Science.gov

Sample records for beam free-electron lasers

  1. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  2. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  3. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  4. Rippled beam free-electron laser amplifier using the axial free-electron laser interaction

    SciTech Connect

    Carlsten, B.E.

    1997-05-01

    A new microwave generation mechanism involving a scalloping annular electron beam is discussed. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. In this paper, we analyze the ripple motion of the electron beam and derive the dispersion relation describing the exponential growth of the rf mode. We calculate the gain for a nominal design and as a function of beam current and ripple amplitude, and show that power gain on the order of 30 dB/m of interaction is achievable. We additionally demonstrate that, under the right conditions, the interaction is autoresonant. {copyright} {ital 1997 American Institute of Physics.}

  5. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  6. Free Electron Lasers with Slowly Varying Beam and Undulator Parameters

    SciTech Connect

    Huang, Z; Stupakov, G.; /SLAC

    2005-05-25

    The performance of a free electron lasers (FEL) is affected when the electron beam energy varies alone the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime until FEL saturation. In this paper, we present a self-consistent theory of FELs with slowly-varying beam and undulator parameters. A general method is developed to apply the WKB approximation to the beam-radiation system by employing the adjoint eigenvector that is orthogonal to the eigenfunctions of the coupled Maxwell-Vlasov equations. This method may be useful for other slowly varying processes in beam dynamics.

  7. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  8. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  9. A new beam source for free electron lasers

    SciTech Connect

    Wang, M.C.; Wang, Z.J.; Zhu, J.B.

    1995-12-31

    A high power, high current density and high voltage electron beam was generated with the pseudospark discharge (PS), this is a new beam source for free electron lasers. The design and construction of the pseudospark discharge was described, the device has low cost and is easy to fabricate. The experiments are presented, the configuration parameters of the modified pulse line accelerator (PLA) are as follows. The PS hollow cavity has a 3 cm diameter and 4.1 cm long. The discharge chamber consists of planar cathode with hollow cavity, sets of intermediate electrodes and insulators with a common channel, and a planar anode. The electrodes are made of brass and the insulators are made of Plexiglas. The diameter of the channel is 3.2 mm. The anode-cathode gap distance is varied in 10-100 mm. The electron beams have voltage of 200 KeV, current of 2 KA and beam diameter of 1mm. The beam penetrated a 0.3 mm hole on a copper foil of 0.05 mm thick at the distance of 5 cm from the anode and penetrated a 0.6 mm hole on an acid-sensitive film at the distance of 15 cm. A compact free electron laser with a table size is discussed.

  10. Beam Conditioning for Free Electron Lasers:Consequences and Methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.; /LBL, Berkeley /UC, Berkeley, Astron. Dept.

    2010-12-14

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  11. Catalac free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-12-12

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

  12. Catalac free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  13. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  14. Optical guiding and beam bending in free-electron lasers

    SciTech Connect

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations.

  15. Three-dimensional simulation analysis of the standing-wave free- electron laser two beam accelerator

    SciTech Connect

    Wang, C.; Sessler, A.

    1993-01-01

    We have modified a two-dimensional relativistic klystron code, developed by Ryne and Yu, to simulate both the standing-wave free- electron laser two-beam accelerator and the relativistic klystron two- beam accelerator. In this paper, the code is used to study a standing-wave free-electron laser with three cavities. The effect of the radius of the electron beam on the RF output power; namely, a three-dimensional effect is examined.

  16. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  17. Rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-11-02

    A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  18. Rf Feedback free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  19. Theory of low voltage annular beam free-electron lasers

    SciTech Connect

    Blank, M.; Freund, H.P.; Jackson, R.H.

    1995-12-31

    An nonlinear analysis of an annular beam propagating through a cylindrical waveguide in the presence of a helical wiggler and an axial guide field is presented. The analysis is based upon the ARACHNE simulation which is a non-wiggler-averaged slow-time-scale simulation code in which the electromagnetic field is represented as a superposition of the TE and TM modes in a vacuum waveguide, and the beam space-charge waves are represented as a superposition of Gould-Trivelpiece modes. The DC self-electric and self-magnetic fields are also included in the model. ARACHNE has been extensively benchmarked against experiments at MIT and NRL in the past with good agreement, but all of these experiments have dealt with solid electron beams and beam voltages in excess of 200 kV. In seeking to reduce the beam voltage requirements we now consider the effect of operation with an annular beam. One advantage to be obtained by using an annular beam is that, for a fixed beam current, the effect of the DC selffields (i.e., the space-charge depression in beam voltage) will be reduced relative to that of a solid beam. This facilitates beam transport in short period wigglers in which the transverse dimensions are also small. A specific example is under study which makes use of 55 kV/5A electron beam with inner and outer radii of 0.27 cm and 0.33 cm respectively. The wiggler amplitude is 250 G with a period of 0.9 cm. and guide fields up to 3 kG corresponding to Group I trajectories. The waveguide radius is chosen to correspond to grazing incidence for the fundamental mode in Ku-Band (12-18 GHz). Preliminary results indicate that efficiencies upwards of 10% are possible with no wiggler taper. In addition, the energy spread must be held below 0.1%, and the instantaneous bandwidth is found to be greater than 20%.

  20. FREE-ELECTRON LASERS

    SciTech Connect

    Sessler, A.M.; Vaughan, D.

    1986-04-01

    We can now produce intense, coherent light at wavelengths where no conventional lasers exist. The recent successes of devices known as free-electron lasers mark a striking confluence of two conceptual developments that themselves are only a few decades old. The first of these, the laser, is a product of the fifties and sixties whose essential characteristics have made it a staple resource in almost every field of science and technology. In a practical sense, what defines a laser is its emission of monochromatic, coherent light (that is, light of a single wavelength, with its waves locked in step) at a wavelength in the infrared, visible, or ultraviolet region of the electromagnetic spectrum. A second kind of light, called synchrotron radiation, is a by-product of the age of particle accelerators and was first observed in the laboratory in 1947. As the energies of accelerators grew in the 1960s and 70s, intense, incoherent beams of ultraviolet radiation and x--rays became available at machines built for high-energy physics research. Today, several facilities operate solely as sources of synchrotron light. Unlike the well-collimated monochromatic light emitted by lasers, however, this incoherent radiation is like a sweeping searchlight--more accurately, like the headlight of a train on a circular track--whose wavelengths encompass a wide spectral band. Now, in several laboratories around the world, researchers have exploited the physics of these two light sources and have combined the virtues of both in a single contrivance, the free-electron laser, or FEL (1). The emitted light is laserlike in its narrow, sharply peaked spectral distribution and in its phase coherence, yet it can be of a wavelength unavailable with ordinary lasers. Furthermore, like synchrotron radiation, but unlike the output of most conventional lasers, the radiation emitted by free-electron lasers can be tuned, that is, its wavelength can be easily varied across a wide range. The promise of this

  1. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect

    Mirian, N. S.; Maraghechi, B.

