What controls deposition rate in electron-beam chemical vapor deposition?
White, William B; Rykaczewski, Konrad; Fedorov, Andrei G
2006-08-25
The key physical processes governing electron-beam-assisted chemical vapor deposition are analyzed via a combination of theoretical modeling and supporting experiments. The scaling laws that define growth of the nanoscale deposits are developed and verified using carefully designed experiments of carbon deposition from methane onto a silicon substrate. The results suggest that the chamber-scale continuous transport of the precursor gas is the rate controlling process in electron-beam chemical vapor deposition.
Dual ion beam assisted deposition of biaxially textured template layers
Groves, James R.; Arendt, Paul N.; Hammond, Robert H.
2005-05-31
The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1977-01-01
Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.
Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D
2015-01-01
Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.
Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon
Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less
Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...
2015-06-30
Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
New Insights into Shape Memory Alloy Bimorph Actuators Formed by Electron Beam Evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hao; Nykypanchuk, Dmytro
In order to create shape memory alloy (SMA) bimorph microactuators with high-precision features, a novel fabrication process combined with electron beam (E-beam) evaporation, lift-off resist and isotropic XeF2 dry etching method was developed. To examine the effect of E-beam deposition and annealing process on nitinol (NiTi) characteristics, the NiTi thin film samples with different deposition rate and overflow conditions during annealing process were investigated. With the characterizations using scanning electron microscope and x-ray diffraction, the results indicated that low E-beam deposition rate and argon employed annealing process could benefit the formation of NiTi crystalline structure. In addition, SMA bimorph microactuatorsmore » with high-precision features as small as 5 microns were successfully fabricated. Furthermore, the thermomechanical performance was experimentally verified and compared with finite element analysis simulation results.« less
Use of beam deflection to control an electron beam wire deposition process
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
Lewis, Brett B.; Stanford, Michael G.; Fowlkes, Jason D.; ...
2015-04-08
In this paper, platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me 3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. Finally, in addition to purification, the post-deposition electron stimulated oxygen purification processmore » enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Kingon, A.I.
1989-01-01
Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less
2007-08-01
the deposition process. This model is applied to Ti-6Al-4V. 1. Instruction Laser deposition is an extension of the laser cladding process...uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected into the melt pool...melt pool Deposited layer Remelted zone Substrate Shielding gas Laser beam Powder The governing equations have been discretized using a
Method of Manufacturing a Micromechanical Oscillating Mass Balance
NASA Technical Reports Server (NTRS)
Altemir, David A. (Inventor)
1999-01-01
A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.
Micromechanical Oscillating Mass Balance
NASA Technical Reports Server (NTRS)
Altemir, David A. (Inventor)
1997-01-01
A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.
Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.
Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo
2008-02-01
The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.
Yang, Shuo; Du, Dong; Chang, Baohua
2018-02-04
In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.
Yang, Shuo; Du, Dong
2018-01-01
In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains. PMID:29401715
Directed Vapor Deposition: Low Vacuum Materials Processing Technology
2000-01-01
constituent A Crucible with constituent B Electron beam AB Substrate Deposit Flux of A Flux of B Composition "Skull" melt Electron beam Coolant Copper ... crucible Evaporation target Evaporant material Vapor flux Fibrous Coating Surface a) b) sharp (0.5 mm) beam focussing. When used with multisource
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Electron beam additive manufacturing with wire - Analysis of the process
NASA Astrophysics Data System (ADS)
Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz
2018-05-01
The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.
Focused helium-ion-beam-induced deposition
NASA Astrophysics Data System (ADS)
Alkemade, P. F. A.; Miro, H.
2014-12-01
The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He+ ions in the tens of keV energy range with materials—i.e., minimal deflection and mainly energy loss via electronic excitations—renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm3/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal.
Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts
2013-01-20
metal powder has properties metallurgically compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer...Methodology Background During the DDM process, the energy of a high power industrial laser beam and a concentric stream of metallic alloy powder ...compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer by layer fashion, metal powder is deposited
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.
1995-07-11
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul
1995-01-01
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO
NASA Technical Reports Server (NTRS)
Coutts, T. J.
1987-01-01
This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.
P, Ragesh Kumar T; Hari, Sangeetha; Damodaran, Krishna K; Ingólfsson, Oddur; Hagen, Cornelis W
2017-01-01
We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.
Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Hafley, Robert A.
2003-01-01
Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley REsearch Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Thus far, this technique has been demonstrated on aluminum and titanium alloys of interest for aerospace structural applications nickel and ferrous based alloys are also planned. Deposits resulting from 2219 aluminum demonstrations have exhibited a range of grain morphologies depending upon the deposition parameters. These materials ave exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF process is capable of bulk metal deposition at deposition rated in excess of 2500 cubic centimeters per hour (150 cubic inches per our) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.
Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J
2015-11-06
The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuancheng; Ren Zhongmin; Ning Zhifeng
1997-06-20
Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C{sub 60} films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C{sub 60} films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C{sub 60} soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV)more » nitrogen ion beams have been used to bombard C{sub 60} films to synthesize the carbon nitride films.« less
NASA Astrophysics Data System (ADS)
Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank
2017-10-01
The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.
Chemical vapor deposition for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1980-01-01
Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.
Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4
NASA Technical Reports Server (NTRS)
Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan
2007-01-01
The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.
Lewis, Brett B.; Winkler, Robert; Sang, Xiahan; ...
2017-04-07
Here, we investigate the growth, purity, grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration and a coalescence of the otherwise Pt–C nanogranular material, 2) a slight enhancement in the deposit resolution and 3) a 100-fold improvement in the conductivity of suspended nanowires grown with the in situ photothermal assist process, while retaining a high degree of shape fidelity.
Ion beam sputtering of fluoropolymers
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1978-01-01
Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malobabic, Sina; Jupe, Marco; Ristau, Detlev
Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.
Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates
NASA Astrophysics Data System (ADS)
Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut
2016-02-01
This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.
NASA Technical Reports Server (NTRS)
Wallace, Terryl A.; Bey, Kim S.; Taminger, Karen M. B.; Hafley, Robert A.
2004-01-01
A study was conducted to evaluate the relative significance of input parameters on Ti- 6Al-4V deposits produced by an electron beam free form fabrication process under development at the NASA Langley Research Center. Five input parameters where chosen (beam voltage, beam current, translation speed, wire feed rate, and beam focus), and a design of experiments (DOE) approach was used to develop a set of 16 experiments to evaluate the relative importance of these parameters on the resulting deposits. Both single-bead and multi-bead stacks were fabricated using 16 combinations, and the resulting heights and widths of the stack deposits were measured. The resulting microstructures were also characterized to determine the impact of these parameters on the size of the melt pool and heat affected zone. The relative importance of each input parameter on the height and width of the multi-bead stacks will be discussed. .
The characteristics of a new negative metal ion beam source and its applications
NASA Astrophysics Data System (ADS)
Paik, Namwoong
2001-10-01
Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract shortened by UMI.)
Electron-beam Induced Processes and their Applicability to Mask Repair
NASA Astrophysics Data System (ADS)
Boegli, Volker A.; Koops, Hans W. P.; Budach, Michael; Edinger, Klaus; Hoinkis, Ottmar; Weyrauch, Bernd; Becker, Rainer; Schmidt, Rudolf; Kaya, Alexander; Reinhardt, Andreas; Braeuer, Stephan; Honold, Heinz; Bihr, Johannes; Greiser, Jens; Eisenmann, Michael
2002-12-01
The applicability of electron-beam induced chemical reactions to mask repair is investigated. To achieve deposition and chemical etching with a focused electron-beam system, it is required to disperse chemicals in a molecular beam to the area of interest with a well-defined amount of molecules and monolayers per second. For repair of opaque defects the precursor gas reacts with the absorber material of the mask and forms a volatile reaction product, which leaves the surface. In this way the surface atoms are removed layer by layer. For clear defect repair, additional material, which is light absorbing in the UV, is deposited onto the defect area. This material is rendered as a nanocrystalline deposit from metal containing precursors. An experimental electron-beam mask repair system is developed and used to perform exploratory work applicable to photo mask, EUV mask, EPL and LEEPL stencil mask repair. The tool is described and specific repair actions are demonstrated. Platinum deposited features with lateral dimensions down to 20 nm demonstrate the high resolution obtainable with electron beam induced processes, while AFM and AIMS measurements indicate, that specifications for mask repair at the 70 nm device node can be met. In addition, examples of etching quartz and TaN are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.
2016-05-15
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less
Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M
2016-05-01
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.
Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1978-01-01
Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.
Process development of beam-lead silicon-gate COS/MOS integrated circuits
NASA Technical Reports Server (NTRS)
Baptiste, B.; Boesenberg, W.
1974-01-01
Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.
Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles
NASA Astrophysics Data System (ADS)
Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd
2013-12-01
Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Atherton, Todd S.
2010-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation
Code OK3 - An upgraded version of OK2 with beam wobbling function
NASA Astrophysics Data System (ADS)
Ogoyski, A. I.; Kawata, S.; Popov, P. H.
2010-07-01
For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, including beam wobbling function. Reasons for new version: The code OK3 is based on OK2 [3] and uses the same algorithm with some improvements, the most important one is the beam wobbling function. Summary of revisions:In the code OK3, beams are subdivided on many bunches. The displacement of each bunch center from the initial beam direction is calculated. Code OK3 allows the beamlet number to vary from bunch to bunch. That reduces the calculation error especially in case of very complicated mesh structure with big internal holes. The target temperature rises during the time of energy deposition. Some procedures are improved to perform faster. The energy conservation is checked up on each step of calculation process and corrected if necessary. New procedures included in OK3 Procedure BeamCenterRot( ) rotates the beam axis around the impinging direction of each beam. Procedure BeamletRot( ) rotates the beamlet axes that belong to each beam. Procedure Rotation( ) sets the coordinates of rotated beams and beamlets in chamber and pellet systems. Procedure BeamletOut( ) calculates the lost energy of ions that have not impinged on the target. Procedure TargetT( ) sets the temperature of the target layer of energy deposition during the irradiation process. Procedure ECL( ) checks up the energy conservation law at each step of the energy deposition process. Procedure ECLt( ) performs the final check up of the energy conservation law at the end of deposition process. Modified procedures in OK3 Procedure InitBeam( ): This procedure initializes the beam radius and coefficients A1, A2, A3, A4 and A5 for Gauss distributed beams [2]. It is enlarged in OK3 and can set beams with radii from 1 to 20 mm. Procedure kBunch( ) is modified to allow beamlet number variation from bunch to bunch during the deposition. Procedure ijkSp( ) and procedure Hole( ) are modified to perform faster. Procedure Espl( ) and procedure ChechE( ) are modified to increase the calculation accuracy. Procedure SD( ) calculates the total relative root-mean-square (RMS) deviation and the total relative peak-to-valley (PTV) deviation in energy deposition non-uniformity. This procedure is not included in code OK2 because of its limited applications (for spherical targets only). It is taken from code OK1 and modified to perform with code OK3. Running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost all of the practical running tests performed, the typical running time for one beam deposition is about 30 s on a PC with a CPU of Pentium 4, 2.4 GHz. References:A.I. Ogoyski, et al., Heavy ion beam irradiation non-uniformity in inertial fusion, Phys. Lett. A 315 (2003) 372-377. A.I. Ogoyski, et al., Code OK1 - Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Comm. 157 (2004) 160-172. A.I. Ogoyski, et al., Code OK2 - A simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Comm. 161 (2004) 143-150.
Apparatus for laser assisted thin film deposition
Warner, B.E.; McLean, W. II
1996-02-13
A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.
Apparatus for laser assisted thin film deposition
Warner, Bruce E.; McLean, II, William
1996-01-01
A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.
NASA Astrophysics Data System (ADS)
Randolph, Steven Jeffrey
Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.
Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.
2006-01-01
Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cm3/hr (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.
Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.
2006-01-01
Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cubic centimeters per hour (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.
Laser production of articles from powders
Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.
1998-01-01
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.
Laser production of articles from powders
Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.
1998-11-17
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.
A critical literature review of focused electron beam induced deposition
NASA Astrophysics Data System (ADS)
van Dorp, W. F.; Hagen, C. W.
2008-10-01
An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally, there is a limited understanding of the mechanism of electron induced precursor dissociation. In many cases, the deposit composition is not directly dependent on the stoichiometric composition of the precursor and the electron induced decomposition paths can be very different from those expected from calculations or thermal decomposition. The dissociation mechanism is one of the key factors determining the purity of the deposits and a better understanding of this process will help develop electron beam induced deposition into a viable nanofabrication technique.
Simulation of electron transport during electron-beam-induced deposition of nanostructures
Jeschke, Harald O; Valentí, Roser
2013-01-01
Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747
Martin, Aiden A.; Depond, Philip J.
2018-04-24
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Aiden A.; Depond, Philip J.
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
Belić, Domagoj; Shawrav, Mostafa M; Bertagnolli, Emmerich
2017-01-01
This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID). Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications. PMID:29259868
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
Advanced repair solution of clear defects on HTPSM by using nanomachining tool
NASA Astrophysics Data System (ADS)
Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu
2015-10-01
As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.
In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.
2016-01-01
Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.
Ion beam sputter deposited diamond like films
NASA Technical Reports Server (NTRS)
Banks, B. A.; Rutledge, S. K.
1982-01-01
A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.
Highly conductive and pure gold nanostructures grown by electron beam induced deposition
Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich
2016-01-01
This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization. PMID:27666531
Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R
2015-11-20
This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48 nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
NASA Astrophysics Data System (ADS)
Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.
2014-12-01
Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes
Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard
2015-01-01
Summary Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061
Thorman, Rachel M; Kumar T P, Ragesh; Fairbrother, D Howard; Ingólfsson, Oddur
2015-01-01
Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.
Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2017-09-01
Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200 mm×200 mm×12 mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, R.A.; Haynes, T.E.; Golanski, A.
1994-10-11
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, R.A.; Haynes, T.E.; Golanski, A.
1999-06-08
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej
1999-01-01
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej
1994-01-01
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.
Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process
NASA Technical Reports Server (NTRS)
Hafley, Robert A. (Inventor); Seufzer, William J. (Inventor)
2017-01-01
A method of controlling a height of an electron beam gun and wire feeder during an electron freeform fabrication process includes utilizing a camera to generate an image of the molten pool of material. The image generated by the camera is utilized to determine a measured height of the electron beam gun relative to the surface of the molten pool. The method further includes ensuring that the measured height is within the range of acceptable heights of the electron beam gun relative to the surface of the molten pool. The present invention also provides for measuring a height of a solid metal deposit formed upon cooling of a molten pool. The height of a single point can be measured, or a plurality of points can be measured to provide 2D or 3D surface height measurements.
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.
2013-05-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.
Treatment of surfaces with low-energy electrons
NASA Astrophysics Data System (ADS)
Frank, L.; Mikmeková, E.; Lejeune, M.
2017-06-01
Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.
Ion beam applications research. A summary of Lewis Research Center Programs
NASA Technical Reports Server (NTRS)
Banks, B. A.
1981-01-01
A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.
NASA Astrophysics Data System (ADS)
Park, Seyong; Yoon, Young Soo
2016-09-01
In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.
Stabilizing laser energy density on a target during pulsed laser deposition of thin films
Dowden, Paul C.; Jia, Quanxi
2016-05-31
A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.
Direct printing of micro/nanostructures by femtosecond laser excitation of nanocrystals
NASA Astrophysics Data System (ADS)
Shou, Wan; Pan, Heng
2017-02-01
Direct writing using single or multiple energized beams (e.g. laser, ion or electron beams) provides high feature resolution (<1μm) compared with other solution-based printing methods (e.g. inkjet printing). There have been extensive researches on micro/nano additive manufacturing methods employing laser (or optical) and ion/electron beams. Many of these processes utilize specially designed photosensitive materials consisting of additives and effective components. Due to the presence of additive (such as polymer and binders), the effective components are relatively low resulting in high threshold for device operation. In order to direct print functional devices at low cost, there has been extensive research on laser processing of pre-synthesized nanomaterials for non-polymer functional device manufacturing. Pre-synthesized nanocrystals can have better control in the stoichiometry and crystallinity. In addition, pre-synthesis process enjoys the flexibility in material choice since a variety of materials can be synthesized. Femtosecond laser assembly and deposition of nanomaterials can be a feasible 3D micro/nano additive manufacturing approach, although mechanisms leading to assembly and deposition have not been fully understood. In this paper, we propose a mechanism for 2D and 3D deposition of nanocrystals by laser excitation with moderate peak intensities(1011-1012 W/cm2). It is postulated that laser induced charging is responsible for the deposition. The scheme paves the way for laser selective electrophoretic deposition as a micro/nanoscale additive manufacturing approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuanr, Sushil Kumar; K, Suresh Babu, E-mail: sureshbabu.nst@pondiuni.edu.in
2016-03-15
Deposition of composite materials as thin film by electron beam physical vapor deposition technique (EB-PVD) still remains as a challenge. Here, the authors report the deposition of NiO-CeO{sub 2} (30/70 wt. %) composites on quartz substrate by EB-PVD. Two NiO-CeO{sub 2} nanocomposite targets—one as green compact and the other after sintering at 1250 °C—were used for the deposition. Though the targets varied with respect to physical properties such as crystallite size (11–45 nm) and relative density (44% and 96%), the resultant thin films exhibited a mean crystallite size in the range of 20–25 nm underlining the role of physical nature of deposition. In spitemore » of the crystalline nature of the targets and similar elemental concentration, a transformation from amorphous to crystalline structure was observed in thin films on using sintered target. Postannealing of the as deposited film at 800 °C resulted in a polycrystalline structure consisting of CeO{sub 2} and NiO. Deposition using pure CeO{sub 2} or NiO as target resulted in the preferential orientation toward (111) and (200) planes, respectively, showing the influence of adatoms on the evaporation and growth process of NiO-CeO{sub 2} composite. The results demonstrate the influence of electron beam gun power on the adatom energy for the growth process of composite oxide thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Theodor; Warneke, Jonas; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de
2016-07-15
Optimizing thin metal film deposition techniques from metal-organic precursors such as atomic layer deposition, chemical vapor deposition (CVD), or electron beam-induced deposition (EBID) with the help of surface science analysis tools in ultrahigh vacuum requires a contamination-free precursor delivery technique, especially in the case of the less volatile precursors. For this purpose, the preparation of layers of undecomposed Ni(acac){sub 2} and Co(acac){sub 2} was tried via pulsed spray evaporation of a liquid solution of the precursors in ethanol into a flow of nitrogen on a CVD reactor. Solvent-free layers of intact precursor molecules were obtained when the substrate was heldmore » at a temperature of 115 °C. A qualitative comparison of thermally initiated and electron-induced precursor decomposition and metal center reduction was carried out. All deposited films were analyzed with respect to chemical composition quasi in situ by x-ray photoelectron spectroscopy. Thermally initiated decomposition yielded higher metal-to-metal oxide ratios in the deposit than the electron-induced process for which ratios of 60:40 and 20:80 were achieved for Ni and Co, resp. Compared to continuous EBID processes, all deposits showed low levels of carbon impurities of ∼10 at. %. Therefore, postdeposition irradiation of metal acetylacetonate layers by a focused electron beam and subsequent removal of intact precursor by dissolution in ethanol or by heating is proposed as electron beam lithography technique on the laboratory scale for the production of the metal nanostructures.« less
Ion-Deposited Polished Coatings
NASA Technical Reports Server (NTRS)
Banks, B. A.
