 0 has been discussed for ITER in terms of a theoretically predicted scaling of fast-ion diffusion that depends on E(b)/T(e) for electrostatic turbulence or beta(t) for electromagnetic turbulence.

  9. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, A.; Lunin, A.; Yakovlev, V.; Gonin, I.; Khabiboulline, T.; Saini, A.; Solyak, N.; Yostrikov, A.

    2012-09-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  10. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  11. Amplification of current density modulation in a FEL with an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  12. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  13. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  14. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  15. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  16. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    SciTech Connect

    Parke, E.; Anderson, J. K.; Den Hartog, D. J.; Brower, D. L.; Ding, W. X.; Lin, L.; Johnson, C. A.

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  17. Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam

    2016-05-01

    The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural

  18. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    NASA Astrophysics Data System (ADS)

    Vagin, E. S.; Grigoriev, V. P.

    2015-11-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed.

  19. Transformation of a high-order mode-intensity distribution to a nearly Gaussian beam

    NASA Astrophysics Data System (ADS)

    Machavariani, G.; Davidson, Nir; Ishaaya, Amiel A.; Friesem, Asher A.; Hasman, Erez

    2003-11-01

    A simple method for obtaining a nearly Gaussian laser beam from a high order Hermite-Gaussian mode is presented. The method is based on separating the equal lobes of the high order mode and combining them together coherently. The method was experimentally verified with an arrangement of three mirrors, a 50% beam splitter and a phase tuning plate. The beam quality factor calculated in x-direction for the resulting output beam is 1.045, being very close to that of ideal Gaussian beam. The calculated power leakage is only 1.5%. The experimental near-field and far-field intensity distributions of the output beam have nearly Gaussian cross sections in both the x and y directions, with M2x=1.34 and M2y=1.32. With some modifications, it is possible to obtain an output beam with M2x=1.15 and no power leakage.

  20. Engineering an achromatic Bessel beam using a phase-only spatial light modulator and an iterative Fourier transformation algorithm

    NASA Astrophysics Data System (ADS)

    Walde, Marie; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer

    2017-01-01

    Bessel illumination is an established method in optical imaging and manipulation to achieve an extended depth of field without compromising the lateral resolution. When broadband or multicolour imaging is required, wavelength-dependent changes in the radial profile of the Bessel illumination can complicate further image processing and analysis. We present a solution for engineering a multicolour Bessel beam that is easy to implement and promises to be particularly useful for broadband imaging applications. A phase-only spatial light modulator (SLM) in the image plane and an iterative Fourier Transformation algorithm (IFTA) are used to create an annular light distribution in the back focal plane of a lens. The 2D Fourier transformation of such a light ring yields a Bessel beam with a constant radial profile for different wavelength.

  1. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; Kubo, H.; Matsuoka, K.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.; Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.; Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.; Zeller, G. P.; Bugel, L.

    2011-01-01

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the charged current inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross-section ratio measurements to absolute cross-section values.

  2. Development of a universal serial bus interface circuit for ion beam current integrators.

    PubMed

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation.

  3. Suppression of the 1 MHz beam current modulation in the LEDA/CRITS proton source

    SciTech Connect

    Balleyguier, P.; Sherman, J.; Zaugg, T.

    1998-12-01

    Earlier operation of a microwave proton source exhibited an approximate 1-MHz modulation in the beam current. This oscillation could cause instabilities at higher energies in the linac, as the low-level RF control for linac operation rolls off at 200 kHz. Tests on a dummy load show the modulation is created by the magnetron itself: at a typical power level required for the source operation (680W), the 1-MHz sideband level was as high as {minus}4 dB from carrier. Since the magnetron exhibited better behavior at higher levels, a RF power attenuator is inserted to force the magnetron to run at a 50% higher power level for the same final power in the load. This attenuator is made of two antennas plunged in the waveguide and connected to dummy loads by a coaxial line. As the antenna are separated by a quarter of the guided wavelength, mismatching effects approximately cancel each other. The antenna length is experimentally adjusted to obtain the {minus}1.8 dB attenuation required. Magnetron operation at the higher power level gives a beam current spectrum free of the 1-MHz modulation, showing the coherent beam noise is not generated by plasma chamber phenomena.

  4. Polarization-current-based, finite-difference time-domain, near-to-far-field transformation.

    PubMed

    Zeng, Yong; Moloney, Jerome V

    2009-05-15

    A near-to-far-field transformation algorithm for three-dimensional finite-difference time-domain is presented in this Letter. This approach is based directly on the polarization current of the scatterer, not the scattered near fields. It therefore eliminates the numerical errors originating from the spatial offset of the E and H fields, inherent in the standard near-to-far-field transformation. The proposed method is validated via direct comparisons with the analytical Lorentz-Mie solutions of plane waves scattered by large dielectric and metallic spheres with strong forward-scattering lobes.

  5. Dark Currents and Their Effect on the Primary Beam in an X-band Linac

    SciTech Connect

    Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.; Stupakov, G.V.; Wu, J.H.; /SLAC

    2005-05-27

    We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen in measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.

  6. Research on Digital Output Verification Technology of Electronic DC Current Transformer

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjie; Wang, Bin; Hu, Haoliang; Xiong, Qianzhu; Yang, Chunyan

    2017-05-01

    Aiming at the error of calibration system when conducting field calibration by electronic DC current transformer’s digital calibration system, an electronic DC current transformer’s digital calibration system based on protocol conversion is proposed and researched. Data frames outputted from merging unit are collected and converted by the system, the digital synchronization is realized by using the synchronous clock device to trigger the second pulse, and it is verified by the virtual instrument design software. The field calibration is conducted to some converter station digital dc current transformer under the rated current of 500A by using the calibration system. By calibrating and analyzing errors, the error is less than 0.075% when tested current is more than 40% of the rated current. According the standard in literature[1], performance of the calibration system is perfect, measured results perfectly meet the requirements of design, and the calibration system has great practical application value.

  7. Pulse-driven LED circuit with transformer-based current balance technique

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2014-12-01

    Light emitting diodes (LEDs) have been gradually used for backlight modules for liquid crystal display as a substitute for cold cathode fluorescent lamps. In most of LED applications, it is required to connect several LED strings in parallel to limit the dc voltage level to be applied to the single LED string. Due to considerable current variations through each LED string with inevitable parameter deviations as well as temperature and ageing effects, techniques to balance currents flowing through LED strings are required for LED drivers. This article proposes a pulse-driven LED circuit with transformer-based current balancing scheme, which can simply regulate currents through the LED strings. The transformers are placed in series with the LED strings in such a way that the LED currents are automatically balanced. Since the developed current sharing technique employs no dissipative resistors and no linear-mode transistors, the proposed driver has high efficiency, low power dissipation and reduced thermal problems. In addition, the presented driver with no additional semiconductor devices and no additional controllers can provide a simple and a cost-effective current balancing solution, compared to conventional approaches. Thus, the proposed LED driver can feature a simple, highly efficient, reliable and cost-effective method. The presented LED driver is verified with experimental results.

  8. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Field, K. G.; Eiden, T. J.; Gerczak, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ˜1×1017/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  9. Suppression of runaway current generation by supersonic molecular beam injection during disruptions on J-TEXT

    NASA Astrophysics Data System (ADS)

    Huang, D. W.; Chen, Z. Y.; Tong, R. H.; Yan, W.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Dai, A. J.; Wang, X. L.; Jiang, Z. H.; Yang, Z. J.; Zhuang, G.; Pan, Y.; J-TEXT Team

    2017-08-01

    The suppression of disruption-generated runaway electrons (REs) by supersonic molecular beam injection (SMBI) has been investigated on the J-TEXT tokamak. Experimental results demonstrate that the hydrogen injected by SMBI during plasma current flattop phase can provoke magnetic perturbations, which increase RE losses rapidly. The effective radial diffusion coefficient of REs due to SMBI is estimated as D r ≈ 16 m2 s-1. Based on this benefit, the SMBI has been used to explore the suppression of disruption-generated REs. In J-TEXT, RE current is created with rapid argon injection by a massive gas injection valve. It is found that hydrogen SMBI before disruption efficiently suppresses the generation of RE current.

  10. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    SciTech Connect

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  11. Electron beam induced current profiling of the p-ZnO:N/n-GaN heterojunction

    SciTech Connect

    Przeździecka, E. Stachowicz, M.; Chusnutdinow, S.; Jakieła, R.; Kozanecki, A.

    2015-02-09

    The high quality p-n structures studied consist of nitrogen doped ZnO:N films grown by plasma assisted molecular beam epitaxy on n-type GaN templates. The nitrogen concentration, determined by secondary ion mass spectroscopy, is about 1 × 10{sup 20} cm{sup −3}. Temperature dependent photoluminescence studies confirm the presence of acceptor centers with an energy level lying approximately 130 meV above the valence band. The maximum forward-to-reverse current ratio I{sub F}/I{sub R} in the obtained p-n diodes is about 10{sup 7} at ±5 V, which is 2–5 orders of magnitude higher than previously reported for this type of heterojunctions. Electron-beam-induced current measurements confirm the presence of a p–n junction, located at the p-ZnO/n-GaN interface. The calculated diffusion length and activation energy of minority carriers are presented. The heterostructures exhibit strong absorption in the UV range with a four orders of magnitude high bright-to-dark current ratio.

  12. Beam Aborts in PEP-II Rings and Lingering Drift Chamber Currents

    SciTech Connect

    Meshkat, N.

    2004-09-03

    The BABAR detector at SLAC was designed to study CP-violation in B-meson decays from electron-positron collisions in the PEP-II electron-positron storage rings. Background radiation in the High Energy Ring (HER) and Low Energy Ring (LER) of PEP-II has the potential to damage the sensitive equipment in the BABAR detector. As a result, the beams in the HER and LER can be aborted to prevent such damage. In the span of a few microseconds, the HER and LER currents drop from, for example, 1450 micro Amps and 2300 micro Amps, respectively, to zero. At this time the voltage in the Drift Chamber is rapidly ramped down from a potential of 1930 V to a safe potential of 800 V, thus we would expect the currents in the Drift Chamber to quickly go to zero once the beams are aborted. However, we observe an average 15 second delay in the measured time it takes for all current in the Drift Chamber to fall below 1 micro Amp. This delay has been hypothesized as an instrumentation issue and not as a physical phenomenon. The specific sources of this error are still not completely known, but analysis suggests that it results from the interplay of the CAEN High Voltage supplies and the EPICS system and/or limitations within those systems.

  13. Beam Effects from an Increase of LINAC Current from 40 ma to 49 Milliamperes

    SciTech Connect

    Ray Tomlin

    2002-06-05

    On March 25, 2002 the FNAL Linac had been running at a decreased 40 ma of beam current for some time. Both the 400 MeV Linac and the 8GeV Booster had been tuned to optimum running during that time. Optimum running for the Booster was at 4.1e12 per pulse. Losses at injection and at transition were limiting intensity at the time. By March 26, 2002 the Linac beam current had been increased to 49 ma. The optimum Booster intensity immediately jumped to 4.5e12 per pulse and increased in the next few days to 4.8e12 and 5e12 per pulse. Booster was not retuned until early April when a low-loss 5.0e12 was obtained for stacking operations. Linac current had sagged to 47 ma by then. Measurements were made on the 25th at 40 ma and the 26th and 27th at 49 ma. This is a report and discussion of those measurements.