    2014-04-15

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  2. Free-Electron Lasers.

    ERIC Educational Resources Information Center

    Brau, Charles A.

    1988-01-01

    Describes the use of free-electron lasers as a source of coherent radiation over a broad range of wavelengths from the far-infrared to the far-ultraviolet regions of the spectrum. Discusses some applications of these lasers, including medicine and strategic defense. (TW)

  3. High-quality electron beams from a helical inverse free-electron laser accelerator.

    PubMed

    Duris, J; Musumeci, P; Babzien, M; Fedurin, M; Kusche, K; Li, R K; Moody, J; Pogorelsky, I; Polyanskiy, M; Rosenzweig, J B; Sakai, Y; Swinson, C; Threlkeld, E; Williams, O; Yakimenko, V

    2014-09-15

    Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering.

  4. Two-Color Radiation Generated in a Seeded Free-Electron Laser with Two Electron Beams.

    PubMed

    Petralia, A; Anania, M P; Artioli, M; Bacci, A; Bellaveglia, M; Carpanese, M; Chiadroni, E; Cianchi, A; Ciocci, F; Dattoli, G; Di Giovenale, D; Di Palma, E; Di Pirro, G P; Ferrario, M; Giannessi, L; Innocenti, L; Mostacci, A; Petrillo, V; Pompili, R; Rau, J V; Ronsivalle, C; Rossi, A R; Sabia, E; Shpakov, V; Vaccarezza, C; Villa, F

    2015-07-01

    We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission.

  5. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  6. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    SciTech Connect

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J. )

    1994-05-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mm[times]2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler ([lambda][sub [ital w

  7. Experimental Investigation of Multibunch, Multipass Beam Breakup in the Jefferson Laboratory Free Electron Laser Upgrade Driver

    SciTech Connect

    Christopher Tennant; David Douglas; Kevin Jordan; Nikolitsa Merminga; Eduard Pozdeyev; Haipeng Wang; Todd I. Smith; Stefan Simrock; Ivan Bazarov; Georg Hoffstaetter

    2006-03-24

    In recirculating accelerators, and in particular energy recovery linacs (ERLs), the maximum current can be limited by multipass, multibunch beam breakup (BBU), which occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on the accelerating pass and again on the energy recovering pass. This effect is of particular concern in the design of modern high average current energy recovery accelerators utilizing superconducting RF technology. Experimental characterization and observations of the instability at the Jefferson Laboratory 10 kW Free Electron Laser (FEL) are presented. Measurements of the threshold current for the instability are made under a variety of beam conditions and compared to the predictions of several BBU simulation codes. This represents the first time in which the codes have been experimentally benchmarked. With BBU posing a threat to high current beam operation in the FEL Driver, several suppression schemes were developed.

  8. Simulations of the microbunching instability in beam deliverysystems for free electron lasers

    SciTech Connect

    Pogorelov, Ilya; Qiang, Ji; Ryne, Rob; Venturini, Marco; Zholents, Alexander; Warnock, Robert

    2007-06-29

    In this paper, we examine the growth of the microbunchinginstability in the electron beam delivery system of a free electron laser(FEL). We present the results of two sets of simulations, one conductedusing a direct Vlasov solver, the other using a particle-in-cell codeImpact-Z with the number of simulation macroparticles ranging up to 100million. Discussion is focused on the details of longitudinal dynamicsand on numerical values of uncorrelated (slice) energy spread atdifferent points in the lattice. In particular, we assess the efficacy oflaser heater in suppression of the instability, and look at the interplaybetween physical and numerical noise in particle-basedsimulations.

  9. Estimate of free electron laser gain length in the presence of electron beam collective effects

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Spampinati, S.

    2014-11-01

    We analytically estimated the three-dimensional free electron laser (FEL) power gain length's increase due to the collective effects of an ultrarelativistic electron beam, namely, geometric transverse wakefield, coherent synchrotron radiation, and microbunching instability. We showed that the gain length is affected by an increase of the electron beam projected emittance, even though the slice (local) emittance is preserved. We also proved that the minimum gain length and the maximum of output power may notably differ from the ones derived when collective effects are neglected. Finally, we demonstrated that our model may be handy for a parametric study of electron beam six-dimensional brightness and FEL performance as a function, e.g., of the bunch length compression factor, the accelerator alignment tolerances, and the optics design.

  10. Optimization of free electron laser performance by dispersion-based beam-tilt correction

    NASA Astrophysics Data System (ADS)

    Guetg, Marc Walter; Beutner, Bolko; Prat, Eduard; Reiche, Sven

    2015-03-01

    Free electron lasers in the X-ray regime require a good slice alignment along the electron bunch to achieve their best performance. A transverse beam slice shift reduces this alignment and spoils projected emittance and optics. Coherent synchrotron radiation specifically for over-compression and transverse wakefields are major contributors to this. In the case of the large-bandwidth operation, based on a strictly monotonic energy chirp of the bunch, the here introduced correction additionally enhances the spectral bandwidth of the FEL pulse. Well-defined leaking of dispersion at places with a strictly monotonic longitudinal phase space can compensate a beam tilt. This work presents a way to characterize the beam tilt as well as a method to correct for it within a linear accelerator with at least one high dispersive section with corrector magnets.

  11. Efficiency Enhancement in a Tapered Free Electron Laser by Varying the Electron Beam Radius

    SciTech Connect

    Jiao, Yi; Wu, J.; Cai, Y.; Chao, A.W.; Fawley, W.M.; Frisch, J.; Huang, Z.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; /PSI, Villigen

    2012-02-15

    Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after the FEL saturation. By use of ray equation approximation to combine the one-dimensional FEL theory and optical guiding approach, an explicit physical model is built to provide insight to the mechanism of the electron-radiation coherent interaction with variable undulator parameters as well as electron beam radius. The contribution of variation in electron beam radius and related transverse effects are studied based on the presented model and numerical simulation. Taking a recent studied terawatt, 120 m long tapered FEL as an example, we demonstrate that a reasonably varied, instead of a constant, electron beam radius along the undulator helps to improve the optical guiding and thus the radiation output.

  12. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    SciTech Connect

    Behrens, Christopher; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  13. Two-color operation of a free-electron laser with a tilted beam.