1986-01-01
Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.
NASA Technical Reports Server (NTRS)
Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.
2014-01-01
A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.
Method for materials deposition by ablation transfer processing
Weiner, Kurt H.
1996-01-01
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hibberd, Joshua
2009-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.
Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun
NASA Astrophysics Data System (ADS)
Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.
2012-11-01
Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.
Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials. PMID:29765806
Martin, Aiden A; Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng Lijian; Teixiera, V.; Santos, M. P. dos
Indium tin oxide (ITO) thin films have been deposited onto glass substrates at room temperature by ion beam assisted deposition technique at different deposition rates. During all the deposition processes, the parameters of the Kaufman ion source and the oxygen gas flow are maintained constants. And only the deposition rate is varied from 0,1 nm/s to 0,3 nm/s by adjusting the e-beam power supply. The effects of the deposition rate on the properties of the deposited films have been studied. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, AFM, transmittance, FTIR, andmore » Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the transmittance spectra. It has been found that although the film prepared at low deposition rate (0,1 nm/s) shows a high transmittance in the visible region, it has a poor electrical conductivity. The films prepared at 0,2 nm/s deposition rate shows a good electrical conductivity, high IR reflectance which is useable for some electromagnetic wave shielding applications and a reasonable transmittance in the visible region.« less
Beam Technologies for Integrated Processing
1992-03-01
Ohki et al., 1988). Initially, they were used in ion Table 3-3 Ceramic Materials Produced by CVD Coating Chemical Mixture Deposition Temp. (* C ) Method...inner coating , deposited from tungsten hexafluoride, providing strength and creep resistance , and the outer layer, deposited from the chloride, has a (110...1971. Structure and Mechanical Properties of Co - deposited Pyrolytic C -SiC Alloys. Journal of the American Ceramic Society 54:605. Kashu, S., M. Nagase
NASA Astrophysics Data System (ADS)
Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye
2016-05-01
Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.
Correlation between the structural and optical properties of ion-assisted hafnia thin films
NASA Astrophysics Data System (ADS)
Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.
2000-03-01
The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.
Additive Manufacturing of Aerospace Alloys for Aircraft Structures
2006-05-01
power and traverse speed on microstructure, porosity , and build height in laser-deposited Ti- 6Al - 4V ”, Scripta Mater., Vol. 43, pp. 299-305, 2000. [10...laser additive manufacturing) process to produce Ti- 6Al - 4V structures. Many similar processes are under development elsewhere, including electron-beam...wattage CO2 laser and a powder feed system to deposit wide, thick beads (~ 0.5” x 0.15”) of Ti- 6Al - 4V onto a substrate. The primary LAMSM deposition
NASA Technical Reports Server (NTRS)
Hudson, W. R.
1976-01-01
A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.
Kinetics of electron-beam dispersion of fullerite C60
NASA Astrophysics Data System (ADS)
Razanau, Ihar; Mieno, Tetsu; Kazachenko, Victor
2012-06-01
Electron-beam dispersion of pressed fullerite C60 targets in vacuum leads to the deposition of thin films containing polymeric forms of C60. The aim of the present report is to analyze physical-chemical processes in the fullerite target during its electron-beam dispersion through the analysis of the kinetics of the radiation temperature of the target surface, the coating growth rate and the density of negative current on the substrate. It was shown that the induction stage of the process is determined by the negative charging and radiation-induced modification and heating of the target. The transitional stage is characterized by nonstationary sublimation of the target material through the pores in the modified surface layer and release of the accumulated negative charge. Stabilization of the process parameters owing to the convection cooling of the target by the sublimation products and the decrease in the pressure inside the microcavities beneath the pores leads to a quasi-stationary stage of target sublimation and deposition of a coating containing polymeric forms of C60.
An investigation of nonuniform dose deposition from an electron beam
NASA Astrophysics Data System (ADS)
Lilley, William; Luu, Kieu X.
1994-08-01
In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.
Steinmeyer, P.A.
1992-11-24
A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.
Steinmeyer, Peter A.
1992-11-24
A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.
In situ manufacture of magnetic tunnel junctions by a direct-write process
NASA Astrophysics Data System (ADS)
Costanzi, Barry N.; Riazanova, Anastasia V.; Dan Dahlberg, E.; Belova, Lyubov M.
2014-06-01
In situ construction of Co/SiO2/Co magnetic tunnel junctions using direct-write electron-beam-induced deposition is described. Proof-of-concept devices were built layer by layer depositing the specific components one at a time, allowing device manufacture using a strictly additive process. The devices exhibit a magnetic tunneling signature which agrees qualitatively with the Slonczewski model of magnetic tunneling.
Marin, E.; Raubenhaimer, T.; Welch, J.; ...
2017-06-13
In this study we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e¯ -beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e +, e¯ and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulatormore » section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.« less
NASA Astrophysics Data System (ADS)
Marin, E.; Raubenhaimer, T.; Welch, J.; White, G.
2017-09-01
In this paper we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e--beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e+, e- and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulator section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead
NASA Astrophysics Data System (ADS)
Gu, Hongping; Van Gelder, Aldo
Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.
Systematic investigations of low energy Ar ion beam sputtering of Si and Ag
NASA Astrophysics Data System (ADS)
Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B.
2013-12-01
Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done.A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the high-energetic maxima in the energy distribution of the backscattered primary ions, a deviation between simulated and measured data was found, most likely originating in a higher energy loss under experimental conditions than considered in the simulation.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-07
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Rapid assessment of nonlinear optical propagation effects in dielectrics
NASA Astrophysics Data System (ADS)
Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.
High-intensity fibre laser design for micro-machining applications
NASA Astrophysics Data System (ADS)
Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.
2010-11-01
This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.
Morphologies of Solid Surfaces Produced Far from Equilibrium
1991-03-10
common to all these applications is that thc surface preparation processes used are far from chemical equilibrium. Many of the processes involve an...energetic ion beam, plasma or gas that is used to modify a surface, either by etching or depositing material. The electrical, optical and mechanical...growth, a number of continuum models have been used in the materials science literature, in particular in the context of electron-beam etching of
Method and apparatus for laser/plasma chemical processing of substrates
Gee, J.M.; Hargis, P.J. Jr.
1984-07-21
A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.
Ion beam and dual ion beam sputter deposition of tantalum oxide films
NASA Astrophysics Data System (ADS)
Cevro, Mirza; Carter, George
1994-11-01
Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction method.
Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films
NASA Astrophysics Data System (ADS)
Cevro, Mirza; Carter, George
1995-02-01
Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.
NASA Astrophysics Data System (ADS)
Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik
2018-04-01
In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.
Method for materials deposition by ablation transfer processing
Weiner, K.H.
1996-04-16
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.
Efficient solar cells by space processing
NASA Technical Reports Server (NTRS)
Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.
1979-01-01
Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.
2010-01-01
Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.
Atomic force microscopy study on topography of films produced by ion-based techniques
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.
1996-09-01
The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.
Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition
NASA Astrophysics Data System (ADS)
Dearnaley, G.
1992-03-01
This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).
Method of deposition by molecular beam epitaxy
Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.
1995-01-01
A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.
Method of deposition by molecular beam epitaxy
Chalmers, S.A.; Killeen, K.P.; Lear, K.L.
1995-01-10
A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.
Electron nanoprobe induced oxidation: A simulation of direct-write purification
Fowlkes, J. D.; Geier, B.; Lewis, B. B.; ...
2015-06-01
Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal–carbon deposits (e.g., PtC 5) in the presence of H 2O or O 2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H 2O purifies by a bottom-up mechanism while O 2 purifies frommore » the top-down. The simulation results presented here suggest that the chemisorption of dissolved O 2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H 2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O 2 and H 2O. The results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.« less
Electron nanoprobe induced oxidation: A simulation of direct-write purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowlkes, J. D.; Geier, B.; Lewis, B. B.
Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal–carbon deposits (e.g., PtC 5) in the presence of H 2O or O 2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H 2O purifies by a bottom-up mechanism while O 2 purifies frommore » the top-down. The simulation results presented here suggest that the chemisorption of dissolved O 2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H 2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O 2 and H 2O. The results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.« less
Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation
NASA Technical Reports Server (NTRS)
Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.
2012-01-01
Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-10-01
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Sputter deposition for multi-component thin films
Krauss, A.R.; Auciello, O.
1990-05-08
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.
Sputter deposition for multi-component thin films
Krauss, Alan R.; Auciello, Orlando
1990-01-01
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
Rapid Tooling for Functional Prototype of Metal Mold Processes Final Report CRADA No. TC-1032-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heestand, G.; Jaskolski, T.
Production inserts for die-casting were generally fabricated from materials with sufficient strength and· good wear properties at casting temperatures for long life. Frequently tool steels were used and machining was done with a combination of. conventional and Electric Discharge Machining (EDM) with some handwork, an expensive and time consuming process, partilly for prototype work. We proposed electron beam physical vapor deposition (EBPVD) as a process for rapid fabrication of dies. Metals, ranging from low melting point to refractory metals (Ta, Mo, etc.), would be evaporated and deposited at high rates (-2mm/hr.). Alloys could be easily evaporated and deposited if theirmore » constituent vapor pressures were similar and with more difficulty if they were not. Of course, layering of different materials was possible if required for a specific application. For example, a hard surface layer followed by a tough steel and backed by a high thermal conductivity (possibly cooled) copper layer could be fabricated. Electron-beam deposits exhibited 100% density and lull strength when deposited at a substrate (mandrel) temperature that was a substantial fraction of the deposited material's melting point. There were several materials that could have the required high temperature properties and ease of fabrication required for such a mandrel. We had successfully used graphite, machined from free formed objects with a replicator, to produce aluminum-bronze test molds. There were several parting layer materials of interest, but the ideal material depended upon the specific application.« less
Ohmic contacts to semiconducting diamond
NASA Astrophysics Data System (ADS)
Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.
1990-10-01
Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine
2016-01-15
The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less
Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.
Her, Shiuh-Chuan; Chien, Pao-Chu
2017-04-13
Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.
High T(sub c) superconductor/ferroelectric heterostructures
NASA Astrophysics Data System (ADS)
Ryder, Daniel F., Jr.
1994-12-01
Thin films of the ferroelectric perovskite, Ba(x) Sr(1-x) TiO3 (BST), were deposited on superconducting (100)YBa2Cu3O(x)(YBCO)/ (100)Yttria-stabilized zirconia(YSZ) substrates and (100)Si by ion-beam sputtering. Microstructural and compositional features of the ceramic bilayer were assessed by a combination of x-ray diffraction (XRD) and scanning electron microscopy. The films were smooth and featureless, and energy dispersive x-ray spectroscopy (EDX) data indicated that film composition closely matched target composition. XRD analysis showed that films deposited on YBCO substrates were highly c-axis textured, while the films deposited on (100)Si did not exhibit any preferred growth morphology. The superconducting properties of the YBCO substrate layer were maintained throughout the processing stages and, as such, it was demonstrated that ion beam sputtering is a viable method for the deposition of Ferroelectric/YBCO heterostructures.
Ion beam microtexturing and enhanced surface diffusion
NASA Technical Reports Server (NTRS)
Robinson, R. S.
1982-01-01
Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.
NASA Astrophysics Data System (ADS)
Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda
1997-09-01
Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.
Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties
NASA Astrophysics Data System (ADS)
Bakan, Emine; Vaßen, Robert
2017-08-01
The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.
Nanowire growth by an electron beam induced massive phase transformation
Sood, Shantanu; Kisslinger, Kim; Gouma, Perena
2014-11-15
Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.
In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powdermore » bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.« less
Multilayer composites and manufacture of same
Holesinger, Terry G.; Jia, Quanxi
2006-02-07
The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
Growth of biaxially textured template layers using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Park, Seh-Jin
A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.
Metaoptics for Spectral and Spatial Beam Manipulation
NASA Astrophysics Data System (ADS)
Raghu Srimathi, Indumathi
Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.
Focused electron beam induced deposition of pure SIO II
NASA Astrophysics Data System (ADS)
Perentes, Alexandre; Hoffmann, Patrik; Munnik, Frans
2007-02-01
Focused electron beam induced processing (FEBID) equipments are the "all in one" tools for high resolution investigation, and modification of nano-devices. Focused electron beam induced deposition from a gaseous precursor usually results in a nano-composite sub-structured material, in which the interesting material is embedded in an amorphous carbonaceous matrix. Using the Hydrogen free tetraisocyanatosilane Si(NCO) 4 molecule as Si source, we show how a controlled oxygen flux, simultaneously injected with the precursor vapors, causes contaminants to vanish from the FEB deposits obtained and leads to the deposition of pure SiO II. The chemical composition of the FEBID material could be controlled from SiC IINO 3 to SiO II, the latter containing undetectable foreign element contamination. The [O II] / [TICS] ratio needed to obtain SiO II in our FEB deposition equipment is larger than 300. The evolution of the FEBID material chemical composition is presented as function of the [O II] / [TICS] molecular flux ratios. A hypothetical decomposition pathway of this silane under these conditions is discussed based on the different species formed under electron bombardment of TICS. Transmission electron microscopy investigations demonstrated that the deposited oxide is smooth (roughness sub 2nm) and amorphous. Infrared spectroscopy confirmed the low concentration of hydroxyl groups. The Hydrogen content of the deposited oxide, measured by elastic recoil detection analysis, is as low as 1 at%. 193nm wavelength AIMS investigations of 125nm thick SiO II pads (obtained with [O II] / [TICS] = 325) showed an undetectable light absorption.
Development of a Wireless Brain Implant: The Telemetric Electrode Array System (TEAS) Project
2001-10-25
8 array connected to an electronic system through a special polyimide flexible cable. The neuronal signals recorded by the electrode array at 1 mm...deposition prior to applying an insulation coating of glass using electron-beam deposition or a biocompatible epoxy through a dipping process. In the case...layer can be made relatively easily, by melting and cooling glass powder or curing biocompatible epoxy, it was desirable to simplify the process and
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime
2015-03-01
We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.
Modeling and Simulation of a Laser Deposition Process (Preprint)
2007-09-01
laser in the LAMP system, the diode laser is used. Material of both powder and substrates is Ti - 6Al - 4V , which is widely used in the aerospace industry...mode. The substrates have dimensions of 2.5×2.5×0.4 in. The Ti - 6Al - 4V samples were irradiated using a laser beam with a beam spot diameter of 2.5 mm...Table 1. Material properties for Ti - 6Al - 4V and main process parameters
2006-05-01
dies. This process uses a laser beam to melt a controlled amount of injected powder on a base plate to deposit the first layer and on previous passes...Consolidation” to build functional net-shape components directly from metallic powder in one step [1-3]. The laser consolidation is a one-step computer-aided...A focused laser beam is irradiated on the substrate to create a molten pool, while metallic powder is injected simultaneously into the pool. A
Improvements in Ionized Cluster-Beam Deposition
NASA Technical Reports Server (NTRS)
Fitzgerald, D. J.; Compton, L. E.; Pawlik, E. V.
1986-01-01
Lower temperatures result in higher purity and fewer equipment problems. In cluster-beam deposition, clusters of atoms formed by adiabatic expansion nozzle and with proper nozzle design, expanding vapor cools sufficiently to become supersaturated and form clusters of material deposited. Clusters are ionized and accelerated in electric field and then impacted on substrate where films form. Improved cluster-beam technique useful for deposition of refractory metals.
High repetition rate ultrashort laser cuts a path through fog
NASA Astrophysics Data System (ADS)
de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre
2016-12-01
We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Graettinger, T.M.
Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar+ ion beams ({approx}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Graettinger, T.
Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar{sup +} ion beams ({similar to}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.
Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating
Slifka, A. J.; Filla, B. J.
2003-01-01
An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature. PMID:27413601
Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating.
Slifka, A J; Filla, B J
2003-01-01
An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature.
Effect of electron-beam deposition process variables on the film characteristics of the CrOx films
NASA Astrophysics Data System (ADS)
Chiu, Po-kai; Liao, Yi-Ting; Tsai, Hung-Yin; Chiang, Donyau
2018-02-01
The film characteristics and optical properties of the chromium oxide films on the glass substrates prepared by electron-beam deposition with different process variables were investigated. The process variables included are the various oxygen flow rates, the different applied substrate temperatures, and the preparation process in Ar or O2 surrounding environment with and without ion-assisted deposition. The optical constants of the deposited films are determined from the reflectance and transmittance measurements obtained using a spectrophotometer with wavelengths ranging from 350 nm to 2000 nm. The microstructures of the films were examined by the XRD, SEM, and XPS. The electrical conductivity was measured by a four-point probe instrument. The resulting microstructures of all the prepared films are amorphous and the features of the films are dense, uniform and no pillar structure is observed. The refractive index of deposited films decrease with oxygen flow rate increase within studied wavelengths and the extinction coefficients have the same trend in wavelengths of UV/Vis ranges. Increasing substrate temperature to 200 oC results in increase of both refractive index and extinction coefficient, but substrate temperatures below 150 oC show negligible effect on optical constants. The optical and electrical properties in the prepared CrOx films are illustrated by the analyzed XPS results, which decompose the enveloped curve of chromium electron energy status into the constituents of metal Cr, oxides CrO2 and Cr2O3. The relative occupied area contributed from metal Cr and area contributed from the other oxides can express the concentration ratio of free electron to covalent bonds in deposited films and the ratio is applied to explain the film characteristics, including the optical constants and sheet resistance.
NASA Astrophysics Data System (ADS)
El-Gendy, Y. A.
2017-12-01
Tin monoxide (SnO) films of different thickness have been deposited onto glass substrates at vacuum pressure of ∼ 8 × 10-6 mbar using an e-beam evaporation system. A hot probe test revealed that the deposited films showed p-type conduction. The structure characterization and phase purity of the deposited films was confirmed using X-ray diffraction (XRD) and Raman spectroscopy. The optical transmission and reflection spectra of the deposited films recorded in the wavelength range 190-2500 nm were used to calculate the optical constants employing the Murmann's exact equations. The refractive index dispersion was adequately described by the well-known effective-single-oscillator model proposed by Wemple-DiDomenico, whereby the dispersion parameters were calculated. The nonlinear refractive index and nonlinear optical susceptibility of the deposited films were successfully evaluated using the Miller empirical relations. The lattice dielectric constant and the carrier concentration to the effective mass ratio were also calculated as a function of film thickness using the Spitzer and Fan model. The variation of the optical band gap of the deposited films as a function of film thickness was also presented.
NASA Technical Reports Server (NTRS)
Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi
2013-01-01
Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
Processing of sputter targets using current activated pressure assisted densification
NASA Astrophysics Data System (ADS)
Chaney, Neil Russell
Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.
Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination
NASA Astrophysics Data System (ADS)
Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran
2016-04-01
The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.