  14. Evaluation of conductor stresses in a pulsed high-current toroidal transformer

    SciTech Connect

    Turchi, Peter J; Rousculp, Chritopher L; Reass, William A; Oro, David M; Merrill, Frank E; Greigo, Jeffery R; Reinovsky, Robert E

    2009-01-01

    The Precision, High-Energy Density, Liner Implosion Experiment (PHELIX) pulsed power driver is currently under development at Los Alamos National Laboratory. When operational PHELIX will provide 5-10 MAmps of peak current with pulse rise-time of {approx} 5-10 ms. Crucial to the performance of PHELIX is a multi-turn primary, single-turn secondary, current step-up toroidal transformer, R{sub major} {approx} 30 cm, R{sub minor} {approx} 10 cm. The transformer lifetime should exceed 100 shots. Therefore it is essential that the design be robust enough to survive the magnetic stresses produced by high currents. In order to evaluate their design, two methods have been utilized. First, an analytical evaluation has been performed. By identifying the magnetic forces as J{sub 1}{sup 2}/2 {del}L{sub 1} + J{sub 1}J{sub 2}{del}M{sub 12}, where J{sub 1} and J{sub 2} are currents in two circuits, coupled by mutual inductance M{sub 12} and L{sub 1} is the self-inductance of the circuit carrying current J{sub 1}, analytical estimates of stress can be obtained. These results are then compared to a computational MHD model of the same system and to a full finite-element, electromagnetic simulation.

  15. In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine.

    PubMed

    Zhao, Yingying; Bao, Ying; Wang, Jingkang; Rohani, Sohrab

    2012-02-09

    The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and focused beam reflectance measurement (FBRM). A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  16. NOx Removal by Pulsed High Current Electron Beam in Combination with Photocatalyst

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshiro; Mannami, Atushi; Natsuno, Hideshi; Nishikata, Satoshi

    2002-03-01

    A new flue gas treatment device using a pulsed high current electron beam in combination with a photocatalyst (TiO2) was investigated. When the pulsed electron beam (100 keV, 120 A, 1 μs and 4.7 J/pulse) was injected into the gas chamber with a TiO2 sheet on the inner wall, NOx in a 5% oxygen mixed NO (=200 ppm)/N2 gas was removed with the energy efficiency of removal as high as 1010 nmol/J at a removal ratio of 83%, in which the amount of NOx removed in 10 min without any radiation, about 25% of the initial NO concentration, was not included in the energy efficiency calculation. The concentration of NO2 was below about 3 ppm in this process, which was a significant characteristic of NOx removal in this device. When the flowing 4% oxygen mixed NO (=200 ppm)/N2 gas at a flow rate 1.4 L/min was irradiated by successive pulses of the electron beam, the energy efficiency of removal of 864 nmol/J at the removal ratio of 41% was obtained.

  17. The effect of temperature characteristic of Faraday rotator to passively demodulated all optical fiber current transformers

    NASA Astrophysics Data System (ADS)

    Wang, Yuekun; Wang, Zhengping; Sun, Shuai

    2012-11-01

    In order to move signal detecting point to the most sensitive position and improve the immunity of the system at the same time, the scheme named passively demodulated all optical fiber current transformer (AOFCT) inserts a Faraday rotator of 22.5° rotation angle between fiber λ/4retarder and leading fiber. To improve the performance of this type of all fiber current transformer, after considering the temperature features of a large proportion of Faraday crystals, the effect of the Faraday rotator's temperature properties on temperature stability of the passively demodulated AOFCTs are theoretically analyzed and numerically calculated. The results show that the errors induced by the Faraday rotators are beyond the requested values in the International Standard IEC 60044-8:2002 of International Electrotechnical Commission (IEC) and the State Standard of P.R.China GB/T 20840.8-2007. Finally, to solve this problem, some possible solutions are suggested.

  18. Electron beam induced current profiling of ZnO p-n homojunctions

    NASA Astrophysics Data System (ADS)

    Chernyak, L.; Schwarz, C.; Flitsiyan, E. S.; Chu, S.; Liu, J. L.; Gartsman, K.

    2008-03-01

    Variable temperature electron beam induced current technique was employed for the profiling of ZnO p-n homojunctions and the extraction of minority electron diffusion length values in the Sb-doped p-type ZnO region. A thermally induced increase for diffusion length of minority electrons was determined to have an activation energy of ˜145meV. The latter parameter likely represents carrier delocalization energy and determines the increase of the diffusion length due to the reduction in recombination efficiency.

  19. Impurity mapping in sulphide minerals using Time-resolved Ion Beam Induced Current imaging

    NASA Astrophysics Data System (ADS)

    Laird, Jamie S.; Johnson, Brett C.; Ganesan, Kumaravelu; Kandasamy, Sasikaran; Davidson, Garry; Borg, Stacey; Ryan, Chris G.

    2010-06-01

    The semiconducting properties and charge transport within natural minerals like pyrite are postulated to drive certain geochemical processes which can lead to precious metal ore genesis. In this paper we outline electrical measurements on mineral samples and present spatio-temporally resolved Ion Beam Induced Charge or Current studies on a Schottky pyrite junction. Au-Schottky contacts were fabricated in regions selected by thermoelectric and 4-point probe resistivity measurements. The complexity in charge transport due to impurity variations results in imaging contrast which is deemed important for fluid electrochemistry. The relevance of understanding charge collection in pyrite in the context of complex geochemical processes is briefly discussed.

  20. Field flatness and symmetry of photon beams: review of the current recommendations.

    PubMed

    Kouloulias, V E; Poortmans, P; Antypas, C; Kappas, C; Sandilos, P

    2003-01-01

    Flatness and symmetry are main parameters determining the quality of a photon beam produced by linear accelerators. The quality assurance in routine clinical practice of radiotherapy and consequently the treatment-outcome depend definitely on the physical parameters of treatment-delivery. Several recommendations from national and international associations are reported. By reviewing the current literature and mainly according to the World Health Organization (WHO) report of quality assurance in radiotherapy, we may suggest that for flatness and symmetry, the optimal level of deviation should be within +/- 3%. Flatness and symmetry should be checked monthly or once a year in accordance to the guidelines of national societies.

  1. Reduction of Beam Current Noise in the FNAL Magnetron Ion Source

    SciTech Connect

    Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2014-01-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2013. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. We expanded on those studies by trying mixtures ranging from 0.25%N, 99.75%H to 3%N, 97%H. The results of these studies in our test stand will be presented in this paper.

  2. SU-E-T-08: A Beam Source Model for Monte Carlo Simulations of a Double-Scattering Proton Beam Delivery System Using Beam Current Modulation

    SciTech Connect

    Shin, J; Merchant, T E; Lee, S; Li, Z; Shin, D; Farr, J B

    2015-06-15

    Purpose: To reconstruct phase-space information upstream of patient specific collimators for Monte Carlo simulations using only radiotherapy planning system data. Methods: The proton energies are calculated based on residual ranges, e.g., sum of prescribed ranges in a patient and SSD. The Kapchinskij and Vladimirskij (KV) distribution was applied to sample proton’s x-y positions and momentum direction and the beam shape was assumed to be a circle. Free parameters, e.g., the initial energy spread and the emittance of KV distribution were estimated from the benchmarking with commissioning data in a commercial treatment planning system for an operational proton therapy center. The number of histories, which defines the height of individual pristine Bragg peaks (BP) of Spread-out Bragg peak (SOBP), are weighted based on beam current modulation and a correction factor is applied to take into account the fluence reduction as the residual range decreases due to the rotation of the range modulator wheel. The timedependent behaviors, e.g., the changes of the residual range and histories per a pristine BP, are realized by utilizing TOPAS (Tool for Particle Simulation). Results: Benchmarking simulations for selected SOBPs ranging 7.5 cm to 15.5 cm matched within 2 mm in range and up to 5 mm in SOBP width against measurement data in water phantom. We found this model tends to underestimate entrance dose by about 5 % in comparison to measurement. This was attributed to the situation that the energy distribution used in the model was limited in its granularity at the limit of single energy spectrum for the narrow angle modulator steps used in the proximal pull back region of the SOBPs. Conclusion: Within these limitations the source modeling method proved itself an acceptable alternative of a full treatment head simulation when the machine geometry and materials information are not available.

  3. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    SciTech Connect

    Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  4. Inrush Current Simulation of Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshitaka

    This paper presents estimation techniques of machine parameters for power transformer using design procedure of transformer and genetic algorithm with real coding. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by techniques developed in this study and simulation results were reproduced measured waveforms.

  5. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    NASA Astrophysics Data System (ADS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  6. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  7. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  8. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  9. Development of a 2 ns duration high current electron beam source using CsI coated carbon fibre cathode

    SciTech Connect

    Chandra, Romesh; Kumar, Ranjeet; Mitra, S.; Sharma, D.K.; Sharma, Archana; Mittal, K.C.; Patil, D.S.

    2014-07-01

    A 50 ampere beam current having a rise time lesser than 500 pico-seconds with its energy 50 keV is generated using field emission mechanism. Beam duration was 2 ns. CsI coating on carbon fibre cathode was done using plasma spray coating. The results obtained from this cathode were compared to the carbon fibre cathode and the reason behind higher current density in the case of CsI coating has been explained. (author)

  10. Neutral-beam current-driven high-poloidal-beta operation of the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Simonen, T. C.; Matsuoka, M.; Bhadra, D. K.; Burrell, K. H.; Callis, R. W.; Chance, M. S.; Chu, M. S.; Greene, J. M.; Groebner, R. J.; Harvey, R. W.; Hill, D. N.; Kim, J.; Lao, L.; Petersen, P. I.; Porter, G. D.; St. John, H.; Stallard, B. W.; Stambaugh, R. D.; Strait, E. J.; Taylor, T. S.

    1988-10-01

    Neutral-beam current-drive experiments in the DIII-D tokamak with a single null poloidal divertor are described. A plasma current of 0.34 MA has been sustained by neutral beams alone, and the energy confinement is of H-mode quality. Poloidal β values reach 3.5 without disruption or coherent magnetic activity suggesting that these plasmas may be entering the second stability regime.

  11. Mechanisms of structural evolutions associated with the high current pulsed electron beam treatment of a NiTi shape memory alloy

    SciTech Connect

    Zhang, K. M.; Zou, J. X.; Grosdidier, T.; Gey, N.; Weber, S.; Yang, D. Z.; Dong, C.

    2007-01-15

    The aim of this study was to investigate, for the first time, the surface modifications associated with the use the recently developed high current pulsed electron beam technique for modifying the surface of an intermetallic NiTi alloy. Samples were treated with the same electron beam parameters but different numbers of pulses (i.e., five and ten pulses) and the present article concentrates on a detailed characterization of their texture and microstructure modifications. The observation of surface features such as craters, wavy surfaces with protrusions, chemistry modifications, and the development of specific texture components are discussed as the consequence of the combination of surface melting and evaporation mechanisms. It is also shown that in the subsurface, below the melted layer, the martensitic transformation was triggered due to the effects of the thermal stresses and shock waves propagating in the material.