    PubMed

    Reiche, Sven; Prat, Eduard

    2016-07-01

    With the successful operation of free-electron lasers (FELs) as user facilities there has been a growing demand for experiments with two photon pulses with variable photon energy and time separation. A configuration of an undulator with variable-gap control and a delaying chicane in the middle of the beamline is proposed. An injected electron beam with a transverse tilt will only yield FEL radiation for the parts which are close to the undulator axis. This allows, after re-aligning and delaying the electron beam, a different part of the bunch to be used to produce a second FEL pulse. This method offers independent control in photon energy and delay. For the parameters of the soft X-ray beamline Athos at the SwissFEL facility the photon energy tuning range is a factor of five with an adjustable delay between the two pulses from -50 to 950 fs. PMID:27359134

  14. Wall-plug efficiency and beam dynamics in free-electron lasers using energy recovery linacs

    SciTech Connect

    Sprangle, P.; Ben-Zvi, I.; Penano, J.; Hafizi, B.

    2010-08-01

    In a high average power free-electron laser (FEL) the wall-plug efficiency is of critical importance in determining the size, complexity, and cost of the overall system. The wall-plug efficiency for the FEL oscillator and amplifier (uniform and tapered wiggler) is strongly dependent on the energy recovery process. A theoretical model for electron beam dynamics in the energy recovery linac is derived and applied to the acceleration and deceleration of nano-Coulomb electron bunches for a tapered FEL amplifier. For the tapered amplifier, the spent electron beam exiting the wiggler consists of trapped and untrapped electrons. Decelerating these two populations using different phases of the radio-frequency wave in the recovery process enhances wall-plug efficiency. For the parameters considered here, the wall-plug efficiency for the tapered amplifier can be {approx}10% using this approach.

  15. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Sessler, Andrew M.; Whittum, D.H.; Wurtele, Jonathan S.; Sharp, W.M.; Makowski, M.A.

    1991-02-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set.

  16. Simulation of the Microbunching Instability in Beam Delivery Systems for Free Electron Lasers

    SciTech Connect

    Pogorelov, I.; Qiang, J.; Ryne, R.; Venturini, M.; Zholents, A.; Warnock, R.; /SLAC

    2007-11-02

    In this paper, we examine the growth of the microbunching instability in the electron beam delivery system of a free electron laser (FEL). We present the results of two sets of simulations, one conducted using a direct Vlasov solver, the other using a particle-in-cell code Impact-Z with the number of simulation macroparticles ranging up to 100 million. Discussion is focused on the details of longitudinal dynamics and on numerical values of uncorrelated (slice) energy spread at different points in the lattice. In particular, we assess the efficacy of laser heater in suppression of the instability, and look at the interplay between physical and numerical noise in particle-based simulations.

  17. Analytic model of bunched beams for harmonic generation in thelow-gain free electron laser regime

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.S.

    2006-02-20

    One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  18. Efficiency enhancement of a two-beam free-electron laser

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.; Saberi, H.

    2009-12-15

    A local and nonlinear simulation of two-beam and tapered free-electron laser (FEL) is presented self-consistently. The slippage of the electromagnetic wave with respect to the electron beam is ignored and the relativistic electron beams are assumed to be cold. The fundamental resonance and the third harmonic radiation of the beam with lower energy are considered, in which the third harmonic is at the fundamental resonance of the beam with higher energy. The wiggler field is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of the reduction in the amplitude of wiggler are found by successive run of the code. Using the slowly varying envelope approximation, a set of nonlinear equations is derived which describes this system. These equations are solved numerically by the Runge-Kutta method. This method can be used to improve the efficiency of the two-beam FEL in the extreme ultraviolet and x-ray regions of spectrum.

  19. The TESLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Rossbach, Jörg

    1997-05-01

    The TESLA Free Electron Laser makes use of the high quality electron beam that can be provided by the superconducting TESLA linac to drive a single pass free electron laser (FEL) at wavelengths far below the visible. To reach a wavelength of 6 nanometers, the TESLA Test Facility (TTF) currently under construction at DESY will be extended to 1 GeV beam energy. Because there are no mirrors and seed-lasers in this wavelength regime, the principle of Self-Amplified-Spontaneous-Emission (SASE) will be employed. A first test of both the principle and technical components is foreseen at a photon wavelength larger than 42 nanometers. With respect to linac technology, the key prerequisite for such single-pass, high-gain FELs is a high intensity, diffraction limited, electron beam to be generated and accelerated without degradation. Key components are RF guns with photocathodes, bunch compressors, and related diagnostics. The status of design and construction as well as both electron and photon beam properties will be discussed. Once proven in the micrometer to nanometer regime, the SASE FEL scheme is considered applicable down to Angstrom wavelengths. It is pointed out that this latter option is particularly of interest in context with the construction of a linear collider, which requires very similar beam parameters. The status of conceptual design work on such a coherent X-ray user facility integrated into the TESLA linear collider design will be briefly sketched.

  20. Growth rate for free-electron lasers through a warm beam layered model

    NASA Astrophysics Data System (ADS)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2016-06-01

    > In the present work, we describe the linear growth rate of the laser field for a one-dimensional theoretical single-pass free-electron laser, including space-charge and thermal effects, in the hydrodynamical regime. In a recent work (Peter, Endler & Rizzato, Phys. Plasmas, vol. 21, 2014, 113104), the thermal effects were already included for a water-bag initial distribution for the longitudinal velocities of the particles of the beam. Here, we extend the result for different and symmetrical initial distributions, considering that in the hydrodynamical regime, the beam can be thought of as a warm fluid composed of a sum of different fluids with different densities, where the initial distribution of each fluid is a water-bag distribution. The total pressure of the beam is related to the sum of the pressures of these fluids. This approach is much less complicated than the kinetic approach. We compare the results given by the linear set of equations and wave-particle simulations for water-bag and Gaussian initial distributions. The evolution of the particle distribution in the phase space is also shown in order to demonstrate that the assumption of the sum of different fluids reproduces the physics of the system in a reasonable fashion.

  1. Combination free-electron and gaseous laser

    SciTech Connect

    Brau, C.A.; Rockwood, S.D.; Stein, W.E.

    1981-06-08

    A multiple laser having one or more gaseous laser stages and one or more free electron stages is described. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  2. Combination free electron and gaseous laser

    DOEpatents

    Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  3. Study of Collective Beam Effects in Energy Recovery Linac Driven Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Christpher C.

    Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) can degrade the quality of high-energy electron beams used for applications such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based FELs brings exciting possibilities for very high-average current FELs that can operate with greater efficiency. However, due to the structure of ERLs, they may be even more susceptible to CSR. It is therefore necessary that these collective beam effects be well understood if future ERL-based designs are to be successful. The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at how CSR impacts the electron beam. Due to its novel design we can easily test how CSR's impact on the beam varies as a function of compression within the machine. In this work we will look at measurements of both average energy loss and energy spectrum fragmentation as a function of bunch compression. These results are compared to particle tracking simulations including a 1D CSR model and, in general, good agreement is seen between simulation and measurement. Of particular interest is fragmentation of the energy spectrum that is observed due to CSR and LSC. We will also show how this fragmentation develops and how it can be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D model is used to simulate CSR-beam interaction. Due to the parameters of the experiment it is expected that a 2D CSR model would yield different results than the 1D CSR model. However, excellent agreement is seen between the two CSR model results.

  4. Compact-beam stable-unstable resonator for free-electron laser. Phase 2, Final report

    SciTech Connect

    Paxton, A.H.; White, C.J.; Boyd, T.L.; Schmitt, M.J.; Aldrich, C.H.

    1991-10-01

    A significant problem in the design of high-energy free-electron lasers (FELs) centers on the technique for outcoupling the output beam. FELs with currently achievable output power usually include a conventional stable resonator with output through a partially transmitting mirror which will not work for arbitrarily high average power. An alternate scheme must be found for high-energy FELs. A high- efficiency grating outcoupler is an attractive possibility, but it is difficult to manufacture. Other suggestions include unstable resonators with an intracavity focus and unstable resonators with an intracavity focus and beam rotation. The intensity distribution at the intracavity focus of a negative-branch unstable resonator has side-lobes that would be scraped off by the faces of the wiggler magnets or by the beam tube through the wiggler. The resulting power loss would be significant. Therefore, it is desirable to develop another type of resonator for use with FELs. The resonator that we have developed is the compact-beam stable-unstable ring resonator. It is a stable resonator in one transverse dimension and an unstable resonator with an intracavity focus in the orthogonal transverse dimension. A scraper mirror outcouples the output beam from one side of the mode only. The resonator can be configured so that it has a small beam waist at the center of the wiggler in the stable direction and has an intracavity focus in the unstable direction. The half- width of the central lobe of the focus is approximately the size of the stable beam waist. In the stable direction, the Gaussian amplitude distribution results in a small loss on the wiggler magnets, or on a beam tube that will fit within the wiggler, if one is used. The beam tube can have an elliptical shape to permit the passage of several side lobes in the unstable dimension. A mode of the CBSUR is a product of the mode of a strip stable resonator with a strip compact-beam negative-branch unstable resonator.

  5. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak

  6. Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Fukami, Kenji; Inagaki, Takahiro; Kawaguchi, Hideaki; Kinjo, Ryota; Kondo, Chikara; Otake, Yuji; Tajiri, Yasuyuki; Takebe, Hideki; Togawa, Kazuaki; Yoshino, Tatsuya; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2016-02-01

    The parallel operation of plural undulator beam lines is an important means of improving the efficiency and usability of x-ray free-electron laser facilities. After the installation of a second undulator beam line (BL2) at SPring-8 Angstrom compact free-electron laser (SACLA), pulse-by-pulse switching between two beam lines was tested using kicker and dc twin-septum magnets. To maintain a compact size, all undulator beam lines at SACLA are designed to be placed within the same undulator hall located downstream of the accelerator. In order to ensure broad tunability of the laser wavelength, the electron bunches are accelerated to different beam energies optimized for the wavelengths of each beam line. In the demonstration, the 30 Hz electron beam was alternately deflected to two beam lines and simultaneous lasing was achieved with 15 Hz at each beam line. Since the electron beam was deflected twice by 3° in a dogleg to BL2, the coherent synchrotron radiation (CSR) effects became non-negligible. Currently in a wavelength range of 4-10 keV, a laser pulse energy of 100 - 150 μ J can be obtained with a reduced peak current of around 1 kA by alleviating the CSR effects. This paper reports the results and operational issues related to the multi-beam-line operation of SACLA.

  7. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs.

  8. On spectral and temporal coherence of x-ray free-electron laser beams.

    PubMed

    Ahad, Lutful; Vartiainen, Ismo; Setälä, Tero; Friberg, Ari T; David, Christian; Makita, Mikako; Turunen, Jari

    2016-06-13

    A model for the coherence properties of free-electron lasers (FELs) in time and frequency domains is introduced within the framework of classical second-order coherence theory of nonstationary light. An iterative phase-retrieval algorithm is applied to construct an ensemble of field realizations in both domains, based on single-pulse spectra measured at the Linac Coherent Light Source (LCLS) in self-amplified spontaneous emission mode. Such an ensemble describes the specific FEL pulse train in a statistically averaged sense. Two-time and two-frequency correlation functions are constructed, demonstrating that the hard X-ray free-electron laser at LCLS in this case behaves as a quasistationary source with low spectral and temporal coherence. We also show that the Gaussian Schell model provides a good description of this FEL. PMID:27410327

  9. Macroparticle Theory of a Standing Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Takayama, K.; Govil, R.; Sessler, Andrew M.

    1992-02-01

    Free-electron laser operation is formulated using a macroparticle approach based on a universal gain equation. Microwave excitation in a single cavity is derived analytically and is given in the form of analytic recursion equations for a multicavity system driven by a sequence of electron bunches. Qualitative and quantitative insights into the basic excitation and saturation mechanisms are provided. Stability analysis on a test particle moving around a macroparticle shows the importance of precise control of bunch spacing.

  10. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    SciTech Connect

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ``coupling impedance`` for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs.

  11. Optical wavelength modulation in free electron lasers

    SciTech Connect

    Mabe, R.M.; Wong, R.K.; Colson, W.B.

    1995-12-31

    An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

  12. Free-electron laser from wave-mechanical beats of 2 electron beams

    NASA Technical Reports Server (NTRS)

    Lichtenstein, R. M.

    1982-01-01

    It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.

  13. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  14. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  15. The effect of space charge fields due to finite length electron beams in the free-electron laser

    NASA Technical Reports Server (NTRS)

    Tang, C.-M.; Sprangle, P.; Freund, H.; Colson, W.

    1982-01-01

    The space charge electric field of a finite length electron beam in the free electron laser amplifier with a tapered wiggler is analyzed. In the free drift region between the accelerator and laser, expressions for the increase of energy spread due to the self field are presented. In the FEL interaction region, the general conditions on the importance of the self electric field in the equations of motion is obtained. A numerical example of the FEL experiment at 10.6 microns is given.