Inkjet Assisted Creation of Self-Healing Layers Between Composite Plies
2013-07-29
technology into a prepreg manufacturing process. The approach consisted of depositing novel thermoplastic low-viscosity microdroplets with chemically and...mechanically comparable properties to epoxy matrix in aerospace grade composites onto fiber-reinforced epoxy prepregs before curing using an ink-jet... prepreg Cycom977-2. Double cantilever beam (DCB) and short beam shear (SBS) tests were used to evaluate the self-healing efficiency. It was shown
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.
1990-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
2014-12-01
surface roughness on film properties must be considered. Stability at the interface between the film and the substrate becomes critical with...etc.). Addition of atoms to the growing surface creates additional surface energy. Therefore, nuclei of a critical size 23 must be formed in order... critical nuclei size and a lower nucleation rate. Higher deposition rates result in a decreased critical nuclei size which leads to an increase in
Comparative study of beam losses and heat loads reduction methods in MITICA beam source
NASA Astrophysics Data System (ADS)
Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.
2014-02-01
In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.
Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...
2016-06-10
Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirich, P. M., E-mail: p.weirich@Physik.uni-frankfurt.de; Schwalb, C. H.; Winhold, M.
2014-05-07
We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By anmore » in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.« less
Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander
2002-06-01
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.
NASA Astrophysics Data System (ADS)
Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander
2002-06-01
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.
Vacuum-deposited polymer/silver reflector material
NASA Astrophysics Data System (ADS)
Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.
1994-09-01
Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
2008-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
1999-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.
1999-06-29
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, J.J.
The effects on the properties of Ta/sub 2/O/sub 5/, Al/sub 2/O/sub 3/, SiO/sub 2/ and HfO/sub 2/ single- and multi-layer optical coatings deposited using ion-assisted deposition (IAD) were investigated. IAD is a novel deposition technique which utilizes a separate ion source to direct a beam of ions at the growing film. A Kaufman ion source was used to provide a monoenergetic, neutralized beam of oxygen ions independent of the material evaporation process. The optical and physical properties, as well as laser induced damage threshold (LIDT) values, were studied for coatings bombarded with 200, 300, 500 and 1000 eV oxygen ionsmore » at values of current density from 0 to 200 microAmp/sq cm. IAD was successfully applied to deposit coatings at low temperature on heavy metal fluoride (HMF) glass substrates. The coatings deposited using IAD were hard and dense. The IAD coatings improved the durability and abrasion resistance of the HMF glass substrates. The results of this investigation show that IAD can be used to improve the optical and physical properties of optical coatings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Liheng; Yan, Yuanlin; Ma, Yuanyuan
Purpose: To improve the efficacy of heavy ion therapy, β-delayed particle decay {sup 9}C beam as a double irradiation source for cancer therapy has been proposed. The authors’ previous experiment showed that relative biological effectiveness (RBE) values at the depths around the Bragg peak of a {sup 9}C beam were enhanced and compared to its stable counterpart {sup 12}C beam. The purpose of this study was to explore the nature of the biological efficacy enhancement theoretically. Methods: A Monte Carlo simulation study was conducted in this study. First a simplified cell model was established so as to form a tumormore » tissue. Subsequently, the tumor tissue was imported into the Monte Carlo simulation software package GATE and then the tumor cells were virtually irradiated with comparable {sup 9}C and {sup 12}C beams, respectively, in the simulations. The transportation and particle deposition data of the {sup 9}C and {sup 12}C beams, derived from the GATE simulations, were analyzed with the authors’ local effect model implementation so as to deduce cell survival fractions. Results: The particles emitted from the decay process of deposited {sup 9}C particles around a cell nucleus increased the dose delivered to the nucleus and elicited clustered damages around the secondary particles’ trajectories. Therefore, compared to the {sup 12}C beam, the RBE value of the {sup 9}C beam increased at the depths around their Bragg peaks. Conclusions: Collectively, the increased local doses and clustered damages due to the decayed particles emitted from deposited {sup 9}C particles led to the RBE enhancement in contrast with the {sup 12}C beam. Thus, the enhanced RBE effect of a {sup 9}C beam for a simplified tumor model was shown theoretically in this study.« less
Spencer, Julie A; Barclay, Michael; Gallagher, Miranda J; Winkler, Robert; Unlu, Ilyas; Wu, Yung-Chien; Plank, Harald; McElwee-White, Lisa; Fairbrother, D Howard
2017-01-01
The ability of electrons and atomic hydrogen (AH) to remove residual chlorine from PtCl 2 deposits created from cis -Pt(CO) 2 Cl 2 by focused electron beam induced deposition (FEBID) is evaluated. Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDS) measurements as well as thermodynamics calculations support the idea that electrons can remove chlorine from PtCl 2 structures via an electron-stimulated desorption (ESD) process. It was found that the effectiveness of electrons to purify deposits greater than a few nanometers in height is compromised by the limited escape depth of the chloride ions generated in the purification step. In contrast, chlorine atoms can be efficiently and completely removed from PtCl 2 deposits using AH, regardless of the thickness of the deposit. Although AH was found to be extremely effective at chemically purifying PtCl 2 deposits, its viability as a FEBID purification strategy is compromised by the mobility of transient Pt-H species formed during the purification process. Scanning electron microscopy data show that this results in the formation of porous structures and can even cause the deposit to lose structural integrity. However, this phenomenon suggests that the use of AH may be a useful strategy to create high surface area Pt catalysts and may reverse the effects of sintering. In marked contrast to the effect observed with AH, densification of the structure was observed during the postdeposition purification of PtC x deposits created from MeCpPtMe 3 using atomic oxygen (AO), although the limited penetration depth of AO restricts its effectiveness as a purification strategy to relatively small nanostructures.
Spencer, Julie A; Barclay, Michael; Gallagher, Miranda J; Winkler, Robert; Unlu, Ilyas; Wu, Yung-Chien; Plank, Harald; McElwee-White, Lisa
2017-01-01
The ability of electrons and atomic hydrogen (AH) to remove residual chlorine from PtCl2 deposits created from cis-Pt(CO)2Cl2 by focused electron beam induced deposition (FEBID) is evaluated. Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDS) measurements as well as thermodynamics calculations support the idea that electrons can remove chlorine from PtCl2 structures via an electron-stimulated desorption (ESD) process. It was found that the effectiveness of electrons to purify deposits greater than a few nanometers in height is compromised by the limited escape depth of the chloride ions generated in the purification step. In contrast, chlorine atoms can be efficiently and completely removed from PtCl2 deposits using AH, regardless of the thickness of the deposit. Although AH was found to be extremely effective at chemically purifying PtCl2 deposits, its viability as a FEBID purification strategy is compromised by the mobility of transient Pt–H species formed during the purification process. Scanning electron microscopy data show that this results in the formation of porous structures and can even cause the deposit to lose structural integrity. However, this phenomenon suggests that the use of AH may be a useful strategy to create high surface area Pt catalysts and may reverse the effects of sintering. In marked contrast to the effect observed with AH, densification of the structure was observed during the postdeposition purification of PtCx deposits created from MeCpPtMe3 using atomic oxygen (AO), although the limited penetration depth of AO restricts its effectiveness as a purification strategy to relatively small nanostructures. PMID:29234576
Sutter, Eli A; Sutter, Peter W
2014-12-03
In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.
Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device
NASA Astrophysics Data System (ADS)
Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda
2017-11-01
In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.
Sutter, Eli A.; Sutter, Peter W.
2014-11-19
In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻ aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻ aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the ratemore » of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻ aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻ aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less
Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand
Park, Jeung Hun; Steingart, Daniel A.; Kodambaka, Suneel; Ross, Frances M.
2017-01-01
We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam–induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be “erased” by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications. PMID:28706992
Modeling and Simulation of a Laser Deposition Process
2007-09-04
LAMP system, the diode laser is used. Material of both powder and substrates is Ti - 6Al - 4V , which is widely used in the aerospace industry. Melt Pool...The laser emits at 808 nm and operates in the continuous wave (CW) mode. The substrates have dimensions of 2.5×2.5×0.4 in. The Ti - 6Al - 4V samples were...irradiated using a laser beam with a beam spot diameter of 2.5 mm. Table 1. Material properties for Ti - 6Al - 4V and main process parameters
Ion-beam technology and applications
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Robson, R. R.; Sovey, J. S.
1977-01-01
Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.
Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks
NASA Astrophysics Data System (ADS)
Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.
2012-03-01
Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.
NASA Astrophysics Data System (ADS)
Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.
2013-12-01
Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
(abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films
NASA Technical Reports Server (NTRS)
Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.
1994-01-01
Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.
Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-05-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, P.; Yu, G. Q.; Wei, H. X.
Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E {sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process,more » opening an additional conductance channel and thus enhancing the total conductance.« less
Warneke, Jonas; Kopyra, Janina
2018-01-01
Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. PMID:29441253
Application of focused ion beam for the fabrication of AFM probes
NASA Astrophysics Data System (ADS)
Kolomiytsev, A. S.; Lisitsyn, S. A.; Smirnov, V. A.; Fedotov, A. A.; Varzarev, Yu N.
2017-10-01
The results of an experimental study of the probe tips fabrication for critical-dimension atomic force microscopy (CD-AFM) using the focused ion beam (FIB) induced deposition are presented. Methods of the FIB-induced deposition of tungsten and carbon onto the tip of an AFM probe are studied. Based on the results obtained in the study, probes for the CD-AFM technique with a tip height about 1 μm and radius of 20 nm were created. The formation of CD-AFM probes by FIB-induced deposition allows creating a high efficiency tool for nanotechnology and nanodiagnostics. The use of modified cantilevers allows minimizing the artefacts of AFM images and increasing the accuracy of the relief measurement. The obtained results can be used for fabrication of AFM probes for express monitoring of the technological process in the manufacturing of the elements for micro- and nanoelectronics.
Ion assisted deposition of SiO2 film from silicon
NASA Astrophysics Data System (ADS)
Pham, Tuan. H.; Dang, Cu. X.
2005-09-01
Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.
NASA Astrophysics Data System (ADS)
Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.
2016-05-01
Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested. Electronic supplementary information (ESI) available: Three movie files: 3mer-physorption.mpg and 3mer-chemisorption.mpg feature examples of the adsorption state sampling of a carbon trimer on the heated h-BN substrate as mentioned in the ``Single Molecule Adsorption Study'' section. In 3mer-film-growth.mpg, an instance of honey comb formation during the initial phase of graphene growth simulation using a carbon trimer beam is captured. An initially sp hybridized carbon atom (red colored) becomes sp2 hybridized as a result of additional covalent bonding with the impinging carbon trimer. As the bond angle around the red carbon changes from 180 degree (sp) to 120 degree (sp2), nearby carbon atoms enclose to form a hexagon structure composed of 6 carbon atoms. See DOI: 10.1039/c6nr01396a
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced
Gevelber, Michael; Xu, Bing; Smith, Douglas
2006-03-01
A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.
Diamondlike carbon protective coatings for optical windows
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.
1989-01-01
Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.
Puydinger Dos Santos, Marcos V; Velo, Murilo F; Domingos, Renan D; Zhang, Yucheng; Maeder, Xavier; Guerra-Nuñez, Carlos; Best, James P; Béron, Fanny; Pirota, Kleber R; Moshkalev, Stanislav; Diniz, José A; Utke, Ivo
2016-11-30
An effective postgrowth electrical tuning, via an oxygen releasing method, to enhance the content of non-noble metals in deposits directly written with gas-assisted focused-electron-beam-induced deposition (FEBID) is presented. It represents a novel and reproducible method for improving the electrical transport properties of Co-C deposits. The metal content and electrical properties of Co-C-O nanodeposits obtained by electron-induced dissociation of volatile Co 2 (CO) 8 precursor adsorbate molecules were reproducibly tuned by applying postgrowth annealing processes at 100 °C, 200 °C, and 300 °C under high-vacuum for 10 min. Advanced thin film EDX analysis showed that during the annealing process predominantly oxygen is released from the Co-C-O deposits, yielding an atomic ratio of Co:C:O = 100:16:1 (85:14:1) with respect to the atomic composition of as-written Co:C:O = 100:21:28 (67:14:19). In-depth Raman analysis suggests that the amorphous carbon contained in the as-written deposit turns into graphite nanocrystals with size of about 22.4 nm with annealing temperature. Remarkably, these microstructural changes allow for tuning of the electrical resistivity of the deposits over 3 orders of magnitude from 26 mΩ cm down to 26 μΩ cm, achieving a residual resistivity of ρ 2K /ρ 300 K = 0.56, close to the value of 0.53 for pure Co films with similar dimensions, making it especially interesting and advantageous over the numerous works already published for applications such as advanced scanning-probe systems, magnetic memory, storage, and ferroelectric tunnel junction memristors, as the graphitic matrix protects the cobalt from being oxidized under an ambient atmosphere.
Numerical and Analytical Modeling of Laser Deposition with Preheating (Preprint)
2007-03-01
temperature materials, Numerical Heat Transfer 11 (1987) 477-491. [9] L. Han, F.W. Liou, K.M. Phatk, Modeling of laser cladding with powder injection... cladding process. This laser additive manufacturing technique allows quick fabrication of fully-dense metallic components directly from Computer...1, laser deposition uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected
Silicon nitride films deposited with an electron beam created plasma
NASA Technical Reports Server (NTRS)
Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.
1984-01-01
The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.
A method of producing high quality oxide and related films on surfaces
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Strongin, Myron; Gao, Yongli
1991-01-01
Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.
Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation
NASA Astrophysics Data System (ADS)
Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin
2018-03-01
We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.
2013-06-01
Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
Cullen, Jared; Lobo, Charlene J; Ford, Michael J; Toth, Milos
2015-09-30
Electron-beam-induced deposition (EBID) is a direct-write chemical vapor deposition technique in which an electron beam is used for precursor dissociation. Here we show that Arrhenius analysis of the deposition rates of nanostructures grown by EBID can be used to deduce the diffusion energies and corresponding preexponential factors of EBID precursor molecules. We explain the limitations of this approach, define growth conditions needed to minimize errors, and explain why the errors increase systematically as EBID parameters diverge from ideal growth conditions. Under suitable deposition conditions, EBID can be used as a localized technique for analysis of adsorption barriers and prefactors.
Energetic additive manufacturing process with feed wire
Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.
2000-11-07
A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung
2008-05-01
Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.
Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters
NASA Astrophysics Data System (ADS)
Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh
2005-04-01
Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.
NASA Astrophysics Data System (ADS)
Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.
2013-05-01
We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.
Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist
NASA Astrophysics Data System (ADS)
Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey
1999-06-01
In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.
Modeling of potential TAE-induced beam ion loss from NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; White, Roscoe; Liu, Deyong
2015-11-01
NSTX-U will add three additional neutral beam sources, whose tangency radii of 1.1, 1.2, and 1.3 m, are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams will also be used in NSTX-U. Here, we attempt to formulate an estimate of the propensity of the beam ions from all the various sources to be lost under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since TAEs were a prominent driver of beam ion loss in NSTX, we incorporate their effects through the following process: NOVA modeling of TAEs in the anticipated NSTX-U plasma conditions gives the mode numbers, frequencies, and mode structures that are likely to occur. Using this information as inputs to the guiding center ORBIT code, it is possible to find resonant surfaces in the same phase space along which beam ions would be able to diffuse under the influence of the modes. The degree to which these resonant surfaces intersect both the beam deposition volume and the orbit loss boundary should then give a sense of the propensity of that beam population to be lost from the plasma. Work supported by US DOE contracts DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.
A review-application of physical vapor deposition (PVD) and related methods in the textile industry
NASA Astrophysics Data System (ADS)
Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood
2015-09-01
Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.
Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer
NASA Astrophysics Data System (ADS)
Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.
2006-06-01
The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.
Materials Development for Auxiliary Components for Large Compact Mo/Au TES Arrays
NASA Technical Reports Server (NTRS)
Finkbeiner, F. m.; Chervenak, J. A.; Bandler, S. R.; Brekosky, R.; Brown, A. D.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.;
2007-01-01
We describe our current fabrication process for arrays of superconducting transition edge sensor microcalorimeters, which incorporates superconducting Mo/Au bilayers and micromachined silicon structures. We focus on materials and integration methods for array heatsinking with our bilayer and micromachining processes. The thin superconducting molybdenum bottom layer strongly influences the superconducting behavior and overall film characteristics of our molybdenum/gold transition-edge sensors (TES). Concurrent with our successful TES microcalorimeter array development, we have started to investigate the thin film properties of molybdenum monolayers within a given phase space of several important process parameters. The monolayers are sputtered or electron-beam deposited exclusively on LPCVD silicon nitride coated silicon wafers. In our current bilayer process, molybdenum is electron-beam deposited at high wafer temperatures in excess of 500 degrees C. Identifying process parameters that yield high quality bilayers at a significantly lower temperature will increase options for incorporating process-sensitive auxiliary array components (AAC) such as array heat sinking and electrical interconnects into our overall device process. We are currently developing two competing technical approaches for heat sinking large compact TES microcalorimeter arrays. Our efforts to improve array heat sinking and mitigate thermal cross-talk between pixels include copper backside deposition on completed device chips and copper-filled micro-trenches surface-machined into wafers. In addition, we fabricated prototypes of copper through-wafer microvias as a potential way to read out the arrays. We present an overview on the results of our molybdenum monolayer study and its implications concerning our device fabrication. We discuss the design, fabrication process, and recent test results of our AAC development.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
Control of Space-Based Electron Beam Free Form Fabrication
NASA Technical Reports Server (NTRS)
Seifzer. W. J.; Taminger, K. M.
2007-01-01
Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.
In Situ Electrochemical Deposition of Microscopic Wires
NASA Technical Reports Server (NTRS)
Yun, Minhee; Myung, Nosang; Vasquez, Richard
2005-01-01
A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.
1996-01-01
Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.
Multilayer coating of optical substrates by ion beam sputtering
NASA Astrophysics Data System (ADS)
Daniel, M. V.; Demmler, M.
2017-10-01
Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide.
Riazanova, A V; Costanzi, B N; Aristov, A I; Rikers, Y G M; Mulders, J J L; Kabashin, A V; Dahlberg, E Dan; Belova, L M
2016-03-18
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide
NASA Astrophysics Data System (ADS)
Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.
2016-03-01
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
Silicon Oxide Deposition into a Hole Using a Focused Ion Beam
NASA Astrophysics Data System (ADS)
Nakamura, Hiroko; Komano, Haruki; Norimatu, Kenji; Gomei, Yoshio
1991-11-01
Focused ion beam (FIB)-induced deposition of silicon oxide in terms of filling a hole is reported. It was found that a vacant space was formed when an ion beam was simply scanned through the hole area. To investigate the mechanism to form the vacancy, deposition on the sample, which has a step with a height of 0.8 μm, was carried out by using a Si2+ and a Be2+ ion beam. An extruded deposit resembling a pent roof was observed from the step ridge. The mechanism of the pent roof growth on the steplike sample was considered and the vacancy formation in the hole can be explained by the same mechanism. For silicon oxide, the high growth rate of the extruded deposit is thought to be the key to the vacancy formation. A useful way is proposed to fill the hole with silicon oxide with almost no vacancy.