  12. Research on small signal detection of optical voltage/current transformer

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Guoqing; Cai, Xingguo; Guo, Zhizhong; Yu, Wenbin; Huo, Guangyu

    2013-08-01

    This paper researches the signal conditioning program of optical voltage/current transformer and the imbalance during the transmission of dual optical path, gives a brief introduction to the basic principle of optical voltage transformer based on electro-optic Pockels effect and optical current transformer based on Faraday Magnetic-optical Effect, and induces a general expression form of output light intensities This paper research on the signal modulation methods for the system: AC and DC modulations. What is more, the advantages and disadvantages of both modulations in the system will be analyzed. Considering the characteristics that the systematic noise and signal have the spectrum overlapping and that when there is any fault, the fact that in the small signal detection system the output SNR of AC modulation is better than that of DC modulation will be proved. For the parameter changes caused by the environment factors, the feedback control linked by the DSP is imported, it automatically adjusts the balance of the two branch parameters, acquires the measured component in the condition of the two branch unbalance parameters. Furthermore, this paper researches on the influence of imbalance of the dual optical path on the signal detection system. It analyzes the error characteristics due to different kinds of losses and to component matching disorders and other intrinsic factors and then put forward the method to calculate balancing factors by means of the RMS of 50Hz signal. The result proves that using this method can improve the output SNR of optical voltage/current transformer to some extent.

  13. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-01

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  14. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    SciTech Connect

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-08

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  15. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    NASA Astrophysics Data System (ADS)

    Stevens, K. J.; Trompetter, W. J.

    2004-02-01

    Nuclear reaction analysis using a 12C(d, p0)13C reaction and a 16O(d, p1)17O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  16. Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Liyanage, Geethika K.; Khanal, Rajendra R.; Tompkins, Brandon L.; Ellingson, Randy J.; Heben, Michael J.

    2015-09-01

    Solution processed thin film photovoltaic devices incorporating organohalide perovskites have progressed rapidly in recent years and achieved energy conversion efficiencies greater than 20%. However, an important issue limiting their commercialization is that device efficiencies often drop within the first few hundred hours of operation. To explore the origin of the device degradation and failure in perovskite solar cells, we investigated the spatial uniformity of current collection at different stages of aging using two-dimensional laser beam induced current (LBIC) mapping. We validated that the local decomposition of the perovskite material is likely due to interactions with moisture in the air by comparing photocurrent collection in perovskite devices that were maintained in different controlled environments. We show that the addition of a poly(methyl methacrylate)/single-wall carbon nanotube (PMMA/SWCNT) encapsulation layer prevents degradation of the device in moist air. This suggests a route toward perovskite solar cells with improved operational stability and moisture resistance.

  17. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.

    2010-11-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  18. New methods for high current fast ion beam production by laser-driven acceleration.

    PubMed

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  19. Defect and field-enhancement characterization through electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne

    2017-05-01

    To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.

  20. New methods for high current fast ion beam production by laser-driven accelerationa)

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  1. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam.

    PubMed

    Zhang, H J; Yamamoto, S; Fukaya, Y; Maekawa, M; Li, H; Kawasuso, A; Seki, T; Saitoh, E; Takanashi, K

    2014-04-29

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W nanoscaled films were studied using a spin-polarized positron beam. The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3~15% per input charge current of 10(5) A/cm(2)) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The magnitude of the CISP is explained by the Rashba-Edelstein mechanism rather than the diffusive spin Hall effect. This settles a controversy, that which of these two mechanisms dominates the large CISP on metal surfaces.

  2. An optical system to transform the output beam of a quantum cascade laser to be uniform

    NASA Astrophysics Data System (ADS)

    Jacobson, Jordan M.

    Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).

  3. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    NASA Astrophysics Data System (ADS)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  4. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    NASA Astrophysics Data System (ADS)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  5. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  6. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    SciTech Connect

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot and also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.

  7. ON THE BEAM INDUCED QUASI-INSTABILITY TRANSFORMATION OF THE DAMPED APERIODIC MODE IN THE INTERGALACTIC MEDIUM

    SciTech Connect

    Kolberg, U.; Schlickeiser, R.; Yoon, P. H. E-mail: rsch@tp4.rub.de

    2016-02-01

    Highly relativistic electron–positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  8. Concurrent operational modes and enhanced current sensitivity in heterostructure of magnetoelectric ring and piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Shengyao; Ming Leung, Chung; Kuang, Wei; Wing Or, Siu; Ho, S. L.

    2013-05-01

    A heterostructure possessing two concurrent operational modes: current sensing (CS) mode and current transduction (CT) mode and an enhanced current sensitivity associated with the CT mode is proposed by combining a magnetoelectric ring (MER) with a piezoelectric transformer (PET). The MER is a ring-shaped magnetoelectric laminate having an axially polarized Pb(Zr, Ti)O3 (PZT) piezoelectric ceramic ring sandwiched between two circumferentially magnetized, inter-magnetically biased Tb0.3Dy0.7Fe1.92 (Terfenol-D) short-fiber/NdFeB magnet/epoxy three-phase magnetostrictive composite rings, while the PET is a Rosen-type PZT piezoelectric ceramic transformer. The current sensitivity (SI) and magnetoelectric voltage coefficient (αV) of the heterostructure in the two operational modes are evaluated theoretically and experimentally. The CS mode provides a large SI of ˜10 mV/A over a flat frequency range of 10 Hz-40 kHz with a high resonance SI of 157 mV/A at 62 kHz. The CT mode gives a 6.4-times enhancement in resonance SI, reaching 1000 mV/A at 62 kHz, as a result of the amplified vortex magnetoelectric effect caused by the vortex magnetoelectric effect in the MER, the matching of the resonance frequencies between the MER and the PET, and the resonance voltage step-up effect in the PET.

  9. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    SciTech Connect

    Rahman, O.; Ben-Zvi, I.; Degen, C.; Gassner, D. M.; Lambiase, R.; Meng, W.; Pikin, A.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Pietz, J.; Ackeret, M.; Yeckel, C.; Miller, R.; Dobrin, E.; Thompson, K.

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  10. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  11. Two-stream stability properties of the return-current layer for intense ion beam propagation through background plasma

    SciTech Connect

    Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail

    2009-09-15

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance {delta}x{sub perpendicular}{approx}{delta}{sub pe}, where {delta}{sub pe}=c/{omega}{sub pe} is the collisionless skin depth and {omega}{sub pe} is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability.

  12. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    NASA Astrophysics Data System (ADS)

    Kim, Youngsun

    2017-05-01

    The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  13. Near field to far field transformations and multiple beam forming and steering

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The feasibility of acoustic verification of microwave near field to far field transformation algorithms using the Phased Array Sonic Simulation System was studied. Existing electromagnetic near field measurement techniques and transformation algorithms (equations) were investigated. It was analytically determined that acoustic verification is valid. Acoustic simulation of electromagnetic near field to far field transformations is emphasized. The acoustic simulation of electromagnetic near field to far field transformation is verified for the modal expansion method. In the modal expansion method, data from antenna near field measurements are converted to a summation or spectrum of modes corresponding to wave numbers in the measurement coordinate system. Fourier transformation of those measurements preserves the far field information in a spectral form that is then readily extractable.

  14. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction

    SciTech Connect

    Shi Fengyan . E-mail: fyshi@coastal.udel.edu; Kirby, James T.

    2005-04-10

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  15. Curvilinear parabolic approximation for surface wave transformation with wave current interaction

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.

    2005-04-01

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  16. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    SciTech Connect

    PEAVY,J.J; CARY,W.P; THOMAS,D.M; KELLMAN,D.H; HOYT,D.M; DELAWARE,S.W; PRONKO,S.G.E; HARRIS,T.E

    2003-10-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity{reg_sign} HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance.

  17. Electrostatic Matching of a High Current Proton Beam to a RFQ

    SciTech Connect

    Becker, R.; Hamm, R. W.; Pearce-Percy, H.

    2011-12-13

    In order to demonstrate the operation of a prototype DWA (dielectric wall accelerator), it was necessary to modify the LEBT of a commercially procured proton RFQ (Radio Frequency Quadrupole) injector linac. The relatively high output current (35 mA) of the duoplasmatron ion source at the low injection energy of 35 keV to the RFQ presented a matching problem in the beam transport due to the high space charge, the fixed transport length, and the small beam size required at the RFQ. In addition, only the use of electrostatic lenses was considered in order to minimize the size of the system. The standard AccSys design using one decel-accel einzel lens proved to be insufficient, so three new solutions were proposed, each using a pair of decelerating einzel lenses. The tool used to optimize these designs was a newly developed feature of the program IGUN. The RFQ acceptance ellipse is plotted on top of the phase space data of the transport calculation together with an ellipse with the same Twiss parameters which just encloses all the trajectories. The quality of matching is then given as the ratio of the areas of these two ellipses, making optimization easy. This paper will present the results of this optimization and the performance of the actual equipment built and tested.

  18. Wide Dynamic Range Front-end Electronics for Beam Current and Position Measurement

    SciTech Connect

    Rawnsley, W. R.; Potter, R. J.; Verzilov, V. A.; Root, L.

    2006-11-20

    An Analog Devices log detector, AD8306, and a Digital Signal Processor (DSP), ADSP-21992, have been found useful for building wide dynamic range, accurate and inexpensive front-end electronics to measure and process the RF signals from TRIUMF's beam monitors. The high-precision log detector has a useful dynamic range of over 100 dB. The 160 MHz mixed-signal DSP is used to digitize the log detector output, linearize it via a lookup table, perform temperature compensation, and remove the variable duty cycle 1 kHz pulse structure of the beam. This approach has been applied to two types of devices in a 500 MeV proton beamline. The 0.1% DC to CW total current monitor is based on a capacitive pickup resonant at 46.11 MHz, the second harmonic of the bunch frequency. The DSP software provides low pass filtering, calculates the antilog of the data and passes the output to a CAMAC input register. The BPM electronics process data from inductive pickup loops. The DSP controls a GaAs switch which multiplexes signals from four adjacent pickups to a single log detector. The DSP performs difference-over-sum or log-ratio data analysis along with averaging over an arbitrary number of samples.

  19. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  20. High current pulsed electron beam treatment of AZ31 Mg alloy

    SciTech Connect

    Gao Bo; Hao Shengzhi; Zou Jianxin; Grosdidier, Thierry; Jiang Limin; Zhou Jiyang; Dong Chuang

    2005-11-15

    This paper reports, for the first time, an analysis of the effect of High Current Pulsed Electron Beam (HCPEB) on a Mg alloy. The AZ31 alloy was HCPEB treated in order to see the potential of this fairly recent technique in modifying its wear resistance. For the 2.5 J/cm{sup 2} beam energy density used in the present work, the evaporation mode was operative and led to the formation of a ''wavy'' surface and the absence of eruptive microcraters. The selective evaporation of Mg over Al led to an Al-rich melted surface layer and precipitation hardening from the over saturated solid solution. Due to the increase in hardness of the top surface layer, the friction coefficient values were lowered by more than 20% after the HCPEB treatments, and the wear resistance was drastically (by a factor of 6) improved. The microhardness of the HCPEB samples was also increased significantly down to a depth of about 500 {mu}m, far exceeding the heat-affected zone (about 40 {mu}m). This is due to the effect of the propagation of the shockwave associated with this HCPEB treatment.