  16. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  17. Hybrid free electron laser devices

    SciTech Connect

    Asgekar, Vivek; Dattoli, G.

    2007-03-15

    We consider hybrid free electron laser devices consisting of Cerenkov and undulator sections. We will show that they can in principle be used as segmented devices and also show the possibility of exploiting Cerenkov devices for the generation of nonlinear harmonic coherent power. We discuss both oscillator and amplifier schemes.

  18. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect

    Wang, Guimei

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  19. Model for the dynamics of a water cluster in an x-ray free electron laser beam

    SciTech Connect

    Bergh, Magnus; Timneanu, Nicusor; Spoel, David van der

    2004-11-01

    A microscopic sample placed into a focused x-ray free electron laser beam will explode due to strong ionization on a femtosecond time scale. The dynamics of this Coulomb explosion has been modeled by Neutze et al. [Nature (London) 406, 752 (2000)] for a protein, using computer simulations. The results suggest that by using ultrashort exposures, structural information may be collected before the sample is destroyed due to radiation damage. In this paper a method is presented to include the effect of screening by free electrons in the sample in a molecular dynamics simulation. The electrons are approximated by a classical gas, and the electron distribution is calculated iteratively from the Poisson-Boltzmann equation. Test simulations of water clusters reveal the details of the explosion dynamics, as well as the evolution of the free electron gas during the beam exposure. We find that inclusion of the electron gas in the model slows down the Coulomb explosion. The hydrogen atoms leave the sample faster than the oxygen atoms, leading to a double layer of positive ions. A considerable electron density is located between these two layers. The fact that the hydrogens are found to explode much faster than the oxygens means that the diffracting part of the sample stays intact somewhat longer than the sample as a whole.

  20. Free electron laser with masked chicane

    DOEpatents

    Nguyen, Dinh C.; Carlsten, Bruce E.

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  1. Study of beam loading and its compensation in the Compact Ultrafast Terahertz Free-Electron Laser injector linac

    SciTech Connect

    Lal, Shankar Pant, K. K.

    2014-12-15

    The RF properties of an accelerating structure, and the pulse structure and charge per bunch in the electron beam propagating through it are important parameters that determine the impact of beam loading in the structure. The injector linac of the Compact Ultrafast Terahertz Free-Electron Laser (CUTE-FEL) has been operated with two different pulse structures during initial commissioning experiments and the effect of beam loading on the accelerated electron beam parameters has been studied analytically for these two pulse structures. This paper discusses the analytical study of beam loading in a Standing Wave, Plane Wave Transformer linac employed in the CUTE-FEL setup, and a possible technique for its compensation for the electron beam parameters of the CUTE-FEL. A parametric study has been performed to study beam loading for different beam currents and to optimize injection time of the electron beam to compensate beam loading. Results from the parametric study have also been used to explain previously observed results from acceleration experiments in the CUTE-FEL setup.

  2. Development of Advanced Beam Halo Diagnostics at the Jefferson Lab Free-Electron-Laser Facility

    SciTech Connect

    Shukui Zhang, Stephen Benson, Dave Douglas, Frederick Wilson, Hao Zhang, Anatoly Shkvarunets, Ralph Fiorito

    2011-03-01

    High average current and high brightness electron beams are needed for many applications. At the Jefferson Lab FEL facility, the search for dark matter with the FEL laser beam has produced some interesting results, and a second very promising experiment called DarkLight, using the JLab Energy-recovery-linac (ERL) machine has been put forward. Although the required beam current has been achieved on this machine, one key challenge is the management of beam halo. At the University of Md. (UMD) we have demonstrated a high dynamic range halo measurement method using a digital micro-mirror array device (DMD). A similar system has been established at the JLab FEL facility as a joint effort by UMD and JLab to measure the beam halo on the high current ERL machine. Preliminary experiments to characterize the halo were performed on the new UV FEL. In this paper, the limitations of the present system will be analyzed and a discussion of other approaches (such as an optimized coronagraph) for further extending the dynamic range will be presented. We will also discuss the possibility of performing both longitudinal and transverse (3D) halo measurements together on a single system.

  3. Exact and variational calculations of eigenmodes for three-dimensional free electron laser interaction with a warm electron beam

    SciTech Connect

    Xie, M.

    1995-12-31

    I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.

  4. A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers

    PubMed Central

    Katayama, Tetsuo; Owada, Shigeki; Togashi, Tadashi; Ogawa, Kanade; Karvinen, Petri; Vartiainen, Ismo; Eronen, Anni; David, Christian; Sato, Takahiro; Nakajima, Kyo; Joti, Yasumasa; Yumoto, Hirokatsu; Ohashi, Haruhiko; Yabashi, Makina

    2016-01-01

    We report a method for achieving advanced photon diagnostics of x-ray free-electron lasers (XFELs) under a quasi-noninvasive condition by using a beam-splitting scheme. Here, we used a transmission grating to generate multiple branches of x-ray beams. One of the two primary diffracted branches (+1st-order) is utilized for spectral measurement in a dispersive scheme, while the other (−1st-order) is dedicated for arrival timing diagnostics between the XFEL and the optical laser pulses. The transmitted x-ray beam (0th-order) is guided to an experimental station. To confirm the validity of this timing-monitoring scheme, we measured the correlation between the arrival timings of the −1st and 0th branches. The observed error was as small as 7.0 fs in root-mean-square. Our result showed the applicability of the beam branching scheme to advanced photon diagnostics, which will further enhance experimental capabilities of XFEL. PMID:26958586

  5. A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers.

    PubMed

    Katayama, Tetsuo; Owada, Shigeki; Togashi, Tadashi; Ogawa, Kanade; Karvinen, Petri; Vartiainen, Ismo; Eronen, Anni; David, Christian; Sato, Takahiro; Nakajima, Kyo; Joti, Yasumasa; Yumoto, Hirokatsu; Ohashi, Haruhiko; Yabashi, Makina

    2016-05-01

    We report a method for achieving advanced photon diagnostics of x-ray free-electron lasers (XFELs) under a quasi-noninvasive condition by using a beam-splitting scheme. Here, we used a transmission grating to generate multiple branches of x-ray beams. One of the two primary diffracted branches (+1st-order) is utilized for spectral measurement in a dispersive scheme, while the other (-1st-order) is dedicated for arrival timing diagnostics between the XFEL and the optical laser pulses. The transmitted x-ray beam (0th-order) is guided to an experimental station. To confirm the validity of this timing-monitoring scheme, we measured the correlation between the arrival timings of the -1st and 0th branches. The observed error was as small as 7.0 fs in root-mean-square. Our result showed the applicability of the beam branching scheme to advanced photon diagnostics, which will further enhance experimental capabilities of XFEL.