Deposition of reactively ion beam sputtered silicon nitride coatings
NASA Technical Reports Server (NTRS)
Grill, A.
1982-01-01
An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.
Simple technique for high-throughput marking of distinguishable micro-areas for microscopy.
Henrichs, Leonard F; Chen, L I; Bell, Andrew J
2016-04-01
Today's (nano)-functional materials, usually exhibiting complex physical properties require local investigation with different microscopy techniques covering different physical aspects such as dipolar and magnetic structure. However, often these must be employed on the very same sample position to be able to truly correlate those different information and corresponding properties. This can be very challenging if not impossible especially when samples lack prominent features for orientation. Here, we present a simple but effective method to mark hundreds of approximately 15×15 μm sample areas at one time by using a commercial transmission electron microscopy grid as shadow mask in combination with thin-film deposition. Areas can be easily distinguished when using a reference or finder grid structure as shadow mask. We show that the method is suitable to combine many techniques such as light microscopy, scanning probe microscopy and scanning electron microscopy. Furthermore, we find that best results are achieved when depositing aluminium on a flat sample surface using electron-beam evaporation which ensures good line-of-sight deposition. This inexpensive high-throughput method has several advantageous over other marking techniques such as focused ion-beam processing especially when batch processing or marking of many areas is required. Nevertheless, the technique could be particularly valuable, when used in junction with, for example focused ion-beam sectioning to obtain a thin lamellar of a particular pre-selected area. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel
NASA Technical Reports Server (NTRS)
Ekrami, Yasamin; Forth, Scott C.; Waid, Michael C.
2011-01-01
Researchers at NASA Langley Research Center have developed an additive manufacturing technology for ground and future space based applications. The electron beam free form fabrication (EBF3) is a rapid metal fabrication process that utilizes an electron beam gun in a vacuum environment to replicate a CAD drawing of a part. The electron beam gun creates a molten pool on a metal substrate, and translates with respect to the substrate to deposit metal in designated regions through a layer additive process. Prior to demonstration and certification of a final EBF3 part for space flight, it is imperative to conduct a series of materials validation and verification tests on the ground in order to evaluate mechanical and microstructural properties of the EBF3 manufactured parts. Part geometries of EBF3 2219 aluminum and 316 stainless steel specimens were metallographically inspected, and tested for strength, fatigue crack growth, and fracture toughness. Upon comparing the results to conventionally welded material, 2219 aluminum in the as fabricated condition demonstrated a 30% and 16% decrease in fracture toughness and ductility, respectively. The strength properties of the 316 stainless steel material in the as deposited condition were comparable to annealed stainless steel alloys. Future fatigue crack growth tests will integrate various stress ranges and maximum to minimum stress ratios needed to fully characterize EBF3 manufactured specimens.
Ion beam deposition of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-01-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria-stabilized zirconia substrates by ion beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 80.5 K without post-deposition anneals. Both the deposition rate and the c lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c dimensions and low Tc's. Higher power sputtering produced a continuous decrease in the c lattice parameter and an increase in critical temperatures.
Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.
Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi
2010-11-01
Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.
Critical Deposition Condition of CoNiCrAlY Cold Spray Based on Particle Deformation Behavior
NASA Astrophysics Data System (ADS)
Ichikawa, Yuji; Ogawa, Kazuhiro
2017-02-01
Previous research has demonstrated deposition of MCrAlY coating via the cold spray process; however, the deposition mechanism of cold spraying has not been clearly explained—only empirically described by impact velocity. The purpose of this study was to elucidate the critical deposit condition. Microscale experimental measurements of individual particle deposit dimensions were incorporated with numerical simulation to investigate particle deformation behavior. Dimensional parameters were determined from scanning electron microscopy analysis of focused ion beam-fabricated cross sections of deposited particles to describe the deposition threshold. From Johnson-Cook finite element method simulation results, there is a direct correlation between the dimensional parameters and the impact velocity. Therefore, the critical velocity can describe the deposition threshold. Moreover, the maximum equivalent plastic strain is also strongly dependent on the impact velocity. Thus, the threshold condition required for particle deposition can instead be represented by the equivalent plastic strain of the particle and substrate. For particle-substrate combinations of similar materials, the substrate is more difficult to deform. Thus, this study establishes that the dominant factor of particle deposition in the cold spray process is the maximum equivalent plastic strain of the substrate, which occurs during impact and deformation.
Gaalas/Gaas Solar Cell Process Study
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K. I.
1980-01-01
Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.
Schindler, Severin; Vollnhals, Florian; Halbig, Christian E; Marbach, Hubertus; Steinrück, Hans-Peter; Papp, Christian; Eigler, Siegfried
2017-01-25
Controlled patterning of graphene is an important task towards device fabrication and thus is the focus of current research activities. Graphene oxide (GO) is a solution-processible precursor of graphene. It can be patterned by thermal processing. However, thermal processing of GO leads to decomposition and CO 2 formation. Alternatively, focused electron beam induced processing (FEBIP) techniques can be used to pattern graphene with high spatial resolution. Based on this approach, we explore FEBIP of GO deposited on SiO 2 . Using oxo-functionalized graphene (oxo-G) with an in-plane lattice defect density of 1% we are able to image the electron beam-induced effects by scanning Raman microscopy for the first time. Depending on electron energy (2-30 keV) and doses (50-800 mC m -2 ) either reduction of GO or formation of permanent lattice defects occurs. This result reflects a step towards controlled FEBIP processing of oxo-G.
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
NASA Technical Reports Server (NTRS)
Harder, Bryan J.; Zhu, Dongming
2011-01-01
In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers
Formation of TiO2 nanorings due to rapid thermal annealing of swift heavy ion irradiated films.
Thakurdesai, Madhavi; Sulania, I; Narsale, A M; Kanjilal, D; Bhattacharyya, Varsha
2008-09-01
Amorphous thin films of TiO2 deposited by Pulsed Laser Deposition (PLD) method are irradiated by Swift Heavy Ion (SHI) beam. The irradiated films are subsequently annealed by Rapid Thermal Annealing (RTA) method. Atomic Force Microscopy (AFM) study reveals formation of nano-rings on the surface after RTA processing. Phase change is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopy. Optical characterisation is carried out by UV-VIS absorption spectroscopy. Though no shift of absorption edge is observed after irradiation, RTA processing does show redshift.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.
Delayed Shutters For Dual-Beam Molecular Epitaxy
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce
1989-01-01
System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.
Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amann, John; /SLAC; Arnold, Ray
This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the currentmore » status, and also the issues still to be addressed.« less
Plasma assisted surface coating/modification processes - An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1987-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Plasma assisted surface coating/modification processes: An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1986-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei
2009-03-10
Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of amore » silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.« less
Ion beam collimating grid to reduce added defects
Lindquist, Walter B.; Kearney, Patrick A.
2003-01-01
A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.
Ion beam technology applications study. [ion impact, implantation, and surface finishing
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.
1978-01-01
Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, A.R.; Lin, Y.; Auciello, O.
1994-07-01
Low-energy (5--15 keV) pulsed ion beam surface analysis comprises several different surface spectroscopies which possess the ability to provide a remarkably wide range of information directly relevant to the growth of single and multicomponent semiconductor, metal and metal-oxide thin films and layered structures. Ion beam methods have not however, been widely used as an [ital in] [ital situ] monitor of thin film growth because existing commercial instrumentation causes excessive film damage, physically conflicts with the deposition equipment, and requires a chamber pressure [similar to]10[sup [minus]7]--10[sup [minus]8] Torr, i.e., much lower than that associated with most deposition processes ([ge]10[sup [minus]4] Torr).more » We have developed time-of-flight ion scattering and recoil spectroscopy (TOF-SARS) as a nondestructive, [ital in] [ital situ], real-time probe of thin film composition and structure which does not physically interfere with the deposition process. Several TOF-SARS implementations are exceptionally surface specific, yet in a properly designed system can yield high-resolution data at ambient pressures well in excess of 10 mTorr (4--6 orders of magnitude higher than conventional surface analytic methods). Because of the exceptional surface specificity of these methods, TOF-SARS is ideally suited as a means of studying ultrathin layers and atomically abrupt interfaces. TOF-SARS instrumentation designed specifically for use as an [ital in] [ital situ], real-time monitor of growth processes for single and multicomponent thin films and layered structures is described here. Representative data are shown for [ital in] [ital situ] analysis of Pb and Zr layers at room temperature and high vacuum, as well as under conditions appropriate to the growth of Pb(Zr[sub [ital x
Process for producing large grain cadmium telluride
Hasoon, Falah S.; Nelson, Art J.
1996-01-01
A process for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 .mu.m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10.sup.-6 torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 .mu.m.
Characterization of surface roughness of laser deposited titanium alloy and copper using AFM
NASA Astrophysics Data System (ADS)
Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.
2018-03-01
Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.
In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.
Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan
2018-04-01
The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.
Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.
2013-01-01
Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.
NASA Astrophysics Data System (ADS)
He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai
2013-06-01
NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.
NASA Astrophysics Data System (ADS)
Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.
2013-12-01
Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.
Sellers, Jason R V; James, Trevor E; Hemmingson, Stephanie L; Farmer, Jason A; Campbell, Charles T
2013-12-01
Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ~18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Solid State Reaction of Thin Metal Films with MERCURY(1-X)CADMIUM(X)TELLURIDE.
NASA Astrophysics Data System (ADS)
Ehsani, Hassan
The solid state reactions of both e-beam evaporation and sputter deposition of thin layers of Cu, Co, and Ni onto CdTe and Hg_{0.8}Cd _{0.2}Te have been investigated using Transmission Electron Microscopy and Auger Electron Spectroscopy. For a Cu overlayer deposited by either method on CdTe(111) and Hg_{0.8}Cd _{0.2}Te substrates, we observed formation of a relatively thick region of Cu _{rm 2-x}Te (superlattice structure), even though the heat of reactions ( DeltaH_{rm R} ) are positive as calculated using bulk parameters. Deposition of Co onto Hg_{0.8 }Cd_{0.2}Te substrates reacted to form the gamma -phase (Co_3Te_4) at room temperature in the case of deposition by sputtering, and at 150^circC annealing temperature in the case of deposition by e-beam evaporation. This compound was stable at room and elevated temperatures (100 ^circC, 200^ circC, 300^circC, and 400^circC). On the other hand Co did not react with CdTe (at temperature less than 300^circC) instead, generation of Te was observed. The Te generated in the case of sputter deposition and fast deposition (8-10A) e-beam evaporation was polycrystalline whereas, in the case of slow deposition (0.3-0.5A) e-beam evaporation it was amorphous. Auger depth profile indicated that the amount of excess Te in the case of sputter deposition was larger in compared with deposition by e-beam evaporation. The excess Te was distributed throughout the Co film. The results of Ni deposited onto Hg_ {0.8}Cd_{0.2} Te or CdTe substrate were somewhat similar to the Co cases. Ni reacted with Hg_{0.8 }Cd_{0.2}Te at room temperature in either deposition system to form the delta-phase (NiTe-Ni _2Te). From the results of this work it is clear that the solid produced as a result of either e-beam or sputter deposition has a higher free energy than that of a metal layer on contact with the substrate. This result indicates importance of kinetics in the formation of the interface structure of metals deposited on Hg_{0.8 }Cd_{0.2}Te substrates. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao
2018-01-01
This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2017-12-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2018-01-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
Oxygen ion-beam microlithography
Tsuo, Y.S.
1991-08-20
A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.
Dosimetry with diamond detectors
NASA Astrophysics Data System (ADS)
Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.
2010-05-01
In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, M.; Coupeau, C.; Colin, J.
2005-01-10
The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.
Oxygen ion-beam microlithography
Tsuo, Y. Simon
1991-01-01
A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.
Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Kleinsasser, Alan; Bumble, Bruce; LeDuc, Henry; Lee, Karen
2005-01-01
A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of compounds with contaminants, which is critical in devices the performance of which is dictated by interfacial characteristics. In addition, the flux of incoming species can be measured in situ using ion probes so that the dose can be controlled accurately. The apparatus used in the present ion-beam technique includes a vacuum chamber containing a commercial collimated- ion-beam source, a supply of nitrogen and argon, and an ion probe for measuring the ion dose. Either argon or nitrogen can be used as the feed gases for the ion source, depending on whether cleaning of the substrate or growth of the nitride, respectively, is desired. Once the Nb base electrode and Al proximity layer have been deposited, the N2 gas line to the ion beam is vented and purged, and the ion-source is turned on until a stable discharge is obtained. The substrate is moved over the ion-beam source to expose the Al surface layer to the ion beam (see figure) for a specified duration for the formation of the nitride tunnel barrier. Next, the Nb counter-electrode layer is deposited on the nitride surface layer. The Nb/Al- AlN(x)/Nb-trilayer-covered substrate is then patterned into individual devices by use of conventional integrated-circuit processing techniques.
Effects associated with nanostructure fabrication using in situ liquid cell TEM technology
Chen, Xin; Zhou, Lihui; Wang, Ping; ...
2015-07-28
We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less
Method for thermal and structural evaluation of shallow intense-beam deposition in matter
NASA Astrophysics Data System (ADS)
Pilan Zanoni, André
2018-05-01
The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.
A two-in-one process for reliable graphene transistors processed with photo-lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlberg, P.; Hinnemo, M.; Song, M.
2015-11-16
Research on graphene field-effect transistors (GFETs) has mainly relied on devices fabricated using electron-beam lithography for pattern generation, a method that has known problems with polymer contaminants. GFETs fabricated via photo-lithography suffer even worse from other chemical contaminations, which may lead to strong unintentional doping of the graphene. In this letter, we report on a scalable fabrication process for reliable GFETs based on ordinary photo-lithography by eliminating the aforementioned issues. The key to making this GFET processing compatible with silicon technology lies in a two-in-one process where a gate dielectric is deposited by means of atomic layer deposition. During thismore » deposition step, contaminants, likely unintentionally introduced during the graphene transfer and patterning, are effectively removed. The resulting GFETs exhibit current-voltage characteristics representative to that of intrinsic non-doped graphene. Fundamental aspects pertaining to the surface engineering employed in this work are investigated in the light of chemical analysis in combination with electrical characterization.« less
Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M
2009-08-26
A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.
Yuryev, Vladimir A; Arapkina, Larisa V
2011-09-05
Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.
Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas
2005-01-01
A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.
Mitigation of substrate defects in reticles using multilayer buffer layers
Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.
2001-01-01
A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo, E-mail: pmilani@mi.infn.it
We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors withmore » paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.« less
2006-05-01
deposition have been performed by the consortium: the first is the laser additive cladding , currently noticed Laser Forming (see figure 1) and the second one... powder . For the first, the metal powder is carried on by inert gas and melted by laser beam before to be deposited. For the second, the metal powder is... laser additive cladding has been developed in USA mainly, in the 90s years successively by AeroMet Corporation (a MTS company) with the Lasform process
High rate deposition system for metal-cluster/SiO x C y H z -polymer nanocomposite thin films
NASA Astrophysics Data System (ADS)
Peter, T.; Rehders, S.; Schürmann, U.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F.
2013-06-01
A system for deposition of nanocomposite materials consisting of a SiO x C y H z -polymer matrix and Ag nanoclusters is presented. Ag nanoclusters with sizes between 2 and 20 nm are produced in a gas aggregation cluster source and are deposited through a focused beam at a high rate. This cluster source is presented in detail and the characteristics of the produced nanoclusters are shown. Simultaneously, a SiO x C y H z -polymer matrix is grown from the precursor hexamethyldisiloxane in an RF plasma. The beam of clusters is deposited into the growing polymer, forming the composite material. This process allows the rapid deposition of composite material with varying metal nanocluster concentrations and properties. Since the cluster generation is separated from the matrix growth, the properties of both can be controlled independently. In this study, we present two types of nanocomposite samples, in the first the Ag nanoclusters are homogeneously distributed in the matrix, in the second type the Ag nanoclusters form a layer which is covered by the matrix. These samples are investigated using transmission electron micrography to determine the morphology. Furthermore, the optical properties are probed using optical transmission spectroscopy and the plasmonic resonance behavior is discussed.
Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility
NASA Astrophysics Data System (ADS)
Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao
2017-03-01
The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.
Properties of large area ErBa2Cu3O(7-x) thin films deposited by ionized cluster beams
NASA Technical Reports Server (NTRS)
Levenson, L. L.; Stan, Mark A.; Bhasin, Kul B.
1991-01-01
ErBa2Cu3O(7-x) films have been produced by simultaneous deposition of Er, Ba, and Cu from three ionized cluster beam (ICB) sources at acceleration voltages of 0.3 to 0.5 kV. Combining ozone oxidation with ICB deposition at 650 C eliminated any need of post annealing processing. The substrates were rotated at 10 rotations per minute during the deposition which took place at a rate of about 3 to 4 nm. Films with areas up to 70 mm in diameter have been made by ICB deposition. These films, 100 nm thick, were deposited on SrTiO3 (100) substrates at 650 C in a mixture of six percent O3 in O2 at a total pressure of 4 x 10(exp -4) Torr. They had T(sub c) ranging from 84.3 K to 86.8 K over a 70 mm diameter and J(sub c) above 10(exp 6) A/sq cm at 77 K. X ray diffraction measurements of the three samples showed preferential c-axis orientation normal to the substrate surface. Scanning electron micrographs (SEM) of the three samples also show some texture dependence on sample position. For the three samples, there is a correlation between SEM texture, full width at half-maximum of rocking curves and J(sub c) versus temperature curves.
Sala, Leo; Szymańska, Iwona B; Dablemont, Céline; Lafosse, Anne
2018-01-01
Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0–15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies. PMID:29379701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Heuvel, F; Fiorini, F; George, B
2016-06-15
Purpose: 1) To describe the characteristics of pencil beam proton dose deposition kernels in a homogenous medium using a novel parameterization. 2) To propose a method utilizing this novel parametrization to reduce the measurements and pre-computation required in commissioning a pencil beam proton therapy system. Methods: Using beam data from a clinical, pencil beam proton therapy center, Monte Carlo simulations were performed to characterize the dose depositions at a range of energies from 100.32 to 226.08 MeV in 3.6MeV steps. At each energy, the beam is defined at the surface of the phantom by a two-dimensional Normal distribution. Using FLUKA,more » the in-medium dose distribution is calculated in 200×200×350 mm cube with 1 mm{sup 3} tally volumes. The calculated dose distribution in each 200×200 slice perpendicular to the beam axis is then characterized using a symmetric alpha-stable distribution centered on the beam axis. This results in two parameters, α and γ, that completely describe shape of the distribution. In addition, the total dose deposited on each slice is calculated. The alpha-stable parameters are plotted as function of the depth in-medium, providing a representation of dose deposition along the pencil beam. We observed that these graphs are isometric through a scaling of both abscissa and ordinate map the curves. Results: Using interpolation of the scaling factors of two source curves representative of different beam energies, we predicted the parameters of a third curve at an intermediate energy. The errors are quantified by the maximal difference and provide a fit better than previous methods. The maximal energy difference between the source curves generating identical curves was 21.14MeV. Conclusion: We have introduced a novel method to parameterize the in-phantom properties of pencil beam proton dose depositions. For the case of the Knoxville IBA system, no more than nine pencil beams have to be fully characterized.« less
Beam-induced pressure gradients in the early phase of proton-heated solar flares
NASA Technical Reports Server (NTRS)
Tamres, David H.; Canfield, Richard C.; Mcclymont, A. N.