  1. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  2. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm2 has been reached when the EBIT magnet was operated at 4 T.

  3. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Ahmad, Pauzi; Zulkafli, Hashim, Siti A'aisah

    2014-09-01

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD5, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  4. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    SciTech Connect

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah; Ahmad, Pauzi

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  5. A single-beam titration method for the quantification of open-path Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Sung, Lung-Yu; Lu, Chia-Jung

    2014-09-01

    This study introduced a quantitative method that can be used to measure the concentration of analytes directly from a single-beam spectrum of open-path Fourier Transform Infrared Spectroscopy (OP-FTIR). The peak shapes of the analytes in a single-beam spectrum were gradually canceled (i.e., "titrated") by dividing an aliquot of a standard transmittance spectrum with a known concentration, and the sum of the squared differential synthetic spectrum was calculated as an indicator for the end point of this titration. The quantity of a standard transmittance spectrum that is needed to reach the end point can be used to calculate the concentrations of the analytes. A NIST traceable gas standard containing six known compounds was used to compare the quantitative accuracy of both this titration method and that of a classic least square (CLS) using a closed-cell FTIR spectrum. The continuous FTIR analysis of industrial exhausting stack showed that concentration trends were consistent between the CLS and titration methods. The titration method allowed the quantification to be performed without the need of a clean single-beam background spectrum, which was beneficial for the field measurement of OP-FTIR. Persistent constituents of the atmosphere, such as NH3, CH4 and CO, were successfully quantified using the single-beam titration method with OP-FTIR data that is normally inaccurate when using the CLS method due to the lack of a suitable background spectrum. Also, the synthetic spectrum at the titration end point contained virtually no peaks of analytes, but it did contain the remaining information needed to provide an alternative means of obtaining an ideal single-beam background for OP-FTIR.

  6. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  7. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    SciTech Connect

    Wu, Q.

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  8. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  9. Current status of dental caries diagnosis using cone beam computed tomography

    PubMed Central

    Park, Young-Seok; Ahn, Jin-Soo; Kwon, Ho-Beom

    2011-01-01

    Purpose The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). Materials and Methods An online PubMed search was performed to identify studies on caries research using CBCT. Results Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. Conclusion The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future. PMID:21977474

  10. Microstructure Analysis of HPb59-1 Brass Induced by High Current Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Lyu, Jike; Gao, Bo; Hu, Liang; Lu, Shuaidan; Tu, Ganfeng

    2016-08-01

    In this paper, the effects of high current pulsed electron beam (HCPEB) on the microstructure evolution of casting HPb59-1 (Cu 57.1 mass%, Pb 1.7 mass% and Zn balance) alloy were investigated. The results showed a "wavy" surface which was formed with Pb element existing in the forms of stacking block and microparticles on the top surface layer after treatment. Nanocrystalline structures including Pb grains and two phases (α and β) were formed on the top remelted layer and their sizes were all less than 100 nm. The disordered β phase was generated in the surface layer after HCPEB treatment, which is beneficial for the improvement of surface properties. Meanwhile, there was a large residual stress on the alloy surface, along with the appearance of microcracks, and the preferred orientations of grains also changed.

  11. Quantitative description of the properties of extended defects in silicon by means of electron- and laser-beam-induced currents

    SciTech Connect

    Shabelnikova, Ya. L. Yakimov, E. B.; Nikolaev, D. P.; Chukalina, M. V.

    2015-06-15

    A solar cell on a wafer of multicrystalline silicon containing grain boundaries was studied by the induced-current method. The sample was scanned by an electron beam and by a laser beam at two wavelengths (980 and 635 nm). The recorded induced-current maps were aligned by means of a specially developed code, that enabled to analyze the same part of the grain boundary for three types of measurements. Optimization of the residual between simulated induced-current profiles and those obtained experimentally yielded quantitative estimates of the characteristics of a sample and its defects: the diffusion length of minority carriers and recombination velocity at the grain boundary.

  12. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  13. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  14. A superconducting quadrupole array for transport of multiple high current beams

    SciTech Connect

    Faltens, A.; Shuman, D.

    1999-11-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them.

  15. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  16. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  17. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    SciTech Connect

    Xu Qifu; Liu Lie

    2012-09-15

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  18. The current status of cone beam computed tomography imaging in orthodontics

    PubMed Central

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations. PMID:21159912

  19. The current status of cone beam computed tomography imaging in orthodontics.

    PubMed

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations.

  20. Concept and model of eddy current damper for vibration suppression of a beam

    NASA Astrophysics Data System (ADS)

    Sodano, Henry A.; Bae, Jae-Sung; Inman, Daniel J.; Keith Belvin, W.

    2005-12-01

    Electromagnetic forces are generated by the movement of a conductor through a stationary magnetic field or a time varying magnetic field through a stationary conductor and can be used to suppress the vibrations of a flexible structure. In the present study, a new electromagnetic damping mechanism is introduced. This mechanism is different from previously developed electromagnetic braking systems and eddy current dampers because the system investigated in the subsequent manuscript uses the radial magnetic flux to generate the electromagnetic damping force rather than the flux perpendicular to the magnet's face as done in other studies. One important advantage of the proposed mechanism is that it is simple and easy to apply. Additionally, a single magnet can be used to damp the transverse vibrations that are present in many structures. Furthermore, it does not require any electronic devices or external power supplies, therefore functioning as a non-contacting passive damper. A theoretical model of the system is derived using electromagnetic theory enabling us to estimate the electromagnetic damping force induced on the structure. The proposed eddy current damper was constructed and experiments were performed to verify the precision of the theoretical model. It is found that the proposed eddy current damping mechanism could increase the damping ratio by up to 150 times and provide sufficient damping force to quickly suppress the beam's vibration.

  1. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  2. LASER BEAMS: Use of the fractional Fourier transform in π/2 converters of laser modes

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2004-02-01

    The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic π/2 converters of Hermite—Gaussian modes to donut Laguerre—Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared.

  3. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  4. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  5. Semiparametric analysis of incomplete current status outcome data under transformation models.

    PubMed

    Wen, Chi-Chung; Chen, Yi-Hau

    2014-06-01

    This work, motivated by an osteoporosis survey study, considers regression analysis with incompletely observed current status data. Here the current status data, including an examination time and an indicator for whether or not the event of interest has occurred by the examination time, is not observed for all subjects. Instead, a surrogate outcome subject to misclassification of the current status is available for all subjects. We focus on semiparametric regression under transformation models, including the proportional hazards and proportional odds models as special cases. Under the missing at random mechanism where the missingness of the current status outcome can depend only on the observed surrogate outcome and covariates, we propose an approach of validation likelihood based on the likelihood from the validation subsample where the data are fully observed, with adjustments of the probability of observing the current status outcome, as well as the distribution of the surrogate outcome in the validation subsample. We propose an efficient computation algorithm for implementation, and derive consistency and asymptotic normality for inference with the proposed estimator. The application to the osteoporosis survey data and simulations reveal that the validation likelihood performs well; it removes the bias from the "complete case" analysis discarding subjects with missing data, and achieves higher efficiency than the inverse probability weighting analysis.

  6. Rated Voltage Enlargement for High-Speed PTC Current Limiter by Using a Series Transformer

    NASA Astrophysics Data System (ADS)

    Abubaker, Zawam; Maeyama, Mitsuaki

    In this paper, using Positive Temperature Coefficient (PTC) elements, we propose a simple repetitive high-speed PTC Current Limiter (PTC-CL) whose rated voltage is increased by using a series transformer (ST) at levels far beyond their intrinsic voltage rating. The PTC-CL consists of PTC resistors connected in series and in parallel to each winding of the ST. The PTC-CL was numerically studied by using the electro-magnetic transient program (EMTP) and the electrical equivalent model for PTC. The winding resistance effects and whether all of PTCs will trip or not under the fault current condition were studied. The experimental results in case of two PTCs, where the PTC element is rated (60V/40A), show that the sufficient voltage is applied on the non-tripped PTC even after another PTC trippd at first, and all PTCs of PTC-CL tripped within 0.2 ms where the fault current was suppressed from 1200 A to 52 A at rated voltage 120 V. But, the saturation current started to flow after 2 ms and reached above 1500 A because of the small size of the used core. In order to reduce it, RC components were proposed and the measurement results indicate that the saturation current can be eliminated adopting a suitable parameter for RC components.

  7. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    NASA Astrophysics Data System (ADS)

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-11-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials.

  8. Inrush Current Simulation of Two Windings Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshitaka; Kubota, Kunihiro

    This paper presents estimation techniques of machine parameters for two windings power transformer using design procedure of winding structure. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by design procedure of winding structure and simulation results were reproduced measured waveforms.

  9. Comments about the use of a Zig-Zag transformer to reduce the neutral current created by unbalanced nonlinear loads

    SciTech Connect

    Beverly, L.; Hance, R.; Kristalinski, A.; Visser, A.

    1993-09-01

    The subject of AC line currents with high harmonic content and the potential for overloaded neutral wires caused by the non-linear loading of electronic power supplies has become one of the most popular and at the same time a very complex topic among electrical engineers. Different solutions are offered for this problem. Some examples are specially designed K-rated AC distribution transformers, delta connected primary windings, and L-C tuned filters. All of the above methods have some limitations. For instance, a K-rated transformer does not eliminate harmonics, but transmits them into the feeder. Neutral currents that flow from various loads to the K-rated transformer are still very high. These K-rated transformers are more expensive and are larger in physical size than conventional transformers. The delta connected primary of a power distribution transformer can only eliminate triplen harmonics for balanced loads. Neutral currents caused by the loads are not eliminated. The primary side circuit breaker may also not protect a transformer against overcurrents because the circuit breaker will not see the triplen harmonic current that is circulating in the primary of the transformer. L-C filters can create undesirable resonances, which will lead to an increase in harmonic currents. Another solution is to use a number of small Zig-Zag transformers to reduce the neutral current. This is attractive for the following reasons: relatively low cost, simplicity, ease of installation on existing distribution systems, ability to keep neutral currents local thus eliminating the need for larger neutral wires, and the ability to improve the fundamental load current balance as well.

  10. Pioneering experiments on atomic-beam-assisted generation of drag currents in the Globus-M spherical tokamak

    NASA Astrophysics Data System (ADS)

    Shchegolev, P. B.; Bakharev, N. N.; Gusev, V. K.; Kurskiev, G. S.; Minaev, V. B.; Patrov, M. I.; Petrov, Yu. V.; Sakharov, N. V.

    2015-09-01

    Research data for drag currents in the Globus-M spherical tokamak are presented. The currents are generated by injecting atomic beams of hydrogen and deuterium. Experiments were carried out in the hydrogen and deuterium plasma of the tokamak. It has a divertor configuration with a lower X-point, a displacement along the larger radius from-1.0 to-2.5 cm, and a toroidal field of 0.4 T at a plasma current of 0.17-0.23 MA. The beam is injected into the tokamak in the equatorial plane tangentially to the magnetic axis of the plasma filament with an impact diameter of 32 cm. To provide a 28-keV 0.5-MW atomic beam with geometrical sizes of 4 × 20 cm (at a power level of 1/ e), an IPM-2 ion source is used. The generation of noninductive currents is detected from a rise in the loop current and a simultaneous dip of the loop voltage. The injection of the hydrogen and deuterium atomic beams into the deuterium plasma results in a noticeable and reproducible dip of the loop voltage (up to 0.5 V). Using the ASTRA transport code, a model is constructed that allows rapid calculation of noninductive currents. Calculations performed for a specific discharge confirm that the model adequately describes the effect of drag current generation.