  6. Kinetic theory of free electron lasers

    SciTech Connect

    Hafizi, B.; Roberson, C.W.

    1995-12-31

    We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.

  7. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser.

    PubMed

    Hu, Tongning; Pei, Yuanji; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Li, Ji

    2014-10-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  8. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    SciTech Connect

    Hu, Tongning E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji E-mail: yjpei@ustc.edu.cn; Li, Ji

    2014-10-15

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  9. Electron beams from needle photocathodes and a new theory of the Smith-Purcell free-electron laser

    NASA Astrophysics Data System (ADS)

    Boulware, Charles Herbert, III

    A promising source of radiation in the important terahertz (THz) region of the spectrum is the Smith-Purcell free-electron laser (SPFEL). This dissertation presents a new theory of the SPFEL, taking into account dispersion of evanescent surface waves on the grating. From the dispersion relation for these waves, it is found that the device can operate as an amplifier or as an oscillator, The gain length is calculated in the amplifier regime, as well as the growth rate and start current in the oscillator regime. The theory is supported by published computer simulations, but in conflict with previous experiment. These devices require a high-quality electron beam, and this dissertation also presents developments in needle photocathodes designed to drive an SPFEL. Data on emission current are presented as a function of voltage for various drive laser wavelengths. A simplified model is used to interpret the data as variation in the emitting area with voltage for photon energies below the cathode workfunction. Data and a new scaling law for the divergence of the beam at high current are also presented.

  10. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  11. Two-dimensional optimization of free-electron-laser designs

    DOEpatents

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. Smith-Purcell free-electron laser

    SciTech Connect

    Woods, K.J.; Walsh, J.E.

    1995-12-31

    The term Smith-Purcell free electron laser can be employed generally to describe any coherent radiation source in which a diffraction grating is used to couple an electron beam with the electromagnetic field. To date, most practical developments of this concept have focused on devices which operate in the millimeter spectral regime. In this paper construction of a Smith-Purcell free-electron laser operating in the far-infrared (FIR) region using a novel resonator cavity design and the electron beam from a low energy (0.5-5 MeV) radio-frequency accelerator will be discussed. A tunable source in this region would have many applications and since the beam energy is low, the small size and low overall cost of such a device would make it a laboratory instrument. Current projects which are progressing towards developing a FIR source are the programs at Stanford and CREOL. Both of these projects are using permanent magnet undulators to couple the electron beam with the electromagnetic field. An alternative approach is to use an electron beam passing over a diffraction grating as the radiating mechanism. This phenomenon is known as Smith-Purcell radiation and was first demonstrated for incoherent emission at visible wavelengths. The addition of feedback enhances the stimulated component of the emission which leads to the growth of coherence. Recent calculations for spontaneous emission have shown that the wiggler parameter and the grating efficiency are analogous. This result has important implications for the development of a Smith-Purcell FEL because a grating based free-electron laser would offer a greater range of tunability at a lower cost than its wiggler based counterpart.

  13. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  14. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  15. THE PHYSICS AND PROPERTIES OF FREE - ELECTRON LASERS.

    SciTech Connect

    KRINSKY,S.

    2002-05-06

    We present an introduction to the operating principles of free-electron lasers, discussing the amplification process, and the requirements on the electron beam necessary to achieve desired performance.

  16. Phase control of the microwave radiation in free electron laser two-beam accelerator

    SciTech Connect

    Goren, Y.; Sessler, A.M.

    1987-07-01

    A phase control system for the FEL portion of Two-Beam Accelerator is proposed. The control keeps the phase error within acceptable bounds. The control mechanism is analyzed, both analytically in a ''resonant particle'' approximation and numerically in a multi-particle simulation code. Sensitivity of phase errors to the FEL parameters has been noticed.

  17. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser.

    PubMed

    Fröhlich, Lars; Casarin, Katia; Vascotto, Alessandro

    2015-02-01

    The authors examine the radiation field produced in the vicinity of the main beam dump of the FERMI free-electron laser under the impact of a 1.4-GeV electron beam. Electromagnetic and neutron dose rates are calculated with the Fluka Monte Carlo code and compared with ionisation chamber and superheated drop detector measurements in various positions around the dump. Experimental data and simulation results are in good agreement with a maximum deviation of 25 % in a single location.

  18. Z-discharge free electron laser

    SciTech Connect

    Schep, T.J.; Bazylev, V.A.; Tulupov, A.V.

    1995-12-31

    A new kind of plasma based free-electron laser is proposed. An electromagnetic wave is generated by a relativistic electron beam moving along a stabilised z-discharge. The radiation wavelength is determined by the discharge current and the relativistic factor of the beam. It is shown that the interaction is based on two bunching mechanisms. One is due to the dependency of the longitudinal beam velocity on the energy of the electrons (inertial bunching). The second mechanism leads to azimuthal bunching and is related to the energy dependence of the oscillation frequency of electrons in the magnetic field of the discharge. At certain conditions both bunching mechanisms tend to compensate their mutual action and the system has an autoresonance. Near these conditions a high efficiency and, therefore, a high output power can be reached.

  19. Photocathodes for free electron lasers

    SciTech Connect

    Kong, S.H.; Kinross-Wright, J.; Nuguyen, D.C.; Sheffield, R.L.

    1994-09-01

    Many different photocathodes have been used as electron sources for FELs and other electron accelerator systems. In choosing one, a compromise between lifetime and quantum efficiency have been unavoidable. High quantum efficiency photocathodes such as CsK{sub 2}Sb, Cs{sub 3}Sb, and cesiated GaAs have short operational lifetimes and require an ultrahigh-vacuum environment. Long lifetime photocathodes such as LaB{sub 6}, Cu, and Y have relatively low quantum efficiencies. However, recently, cesium telluride was found to be an exception. Initial results from CERN and now at Los Alamos have shown that Cs{sub 2}Te is reasonably rugged with a high quantum efficiency below 270 nm. Further studies were carried out at Los Alamos in determining its performance as an electron source for the Los Alamos Advanced FEL. The Los Alamos Advanced FEL was successfully operated at 5-6 microns with a Cs{sub 2}Te photocathode driven by a frequency quadrupled Nd:YLF laser as the electron source. Cs{sub 2}Te photocathodes with quantum efficiencies of 12-18% at 254 mn were fabricated in an ultrahigh-vacuum chamber and transferred under high vacuum to the FEL. The authors estimated that the operational lifetime of Cs{sub 2}Te photocathodes to be at least 20 times that for K{sub 2}CsSb photocathodes. Furthermore, experiments in the fabrication chamber have shown that heating to 150-200{degrees}C photocathodes exposed for one hour at 2{times}10{sup {minus}4} torr of air was sufficient to revive the quantum efficiency from below 1% to about 10%. The electron beam for the FEL extracted from a cesium telluride target was also characterized. The emittance, response time, saturation level and dark current of cesium telluride photocathodes was determined to be sufficient for FEL applications.