1986-01-01
The pressure gradient induced in a coronal loop by proton beam momentum deposition is calculated and compared with the thermal pressure gradient arising from nonuniform deposition of beam energy; it is assumed that the transfer of momentum and energy from beam to target occurs via the Coulomb interaciton. Results are presented for both a low mean energy and a high mean energy proton beam injected at the loop apex and characterized by a power-law energy spectrum. The present treatment takes account of the breakdown of the cold target approximation for the low-energy proton beam in the corona, where the thermal speed of target electrons exceeds the beam speed. It is found that proton beam momentum deposition plays a potentially significant role in flare dynamics only in the low mean energy case and only in the corona, where it may dominate the acceleration of target material for as long as several tens of seconds. This conclusion suggest that the presence of low-energy nonthermal protons may be inferred from velocity-sensitive coronal observations in the early impulsive phase.
Method and Apparatus for Creating a Topography at a Surface
Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.
2008-11-11
Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.
Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overweg, H. C.; Haan, A. M. J. den; Eerkens, H. J.
2015-08-17
We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10{sup −12} Am{sup 2}, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed inmore » this paper.« less
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, D.F.; Kwan, S.W.
1999-03-30
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, David F.; Kwan, Simon W.
1999-01-01
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.
NASA Astrophysics Data System (ADS)
Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev
In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.
Freeform Deposition Method for Coolant Channel Closeout
NASA Technical Reports Server (NTRS)
Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)
2017-01-01
A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.
Normal incidence reflectance of ion beam deposited SiC films in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Osantowski, John F.; Herzig, Howard; Gum, Jeffrey S.; Toft, Albert R.
1988-01-01
Results are presented from an experimental investigation of the normal-incidence reflectance at 58.4, 92.0, and 121.6 nm wavelength of 30- and 80-nm-thick SiC films produced by ion-beam deposition on unheated 5 x 5-cm microscope slides. The films were deposited in the 2-m evaporator described by Bradford et al. (1969) with chamber base pressure 1 microtorr, operating pressure 40 microtorr, and a 50-62-mA 750-eV Ar ion beam; the reflectance measurements were obtained in the reflector-monochromator system described by Osantowski (1974). Reflectances of over 30 percent were found at 92 and 121.6 nm, almost equal to those of polished CVD films of SiC and degrading only slightly after aging for 4 months. It is suggested that ion-beam deposition may be the best low-temperature technique for coating EUV optics for space astronomy.
NASA Astrophysics Data System (ADS)
Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William
2017-02-01
A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.
NASA Astrophysics Data System (ADS)
Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.
2002-01-01
Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrF ∗ laser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.
Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.
2007-03-01
In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.
Ultra-thin multilayer capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renk, Timothy Jerome; Monson, Todd C.
2009-06-01
The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report detailsmore » some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.« less
NASA Astrophysics Data System (ADS)
Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.
2016-08-01
This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.
78 FR 29387 - Government-Owned Inventions, Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... System for Physiologically Modulating Action Role-playing Open World Video Games and Simulations Which... Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process; NASA Case No.: LAR-17887-1... Modulating Videogames and Simulations Which Use Gesture and Body Image Sensing Control Input Devices; NASA...
Investigation of Electromagnetic Signatures of a FPGA Using an APREL EM-ISIGHT System
2015-12-01
unprofessional workmanship in the bonding process. Focused ion beam (FIB) images often consist of some type of etch and/or deposition of material from/to...characteristics of conducted emissions." Electromagnetic Compatibility, 2008. EMC 2008. IEEE International Symposium (2008): 1-4. Montanari, Ivan
Ion energy/momentum effects during ion assisted growth of niobium nitride films
NASA Astrophysics Data System (ADS)
Klingenberg, Melissa L.
The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and closed-structured morphologies.
Plasma chemistry study of PLAD processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer
2012-11-06
Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{submore » 4} and GeH{sub 4} are studied and demonstrated.« less
Integral window/photon beam position monitor and beam flux detectors for x-ray beams
Shu, Deming; Kuzay, Tuncer M.
1995-01-01
A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.
Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.
2000-01-01
Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.
NASA Astrophysics Data System (ADS)
Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato
2018-04-01
We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.
NASA Astrophysics Data System (ADS)
Stavinoha, Joe N.
The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al-4V alloy substrates. Cylindrical weld metal deposits were built by employing an automatic wire feeder, turntable positioner, and vertical torch positioner. A total of four cylindrical weld metal specimens were built with various combinations of essential plasma arc welding process parameters. The temperature of the weld metal deposit was taken with a thermocouple after allowing a specified amount of time to pass before depositing the next weld track. An analytical heat flow model was created that estimated the temperature of the weld metal deposit in relation to the number of tracks deposited. The analytical heat flow model was adjusted to match the experimental data that was obtained and revealed that the rate of production could be increased if the rate of thermal energy losses from the deposit were increased. Cross-sections of the weld metal deposits were examined to observe the effects of thermal energy input on the weld metal macrostructure, microstructure, and grain size. Results from the metallographic inspections revealed an increase in grain size and coarsening of the structure as the number of weld tracks in the deposit increased.
Optimization of the Al2O3/GaSb Interface and a High-Mobility GaSb pMOSFET
2011-10-01
explored the use of in situ deposition of Al2O3 on GaSb grown on InP using molecular beam epitaxy and reported Dit values in the low 1012/cm2eV range near...M. Heyns, M. Caymax, and J. Dekoster, “GaSb mole- cular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al2O3 gate oxide...transmission electron microscopy. Capacitors were made on these films using platinum (Pt) electrode deposited in an e- beam evaporator through a shadow
Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting
NASA Astrophysics Data System (ADS)
Ali, Muddassir; Henda, Redhouane
2017-12-01
Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.
Electron transport in solid targets and in the active mixture of a CO2 laser amplifier
NASA Astrophysics Data System (ADS)
Galkowski, A.
The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.
Optimization of ion-atomic beam source for deposition of GaN ultrathin films.
Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš
2014-08-01
We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.
Bi cluster-assembled interconnects produced using SU8 templates
NASA Astrophysics Data System (ADS)
Partridge, J. G.; Matthewson, T.; Brown, S. A.
2007-04-01
Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si3N4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process.
Microstructure fabrication process induced modulations in CVD graphene
NASA Astrophysics Data System (ADS)
Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.
2014-12-01
The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.
One-dimensional ion-beam figuring for grazing-incidence reflective optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Lin; Idir, Mourad; Bouet, Nathalie
2016-01-01
One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experimentsmore » of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. In conclusion, the surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.« less
Confined energy distribution for charged particle beams
Jason, Andrew J.; Blind, Barbara
1990-01-01
A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.
Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif
2012-09-26
Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotipsmore » can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.« less
NASA Astrophysics Data System (ADS)
Furlan, Valentina; Biondi, Marco; Demir, Ali Gökhan; Pariani, Giorgio; Previtali, Barbara; Bianco, Andrea
2017-11-01
Two-beam direct laser interference patterning (DLIP) is the method that employs two beams and provides control over the pattern geometry by regulating the angle between the beams and the wavelength of the beam. Despite the simplistic optical arrangement required for the method, the feasibility of sub-micrometric patterning of a surface depends on the correct manipulation of the process parameters, especially in the case of metallic materials. Magnesium alloys, from this point of view, exhibit further difficulty in processability due to low melting point and high reactivity. With biocompatibility and biodegradability features, Mg-alloy implants can take further advantage of surface structuring for tailoring the biological behaviour. In this work, a two-beam DLIP setup has been developed employing an industrial grade nanosecond-pulsed fiber laser emitting at 532 nm. The high repetition rate and ramped pulse profile provided by the laser were exploited for a more flexible control over the energy content deposited over the heat-sensitive Mg-alloy. The paper describes the strategies developed for controlling ramped laser emission at 20 kHz repetition rate. The process feasibility window was assessed within a large range of parameters. Within the feasibility window, a complete experimental plan was applied to investigate the effect of main laser process parameters on the pattern dimensions. Periodic surface structures with good definition down to 580 nm ± 20 nm spacing were successfully produced.
Process for producing large grain cadmium telluride
Hasoon, F.S.; Nelson, A.J.
1996-01-16
A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.
Lewis, Brett B.; Mound, Brittnee A.; Srijanto, Bernadeta; ...
2017-10-12
Here, nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.
Study of process technology for GaAlAs/GaAs heteroface solar cells
NASA Technical Reports Server (NTRS)
Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.
1980-01-01
Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
2018-06-01
Three-dimensional platinum and tungsten overhanging nanogap (∼70 nm) electrodes are fabricated on a glass substrate using focused ion beam milling and chemical vapour deposition processes. Current-voltage (I-V) characteristics of the devices measured at a pressure of ∼10-6 mbar shows space-charge emission followed by the Fowler-Nordheim (F-N) field emission. After the F-N emission, the system enters into an explosive emission process, at a higher voltage generating a huge current. We observe a sharp and abrupt rise in the emission current which marks the transition from the F-N emission to the explosive emission state. The explosive emission process is destructive in nature and yields micro-/nano-size spherical metal particles. The chemical compositions and the size-distribution of such particles are performed.
Aligned crystalline semiconducting film on a glass substrate and method of making
Findikoglu, Alp T.
2010-08-24
A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.
Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf
2013-01-01
Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584
Magnetosphere-ionosphere coupling: processes and rates
NASA Astrophysics Data System (ADS)
Lotko, W.
Magnetosphere-ionosphere coupling describes the interaction between the collisionless plasma of the magnetosphere and the ionized and neutral collisional gases of the ionosphere and thermosphere. This coupling introduces feedback and scale interactivity in the form of a time-variable mass flux, electron energy flux and Poynting flux flowing between the two regions. Although delineation of an MI coupling region is somewhat ambiguous, at mid and high latitudes it may be considered as the region of the topside ionosphere and low-altitude magnetosphere where electromagnetic energy is converted to plasma beams and heat via collisionless dissipation processes. Above this region the magnetically guided transmission of electromagnetic power from distant magnetospheric dynamos encounters only weak attenuation. The ionospheric region below it is dominated by ionization processes and collisional cross-field transport and current closure. This tutorial will use observations, models and theory to characterize three major issues in MI coupling: (1) the production of plasma beams and heat in the coupling region; (2) the acceleration of ions leading to massive outflows; and (3) the length and time scale dependence of electromagnetic energy deposition at low altitude. Our success in identifying many of the key processes is offset by a lack of quantitative understanding of the factors controlling the rates of energy deposition and of the production of particle energy and mass fluxes.
2011-01-01
Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938
Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.
Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min
2017-08-29
Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain. We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates. Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.
Imaging and characterization of primary and secondary radiation in ion beam therapy
NASA Astrophysics Data System (ADS)
Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus
2016-07-01
Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.
Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition
NASA Astrophysics Data System (ADS)
Wang, Y. G.; Wang, T. H.; Lin, X. W.; Dravid, V. P.
2006-12-01
We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction.
NASA Astrophysics Data System (ADS)
Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.
2005-02-01
Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.
Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin
2012-09-21
Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.
Gallium Nitride (GaN) High Power Electronics (FY11)
2012-01-01
GaN films grown by metal-organic chemical vapor deposition (MOCVD) and ~1010 in films grown by molecular beam epitaxy (MBE) when they are deposited...inductively coupled plasma I-V current-voltage L-HVPE low doped HVPE MBE molecular beam epitaxy MOCVD metal-organic chemical vapor deposition...figure of merit HEMT high electron mobility transistor H-HVPE high doped HVPE HPE high power electronics HVPE hydride vapor phase epitaxy ICP
Radio frequency and microwave plasma for optical thin-film deposition
NASA Astrophysics Data System (ADS)
Otto, Juergen; Paquet, Volker; Kersten, Ralf T.; Etzkorn, Heinz-Werner; Brusasco, Raymond M.; Britten, Jerald A.; Campbell, Jack H.; Thorsness, J. B.
1990-12-01
For the next generation of fusion lasers reflecting mirrors with laser damage thresholds of at least 40 J/cm2 for 1 0 ns laser pulses at 1 .064 pm are needed. Up to now, no deposition technique has been developed to produce such mirrors. Best R&D-values realized today are around 30 J/cm2 for e-beam evaporated mirrors. R&D on conventional e-beam coating processes over the last 1 0 years has come up with marginal improvements in laser damage thresholds only. However, new technologies, like PICVD (Plasma-Impulse CVD) developed for the fabrication of ultra-low loss fiber preforms, seem to offer the potential to solve this problem. First results have been reported already [1-3]. It is well known that fused silica produced by CVD processes can have laser damage thresholds as high as 80 J/cm2. However, the thickness of a single deposited film is in the pm-range for most of the CVD-processes used for preform manufacturing; since interference optics need films in the ; /4n range (where n is the refractive index of the dielectric material) the use of preform-fabrication processes for the purpose of interference mirror fabrication is limited to a few plasma based CVD technologies, namely PCVD (Plasma-CVD, Philips [4]; PICVD, SCHOTT [5]). Especially PICVD is a very powerful technology to fabricate thin film multilayers for interference mirrors, because this technique is able to produce films down to monolayer thickness with nearly perfect stoichiometry and morphology. In first and preliminary experiments the usual deposition in a circular tube at high temperatures has been used for simplicity. However, to produce large area high quality laser mirrors this principle know-how has to be transfered from circular to planar geometry. Experiments showed, that there may be some limitations with respect to the homogeneity of a planar deposition using microwave excitation for the plasma. Therefore experiments have been performed in parallel with both RF and microwave excitation for comparison. In the following we will restrict ourselves to the description and discussions of the planar processes; the principle and details of the PICVD-process are described elsewhere [5] while RF-plasma technology is a well known process.
Characterization of Nanoporous Materials with Atom Probe Tomography.
Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten
2015-06-01
A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.
A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure
Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming
2007-01-01
This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s). PMID:28903233
Lithography alternatives meet design style reality: How do they "line" up?
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2016-03-01
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to set the channel length of select and memory transistors.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-03-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-07-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Coordinated STEM/FIB/NanoSIMS Analyses of Presolar Silicates in Comet Dust and Primitive Meteorites
NASA Technical Reports Server (NTRS)
Keller, Lindsay; Nguyen, A.; Rahman, Z.; Messenger, S.
2012-01-01
Silicate grains were among the most abundant mineralogical building blocks of our Solar System. These grains were the detritus from earlier generations of stars that have been recycled in the early solar nebula. Rare sub-micrometer survivors of this processing have been identified in meteorites, micrometeorites and interplanetary dust particles (IDPs). These silicate grains are recognized as presolar in origin because of their extremely anomalous isotopic compositions that reflect nucleosynthetic processes in their stellar sources (evolved stars, novae and supernovae). We perform coordinated chemical, mineralogical and isotopic studies of these grains to determine their origins and histories. We examine the complex mineralogy and petrography of presolar silicates using imaging, diffraction and chemical data obtained from thin sections with the JSC JEOL 2500 field-emission STEM equipped with a Noran thin window energy dispersive x-ray (EDX) spectrometer and a Gatan Tridiem GIF. Quantitative element x-ray maps (spectrum images) are acquired by rastering a 4 nm incident probe whose dwell time is minimized to avoid beam damage and element diffusion during mapping. Successive image layers are acquired and combined in order to achieve approx 1% counting statistics for major elements. The IDP samples are prepared by ultramicrotomy of particles embedded in epoxy or elemental sulfur. After EDX mapping, the sections are subjected to C, N, and O isotopic imaging with the JSC NanoSIMS 50L ion microprobe. We prepare sections of some meteorite grains using the JSC FEI Quanta 3D focused ion beam (FIB) instrument. The specimen surface is protected from the FIB milling process by layers of electron beam-deposited C and Pt followed by an ion-deposited Pt layer. We also use the FIB to preferentially remove surrounding grains to reduce the background in subsequent NanoSIMS measurements. For mineralogical studies, we again employ the FIB instrument to deposit a protective cap over the grain of interest and then extract the grain and thin it to electron transparency for TEM analysis.
NASA Astrophysics Data System (ADS)
Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent
2016-09-01
There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the
Varying stopping and self-focusing of intense proton beams as they heat solid density matter
NASA Astrophysics Data System (ADS)
Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.
2016-04-01
Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.
Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns
NASA Astrophysics Data System (ADS)
Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing
2017-05-01
An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.
NASA Astrophysics Data System (ADS)
Gagetti, Leonardo; Anzorena, Manuel Suarez; Bertolo, Alma; del Grosso, Mariela; Kreiner, Andrés J.
2017-12-01
Thin Be targets for neutron production through Be(d,n) are produced and characterized. We improved and characterized the substrate surface, specifically the roughness, in order to achieve homogeneous and stable deposits. Once well bonded deposits were obtained, some of them were irradiated with a 150 keV proton beam and with a 1.45 MeV deuteron beam. Both deposits, pristine and irradiated, were characterized by profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalyzer.
Technical use of compact micro-onde devicesa)
NASA Astrophysics Data System (ADS)
Sortais, P.; Lamy, T.; Médard, J.; Angot, J.; Sudraud, P.; Salord, O.; Homri, S.
2012-02-01
Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010), 10.1063/1.3272878] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.
1991-12-31
AD-A252 218 The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System ONR...6 3 2. Deposition of Electrooptic Thin Films ................................... 11 3. High Resolution Imaging of Twin and Antiphase...Domain Boundaries in Perovskite KNbO3 Thin Films .......... 30 4. Microstructural Characterization of the Epitaxial3 (111) KNbO3 on (0001) Sapphire
NASA Astrophysics Data System (ADS)
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.
Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO{sub 2} concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO{sub 2} is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO{sub 2} and energy cost for breaking a CO{sub 2} molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting ofmore » 82% N{sub 2}, 6% O{sub 2}, and 12% CO{sub 2}, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO{sub 2} molecules, beam energy density deposition on the order of 20 J/cm{sup 3} is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO{sub 2} and 10% CH{sub 4} at beam energy density deposition of 4.2 J/cm{sup 3}, accumulated over 43 shots in a 20 min interval, reduced the CO{sub 2} concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO{sub 2}, 11.5% CH{sub 4}, and balance of Ar, reduced the CO{sub 2} concentration to below 11% with energy deposition 0.71 J/cm{sup 3}, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO{sub 2} reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO{sub 2} with pulsed electron beams are also explored, yielding new possible avenues of research.« less
Microstructure fabrication process induced modulations in CVD graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung
The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphenemore » does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan
2016-01-01
Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.
Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.
Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect
NASA Astrophysics Data System (ADS)
He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.
1998-02-01
Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.
Thermal barrier coating resistant to sintering
Subramanian, Ramesh; Seth, Brij B.