  11. Influence of gas pressure on electron beam emission current of pulsed cathodic-arc-based forevacuum plasma electron source

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor A.; Kazakov, Andrey V.; Medovnik, Alexander V.; Oks, Efim M.

    2017-09-01

    We describe our experimental investigation of the effect of background gas pressure on the emission parameters of a pulsed cathodic-arc-based forevacuum-pressure plasma-cathode electron source. We find that increased gas pressure over the range 4-16 Pa significantly reduces the beam current rise-time and significantly increases the emission current amplitude. For example, at a discharge current of 20 A, increasing the working gas pressure from 4 Pa to 16 Pa increases the emission current from 8 A to 18 A and shortens the beam rise-time from 50 μs to 20 μs. This influence of gas pressure on the electron beam parameters can be explained by the effect of arc discharge current switching from the anode to emission. In our case, the current switching effect is caused by increased working gas pressure. In the forevacuum pressure range, the increase of the electron emission current with the growth of gas pressure is due to a rise in the emission plasma potential which is caused by ion back-streaming from the plasma formed in the electron beam transport region. A model describing the influence of gas pressure on the electron emission from the plasma is presented.

  12. Production of high current proton beams using complex H-rich molecules at GSI

    SciTech Connect

    Adonin, A. Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A.

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  13. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    SciTech Connect

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel; Doran, Darrell; Gai, Wei; Jing, Chunguang; Kim, Kwang-Je; Liu, Wanming; Namkung, Won; Piot, Philippe; Power, John; Sun, Yin-E; Whiteford, Charles; Wisniewski, Eric; Zholents, Alexander

    2016-06-01

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. We present current profile shaping results, aberrations on the shaped profile, and its suppression.

  14. Monitoring gear vibrations through motor current signature analysis and wavelet transform

    NASA Astrophysics Data System (ADS)

    Kar, Chinmaya; Mohanty, A. R.

    2006-01-01

    In gearboxes, load fluctuations on the gearbox and gear defects are two major sources of vibration. Further, at times, measurement of vibration in the gearbox is not easy because of the inaccessibility in mounting the vibration transducers. An efficient and new but non-intrusive method to detect the fluctuation in gear load may be the motor current signature analysis (MCSA). In this paper, a multi-stage transmission gearbox (with and without defects) has been studied in order to replace the conventional vibration monitoring by MCSA. It has been observed through FFT analysis that low frequencies of the vibration signatures have sidebands across line frequency of the motor current whereas high frequencies of vibration signature are difficult to be detected. Hence, discrete wavelet transform (DWT) is suggested to decompose the current signal, and FFT analysis is carried out with the decomposed current signal to trace the sidebands of the high frequencies of vibration. The advantage of DWT technique to study the transients in MCSA has also been cited. The inability of CWT in detecting either defects or load fluctuation has been shown. The results indicate that MCSA along with DWT can be a good replacement for conventional vibration monitoring.

  15. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Li, M. C.; Hao, S. Z.; Wen, H.; Huang, R. F.

    2014-06-01

    High current pulsed electron beam (HCPEB) treatment was conducted on an AZ91 cast magnesium alloy with accelerating voltage 27 kV, energy density 3 J/cm2 and pulse duration 2.5 μs. The surface microstructure was characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). The surface corrosion property was tested with electrochemical method in 3.5 wt.% NaCl solution. It is found that after 1 pulse of HCPEB treatment, the initial eutectic α phase and Mg17Al12 particles started to dissolve in the surface modified layer of depth ∼15 μm. When using 15 HCPEB pulses, the Al content in surface layer increased noticeably, and the phase structure was modified as composite nanostructures consisted of nano-grained Mg3.1Al0.9 domains surrounded by network of Mg17Al12 phase. The HCPEB treated samples showed an improved corrosion resistance with cathodic current density decreased by two orders of magnitude as compared to the initial AZ91 alloy.

  16. A study of low-current-density microsecond electron beam diodes

    NASA Astrophysics Data System (ADS)

    Ramirez, J. J.; Cook, D. L.

    1980-09-01

    The performances of various field emitters and plasma-injected diodes for the generation of low-current-density microsecond electron beams to be used in gas laser excitation are investigated and compared. The output from a microsecond high-voltage pulse-forming network was fed to a large-area vacuum diode containing metal-oxide matrix and carbon fiber field emitters and to diodes filled with plasma and containing preformed plasma on the cathode surface. Of the field emitters, a brush cathode made with 10-micron carbon filaments is found to give the best performance, with emission at fields as low as 10 kV/cm, space charge-limited flow established in 60 nsec and apparent gap closure velocities of 1.5 cm/sec. Although substantial control of the diode impedance was obtained when the plasma was allowed to fill the anode-cathode volume, the constraining of the plasma to the cathode surface is found to improve the uniformity and reproducibility of anode current density, with apparent gap closure velocities as low as 2 cm/sec.

  17. Prospects for Edge Current Density Determination Using Li beam on DIII-D

    SciTech Connect

    D.M. Thomas; A.S. Bozek; T.N. Carlstrom; D.K. Finkenthal; R. Jayakumar; M.A. Makowski; D.G. Nilson; T.H. Osborne; B.W. Rice; R.T. Snider

    2000-08-01

    The specific size and structure of the edge current profile has important effects on the MHD stability and ultimate performance of many advanced tokamak (AT) operating modes. This is true for both bootstrap and externally driven currents that may be used to tailor the edge shear. Absent a direct local measurement of j(r), the best alternative is a determination of the poloidal field. Measurements of the precision (0.1-0.01{sup o} in magnetic pitch angle and 1-10 ms) necessary to address issues of stability and control and provide constraints for EFIT are difficult to do in the region of interest ({rho} = 0.9-1.1). Using Zeeman polarization spectroscopy of the 2S-2P lithium resonance line emission from the DIII-D LIBEAM, measurements of the various field components may be made to the necessary precision in exactly the region of interest to these studies. Because of the negligible Stark mixing of the relevant atomic levels, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to Motional Stark Effect (MSE) measurements of B. Key issues for utilizing this technique include good beam quality, an optimum viewing geometry, and a suitable optical pre-filter to isolate the polarized emission line. A prospective diagnostic system for the DIII-D AT program will be described.

  18. Experimental research of different plasma cathodes for generation of high-current electron beams

    SciTech Connect

    Shafir, G.; Kreif, M.; Gleizer, J. Z.; Gleizer, S.; Krasik, Ya. E.; Gunin, A. V.; Kutenkov, O. P.; Rostov, V. V.; Pegel, I. V.

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.

  19. Influence of beam shape on in-vitro cellular transformations in human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Forbes, Andrew; Hawkins, Denise; Abrahamse, Heidi; Karsten, Aletta E.

    2005-08-01

    A variety of strategies have been utilised for prevention and treatment of chronic wounds such as leg ulcers, diabetic foot ulcers and pressure sores1. Low Level Laser Therapy (LLLT) has been reported to be an invaluable tool in the enhancement of wound healing through stimulating cell proliferation, accelerating collagen synthesis and increasing ATP synthesis in mitochondria to name but a few2. This study focused on an in-vitro analysis of the cellular responses induced by treatment with three different laser beam profiles namely, the Gaussian (G), Super Gaussian (SG) and Truncated Gaussian (TG), on normal wounded irradiated (WI) and wounded non-irradiated (WNI) human skin fibroblast cells (WS1), to test their influence in wound healing at 632.8 nm using a helium neon (HeNe) laser. For each beam profile, measurements were made using average energy densities over the sample ranging from 0.2 to 1 J, with single exposures on normal wounded cells. The cells were subjected to different post irradiation incubation periods, ranging from 0 to 24 hours to evaluate the duration (time) dependent effects resulting from laser irradiation. The promoted cellular alterations were measured by increase in cell viability, cell proliferation and cytotoxicity. The results obtained showed that treatment with the G compared to the SG and TG beams resulted in a marked increase in cell viability and proliferation. The data also showed that when cells undergo laser irradiation some cellular processes are driven by the peak energy density rather than the energy of the laser beam. We show that there exist threshold values for damage, and suggest optimal operating regimes for laser based wound healing.

  20. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  1. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  2. LASER MODES AND BEAMS: Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2004-10-01

    Several optical schemes performing the complex-order fractional Fourier transform are considered. It is shown that these schemes, containing only Gaussian apertures or their combination with lenses, have eigenbeams represented by Hermite—Gaussian modes with transverse indices m, n<=1 and Laguerre—Gaussian modes with p=0 and l=1. The wave front of the eigenbeams is, as a rule, spherical.

  3. Partial discharge measurements on 110kV current transformers. Setting the control value. Case study

    NASA Astrophysics Data System (ADS)

    Dan, C.; Morar, R.

    2017-05-01

    The case study presents a series of partial discharge measurements, reflecting the state of insulation of 110kV CURRENT TRANSFORMERS located in Sibiu county substations. Measurements were performed based on electrical method, using MPD600: an acquisition and analysis toolkit for detecting, recording, and analyzing partial discharges. MPD600 consists of one acquisition unit, an optical interface and a computer with dedicated software. The system allows measurements of partial discharge on site, even in presence of strong electromagnetic interferences because it provides synchronous acquisition from all measurement points. Therefore, measurements, with the ability to be calibrated, do render: - a value subject to interpretation according to IEC 61869-1:2007 + IEC 61869-2:2012 + IEC 61869-3:2011 + IEC 61869-5:2011 and IEC 60270: 2000; - the possibility to determine the quantitative limit of PD (a certain control value) to which the equipment can be operated safely and repaired with minimal costs (relative to the high costs implied by eliminating the consequences of a failure) identified empirically (process in which the instrument transformer subjected to the tests was completely destroyed).

  4. Transient-spatial pattern mining of eddy current pulsed thermography using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Gao, Bin; Tian, Guiyun; Ren, Wenwei; Woo, Wai Lok

    2014-07-01

    Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT & E) technique, which uses hybrid eddy current and thermography NDT & E techniques that enhances the detectability from their compensation. Currently, this technique is limited by the manual selection of proper contrast frames and the issue of improving the efficiency of defect detection of complex structure samples remains a challenge. In order to select a specific frame from transient thermal image sequences to maximize the contrast of thermal variation and defect pattern from complex structure samples, an energy driven approach to compute the coefficient energy of wavelet transform is proposed which has the potential of automatically selecting both optimal transient frame and spatial scale for defect detection using ECPT. According to analysis of the variation of different frequency component and the comparison study of the detection performance of different scale and wavelets, the frame at the end of heating phase is automatically selected as an optimal transient frame for defect detection. In addition, the detection capabilities of the complex structure samples can be enhanced through proper spatial scale and wavelet selection. The proposed method has successfully been applied to low speed impact damage detection of carbon fibre reinforced polymer(CFRP) composite as well as providing the guidance to improve the detectability of ECPT technique.