  20. Synchrotron Facilities and Free Electron Lasers

    SciTech Connect

    Vaclav, Vylet; Liu, James; /SLAC

    2007-12-21

    Synchrotron radiation (SR) is electromagnetic radiation emitted when a charged particle travels along a curved trajectory. Initially encountered as a nuisance around orbits of high energy synchrotron accelerators, it gradually became an indispensable research tool in many applications: crystallography, X-ray lithography, micromechanics, structural biology, microprobe X-ray experiments, etc. So-called first generation SR sources were exploiting SR in parasitic mode at electron accelerators built to study particle collisions. The second generation of SR sources was the first facilities solely devoted to SR production. They were optimized to achieve stable high currents in the accelerator ring to achieve substantially higher photon flux and to provide a large number of SR beam lines for users. Third generation sources were further optimized for increased brilliance, i.e. with photons densely packed into a beam of very small cross-sectional area and minimal angular divergence (see the Appendix for more detailed definitions of flux, brightness and brilliance) and makes extensive use of the insertion devices such as wigglers and undulators. Free Electron Lasers (FELs), the fourth generation SR sources, open new research possibilities by offering extremely short pulses of extremely bright and coherent radiation. The number of SR sources around the world now probably exceeds 100. These facilities vary greatly in size, energy of the electron (or positron) beams, range of photon energies and other characteristics of the photon beams produced. In what follows we will concentrate on describing some common aspects of SR facilities, their operation modes and specific radiation protection aspects.

  1. Free electron laser amplifier driven by an induction linac

    SciTech Connect

    Neil, V.K.

    1986-06-03

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved. (LSP)

  2. The Jefferson Lab Free Electron Laser Program

    SciTech Connect

    George R. Neil; Steve Benson; George Biallas; James Boyce; L.A. Dillon-Townes; David Douglas; H. Fred Dylla; R. Evans; Al Grippo; Joe Gubeli; C. Hernandez-Garcia; Kevin Jordan; Geoffrey A. Krafft; Rui Li; J. Mammosser; Lia Merminga; Joe Preble; Michelle D. Shinn; Timothy Siggins; R. Walker; Gwyn Williams; Byung Yunn; S. Zhang

    2001-01-01

    A Free Electron Laser (FEL) called the IR Demo is operational as a user facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. It utilizes a 48 MeV superconducting accelerator that not only accelerates the beam but also recovers about 80% of the electron-beam power that remains after the FEL interaction. Utilizing this recirculation loop the machine has recovered cw average currents up to 5 mA, and has lased cw above 2 kW output at 3.1 microns. It is capable of output in the 1 to 6 micron range and can produce {approx}0.7 ps pulses in a continuous train at {approx}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades under construction will extend operation beyond 10 kW average power in the near IR and produce multi-kilowatt levels of power from 0.3 to 25 microns. This talk will cover the performance measurements of this groundbreaking laser, scaling in near-term planned upgrades, and highlight some of the user activities at the facility.

  3. X-ray Free-electron Lasers

    SciTech Connect

    Feldhaus, J.; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  4. Investigation of ablation thresholds of optical materials using 1-µm-focusing beam at hard X-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Senba, Yasunori; Tono, Kensuke; Sato, Takahiro; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Mimura, Hidekazu; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko; Ishikawa, Tetsuya

    2013-07-01

    We evaluated the ablation thresholds of optical materials by using hard X-ray free electron laser. A 1-µm-focused beam with 10-keV of photon energy from SPring-8 Angstrom Compact free electron LAser (SACLA) was irradiated onto silicon and SiO2 substrates, as well as the platinum and rhodium thin films on these substrates, which are widely used for optical materials such as X-ray mirrors. We designed and installed a dedicated experimental chamber for the irradiation experiments. For the silicon substrate irradiated at a high fluence, we observed strong mechanical cracking at the surface and a deep ablation hole with a straight side wall. We confirmed that the ablation thresholds of uncoated silicon and SiO2 substrates agree with the melting doses of these materials, while those of the substrates under the metal coating layer are significantly reduced. The ablation thresholds obtained here are useful criteria in designing optics for hard X-ray free electron lasers.

  5. Free electron laser variable bridge coupler

    SciTech Connect

    Spalek, G.; Billen, J.H.; Garcia, J.A.; McMurry, D.E.; Harnsborough, L.D.; Giles, P.M.; Stevens, S.B.

    1985-01-01

    The Los Alamos free-electron laser (FEL) is being modified to test a scheme for recovering most of the power in the residual 20-MeV electron beam by decelerating the microbunches in a linear standing-wave accelerator and using the recovered energy to accelerate new beam. A variable-coupler low-power model that resonantly couples the accelerator and decelerator structures has been built and tested. By mixing the TE/sub 101/ and TE/sub 102/ modes, this device permits continuous variation of the decelerator fields relative to the accelerator fields through a range of 1:1 to 1:2.5. Phase differences between the two structures are kept below 1/sup 0/ and are independent of power-flow direction. The rf power is also fed to the two structures through this coupling device. Measurements were also made on a three-post-loaded variable coupler that is a promising candidate for the same task.

  6. Free electron laser infrastructure in Europe 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-01-01

    The paper presents a digest of chosen research centers, subjects and results in the domain of free electron lasers and accelerator science and technology in Europe. Some of these issues were shown during the annual meeting of the EU FP7 project EuCARD - European Coordination of Accelerator Research and Development (2009-2013) [13-14]. The project concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics and FEL experiments. There are debated a few basic groups of such infrastructures, networks and systems like: POLFEL, FLASH, SPARC, LIFE, CFEL, IRFEL, IRVUX, ELBE, FELIX, LCLS, E-XFEL along with some subsystems like seeding lasers, beam diagnostics, high field magnets, superconducting structures, multichannel measurement - control networks for FELs for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. A digest of references on FEL and HEP was included [1-133], with emphasis on work in Poland on the Polfel project.