2004-06-29
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, D. T.
Ion beam interference coating (IBIC) is a sputter-deposition process for multiple layers of optical thin films employing a Kaufman gun. It has achieved coatings of extremely low optical loss and high mechanical strength. It has many potential applications for a wide spectral range. This coating process is described in terms of principle, fabrication procedure, and optical measurements. Some discussions follow the history and outlooks of IBIC with emphasis on how to achieve low loss and on the throughput improvements.
Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.
Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects,more » like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.« less
Layer-by-Layer Templated Assembly of Silica at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.
2013-01-29
Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less
Material Processing Opportunites Utilizing a Free Electron Laser
NASA Astrophysics Data System (ADS)
Todd, Alan
1996-11-01
Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.
Cathodoluminescence Study of Hafnium Oxide
NASA Astrophysics Data System (ADS)
Purcell, Emily; Hengehold, Robert; McClory, John
2011-10-01
Hafnium dioxide (HfO2) is increasingly being used in place of silicon oxide as a gate insulator in field effect transistors. This is primarily due to its high dielectric constant, κ, of 25. Samples of HfO2 were grown by either atomic layer deposition (ALD) or pulsed laser deposition (PLD), with the PLD samples having assorted substrate temperatures during deposition (300 C, 500 C, and 750 C). Cathodoluminescence (CL) was chosen as the technique used for studying these HfO2 samples. The CL system used was capable of beam energies ranging from 1 keV to 20 keV and beam currents ranging from 10 μA to 50 μA. A Monte Carlo calculation using CASINO software was performed in order to determine the beam energy for the desired depth of penetration. Measurements were taken at sample temperatures ranging from 7K (closed cycled cryostat) to 300K (room temperature), as well as at various beam energies and beam currents. Comparison will be made between the PLD and ALD spectra.
Ion beam figuring of small optical components
NASA Astrophysics Data System (ADS)
Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.
1995-12-01
Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.
A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.
Fischer, D; de la Fuente, G F; Jansen, M
2012-04-01
The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics
Energy deposition calculated by PHITS code in Pb spallation target
NASA Astrophysics Data System (ADS)
Yu, Quanzhi
2016-01-01
Energy deposition in a Pb spallation target irradiated by high energetic protons was calculated by PHITS2.52 code. The validation of the energy deposition and neutron production calculated by PHITS code was performed. Results show good agreements between the simulation results and the experimental data. Detailed comparison shows that for the total energy deposition, PHITS simulation result was about 15% overestimation than that of the experimental data. For the energy deposition along the length of the Pb target, the discrepancy mainly presented at the front part of the Pb target. Calculation indicates that most of the energy deposition comes from the ionizations of the primary protons and the produced secondary particles. With the event generator mode of PHITS, the deposit energy distribution for the particles and the light nulclei is presented for the first time. It indicates that the primary protons with energy more than 100 MeV are the most contributors to the total energy deposition. The energy depositions peaking at 10 MeV and 0.1 MeV, are mainly caused by the electrons, pions, d, t, 3He and also α particles during the cascade process and the evaporation process, respectively. The energy deposition density caused by different proton beam profiles are also calculated and compared. Such calculation and analyses are much helpful for better understanding the physical mechanism of energy deposition in the spallation target, and greatly useful for the thermal hydraulic design of the spallation target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D
2013-01-01
Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less
Trace element fingerprinting of jewellery rubies by external beam PIXE
NASA Astrophysics Data System (ADS)
Calligaro, T.; Poirot, J.-P.; Querré, G.
1999-04-01
External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies : one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional gemological observations.
NASA Astrophysics Data System (ADS)
Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina
2013-03-01
Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.
Apparatus for producing diamond-like carbon flakes
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1986-01-01
A vacuum arc from a spot at the face of a graphite cathode to a graphite anode produces a beam of carbon ions and atoms. A carbon coating from this beam is deposited on an ion beam sputtered target to produce diamond-like carbon flakes. A graphite tube encloses the cathode, and electrical isolation is provided by an insulating sleeve. The tube forces the vacuum arc spot to be confined to the surface on the outermost end of the cathode. Without the tube the arc spot will wander to the side of the cathode. This spot movement results in low rates of carbon deposition, and the properties of the deposited flakes are more graphite-like than diamond-like.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, T.
This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (requiredmore » annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Kassaee, A; Finlay, J
Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanismmore » of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.« less
SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuvel, F Van den; Deruysscher, D
2014-06-01
Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose depositionmore » spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
Investigation of different C-backings for targets
NASA Astrophysics Data System (ADS)
Hübner, Annett; Kindler, Birgit; Lommel, Bettina; Steiner, Jutta; Yakusheva, Vera; Khuyagbaatar, J.; Hinde, David J.; Dasgupta, Mahananda
2018-05-01
For a special application, carbon-backings with a very flat surface, microscopically as well as macroscopically, were needed as backings for targets of enriched isotopes. However, betaine-sucrose routinely applied at GSI as parting agent for carbon deposition results in a microscopically rough surface which was not perfectly satisfying the experimental requirements. For these targets we investigated the carbon-backing quality in relation to the applied different parting agents and different deposition processes. In this paper we report on the yield, on the structure of the carbon layers and the deposited target layer of 208PbS, 206PbS, and 142NdF3 depending on the parting agent, the thickness and the deposition methods. We report on elastic scattering experiments with a 48Ti-beam demonstrating the influence of the structure of the carbon backing on the experimental results.
Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi
2017-05-01
Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
APS deposition facility upgrades and future plans
NASA Astrophysics Data System (ADS)
Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth
2014-09-01
The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.
Algorithm for ion beam figuring of low-gradient mirrors.
Jiao, Changjun; Li, Shengyi; Xie, Xuhui
2009-07-20
Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.
Focused Ion Beam Fabrication of Graded Channel Field Effect Transistors (FETs) in GaAs and Si
1988-11-21
is used even though the cut may need to be - I-am wide. Since theL ± ne REMOVAL etch time varies as the inverse square of the beam diameter , a ROF...at room temperature a fairly large diameter capillary 1.4-mm and ion induced deposition or etching , the focused ion beam inner diameter was used . For...Pd/B/As/P (alloy sources) Main - micromachining - implantation uses - ion induced deposition - lithography and etching - high resolution SIMS
Cluster Beam Deposition of High Temperature Materials
1991-01-01
include Secur y Classifocation) CLUSTER BEAM DEPOSITION OF HIGH TEMPERATURE MATERIALS 12 . PERSONAL AUTHOR(S) William J. Herron and James F. Garvey 13a TYPE... industria - applications (su:erconducting thin films, diamond-liKe !arbn,. films, patterned or multi-layered thin films, etc...) INT RODIU C’I 1 Recently there...Tne path of the expanc~ nr gas pulse passes perpendicularly (left to right in tne figure) over the surface of the target rod. I I Laser Beam-I I I Lens
Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.
Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S
2016-08-07
Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.
Room-temperature-deposited dielectrics and superconductors for integrated photonics.
Shainline, Jeffrey M; Buckley, Sonia M; Nader, Nima; Gentry, Cale M; Cossel, Kevin C; Cleary, Justin W; Popović, Miloš; Newbury, Nathan R; Nam, Sae Woo; Mirin, Richard P
2017-05-01
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.
Transparent electrical conducting films by activated reactive evaporation
Bunshah, Rointan; Nath, Prem
1982-01-01
Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.
Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers.
Diercks, David R; Gorman, Brian P; Mulders, Johannes J L
2017-04-01
Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.
International Assessment of Research and Development in Catalysis by Nanostructured Materials
2009-01-01
beam was parallel to the [011] zone axis of Cu (Hansen et al . 2002). Renu Sharma 51 Redox Process Ceria-based oxides are commonly used as supports for... deposition of Al (OH)6Mo6O18 3- on the Al2O3 surface....................................................... 336 D.51. Schematic illustration of the...materials with unique properties at the ITQ in Valencia, Spain. Also, the Center for Microchemical Process Systems at KAIST in Korea makes extensive use
NASA Astrophysics Data System (ADS)
Grave, Daniel A.
Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while keeping a large adatom diffusion length on the film surface. Crystallographic texture evolution in the Gd2O3 films was investigated for different substrate types. At high rates, it was shown that films deposited on different substrates (quartz, silicon, sapphire, and GaN) all had similar theta-2theta diffraction patterns, suggesting that films grew similarly on different substrates due to the low adatom mobility. However, significant differences in texture were observed for films deposited at low rates (< 1 A/s) and high temperature (650°C) on different substrates. For evaluation of in-plane texture in the Gd2O 3 films, pole figure analysis was performed. Mixed phase films deposited at high rates and low temperature showed weak out-of-plane texture and random in-plane texture. Mixed phase films deposited at high temperatures possessed a fiber texture (strong out-of-plane texture), but lacked the necessary adatom mobility to develop in-plane texture. For single phase cubic films grown under low rates of deposition, out-of-plane texture was observed on quartz substrates. However, weak and strong in-plane textures were observed for sapphire and GaN substrates, respectively. The use of ion bombardment resulted in the formation of moderate biaxial texture for films grown on quartz. For films grown on sapphire, a very strong biaxial texture was achieved with ion bombardment which adds additional energy to the system. The effects of processing on the structure, composition, and interfacial chemistry of the Gd2O3 films were investigated. The results showed that films primarily adhered to the Structure-Zone models with a few exceptions. The deviation from the Structure-Zone model was explained by the combined effects of columnar growth, shadowing, and adatom mobility. At low deposition temperatures, decreasing oxygen flow resulted in increased film density due to higher adatom mobility. Films deposited at this temperature were characterized by small (10-15 nm) nanocrystalline grains with some porous disordered regions. The dielectric properties of Si(111)/Gd2O3/Ti/Au MOS capacitors were investigated. Moisture absorption in Gd2O 3 films was found to result in both increased dielectric loss (10x) and inflated dielectric constant values ( 40 %). Heat treatment of the films at 100 °C resulted in outgassing of moisture, reduction in dielectric constant, and excellent frequency dispersion of the dielectric constant over a range of 10 kHz-1 MHz. The effect of film processing on the dielectric constant was systematically investigated. Tuning of the dielectric constant from a value of 11 to a value of 24 was possible by manipulating the structure and crystallographic phase of the material via the processing conditions. Capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of GaN/AlGaN/Gd2O3/Ti/Au MOS capacitors were investigated. The effects of processing on fixed oxide charge, trapped oxide charge, and density of interface states were evaluated. Single phase cubic films deposited at low rates with near heteroepitaxial growth were shown to have the lowest density of trapped charge. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Keudell, A. V.
2000-10-01
The quantification of elementary plasma surface processes in glow discharges used for thin film deposition, is mandatory for a complete description of these low temperature plasmas. Since the surface to volume ratio in these discharge systems is often large, all particle densities in the discharge can be strongly influenced by any surface reactions. The identification and quantification of these surface processes will be illustrated for the plasma deposition of amorphous hydrogenated carbon films. A variety of experiments will be discussed ranging from plasma experiments using the cavity technique or ionization threshold mass spectrometry as well as a new class of experiments using quantified radical beams to quantify surface reactions in terms of sticking coefficients directly. It is shown that the reactivity of the hydrocarbon radicals depends strongly on the state of hybridization of the hydrocarbon growth precursor, and that the sticking coefficients for various hydrocarbon radicals are strongly influenced by the simultaneous interaction of several reactive species with the film surface. With the knowledge of these interaction mechanisms and the quantification of the corresponding cross sections, a better understanding of growth processes has become possible, ranging from the deposition of polycrystalline diamond in microwave discharges to the formation of re-deposited layers in fusion experiments.
NASA Astrophysics Data System (ADS)
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys
NASA Astrophysics Data System (ADS)
Durocher, J.; Richards, N. L.
2011-10-01
The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.
Additive Manufacturing of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Van Humbeeck, Jan
2018-04-01
Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris
2011-10-07
We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, David E.
The process by which super-thermal ions slow down against background Coulomb potentials arises in many fields of study. In particular, this is one of the main mechanisms by which the mass and energy from the reaction products of fusion reactions is deposited back into the background. Many of these fields are characterized by length and time scales that are the same magnitude as the range and duration of the trajectory of these particles, before they thermalize into the background. This requires numerical simulation of this slowing down process through numerically integrating the velocities and energies of these particles. This papermore » first presents a simple introduction to the required plasma physics, followed by the description of the numerical integration used to integrate a beam of particles. This algorithm is unique in that it combines in an integrated manner both a second-order integration of the slowing down with the particle beam dispersion. These two processes are typically computed in isolation from each other. A simple test problem of a beam of alpha particles slowing down against an inert background of deuterium and tritium with varying properties of both the beam and the background illustrate the utility of the algorithm. This is followed by conclusions and appendices. The appendices define the notation, units, and several useful identities.« less
NASA Astrophysics Data System (ADS)
Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei
2017-10-01
Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.
Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique
NASA Astrophysics Data System (ADS)
Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.
2015-05-01
Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.
Effect of Ag Surfactant on Cu/Co Multilayers Deposited by RF-Ion Beam Sputtering
NASA Astrophysics Data System (ADS)
Amir, S. M.; Gupta, M.; Gupta, A.; Wildes, A.
2011-07-01
In this work, the effect of Ag surfactant in RF-ion beam sputtered Cu/Co multilayers was studied. It was found that when a sub-monolayer of Ag (termed as surfactant) is deposited prior to the deposition of Cu/Co multilayers, the asymmetry in the Cu/Co or Co/Cu interfaces becomes small. Low surface free energy of Ag helps Ag atoms to float when a Cu or Co layer is getting deposited. This balances the difference between the surface free energy of Cu and Co making the interfaces in the multilayers smoother as compared to the case when no Ag surfactant was used.
Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
NASA Astrophysics Data System (ADS)
Rubin, Binyamin; George, Jason; Singhal, Riju
2018-04-01
Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.
Koo, Won Hoe; Jeong, Soon Moon; Choi, Sang Hun; Kim, Woo Jin; Baik, Hong Koo; Lee, Sung Man; Lee, Se Jong
2005-06-09
The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed.
Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings
NASA Astrophysics Data System (ADS)
Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin
2018-03-01
Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vackel, Andrew; Sampath, Sanjay
Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less
Vackel, Andrew; Sampath, Sanjay
2017-02-27
Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less
Hrabe, Nikolas W.; Heinl, Peter; Bordia, Rajendra K.; Körner, Carolin; Fernandes, Russell J.
2013-01-01
Regular 3D periodic porous Ti-6Al-4 V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17–0.40) and pore sizes (500–1500 μm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for four weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation and deposition of a collagenous matrix characteristic of bone. PMID:23869614
Materials and techniques for spacecraft static charge control
NASA Technical Reports Server (NTRS)
Amore, L. J.; Eagles, A. E.
1977-01-01
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.
NASA Technical Reports Server (NTRS)
Wolfe, Douglas E.; Singh, Jogender
2005-01-01
Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.
Next Generation Proton Beam Writing: A Platform Technology for Nanowire Integration
2010-06-01
Final Report AOARD 09-4020 Next Generation Proton Beam Writing: a platform technology for Nanowire Integration JA van Kan1, AA Bettiol1, T...PBW with a finely focused 2 MeV beam was used to write holes in a matrix of thick PMMA . A G-G developer was used to develop the PMMA patterns. The...solution. The deposition speed was about 1 μm of plated Au in every 5 min. When a sufficient thickness of Au had been deposited, the PMMA around the
The Next Generation Focusing Lenses for Proton Beam Writing
2009-07-28
Final Report AOARD 07-4017 The Next Generation Focusing Lenses for Proton Beam Writing JA van Kan1, AA Bettiol1, T. Osipowicz2, MBH Breese3, and F...with a finely focused 2 MeV beam was used to write holes in a matrix of thick PMMA . A G-G developer was used to develop the PMMA patterns. The G-G...The deposition speed was about 1 μm of plated Au in every 5 min. When a sufficient thickness of Au had been deposited, the PMMA around the gold
Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings
NASA Technical Reports Server (NTRS)
Tobin, Eric J.; Hafley, R. (Technical Monitor)
2002-01-01
The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.
An optimized nanoparticle separator enabled by electron beam induced deposition
NASA Astrophysics Data System (ADS)
Fowlkes, J. D.; Doktycz, M. J.; Rack, P. D.
2010-04-01
Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.
Fabrication of frequency selective surface for band stop IR-filter
NASA Astrophysics Data System (ADS)
Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.
2016-05-01
Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.
Development of textured magnesium oxide templates and bicrystals using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Vallejo, Ronald N.
Recently, there has been an increased research effort in the deposition of near-single-crystal thin films on substrates that do not provide a template for epitaxial crystalline film growth. Ion beam assisted deposition (IBAD) has been demonstrated as one of the most promising methods to artificially control the texture in thin films. Biaxially textured MgO templates of 10 nm thickness were successfully fabricated on glass and silicon substrates without any buffer layers using IBAD. This work has shed insights on several issues. First, surface morphology ˜ 1 nm or better is only a necessary condition for textured IBAD-MgO, but not a sufficient condition. Additional surface preparation must be provided for nucleation and subsequent formation of the textured IBAD-MgO templates. Second, the role of buffer layer on IBAD-MgO texturing. It was found that the ion beam pre-exposure of the substrates prior to IBAD processing provided a sufficient condition for the nucleation and subsequent texture formation of the IBAD grown films. The ion pre-exposure replaced the need for buffer layers in silicon and glass substrates. Finally, by pre-exposing the substrates to Ar + ions, it was found that the ion beam modified the surface and improved the surface roughness of the glass substrates. Textured MgO epi templates were demonstrated for the first time on polymer based substrates (polyimide). This is a crucial step in the realization of epitaxial suspended devices. To achieve an epitaxial film on a sacrificial layer, an epitaxial template film must first be grown prior to subsequent film growth. The role of ion pre-exposure and buffer layer on texture formation was investigated in this part of the work. This thesis also presents groundbreaking results on the fabrication of bicrystal MgO films and bicrystal networks using ion beam assisted deposition. Highly oriented bicrystals, with a common (100) out-of-plane orientation and (110) in-plane orientations having a tilt angle of 45° and 20° have been successfully fabricated. This method has also been used to fabricate two dimensional bicrystal MgO networks in the micrometer scale. The same strategy can be applied to generate nanometer scale bicrystal networks of desired patterns.
Quantitative characterization of porosity in stainless steel LENS powders and deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan, D.F.; Puskar, J.D.; Brooks, J.A.
2006-07-15
Laser Engineered Net Shaping (LENS) utilizes a laser beam to melt fine powders to produce three-dimensional engineering structures line by line and layer by layer. When building these structures, defects including lack-of-fusion (LOF) at interlayer boundaries and intralayer porosity are sometimes observed. LOF defects can be minimized by adjusting processing parameters, but the sources of intralayer porosity are less apparent. In this paper, the amount and size distributions of 17-4PH and 304L powders and pores within the powder were characterized in parallel with the intralayer porosity in LENS deposits fabricated from the same materials. Intralayer porosity increased with increased powdermore » porosity; but was not well correlated with deposition parameters. The results demonstrate the importance of careful characterization and specification of starting powders on the quality of the final LENS deposits.« less
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
NASA Astrophysics Data System (ADS)
Gehrke, T.; Burigo, L.; Arico, G.; Berke, S.; Jakubek, J.; Turecek, D.; Tessonnier, T.; Mairani, A.; Martišíková, M.