  5. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. D.; Black, R. A.; Blevis, I.; Boardman, R. J.; Boger, J.; Bonvin, E.; Boulay, M. G.; Bowler, M. G.; Bowles, T. J.; Brice, S. J.; Browne, M. C.; Bullard, T. V.; Bühler, G.; Cameron, J.; Chan, Y. D.; Chen, H. H.; Chen, M.; Chen, X.; Cleveland, B. T.; Clifford, E. T.; Cowan, J. H.; Cowen, D. F.; Cox, G. A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W. F.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Dunmore, J. A.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Ferraris, A. P.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Frame, K.; Frank, E. D.; Frati, W.; Gagnon, N.; Germani, J. V.; Gil, S.; Graham, K.; Grant, D. R.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamer, A. S.; Hamian, A. A.; Handler, W. B.; Haq, R. U.; Hargrove, C. K.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hepburn, J. D.; Heron, H.; Hewett, J.; Hime, A.; Howe, M.; Hykawy, J. G.; Isaac, M. C.; Jagam, P.; Jelley, N. A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P. T.; Klein, J. R.; Knox, A. B.; Komar, R. J.; Kouzes, R.; Kutter, T.; Kyba, C. C.; Law, J.; Lawson, I. T.; Lay, M.; Lee, H. W.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H. B.; Maneira, J.; Manor, J.; Marino, A. D.; McCauley, N.; McDonald, A. B.; McDonald, D. S.; McFarlane, K.; McGregor, G.; Meijer Drees, R.; Mifflin, C.; Miller, G. G.; Milton, G.; Moffat, B. A.; Moorhead, M.; Nally, C. W.; Neubauer, M. S.; Newcomer, F. M.; Ng, H. S.; Noble, A. J.; Norman, E. B.; Novikov, V. M.; O'Neill, M.; Okada, C. E.; Ollerhead, R. W.; Omori, M.; Orrell, J. L.; Oser, S. M.; Poon, A. W.; Radcliffe, T. J.; Roberge, A.; Robertson, B. C.; Robertson, R. G.; Rosendahl, S. S.; Rowley, J. K.; Rusu, V. L.; Saettler, E.; Schaffer, K. K.; Schwendener, M. H.; Schülke, A.; Seifert, H.; Shatkay, M.; Simpson, J. J.; Sims, C. J.; Sinclair, D.; Skensved, P.; Smith, A. R.; Smith, M. W.; Spreitzer, T.; Starinsky, N.; Steiger, T. D.; Stokstad, R. G.; Stonehill, L. C.; Storey, R. S.; Sur, B.; Tafirout, R.; Tagg, N.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Thornewell, P. M.; Trent, P. T.; Tserkovnyak, Y. I.; van Berg, R.; van de Water, R. G.; Virtue, C. J.; Waltham, C. E.; Wang, J.-X.; Wark, D. L.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wittich, P.; Wouters, J. M.; Yeh, M.

    2002-07-01

    Observations of neutral-current [nu] interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard (sup 8)B shape, the [nu]e component of the (sup 8)B solar flux is [phi]e=1.76(sup +0.05)-0.05( stat)(sup +0.09)-0.09( syst) x10(sup 6) cm(sup -2) s(sup -1) for a kinetic energy threshold of 5 MeV. The non-[nu]e component is [phi][mu][tau]=3.41(sup +0.45)-0.45)(stat(sup +0.48)-0.45)(syst x10(sup 6) cm(sup -2) s(sup -1) , 5.3[sigma] greater than zero, providing strong evidence for solar [nu]e flavor transformation. The total flux measured with the NC reaction is [phi]NC=5.09(sup +0.44)(sub -0.43 )(stat)(sup +0.46)(sub -0.43 )(syst) x10(sup 6) cm(sup -2) s(sup -1) , consistent with solar models.

  6. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, RUSSIA); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  7. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory.

    PubMed

    Ahmad, Q R; Allen, R C; Andersen, T C; D Anglin, J; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Bühler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer Drees, R; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J-X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

    2002-07-01

    Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.

  8. Fabrication of a current transformer test set calibrator and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Young Seob; Kap Jung, Jae; Kim, Kyu-Tae

    2015-08-01

    A current transformer test set (CTTS) calibrator consisting of capacitors and resistors was fabricated. The calibrator was utilized for the calibration of several commercial CTTSs and covered a ratio error and phase error range up to ±10% and ±10 crad, respectively. From the calculated and measured values of the corresponding readings, the errors in the ratio and phase readings are derived. The calibration results for several commercial CTTSs are presented with the measurement uncertainty and are compared with the specifications provided by the manufacturer. The absolute uncertainty of a CTTS for both the ratio and the phase for the entire investigated range was obtained. The absolute uncertainty for the ratio error range of -0.1% to +0.05% was found to be less than 10 × 10-6 and the absolute uncertainty of the phase error range of -0.1 to +0.1 crad was not more than 6 µrad.

  9. Pressure and current balance conditions during electron beam injections from spacecraft

    NASA Technical Reports Server (NTRS)

    Hwang, K. S.; Singh, Nagendra

    1990-01-01

    Electrostatic charging level of a conducting surface in response to injections of electron beams into space plasma is investigated by means of one-dimensional Vlasov code. Injections of Maxwellian beams into a vacuum shows that the surface can charge up to an electric potential phi sub s greater than W sub b, where W sub b is the average electron beam energy. Since Maxwellian beams have extended trails with electrons having energies greater than W sub b, it is difficult to quantify the charging level in terms of the energies of the injected electrons. In order to quantitatively understand the charging in excess of W sub b, simulations were carried out for water-bag types of beam with velocity distribution functions described by f(V) = A for V sub min approx. less than V approx. less than V sub max and f(V) = O otherwise, where A is a constant making the normalized beam density unity. It is found that V sub max does not directly determine the charging level. The pressure distribution in the electron sheath determines the electric field distribution near the surface. The electric field in turn determines the electrostatic potential of the vehicle. The pressure distribution is determined by the beam parameters such as the average beam velocity and the velocity spread of the beam.

  10. Optimization of a ribbon diode with magnetic insulation for increasing the current density in a high-current relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Astrelin, V. T.; Arzhannikov, A. V.; Burdakov, A. V.; Sinitskii, S. L.; Stepanov, V. D.

    2009-05-01

    The geometry of the ribbon diode of the U-2 accelerator is optimized to increase both the current density and the total current of the relativistic electron beam for its subsequent injection into the plasma of a multimirror GOL-3 trap. Beam simulation in the diode was performed using the POISSON-2 applied software modified on the basis of the results obtained using the theory of a planar diode in an inclined magnetic field. As a result of the optimization, the diode geometry and the magnetic field configuration were found that should provide a factor of 1.5-2 increase in the current density in experiments with a small angular divergence of electron velocities.

  11. A Four-cell Periodically HOM-damped RF cavity for High Beam Current Accelerators

    SciTech Connect

    Genfa Wu; Robert Rimmer; Haipeng Wang; Jacek Sekutowicz; An Sun

    2004-08-01

    A periodically Higher Order Mode (HOM) damped RF cavity is a weakly coupled multi-cell RF cavity with HOM couplers periodically mounted between the cells. It was studied as an alternative RF structure between the single cell cavity and superstructure cavity in high beam current application requiring strong damping of the high order modes. The acceleration mode in this design is the lowest frequency mode (zero mode) in the pass band, in contrast to the traditional {delta} acceleration mode in regular cavities. The acceleration mode of the four-cell cavity has been studied along with the monopole and dipole HOMs. The frequency response through HOM ports has been simulated in HFSS with waveguide couplers, which shows almost constant Qext for several HOMs, even with different number of cells. A 4x1 zero mode cavity was studied by MAFIA time domain analysis. To understand the tuning challenge for the weakly coupled cavity, ANSYS and SUPERFISH codes were used to simulate the cavity frequency sensitivity and field flatness change within proper tuning range, which will influence the design of the tuner structure. This paper presents the computer simulation of this novel accelerating structure that may be used for variety of accelerator applications.

  12. A methodology for improving laser beam induced current images of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Navas, Francisco Javier; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín, Joaquín

    2009-06-01

    Using the laser beam induced current (LBIC) technique for the study of solar cells and photovoltaic devices, it is possible to obtain images representing the different degrees of quantum efficiency observed on the surface of these elements. Dye sensitized solar cells (DSSCs) or photoelectrochemical solar cells, in contrast to those based on solid-solid interfaces, show a slow response to irradiance variations—up to tens of seconds. This is basically due to both viscous matter transport processes and load transfer. This response is inappreciable when the device is functioning continuously but when a LBIC scan is performed, in which the laser moves quickly from one point to another, the slow response produces a memory effect and the signal generated at one given point depends on the conversion efficiency coefficients of the previously excited positions, resulting in diffuse images and a lack of sharpness. This work presents a methodology to correct high-resolution LBIC mappings of DSSCs using an algorithm based on the kinetics of the discharge process of the irradiated zone. The validity of the proposed method has been evaluated by carrying out experiments where the algorithm has been applied to LBIC mappings.

  13. Overview of the current spectroscopy effort on the Livermore electron beam ion traps

    SciTech Connect

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Brown, G.

    1995-06-29

    An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr{sup 34+} and the 2s-2p intrashell transitions in lithiumlike Th{sup 87+} and U{sup 89+}, which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti{sup 20+} through CO{sup 25+}. A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT.

  14. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    PubMed Central

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583

  15. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Maximenko, S. I.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Scheiman, D. A.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.; Jenkins, P. P.; Walters, R. J.

    2015-12-01

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In0.01Ga0.99As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ˜6.06-9.88 × 109 MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  16. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    SciTech Connect

    Maximenko, S. I. Scheiman, D. A.; Jenkins, P. P.; Walters, R. J.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  17. An iterative algorithm for determining depth profiles of collection probability by electron-beam-induced current

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Breitenstein, Otwin

    2001-01-01

    An iterative algorithm for the derivation of depth profiles of the minority carrier collection probability in a semiconductor with or without a coating on the top is presented using energy-resolved electron-beam-induced current measurements in planar geometry. The calculation is based on the depth-dose function of Everhart and Hoff (Everhart T E and Hoff P H 1971 J. Appl. Phys. 42 5837) and on the penetration-range function of Kanaya and Okayama (Kanaya K and Okayama S 1972 J. Phys. D: Appl. Phys. 5 43) or on that of Fitting (Fitting H-J 1974 Phys. Status Solidi/ a 26 525). It can also be performed with any other depth-dose functions. Using this algorithm does not require us to make any assumptions on the shape of the collection profile within the depth of interest. The influence of an absorbing top contact and/or a limited thickness of the semiconductor layer appear in the result, but can also be taken explicitly into account. Examples using silicon and CIS solar cells as well as a GaAs LED are presented.

  18. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  19. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    SciTech Connect

    Karas’, V. I. Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  20. Phase Transformations During Solidification of a Laser-Beam-Welded TiAl Alloy—An In Situ Synchrotron Study

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai

    2016-12-01

    An in situ highly time-resolved, high-energy X-ray diffraction investigation was carried out to observe the phase transformations of a TiAl alloy during laser beam welding. The diffraction patterns are recorded every 0.1 seconds by a fast area two-dimensional detector and plotted according to time, yielding the solidification pathway, the solid phase volume fraction, and the lattice parameter variation of different phases during the solidification and cooling process. Moreover, it is the first study that can demonstrate that the α phase without any Burgers orientation relationship, the so-called non-Burgers α, precipitates appear earlier than the Burgers α. The non-Burgers α grains are found to nucleate on the primary borides.

  1. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  2. Calculation and Verification of a Planar Pencil Beam Kernel Through the Hankel Transform of Measured OARs for a Radiosurgery System with Cones

    SciTech Connect

    Vargas Verdesoto, Milton X.; Alvarez Romero, Jose T.

    2010-12-07

    A planar multienergetic pencil beam kernel with rotational symmetry is calculated for a stereotactic radiosurgery system, SRS, BrainLAB with cones, employing the deconvolution method of the off axis ratio profile, OAR, corresponding to the cone of 35 mm in diameter for a 6 MV photon beam produced by a linear accelerator Varian 2100 C/D. Before the deconvolution, the experimental OAR is corrected for beam divergence and variations of the spectral fluence {Phi}, using a boundary function BF. The function BF and the fluence {Phi} are transformed to the conjugate space with the zero order Hankel function, which is the appropriate transform due to the radial symmetry of the circular beams generated by the cones. The kernel in the conjugate space is obtained as the ratio of the transform of BF to the transform of {Phi}, therefore the kernel in the real space is calculated as the inverse transform of the kernel in the conjugate space. To validate the kernel in the real space, it is convolved with the fluence of the cones of 7.5, 12.5, 15, 17.5, 20, 22.5, 25, 30 and 35 mm in diameter. The comparison of the OARs calculated and measured shows a maximum difference of 4.5% in the zones of high gradient of dose, and a difference less than 2% in the regions of low gradient of dose. Finally, the expanded uncertainty of the kernel is estimated and reported.

  3. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    SciTech Connect

    Gloss, Jonas; Shah Zaman, Sameena; Jonner, Jakub; Novotny, Zbynek; Schmid, Michael; Varga, Peter; Urbánek, Michal

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phase diagram revealing the transformable region is presented.

  4. Clinical utility of dental cone-beam computed tomography: current perspectives

    PubMed Central

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis. PMID:24729729

  5. Interface kinetics in phase-field models: Isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Boussinot, G.; Brener, Efim A.

    2013-08-01

    We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.

  6. Interface kinetics in phase-field models: isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy.

    PubMed

    Boussinot, G; Brener, Efim A

    2013-08-01

    We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.

  7. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  8. Reconstructing cortical current density by exploring sparseness in the transform domain.

    PubMed

    Ding, Lei

    2009-05-07

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  9. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    PubMed Central

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-01-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials. PMID:27892519

  10. Fourier transform analysis of chronoamperometric currents obtained during staircase voltammetric experiments.

    PubMed

    Chang, Byoung-Yong; Park, Su-Moon

    2007-07-01

    We report a novel comprehensive Fourier transform electrochemical impedance spectroscopic (FTEIS) analysis method of a series of chronoamperometric currents obtained during staircase cyclic voltammetric (SCV) experiments. In our method, FTEIS analysis of a set of chronoamperometric currents recorded upon applying a series of small potential steps during an SCV experiment provides a complete description of an electron-transfer reaction at the electrode/electrolyte interface in forms of equivalent circuit elements. Conversion of the circuit elements thus obtained from the analysis allows electrode kinetic parameters including the electron-transfer rate constant, transfer coefficient, diffusion coefficient, and double layer capacitance as well as thermodynamic parameters such as the half-wave potential and the apparent number of electrons transferred to be determined. Theories for obtaining an ac admittance voltammogram, as well as both the thermodynamic and mass-transfer kinetic parameters thereof, from the SCV data have been developed and verified. A decided advantage of the method is that it provides completely self-contained information regarding an electron-transfer reaction from a single pass of the SCV experiment.

  11. High-Resolution Monitoring of Current Rapid Transformations on Glacial and Periglacial Environments

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Blasone, G.; Calligaro, S.; Carton, A.; Cazorzi, F.; Dalla Fontana, G.; Moro, D.

    2013-01-01

    Glacial and periglacial environments are highly sensitive to climatic changes. Processes of cryosphere degradation may strongly impact human activities and infrastructures, and need to be monitored for improved understanding and for mitigation/adaptation. Studying glacial and periglacial environments using traditional techniques may be difficult or not feasible, but new remote sensing techniques like terrestrial and aerial laser scanner opened new possibilities for cryospheric studies. This work presents an application of the terrestrial laser scanner (TLS) for monitoring the current rapid changes occurring on the Montasio Occidentale glacier (Eastern Italian alps), which is representative of low-altitude, avalanche-fed and debris-cover glaciers. These glaciers are quite common in the Alps but their reaction to climate changes is still poorly known. The mass balance, surface velocity fields, debris cover dynamics and effects of meteorological extremes were investigated by repeat high-resolution TLS scanning from September 2010 to October 2012. The results were encouraging and shed light on the peculiar response of this glacier to climatic changes, on its current dynamics and on the feedback played by the debris cover, which is critical for its preservation. The rapid transformations in act, combined with the unstable ice mass, large amount of loose debris and channeled runoff during intense rainfalls, constitute a potential area for the formation of large debris flows, as shown by field evidences and documented by the recent literature.

  12. Generation of dual pulses of the runaway electron beam current during the subnanosecond breakdown of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.

    2016-10-01

    With a diaphragm placed behind the anode foil, dual runaway electron beams have been provided in helium, hydrogen, nitrogen, and air under a pressure of several torrs to several dozen torrs and a high-voltage pulse amplitude of about 250 kV. These beams consist of two pulses with commensurable amplitudes with a time interval between them of several dozen picoseconds to several hundred picoseconds. It has been shown that the breakdown of the interelectrode gap at pressures from several torrs to several dozen torrs may occur in different regimes and dual pulses of the electron beam current are registered when the initial current through the gap is below 1 kA. It has been found that a supershort avalanche electron beam that consists of one pulse is generated when the delay of breakdown equals several hundred picoseconds. It has been shown that, when the gas pressure reaches several hundred Torr, including atmospheric pressure, the runaway electrons are detected behind the foil after the termination of the supershort avalanche electron beam pulse.

  13. An improved pulse-line accelerator-driven, intense current-density, and high-brightness pseudospark electron beam

    SciTech Connect

    Zhu, J.; Wang, Z.; Zhang, L.; Wang, M.

    1996-02-01

    A high-voltage (200 kV), high current-density, low-emittance (23 {pi}{center_dot}mm mrd), high-brightness (8 {times} 10{sup 10} A/(mrd){sup 2}) electron beam was generated in a pseudospark chamber filled with 15 Pa nitrogen and driven by a modified pulse line accelerator. The beam ejected with {le}1-mm diameter, 2.2-kA beam current, 400-ns pulse length, and about 20 cm propagation distance. Exposure of 10 shots on the same film produced a hole of 1.6-mm diameter at 7 cm downstream of the anode, and showed its good reproducibility. After 60 shots, it was observed that almost no destructive damage traces were left on the surfaces of the various electrodes and insulators of the pseudospark discharge chamber. It was experimentally found that the quality of the pseudospark electron beam remains very high, even at high voltages (of several hundred kilovolts), similar to low voltages, and is much better than the quality of the cold-cathode electron beams.

  14. Transformations of Gaussian Light Beams Caused by Reflection in FEL (free Electron Lasers) Resonators

    DTIC Science & Technology

    1988-10-27

    Box Y Malibu, CA 90265 Mail Stop 3 Building 9201 -2 Dr. A. Drobot Oak Ridge , TN 37830 Science Applications Intl. Corp. 1710 Goodridge Road Dr...r0 ) + yi2(ro ) Xo2 + Yo2 ( 0 i10 0 2 Ri(r0 ) 2R (r ( 12 ) The phase A(r ) depends on the angle 4 through the coordinate transformations Eqs. (3...202 (1987). 12 . P. Sprangle, A. Ting and C. M. Tang, Phys. Rev. A36, 2773 (1987). 14 42 C1-, 4 43- \\ zo zi ! /2 x Figure 2 Reflection geometry. I I I

  15. Validation of on- and off-axis neutral beam current drive against experiment in DIII-D

    SciTech Connect

    Park, J. M.; Murakami, M.; Petty, C. C.; Osborne, T. H.; Van Zeeland, M. A.; Prater, R.; Luce, T. C.; Wade, M. R.; Brooks, N. H.; DeBoo, J. C.; DeGrassie, J. S.; Ferron, J. R.; Gohil, P.; Hong, R. M.; Hyatt, A. W.; Lohr, J.; Politzer, P. A.; St John, H. E.; West, W. P.; Heidbrink, W. W.

    2009-09-15

    Neutral beam current drive (NBCD) experiments in DIII-D using vertically shifted plasmas to move the current drive away from the axis have clearly demonstrated robust off-axis NBCD. Time-dependent measurements of magnetic field pitch angles by the motional Stark effect diagnostic are used to obtain the evolution of the poloidal magnetic flux, which indicates a broad off-axis NBCD profile with a peak at about half the plasma minor radius. In most cases, the measured off-axis NBCD profile is consistent with calculations using an orbit-following Monte Carlo code for the beam ion slowing down including finite-orbit effects provided there is no large-scale magnetohydrodynamic activity such as Alfven eigenmodes modes or sawteeth. An alternative analysis method shows good agreement between the measured pitch angles and those from simulations using transport-equilibrium codes. Two-dimensional image of Doppler-shifted fast ion D{sub {alpha}} light emitted by neutralized energetic ions shows clear evidence for a hollow profile of beam ion density, consistent with classical beam ion slowing down. The magnitude of off-axis NBCD is sensitive to the alignment of the beam injection relative to the helical pitch of the magnetic field lines. If the signs of toroidal magnetic field and plasma current yield the proper helicity, both measurement and calculation indicate that the efficiency is as good as on-axis NBCD because the increased fraction of trapped electrons reduces the electron shielding of the injected ion current, in contrast with electron current drive schemes where the trapping of electrons degrades the efficiency. The measured off-axis NBCD increases approximately linearly with the injection power, although a modest amount of fast ion diffusion is needed to explain an observed difference in the NBCD profile between the measurement and the calculation at high injection power.

  16. Validation of on- and off-axis neutral beam current drive against experiment in DIII-D

    SciTech Connect

    Park, Jin Myung; Murakami, Masanori; Unterberg, Ezekial A

    2009-01-01

    Neutral beam current drive (NBCD) experiments in DIII-D using vertically shifted plasmas to move the current drive away from the axis have clearly demonstrated robust off-axis NBCD. Time-dependent measurements of magnetic field pitch angles by the motional Stark effect diagnostic are used to obtain the evolution of the poloidal magnetic flux, which indicates a broad off-axis NBCD profile with a peak at about half the plasma minor radius. In most cases, the measured off-axis NBCD profile is consistent with calculations using an orbit-following Monte Carlo code for the beam ion slowing down including finite-orbit effects provided there is no large-scale magnetohydrodynamic activity such as Alfven eigenmodes modes or sawteeth. An alternative analysis method shows good agreement between the measured pitch angles and those from simulations using transport-equilibrium codes. Two-dimensional image of Doppler-shifted fast ion D-alpha light emitted by neutralized energetic ions shows clear evidence for a hollow profile of beam ion density, consistent with classical beam ion slowing down. The magnitude of off-axis NBCD is sensitive to the alignment of the beam injection relative to the helical pitch of the magnetic field lines. If the signs of toroidal magnetic field and plasma current yield the proper helicity, both measurement and calculation indicate that the efficiency is as good as on-axis NBCD because the increased fraction of trapped electrons reduces the electron shielding of the injected ion current, in contrast with electron current drive schemes where the trapping of electrons degrades the efficiency. The measured off-axis NBCD increases approximately linearly with the injection power, although a modest amount of fast ion diffusion is needed to explain an observed difference in the NBCD profile between the measurement and the calculation at high injection power.