2017-04-01
In the field of ion-beam radiotherapy and space applications, measurements of the energy deposition of single ions in thin layers are of interest for dosimetry and imaging. The present work investigates the capability of a pixelated detector Timepix to measure the energy deposition of single ions in therapeutic proton, helium- and carbon-ion beams in a 300 μm-thick sensitive silicon layer. For twelve different incident beams, the measured energy deposition distributions of single ions are compared to the expected energy deposition spectra, which were predicted by detailed Monte Carlo simulations using the FLUKA code. A methodology for the analysis of the measured data is introduced in order to identify and reject signals that are either degraded or caused by multiple overlapping ions. Applying a newly proposed linear recalibration, the energy deposition measurements are in good agreement with the simulations. The twelve measured mean energy depositions between 0.72 MeV/mm and 56.63 MeV/mm in a partially depleted silicon sensor do not deviate more than 7% from the corresponding simulated values. Measurements of energy depositions above 10 MeV/mm with a fully depleted sensor are found to suffer from saturation effects due to the too high per-pixel signal. The utilization of thinner sensors, in which a lower signal is induced, could further improve the performance of the Timepix detector for energy deposition measurements.
Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.
2015-05-01
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )
Direct heating of a laser-imploded core by ultraintense laser-driven ions.
Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A
2015-05-15
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.
Producing carbon stripper foils containing boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, J. O. Jr.
2012-12-19
Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.
Surface diffusion in homoepitaxial SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration
The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process
Palei, Milan; Caligiuri, Vincenzo; Kudera, Stefan; Krahne, Roman
2018-06-22
Colloidal nanocrystals are a promising fluorescent class of materials whose spontaneous emission features can be tuned over a broad spectral range via their composition, geometry, and size. However, toward embedding nanocrystal films in elaborated device geometries, one significant drawback is the sensitivity of their emission properties on further fabrication processes like lithography, metal or oxide deposition, etc. In this work, we demonstrate how bright-emitting and robust thin films can be obtained by combining nanocrystal deposition from solutions via spin coating with subsequent atomic layer deposition of alumina. For the resulting composite films, the layer thickness can be controlled on the nanoscale and their refractive index can be finely tuned by the amount of deposited alumina. Ellipsometry is used to measure the real and imaginary part of the dielectric permittivity, which gives direct access to the wavelength dependent refractive index and absorbance of the film. Detailed analysis of the photophysics of thin films of core-shell nanocrystals with different shapes and different shell thicknesses allows to correlate the behavior of the photoluminescence and of the decay lifetime to the changes in the nonradiative rate that are induced by the alumina deposition. We show that the photoemission properties of such composite films are stable in wavelength and intensity over several months and that the photoluminescence completely recovers from heating processes up to 240 °C. The latter is particularly interesting since it demonstrates robustness to the typical heat treatment that is needed in several process steps like resist-based lithography and deposition by thermal or electron beam evaporation of metals or oxides.
Polycrystalline silicon on tungsten substrates
NASA Technical Reports Server (NTRS)
Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.
1979-01-01
Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.
Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander
2014-01-01
Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190
Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties
NASA Astrophysics Data System (ADS)
Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.
In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.
Transparent electrical conducting films by activated reactive evaporation
Bunshah, R.; Nath, P.
1982-06-22
Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.
NASA Astrophysics Data System (ADS)
Guisbiers, G.; Strehle, S.; Van Overschelde, O.; Wautelet, M.
2006-02-01
Residual stresses are commonly generated during the deposition process of thin films and can influence the reliability of the deposited systems e.g. due to fatigue, aging effects or debonding. Therefore, an evaluation of such stresses in thin films is of crucial importance for metallization of microelectronic devices and MEMS. Residual stresses can be determined experimentally by substrate curvature or X-ray diffraction measurements. The modeling of residual stresses generally deals with the calculation of the thermal ones alone. In the present work, a model is proposed, where intrinsic stresses are calculated explicitly based on the Tsui-Clyne model. The aim of this model, called self-consistent model, is to predict residual stresses in thin films independent on measurements. The simulated values are compared with experimental results for the following systems: Ta/Si, Mo/Si, Al/SiO2/Si and Pd/SiO2/Si.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
NASA Astrophysics Data System (ADS)
Dechana, A.; Thamboon, P.; Boonyawan, D.
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.
Dechana, A; Thamboon, P; Boonyawan, D
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.
NASA Astrophysics Data System (ADS)
Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.
2010-06-01
We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.
NASA Astrophysics Data System (ADS)
Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.
2018-04-01
Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.
Masking technique for coating thickness control on large and strongly curved aspherical optics.
Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L
2009-07-01
We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.
NASA Astrophysics Data System (ADS)
Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo
2017-12-01
A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.
1988-04-01
Continue on reverse if necessary and identify by block number) Cluster beams offer a means of depositing high-quality thin films at low...either directly inclustered vapors of nonvolatile materials or Indirectly by bombarding the film duringdeposition with clusters of inert gases. When a...electron volt energy per atom. The suprathermal energy of thej depositing atoms is thought to produce unique thin films (either in quality, or in the ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R.
The work presented in this book deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for the synthesis of material in thin form, and for the modification of the properties of thin films. The ion energy range covered is from a few tens of eV to about 10,000 eV, with primary interest in the range of about 20 to 1-2 keV, where implantation of the incident ion is a minor effect. Of the types of ion sources and devices available, this book examines principally broad beam ion sources, characterized by high fluxesmore » and large work areas. These sources include the ECR ion source, the Kaufman-type single- and multiple-grid sources, gridless sources such as the Hall effect or closed-drift source, and hydrid sources such as the ionized cluster beam system.« less
Rananavare, Shankar B; Morakinyo, Moshood K
2017-02-12
Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Q. D., E-mail: qgao@swip.ac.cn; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LHmore » driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.« less
Physical Vapor Deposition of Thin Films
NASA Astrophysics Data System (ADS)
Mahan, John E.
2000-01-01
A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam
MO-A-201-01: A Cliff’s Notes Version of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J.
Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less
MO-A-201-00: A Cliff’s Notes Version of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatchesmore » between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ from standard x-ray approaches, due to equipment design or the desire to maximize efficiency within a high-cost proton therapy treatment room. Differences between x-ray and proton therapy delivery will be described. Learning Objectives: Understand how CT HU are calibrated to provide proton stopping power, and the sources of uncertainty in this process. Understand why a PTV is not suitable for proton therapy, and how robust treatment planning and evaluation are used to mitigate uncertainties. Understand the source and implications of variable RBE in proton therapy Learn about proton specific challenges and approaches in beam delivery and image guidance Jon Kruse has a research grant from Varian Medical Systems related to proton therapy treatment plannning.; J. Kruse, Jon Kruse has a research grant with Varian Medical Systems related to proton therapy planning.« less
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the computation of thermal gradient, solidification rate, and velocity (G,R,V) coupled with the use of a solidification map that should be known a priori. The second approach relies completely on computer simulation. For this purpose a criterion for the prediction of morphology was proposed, which was combined with three alternative models for the prediction of microstructure; one based on solidification kinetics, the second on phase diagram, and the third on differential scanning calorimetry data. The last was found to be the simplest and the most versatile; it can be used with multicomponent alloys and rapid solidification without any additional difficulty. For the purpose of (limited) experimental validation, finite element models developed in this effort were applied to three different shapes made of stainless steel 304 material, designed expressly for this effort with an increasing level of complexity. These finite element models require large computation time, especially when applied to deposits with multiple adjacent beads and layers. This problem can be overcome, to some extent, by the use of fast, multi-core computers. Also, due to their numerical nature coupled with the fact that solid mechanics- based models are being used to represent the material behavior in liquid and vapor phases as well, the models have some inherent approximations that become more pronounced when dealing with multi-bead and multi-layer deposits.
Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt
2016-08-07
Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less
Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics
NASA Astrophysics Data System (ADS)
Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.
2014-12-01
Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.
Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich
2011-09-30
The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.
Resizing metal-coated nanopores using a scanning electron microscope.
Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B
2011-10-04
Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gehrke, Tim; Gallas, Raya; Jäkel, Oliver; Martišíková, Maria
2018-02-01
Hadron therapy has the capability to provide a high dose conformation to tumor regions. However, it requires an accurate target positioning. Thus, the precise monitoring of the patient's anatomical positioning during treatment is desirable. For this purpose, hadron-beam radiography with protons (pRad) and ions (iRad) could be an attractive tool complementing the conventional imaging technologies. On the pathway to an envisaged clinical application, several challenges have to be addressed. Among them are achieving the desired spatial resolution in the presence of multiple Coulomb scattering (MCS), performing radiographs with a sufficient thickness resolution at clinically applicable dose levels, and the search for combinations of particularly suitable hadrons and detectors. These topics are investigated in this work for a detection system based on silicon pixel detectors. A method of iRad based on energy deposition measurements in thin layers is introduced. It exploits a detection system consisting of three parallel silicon pixel detectors, which also enables particle tracking and identification. Helium ions, which exhibit less pronounced MCS than protons, were chosen as imaging radiation. A PMMA phantom with a mean water-equivalent thickness (WET) of 192 mm, containing maximal WET-variations of ±6 mm, was imaged with a 173 MeV/u helium ion beam at the Heidelberg Ion-Beam Therapy Center. WET-differences in form of 2.3 mm × 2.3 mm steps were aimed to be visualized and resolved in images of the energy deposition measured behind the phantom. The detection system was placed downstream of the imaged object in order to detect single ions leaving it. The combination of the measured information on energy deposition, ion type, and the track behind the phantom was used for the image formation, employing a self-developed data-processing procedure. It was shown that helium-beam radiography is feasible with the reported detection system. The introduced data preprocessing purified the detector signal from detector artifacts and improved the image quality. Additionally, the rejection of hydrogen ions originating from nuclear interactions was shown to increase the contrast-to-noise ratio (CNR) by at least a factor of 2.5. This enabled the resolution of relative thickness differences of 1.2% at a dose level typical for diagnostic x-ray images. The spatial resolution was improved by taking into account the direction of single helium ions leaving the phantom. A spatial resolution (MTF 10% ) of at least 1.15p mm -1 for the presented experimental set-up was achieved. A successful feasibility study of helium-beam radiography with the introduced detection system was conducted. The methodology of iRad was based on energy deposition measurements in thin silicon layers. The tracking of single ions and the method of the ion identification was shown to be important for helium-beam radiography in terms of spatial resolution and CNR. © 2017 American Association of Physicists in Medicine.
Comparison of the secondary electrons produced by proton and electron beams in water
NASA Astrophysics Data System (ADS)
Kia, Mohammad Reza; Noshad, Houshyar
2016-05-01
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.
Comparison of the secondary electrons produced by proton and electron beams in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
Development of a Prototype Low-Voltage Electron Beam Freeform Fabrication System
NASA Technical Reports Server (NTRS)
Watson, J. K.; Taminger, K. M.; Hafley, R. A.; Petersen, D. D.
2002-01-01
NASA's Langley Research Center and Johnson Space Center are developing a solid freeform fabrication system utilizing an electron beam energy source and wire feedstock. This system will serve as a testbed for exploring the influence of gravitational acceleration on the deposition process and will be a simplified prototype for future systems that may be deployed during long-duration space missions for assembly, fabrication, and production of structural and mechanical replacement components. Critical attributes for this system are compactness, minimal mass, efficiency in use of feedstock material, energy use efficiency, and safety. The use of a low-voltage (less than 15kV) electron beam energy source will reduce radiation so that massive shielding is not required to protect adjacent personnel. Feedstock efficiency will be optimized by use of wire, and energy use efficiency will be achieved by use of the electron beam energy source. This system will be evaluated in a microgravity environment using the NASA KC-135A aircraft.
Azzam, R M A
2017-08-10
A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
NASA Technical Reports Server (NTRS)
Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.
1988-01-01
Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.
NASA Technical Reports Server (NTRS)
Baily, N. A.; Steigerwalt, J. E.; Hilbert, J. W.
1972-01-01
The frequency distributions of event size in the deposition of energy over small pathlengths have been measured after penetration of 44.3 MeV protons through various thicknesses of tissue-equivalent material. Results show that particle energy straggling of an initially monoenergetic proton beam after passage through an absorber causes the frequency distributions of energy deposited in short pathlengths of low atomic number materials to remain broad. In all cases investigated, the ratio of the most probable to the average energy losses has been significantly less than unity.
Fabrication of 10nm diameter carbon nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann
2008-09-25
The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.
Evaluation of methods for application of epitaxial layers of superconductor and buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, basedmore » on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an extensive review of the available options was necessary. Under the U.S. Department of Energy (DOE`s) sponsorship, the University of Tennessee Space Institute (UTSI), was given a responsibility of performing this review. In UTSI`s efforts to review the available options, Oak Ridge National Laboratory, (ORNL), especially Mr. Robert Hawsey and Dr. M. Paranthaman provided very valuable guidance and technical assistance. This report describes the review carried out by the UTSI staff, students and faculty members. It also provides the approach being used to develop the cost information as well as the major operational parameters/variables that will have to be monitored and the relevant control systems. In particular, the report includes: - Process Flow Schemes and Involved Operations - Multi-Attribute Analysis Carried out for Objective and Subjective Criteria - Manufacturing Parameters to Process 6,000 km/year of Quality Coated Conductor Material - Metal Organics (MOD), Sol-Gel, and E-Beam as the Leading Candidates, and Technical Concerns/Issues that Need to be Resolved to Develop a Commercially Viable Option Out of Each of Them. - Process Control Needs for Various Schemes - Approach/Methodology for Developing Cost of Coated Conductors This report also includes generic areas in which additional research and development work are needed. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering assistance/viewpoints to develop leading options into a viable commercial process.« less
Constructing, connecting and soldering nanostructures by environmental electron beam deposition
NASA Astrophysics Data System (ADS)
Mølhave, Kristian; Nørgaard Madsen, Dorte; Dohn, Søren; Bøggild, Peter
2004-08-01
Highly conductive nanoscale deposits with solid gold cores can be made by electron beam deposition in an environmental scanning electron microscope (ESEM), suggesting the method to be used for constructing, connecting and soldering nanostructures. This paper presents a feasibility study for such applications. We identify several issues related to contamination and unwanted deposition, relevant for deposition in both vacuum (EBD) and environmental conditions (EEBD). We study relations between scan rate, deposition rate, angle and line width for three-dimensional structures. Furthermore, we measure the conductivity of deposits containing gold cores, and find these structures to be highly conductive, approaching the conductivity of solid gold and capable of carrying high current densities. Finally, we study the use of the technique for soldering nanostructures such as carbon nanotubes. Based on the presented results we are able to estimate limits for the applicability of the method for the various applications, but also demonstrate that it is a versatile and powerful tool for nanotechnology within these limits.
Amorphous Carbon-Boron Nitride Nanotube Hybrids
NASA Technical Reports Server (NTRS)
Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)
2016-01-01
A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.
Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility
NASA Astrophysics Data System (ADS)
Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.
2017-02-01
Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.
Mixed composition materials suitable for vacuum web sputter coating
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Dever, Joyce A.; Bruckner, Eric J.; Walters, Patricia; Hambourger, Paul D.
1996-01-01
Ion beam sputter deposition techniques were used to investigate simultaneous sputter etching of two component targets so as to produce mixed composition films. Although sputter deposition has been largely confined to metals and metal oxides, at least one polymeric material, poly-tetra-fluorethylene, has been demonstrated to produce sputtered fragments which repolymerize upon deposition to produce a highly cross-linked fluoropolymer resembling that of the parent target Fluoropolymer-filled silicon dioxide and fluoropolymer-filled aluminum oxide coatings have been deposited by means of ion beam sputter coat deposition resulting in films having material properties suitable for aerospace and commercial applications. The addition of fluoropolymer to silicon dioxide films was found to increase the hydrophobicity of the resulting mixed films; however, adding fluoropolymer to aluminum oxide films resulted in a reduction in hydrophobicity, thought to be caused by aluminum fluoride formation.
Fabrication of frequency selective surface for band stop IR-filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.
2016-05-23
Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less
Low Cost Digital Vibration Meter.
Payne, W Vance; Geist, Jon
2007-01-01
This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.
Low Cost Digital Vibration Meter
Payne, W. Vance; Geist, Jon
2007-01-01
This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459
NASA Astrophysics Data System (ADS)
Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.
2004-10-01
Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency.
Research in the Optical Sciences.
1984-10-01
cannot tolerate the high temperatures used for 9 conventional hard MgF, depositions. The ion beam processing led to durable films (in some cases more...sputter epitaxy techniques for the production of high-reflectivity mirrors for near-normal incidence in the x-ray-ultraviolet (X- UV ) wavelength range...codes for X- UV multilayer mirror design, (2) acquisition of a data base of optical constants in this wavelength range, (3) theoretical designs of
Physical processes in directed ion beam sputtering. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Robinson, R. S.
1979-01-01
The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.
GPU-based ultra-fast dose calculation using a finite size pencil beam model.
Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B
2009-10-21
Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.
Metal oxide multilayer hard mask system for 3D nanofabrication
NASA Astrophysics Data System (ADS)
Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko
2018-02-01
We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.
Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)
NASA Astrophysics Data System (ADS)
Igumenov, I. K.; Aksenov, A. N.
2017-12-01
Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.
Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD
NASA Astrophysics Data System (ADS)
Rezanka, S.; Mauer, G.; Vaßen, R.
2014-01-01
The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.
NASA Astrophysics Data System (ADS)
Barreiro-Argüelles, Denisse; Ramos-Ortiz, Gabriel; Maldonado, José-Luis L.; Romero-Borja, Daniel; Meneses-Nava, Marco-Antonio; Pérez-Gutiérrez, Enrique
2017-08-01
The PV performance and aging/stability of organic photovoltaic (OPV) devices based on the well-known system PTB7:[70]PCBM and an alternative air-stable electrode deposited at room conditions are fully studied when the active area is scaled by a factor of 25. On the other hand, the aging/stability processes were also studied through single diode model, impedance spectroscopy and light-beam induced current (LBIC) measurements in accordance with the established ISOS-D1 (dark storage) and ISOS-L1 (illumination conditions) protocols. Results are a good indication that the alternative cathode Field's metal (FM) cathode works as an encapsulating material and provides excellent PV performance comparable with the common and costly high-vacuum evaporated Al cathode.
Feng, Tom; Ghosh, Amal K.
1979-01-01
In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.
PVD thermal barrier coating applications and process development for aircraft engines
NASA Astrophysics Data System (ADS)
Rigney, D. V.; Viguie, R.; Wortman, D. J.; Skelly, D. W.
1997-06-01
Thermal barrier coatings (TBCs) have been developed for application to aircraft engine components to improve service life in an increasingly hostile thermal environment. The choice of TBC type is related to the component, intended use, and economics. Selection of electron beam physical vapor deposition proc-essing for turbine blade is due in part to part size, surface finish requirements, thickness control needs, and hole closure issues. Process development of PVD TBCs has been carried out at several different sites, including GE Aircraft Engines (GEAE). The influence of processing variables on microstructure is dis-cussed, along with the GEAE development coater and initial experiences of pilot line operation.
Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun
2015-01-01
As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105
Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling.
Thakar, Rahul; Weber, Anna E; Morris, Celeste A; Baker, Lane A
2013-10-21
We report a strategy for fabrication of sub-micron, multifunctional carbon electrodes and application of these electrodes as probes for scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM). The fabrication process utilized chemical vapor deposition of parylene, followed by thermal pyrolysis to form conductive carbon and then further deposition of parylene to form an insulation layer. To achieve well-defined electrode geometries, two methods of electrode exposure were utilized. In the first method, carbon probes were masked in polydimethylsiloxane (PDMS) to obtain a cone-shaped electrode. In the second method, the electrode area was exposed via milling with a focused ion beam (FIB) to reveal a carbon ring electrode, carbon ring/platinum disk electrode, or carbon ring/nanopore electrode. Carbon electrodes were batch fabricated (~35/batch) through the vapor deposition process and were characterized with scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and cyclic voltammetry (CV) measurements. Additionally, Raman spectroscopy was utilized to examine the effects of Ga(+) ion implantation, a result of FIB milling. Constant-height, feedback mode SECM was performed with conical carbon electrodes and carbon ring electrodes. We demonstrate the utility of carbon ring/nanopore electrodes with SECM-SICM to simultaneously collect topography, ion current and electrochemical current images. In addition, carbon ring/nanopore electrodes were utilized in substrate generation/tip collection (SG/TC) SECM. In SG/TC SECM, localized delivery of redox molecules affords a higher resolution, than when the redox molecules are present in the bath solution. Multifunctional geometries of carbon electrode probes will find utility in electroanalytical applications, in general, and more specifically with electrochemical microscopy as discussed herein.
NASA Astrophysics Data System (ADS)
Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin
2012-10-01
We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.
Effective vortex pinning in MgB2 thin films
NASA Astrophysics Data System (ADS)
Bugoslavsky, Y.; Cowey, L.; Tate, T. J.; Perkins, G. K.; Moore, J.; Lockman, Z.; Berenov, A.; MacManus-Driscoll, J. L.; Caplin, A. D.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.
2002-10-01
We discuss the pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with a small grain size providing enhanced pinning at grain boundaries without any degradation of Tc. The PLD process produces films with structural disorder on a scale less than the coherence length that further improves pinning, but also depresses Tc.
Optical recording of information on paper by CO2 and YAG-lasers
NASA Astrophysics Data System (ADS)
Bayev, S. G.; Bessemltsev, V. P.; Koronkevich, D. V.; Tkachuk, Y. N.
1984-09-01
Methods for outputting information from computers that have the advantages of typographic printing processes, but are distinguished by the lack of an intermediate medium are investigated. Methods for recording graphic and half-tone images are investigated that are based on layers of ink deposited on the paper in advance, as well as fixing a temperature-sensitive dye on the paper by using a focused laser beam with radiation power density of .000001 w/sq.cm. to heat the surface. IR process lasers provide good efficiency and resolution.
NASA Astrophysics Data System (ADS)
Tao, C.; Zhang, G.; Li, H.; Zhou, J.; Liu, W.; Deng, X.; Chen, S.
2013-12-01
The seabed deposits type and distribution are very complex at the hydrothermal field. In this paper, we provided an approach to study the seabed deposits classification at the Precious Stone Mountain hydrothermal field (PSMHF) using MultiBeam sonar data (Figure 1). The PSMHF was found in the Galapogas microplate at the Leg 3 of the Chinese COMRA 21st Cruise. Using this approach, the seabed deposits at the PSMHF are mainly classified into three types, which are rock, breccia and sediment, respectively. We can find the distribution of the three types of seabed deposits according to the sonar back-scattering data. The rocks are mostly distributed around the hydrothermal vent. The breccia are located at the foot of the vent. Most sediments are distributed at the southwest to the vent due to bottom current. Combining with seabed video, TV-Grab sample and the backscatter data, we draw the map of the seabed deposits distribution at the PSMHF (Figure 2). Figure 1 The flow chart of the seabed deposits classification approach Figure 2 The seabed deposits distribution of the PSMHF
Observations of beam losses due to bound-free pair production in a heavy-ion collider.
Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R
2007-10-05
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.
Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam
NASA Astrophysics Data System (ADS)
Lee, Jinsoo; Kim, Seongsu; Lee, Myeongkyu
2012-09-01
Here we demonstrate that indium tin oxide (ITO) films deposited on glass can be directly patterned by a spatially -modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident onto the film. This method utilizes a pulsed laser-induced thermo-elastic force exerting on the film which plays a role to detach it from the substrate. Sharp-edged clean patterns with feature size as small as 4 μm could be obtained. The threshold pulse energy density for patterning was estimated to be ˜0.8 J/cm2 for 150 nm-thick ITO film, making it possible to pattern over one square centimeter by a single pulse with energy of 850 mJ. Not only being free from photoresist and chemical etching steps, the presented method can also provide much higher throughput than the tradition photoablation process utilizing a tightly focused beam.
Ion beam deposition of amorphous carbon films with diamond like properties
NASA Technical Reports Server (NTRS)
Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.
1982-01-01
Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.
Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepp, T.; Feeley, T.
Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.
NASA Astrophysics Data System (ADS)
Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang
2007-12-01
This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.
Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J
2017-02-01
Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.
NASA Astrophysics Data System (ADS)
Amani, E.; Khojier, K.; Zoriasatain, S.
2018-01-01
This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.
X-ray diagnostic development for measurement of electron deposition to the SABRE anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, J.S.; Derzon, M.S.; Cuneo, M.E.
Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less
X Ray Mask Of Gold-Carbon Mixture Absorber On BCN Compound Substrate Fabricated By Plasma Processes
NASA Astrophysics Data System (ADS)
Aiyer, Chandrasekhar R.; Itoh, Satoshi; Yamada, Hitomi; Morita, Shinzo; Hattori, Shuzo
1988-06-01
X-ray mask fabrication based on BCN compound membrane and gold containing polymeric carbon ( Au-C ) absorber by totally dry processes is proposed. The Au-C films were depo-sited by plasma polymerization of propylene or styrene monomers and co-evaporation of gold. These films have 2 to 5 times higher etching rate than that of pure gold for 09 RIE, depending on the Au content. The stress in the films could be reduced to 1.9 E 7 N/m2 by annealing. The BCN films were deposited on silicon wafers by rf (13.56 MHz) plasma CVD with diborane, methane and nitrogen as source gases at typical deposition rate of 30 nm/min. The optical (633nm) and X ray (Pd L~) transparencies were nearly 80% for film thickness of 6 um. Patterning of Au-C was achieved by using tungsten as intermediate layer and PMMA electron beam resist. CF4 RIE was used to etch the tungsten layer which in turn acted as mask for the gold carbide 02 RIE. The process parameters and the characteristics of the Au-C and BCN films are presented.
Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.
2012-12-01
The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.
Beam ion susceptibility to loss in NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; Liu, Deyong; White, Roscoe
2016-10-01
NSTX-U has operated with three additional neutral beam sources whose tangency radii of 1.1, 1.2, and 1.3 m are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams have also be retained for NSTX-U. Here, we present an estimate of the susceptibility of the beam ions from all the various sources to loss under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since losses are often observed at the injection energy, a simple measure of loss susceptibility is the change in canonical toroidal momentum required to move beam ions from their deposition point to the loss boundary, as a function of magnetic moment. To augment this simple estimate, we intend to report some associated transport coefficients of beam ions due to AE activity. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.
Process characteristics of the combination of laser beam- and gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalla, G.; Neuenhahn, J.; Koerber, C.
1994-12-31
In this presentation, experiences regarding the combination of laser beam-and gas metal arc welding are discussed. The combination of both techniques offers the possibility of using the specific advantages include the deep penetration effect and the concentrated heat input. Additionally, the gas metal arc welding (GMAW) process is characterized by several advantages, such as high thermal efficiency and good gap-bridging ability. Beyond these characteristics, the combination leads to additional advantages concerning process, technique, and quality. Improvement of seam quality and properties are of special note. Adaptation of the GMAW parameters reduces the hardness of the seam weld at increasing weldingmore » speed. This is possible by adapting the efficiency of metal deposition and by the suitable choice of wire material composition. Another advantage is an improvement of surface topology. The surface of the weld seam and the connection to the base material are very smooth. This leads to advantages with regard to the fatigue strength of the seam.« less
McKee, Rodney A.; Walker, Frederick J.
1996-01-01
A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.
Advanced manufacturing—A transformative enabling capability for fusion
Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.; ...
2018-05-24
Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less
Advanced manufacturing—A transformative enabling capability for fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.
Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less
Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams
NASA Astrophysics Data System (ADS)
Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji
2018-04-01
Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.
Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Giuliani, J. L.; Wolford, M. F.
2008-07-01
The Ar-Xe infrared laser has been investigated in several series of experiments carried out on the Naval Research Laboratory's Electra generator. Our primary goals were to optimize the efficiency of the laser (within Electra's capabilities) and to gain understanding of the main physical processes underlying the laser's output as a function of controllable parameters such as Xe fraction, power deposition, and gas pressure. We find that the intrinsic efficiency maximizes at {approx}3% at a total pressure of 2.5 atm, Xe fraction of 1%, and electron beam power deposition density of 50-100 kW cm{sup -3}. We deployed an interferometer to measuremore » the electron density during lasing; the ionization fractions of 10{sup -5}-10{sup -4} that it detected well exceed previous theoretical estimates. Some trends in the data as a function of beam power and xenon fraction are not fully understood. The as-yet incomplete picture of Ar-Xe laser physics is likely traceable in large part to significant uncertainties still present in many important rates influencing the atomic and molecular kinetics.« less
Three-dimensional Čerenkov tomography of energy deposition from ionizing radiation beams.
Glaser, Adam K; Voigt, William H A; Davis, Scott C; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W
2013-03-01
Since its discovery during the 1930s the Čerenkov effect (light emission from charged particles traveling faster than the local speed of light in a dielectric medium) has been paramount in the development of high-energy physics research. The ability of the emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, to our knowledge, all applications of the process to date have focused on the identification of particles themselves, rather than their effect upon the surroundings through which they travel. Here we explore a novel application of the Čerenkov effect for the recovery of the spatial distribution of ionizing radiation energy deposition in a medium and apply it to the issue of dose determination in medical physics. By capturing multiple projection images of the Čerenkov light induced by a medical linear accelerator x-ray photon beam, we demonstrate the successful three-dimensional tomographic reconstruction of the imparted dose distribution.
Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard
2018-03-14
Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.
Indium arsenide-on-SOI MOSFETs with extreme lattice mismatch
NASA Astrophysics Data System (ADS)
Wu, Bin
Both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) have been used to explore the growth of InAs on Si. Despite 11.6% lattice mismatch, planar InAs structures have been observed by scanning electron microscopy (SEM) when nucleating using MBE on patterned submicron Si-on-insulator (SOI) islands. Planar structures of size as large as 500 x 500 nm 2 and lines of width 200 nm and length a few microns have been observed. MOCVD growth of InAs also generates single grain structures on Si islands when the size is reduced to 100 x 100 nm2. By choosing SOI as the growth template, selective growth is enabled by MOCVD. Post-growth pattern-then-anneal process, in which MOCVD InAs is deposited onto unpatterned SOI followed with patterning and annealing of InAs-on-Si structure, is found to change the relative lattice parameters of encapsulated 17/5 nm InAs/Si island. Observed from transmission electron diffraction (TED) patterns, the lattice mismatch of 17/5 nm InAs/Si island reduces from 11.2 to 4.2% after being annealed at 800°C for 30 minutes. High-k Al2O3 dielectrics have been deposited by both electron-beam-enabled physical vapor deposition (PVD) and atomic layer deposition (ALD). Films from both techniques show leakage currents on the order of 10-9A/cm2, at ˜1 MV/cm electric field, breakdown field > ˜6 MV/cm, and dielectric constant > 6, comparable to those of reported ALD prior arts by Groner. The first MOSFETs with extreme lattice mismatch InAs-on-SOI channels using PVD Al2O3 as the gate dielectric are characterized. Channel recess was used to improve the gate control of the drain current.
Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering
NASA Astrophysics Data System (ADS)
Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.
2012-05-01
Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.
Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronov, D. L.; Cambie, R.; Dhuey, S.
2012-05-01
Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimizemore » degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less
Electrostatic particle trap for ion beam sputter deposition
Vernon, Stephen P.; Burkhart, Scott C.
2002-01-01
A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraby, H.; DiBattista, M.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu
The electrical impedance (both the resistive and capacitive aspects) of focused ion beam (FIB) deposited SiO{sub 2} has been correlated to the specific composition of the ion beam, in Ga- and Xe-based FIB systems. The presence of electrically percolating Ga in concert with carbon (inevitably found as the product of the hydrocarbon precursor decomposition) has been isolated as a major cause for the observed decrease in the resistivity of the deposited SiO{sub 2}. Concomitant with the decreased resistivity, an increased capacitance and effective dielectric constant was observed. Our study would be useful to understand the constraints to the deposition ofmore » high quality insulator films through FIB based methodologies.« less
Structural and optical properties of electron beam evaporated yttria stabilized zirconia thin films
NASA Astrophysics Data System (ADS)
Kirubaharan, A. Kamalan; Kuppusami, P.; Singh, Akash; Dharini, T.; Ramachandran, D.; Mohandas, E.
2015-06-01
Yttria stabilized zirconia (10 mole % Y2O3) thin films were deposited on quartz substrates using electron beam physical vapor deposition at the substrate temperatures in the range 300 - 973 K. XRD analysis showed cubic crystalline phase of YSZ films with preferred orientation along (111). The surface roughness was found to increase with the increase of deposition temperatures. The optical band gap of ˜5.7 eV was calculated from transmittance curves. The variation in the optical properties is correlated with the changes in the microstructural features of the films prepared as a function of substrate temperature.
NASA Astrophysics Data System (ADS)
Butler, Todd M.; Brice, Craig A.; Tayon, Wesley A.; Semiatin, S. Lee; Pilchak, Adam L.
2017-10-01
Additive manufacturing of Ti-6Al-4V commonly produces 〈001〉 β -fiber textures aligned with the build direction. We have performed wire-feed electron beam directed energy deposition on the {112} β plane of a single prior β-grain. The build initially grew epitaxially from the substrate with the preferred 〈001〉 growth direction significantly angled away from the build direction. However, continued layer deposition drove the formation of a 〈001〉 β -fiber texture aligned with the build direction and the direction of the strongest thermal gradient.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.
2009-01-01
We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.
Study on Silver-plated Molybdenum Interconnected Materials for LEO Solar Cell Array
NASA Astrophysics Data System (ADS)
Zhu, Jia-jun; Hu, Yu-hao; Xu, Meng; Yang, Wu-lin; Fu, Li-cai; Li, De-yi; Zhou, Ling-ping
2017-09-01
Atomic oxygen (AO) is one of the most important environmental factors that affected the performance of low earth orbit spacecraft in orbit. In which, silver was the most common materials as the interconnected materials. However, with the poor AO resistance of silver, the interconnectors could be failure easier, and the lifetime of the spacecraft was also reduced. In this paper, the silver-plated molybdenum interconnected materials made by Ag thin films deposited on the Mo foils by vacuum deposition methods was studied. And the effects of the preparation process on the micro-structure of the Ag thin films, the interfacial adhesive strength and the electrical conductivity of the composites were investigated. It was found that the Ag thin films deposited on the Mo substrates coated the Ag thin films by ion beam assisted deposition(IBAD) methods exhibited a perfectly (200) preferred orientation. The interfacial adhesive strength had been increased to 18.58MPa. And the composites also have excellent electrical performance.
Additive Manufacturing for Superalloys - Producibility and Cost Validation (Preprint)
2011-03-01
evaluated in this study were: Shaped Metal Deposition (SMD, 3D Weld Deposition) Laser Powder Deposition (LPD) Electron Beam Wire Deposition (EBWD...envelope and would be removed during subsequent machining. Radiographic inspection also revealed fine random internal micro porosity in some of the...successfully fabricated the required deposition samples for Task 2 (see Figure 4). A surface examination revealed some surface cracks and porosity , but all
Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications
2007-09-01
6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, W.; Dikin, D.A.; Chen, X.
2005-07-01
Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition (EBID) has been used to deposit carbon films that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBID deposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBID deposit was found to be hydrogenated amorphousmore » carbon (a-C:H) having more sp{sup 2}- than sp{sup 3}-bonded carbon. Nanoindentation tests revealed a hardness of {approx}4 GPa and an elastic modulus of 30-60 GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example application.« less
A real-time intercepting beam-profile monitor for a medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriks, C.; Uittenbosch, T.; Cameron, D.
2013-11-15
There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.
Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.
Zhang, H-S; Komvopoulos, K
2008-07-01
Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.
NASA Astrophysics Data System (ADS)
Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.
2017-01-01
Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.
Method and system for near-field spectroscopy using targeted deposition of nanoparticles
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2012-01-01
There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.
Simultaneous ion sputter polishing and deposition
NASA Technical Reports Server (NTRS)
Rutledge, S.; Banks, B.; Brdar, M.
1981-01-01
Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.
Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
NASA Astrophysics Data System (ADS)
Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.
2015-01-01
The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.
Laser removal of sludge from steam generators
Nachbar, Henry D.
1990-01-01
A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechana, A.; Thamboon, P.; Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides highmore » flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.« less
Growth and Structure of High-Temperature Superconducting Thin Films
NASA Astrophysics Data System (ADS)
Achutharaman, Vedapuram Sankar
High temperature superconducting thin films with atomic scale perfection are required for technological applications and scientific studies on the mechanism of superconductivity. Ozone assisted molecular beam epitaxy (MBE) has been shown to produce in-situ superconducting thin films. To obtain a well-controlled and reproducible process, some components such as the substrate heater and the substrate holder have to be designed to be compatible with high oxygen partial pressures. Also, to ensure precise stoichiometry and precipitate-free films, evaporation sources and temperature controllers have to be designed for better temperature stability. The investigation of the MBE process and the thin films grown by MBE are required to obtain a better understanding of the growth parameters such as the composition of the film, substrate surface structure, substrate temperature and ozone partial pressure. This can be obtained by dynamically monitoring the growth process by in-situ characterization techniques such as reflection high energy electron diffraction (RHEED). Intensity oscillations of the specular RHEED beam have been observed during the growth of RBa_2Cu_3 O_7 (R = Y,Dy) films on SrTiO _3. A model for the origin of these RHEED intensity oscillations will be proposed from extensive RHEED intensity studies. A mechanism for growth of these oxides by physical vapor deposition techniques such as MBE and pulsed laser deposition will also be developed. To verify both the models, the growth of the superconductors will be simulated by the Monte Carlo method and compared with experimental RHEED observations.