  17. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    SciTech Connect

    Ellison, James; Lau, Stephen; Heinemann, Klaus; Bizzozero, David

    2015-03-12

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused

  18. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in SNO

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.; Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. D.; Black, R. A.; Blevis, I.; Boardman, R. J.; Boger, J.; Bonvin, E.; Boulay, M. G.; Bowler, M. G.; Bowles, T. J.; Brice, S. J.; Browne, M. C.; Bullard, T. V.; Bühler, G.; Cameron, J.; Chan, Y. D.; Chen, H. H.; Chen, M.; Chen, X.; Cleveland, B. T.; Clifford, E. T. H.; Cowan, J. H. M.; Cowen, D. F.; Cox, G. A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W. F.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Dunmore, J. A.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Ferraris, A. P.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Frame, K.; Frank, E. D.; Frati, W.; Gagnon, N.; Germani, J. V.; Gil, S.; Graham, K.; Grant, D. R.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamer, A. S.; Hamian, A. A.; Handler, W. B.; Haq, R. U.; Hargrove, C. K.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hepburn, J. D.; Heron, H.; Hewett, J.; Hime, A.; Howe, M.; Hykawy, J. G.; Isaac, M. C. P.; Jagam, P.; Jelley, N. A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P. T.; Klein, J. R.; Knox, A. B.; Komar, R. J.; Kouzes, R.; Kutter, T.; Kyba, C. C. M.; Law, J.; Lawson, I. T.; Lay, M.; Lee, H. W.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H. B.; Maneira, J.; Manor, J.; Marino, A. D.; McCauley, N.; McDonald, D. S.; McFarlane, K.; McGregor, G.; Meijer Drees, R.; Mifflin, C.; Miller, G. G.; Milton, G.; Moffat, B. A.; Moorhead, M.; Nally, C. W.; Neubauer, M. S.; Newcomer, F. M.; Ng, H. S.; Noble, A. J.; Norman, E. B.; Novikov, V. M.; O'Neill, M.; Okada, C. E.; Ollerhead, R. W.; Omori, M.; Orrell, J. L.; Oser, S. M.; Poon, A. W. P.; Radcliffe, T. J.; Roberge, A.; Robertson, B. C.; Robertson, R. G. H.; Rosendahl, S. S. E.; Rowley, J. K.; Rusu, V. L.; Saettler, E.; Schaffer, K. K.; Schwendener, M. H.; Schülke, A.; Seifert, H.; Shatkay, M.; Simpson, J. J.; Sims, C. J.; Sinclair, D.; Skensved, P.; Smith, A. R.; Smith, M. W. E.; Spreitzer, T.; Starinsky, N.; Steiger, T. D.; Stokstad, R. G.; Stonehill, L. C.; Storey, R. S.; Sur, B.; Tafirout, R.; Tagg, N.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Thornewell, P. M.; Trent, P. T.; Tserkovnyak, Y. I.; van Berg, R.; van de Water, R. G.; Virtue, C. J.; Waltham, C. E.; Wang, J.-X.; Wark, D. L.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wittich, P.; Wouters, J. M.; Yeh, M.

    2002-12-01

    The Sudbury Neutrino Observatory (SNO) is a 1,000 tonne heavy water Cerenkov-based neutrino detector situated 2,000 meters underground in INCO's Creighton Mine near Sudbury, Ontario, Canada. For the neutrinos from 8B decay in the Sun SNO observes the Charged Current neutrino reaction sensitive only to electron neutrinos and others (Neutral Current and Elastic Scattering) sensitive to all active neutrino types and thereby can search for direct evidence of neutrino flavor change. Using these reactions and assuming the standard 8B shape, the ve component of the 8B solar flux is φe = 1.76- 0.05+0.05(stat.)- 0.09+0.09 (syst.) × 106 cm-2s-1 for a kinetic energy threshold of 5 MeV. The non-ve component is fgr μτ = 3.41- 0.45+0.45(stat.)- 0.45+0.48 (syst.) × 106 cm-2s-1, 5.3σ greater than zero, providing strong evidence for solar ve flavor transformation. The total flux measured with the NC reaction is fgr NC = 5.09- 0.43+0.44(stat.)- 0.43+0.46 (syst.) × 106 cm-2s-1, consistent with solar models. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0% +/- 6.3%-1.4+1.5% of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the ve asymmetry is found to be 7.0% +/- 4.9%-1.2+1.3%. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.

  19. Method of active charge and current neutralization of intense ion beams for ICF

    SciTech Connect

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He/sup +/ multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams.

  20. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  1. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    NASA Astrophysics Data System (ADS)

    Pietraszko, J.; Galatyuk, T.; Grilj, V.; Koenig, W.; Spataro, S.; Träger, M.

    2014-11-01

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3×106/s/mm2) of 1.25A GeV Au69+197 ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported.

  2. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    NASA Astrophysics Data System (ADS)

    Qiu, W. C.; Cheng, X. A.; Wang, R.; Xu, Z. J.; Jiang, T.

    2014-05-01

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  3. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    SciTech Connect

    Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T.; Cheng, X. A.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  4. High current magnetized plasma discharges and electron beams for capture and cooling of charged leptons and hadrons

    SciTech Connect

    Hershcovitch, A.

    1997-07-01

    Nowadays most magnetic lenses used to capture and to focus pions and muons utilize azimuthal magnetic fields generated by large axial currents, like horns or lithium rods (or even a Z-pinch at GSI). Capture and focusing angle is proportional to the product of the current and length of the lens. State-of-the-art for these lenses is no more than 750 kA and 70 cm. A meter long, multi-MA, magnetized axial discharges were generated by the early days of fusion. Lenses based of such devices can increase the capture angle of pions, e.g., by more than a factor of 2. Electron beam cooling is presently achieved in storage rings by having charged particles interact with a co-moving electron beam. In these devices, typical parameters are electron beam currents of about 1 A, an interaction length of about 1 meter, and interaction time of about 30 msec. Multi-MA electron beams can be used for single-pass final stage cooling in a number of machines. Calculations for some applications, as well as other advantages indicate that these schemes deserve further more serious consideration.

  5. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    SciTech Connect

    Agostinetti, P. Serianni, G.; Veltri, P.; Giacomin, M.; Bonomo, F.; Schiesko, L.

    2016-02-15

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  6. Genetic Transformation of Watermelon with Pumpkin DNA by Low Energy Ion Beam-Mediated Introduction

    NASA Astrophysics Data System (ADS)

    Wang, Hao-bo; Gao, Xiu-wu; Guo, Jin-hua; Huang, Qun-ce; Yu, Zeng-liang

    2002-12-01

    The No.601 watermelon (citrullus lanatus) seeds were treated with 25 keV N+ implantation at the dosage of 7.8 × 1016 ions/cm2. After treatment, watermelon seeds were incubated with 380 μg/μl pumpkin (Cucubita, maxima Duch) DNA solution at 35 °C for 5 hours. By two-generations of selection and resistance screening at seedling stage, one transformed material was selected out, whose rind color is similar to that of the donor pumpkin and whose size of seeds is between that of the donor and the receptor. Using AFLP (amplified fragment length polymorphism) technique, two polymorphic DNA fragments were amplified. This primarily testified that the donor DNA fragments/gene were introduced into the receptor cell and integrated into the genomic DNA of the receptor.

  7. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    NASA Astrophysics Data System (ADS)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  8. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams.

    PubMed

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  9. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  10. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    NASA Astrophysics Data System (ADS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  11. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  12. Feasibility study of fusion plasma heating by relativistic high-current electron beams

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.

    2017-03-01

    The goal of this research will be to study the feasibility of fusion plasma heating using ultra-short high intensity electron beam by dissipating the energy of excited wakes either in linear or nonlinear regimes.

  13. The edge transient-current technique (E-TCT) with high energy hadron beam

    NASA Astrophysics Data System (ADS)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  14. Influence of grid control on beam quality in laser ion source generating high-current low-charged copper ions

    SciTech Connect

    Hasegawa, J.; Yoshida, M.; Ogawa, M.; Oguri, Y.; Nakajima, M.; Horioka, K.; Kwan, J.

    2003-08-01

    We examined grid-controlled extraction for a laser ion source using a KrF laser. By using grid-controlled extraction in the over-dense regime, we found that the ion beam current waveforms were stabilized more significantly as the grid bias raised from -90 V to -280 V. The normalized emittance of 0.08 {pi}mm-mrad measured without the grid control was improved to 0.06 {pi}mm-mrad with the grid control. In contrast to this observation, the grid bias disturbed the pattern of the beam extracted in the source-limited regime. Fast extraction was carried out using a high-voltage pulse with a rise time of {approx} 100 ns. The grid control suppressed successfully the beam pedestal originating from the plasma pre-filled in the extraction gap.

  15. Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot

    PubMed Central

    Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran

    2017-01-01

    An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298

  16. Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.

    PubMed

    Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran

    2017-04-10

    An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.

  17. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers

    PubMed Central

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-01-01

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the “all parallel” shielding coils with a 45° starting position have the best shielding performance, whereas the “separated loop” shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same. PMID:28587137

  18. Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.

    PubMed

    Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling

    2017-05-26

    Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.

  19. Application of Hilbert-Huang transform for defect recognition in pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Liu, Baoling; Huang, Pingjie; Hou, Dibo; Chen, Xiao; Zhang, Guangxin

    2015-07-01

    Defect recognition plays an important role in the structure integrity and health monitor of in-service equipment. However, it is difficult to recognise deep-layer defect or small-size defect in conductive structure during pulsed eddy current (PEC) testing. Aiming at the issue, this article proposes a method based on Hilbert-Huang transform which consists of two modules: data processing and defect recognition. In the data processing module, the PEC response signal is decomposed into a few of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition method. The IMFs whose variance contribution rates are bigger than 1% are chosen to reconstruct signal in order to remove noise. In the defect recognition module, the features based on specific frequency components of marginal spectrum (MS) of the reconstructed signals are extracted to discriminate those defects in surface and subsurface. Furthermore, the normalisation MS energy ratio is proposed to quantify defects which cannot be distinguished using peak value in time domain. Experiments show that the proposed method can achieve better de-noising effect and defect evaluation, which contributes to the recognition of those complicated defects such as deep-layered and small-sized defect.

  20. Impact of quasi-dc currents on three-phase distribution transformer installations. Power Systems Technology Program

    SciTech Connect

    McConnell, B.W.; Barnes, P.R.; Tesche, F.M.; Schafer, D.A.

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This ``smoking neutral`` results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.