  7. Time-domain measurement of a self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering

    SciTech Connect

    Marcus, G.; Rosenzweig, J. B.; Artioli, M.; Ciocci, F.; Del Franco, M.; Giannessi, L.; Petralia, A.; Quattromini, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Di Pirro, G.; Ferrario, M.; Filippetto, D.; Gatti, G.; Rossi, A. R.; Cianchi, A.; Labat, M.; Mostacci, A.; Petrillo, V.; and others

    2012-09-24

    We report, with an unequivocal time-domain measurement, that an appropriately chosen undulator taper can compensate for an electron beam longitudinal energy-chirp in a free-electron laser amplifier, leading to the generation of single-spike radiation close to the Fourier limit. The measurements were taken using the frequency-resolved optical gating technique by employing an advanced transient-grating diagnostic geometry. The reconstructed longitudinal radiation characteristics are compared in detail to prediction from time-dependent three-dimensional simulations.

  8. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  9. XUV/VUV free-electron laser oscillator

    SciTech Connect

    Goldstein, J.C.; Newnam, B.E.; Cooper, R.K.; Comly, J.C. Jr.

    1984-04-01

    It is shown, from computations based on a detailed theoretical model, that modest improvements in electron beam and optical mirror technologies will enable a free-electron laser, driven by an rf linear accelerator, to operate in the 50 to 200-nm range of optical wavelengths. 10 references.

  10. High-efficiency free-electron-laser experiments

    SciTech Connect

    Boyer, K.; Brau, C.A.; Goldstein, J.C.; Hohla, K.L.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.

    1983-01-01

    Experiments with a tapered-wiggler free-electron laser have demonstrated extraction of about 3% of the energy from the electron beam and measured the corresponding optical emission. These results are in excellent agreement with theory and represent an order-of-magnitude improvement over all previous results.

  11. Short wavelength optics for future free electron lasers

    SciTech Connect

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures.

  12. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    SciTech Connect

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  13. Inverse free-electron laser accelerator

    SciTech Connect

    Pellegrini, C.; Campisi, R.

    1982-01-01

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  14. Long range coherence in free electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1984-01-01

    The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.

  15. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  16. Multifrequency, single pass free electron laser

    DOEpatents

    Szoke, Abraham; Prosnitz, Donald

    1985-01-01

    A method for simultaneous amplification of laser beams with a sequence of frequencies in a single pass, using a relativistic beam of electrons grouped in a sequence of energies corresponding to the sequence of laser beam frequencies. The method allows electrons to pass from one potential well or "bucket" to another adjacent bucket, thus increasing efficiency of trapping and energy conversion.

  17. Progress toward the Wisconsin Free Electron Laser

    SciTech Connect

    Bisognano, Joseph; Eisert, D; Fisher, M V; Green, M A; Jacobs, K; Kleman, K J; Kulpin, J; Rogers, G C; Lawler, J E; Yavuz, D; Legg, R

    2011-03-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  18. Design, development, and operation of a fiber-based Cherenkov beam loss monitor at the SPring-8 Angstrom Compact Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Maréchal, X.-M.; Asano, Y.; Itoga, T.

    2012-05-01

    A fiber-based Cherenkov beam loss monitor (CBLM) consisting of large core (400 μm), long (≥150 m) multimode fibers, has been developed as an online long-range detection tool with high sensitivity and good position resolution for the 8 GeV SPring-8 Angstrom Compact Free Electron Laser: primarily designed for radiation safety in order to limit the dose outside the shielding of the machine, this monitor also serves as an early warning tool to avoid radiation damages done by lost electrons to the undulator magnets. This paper presents the approach chosen to insure that the required sensitivity (≤1 pC) could be obtained over more than 100 m. A beam-based approach was used to characterize (attenuation and signal strength) different fibers (diameter, index profile, and numerical aperture) and to select the most appropriate one. The response of the detector has also been studied numerically for different geometries (vacuum pipe and in-vacuum type undulators), beam energies, and beam loss scenarios, to determine the optimum number of fibers and their position in order to achieve the required detection limit. The results of the first few months of operation show that the SPring-8 CBLM can detect beam losses of less than 0.5 pC over the full 150 m length of the fiber.

  19. Three-dimensional nonlinear efficiency enhancement analysis in free-electron laser amplifier with prebunched electron beam and ion-channel guiding

    SciTech Connect

    Jafari Bahman, F.; Maraghechi, B.

    2013-02-15

    Efficiency enhancement in free-electron laser is studied by three-dimensional and nonlinear simulation using tapered helical wiggler magnetic field or tapered ion-channel density. In order to reduce the saturation length, prebunched electron beam is used. A set of nonlinear and coupled differential equations are derived that provides the self-consistent description of the evolution of both an ensemble of electrons and the electromagnetic radiation. These equations are solved numerically to show that the combined effect of tapering and prebunching results in significant enhancement of power and considerable reduction of the saturation length. To have a deeper insight into the problem, an analytical treatment is also presented that uses the small signal theory to derive a modified pendulum equation.

  20. Three-dimensional nonlinear efficiency enhancement analysis in free-electron laser amplifier with prebunched electron beam and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Jafari Bahman, F.; Maraghechi, B.

    2013-02-01

    Efficiency enhancement in free-electron laser is studied by three-dimensional and nonlinear simulation using tapered helical wiggler magnetic field or tapered ion-channel density. In order to reduce the saturation length, prebunched electron beam is used. A set of nonlinear and coupled differential equations are derived that provides the self-consistent description of the evolution of both an ensemble of electrons and the electromagnetic radiation. These equations are solved numerically to show that the combined effect of tapering and prebunching results in significant enhancement of power and considerable reduction of the saturation length. To have a deeper insight into the problem, an analytical treatment is also presented that uses the small signal theory to derive a modified pendulum equation.

  1. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    PubMed

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  2. The free electron laser: conceptual history

    NASA Astrophysics Data System (ADS)

    Madey, John; Scully, Marlan O.; Sprangle, Phillip

    2016-08-01

    The free electron laser (FEL) has lived up to its promise as given in (Madey 1971 J. Appl. Phys. 42 1906) to wit: ‘As shall be seen, finite gain is available …from the far-infrared through the visible region …with the further possibility of partially coherent radiation sources in the x-ray region’. In the present paper we review the history of the FEL drawing liberally (and where possible literally) from the original sources. Coauthors, Madey, Scully and Sprangle were involved in the early days of the subject and give a first hand account of the subject with an eye to the future.

  3. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  4. A wide bandwidth free-electron laser with mode locking using current modulation.

    SciTech Connect

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. )

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  5. Effects of finite beam and plasma temperature on the growth rate of a two-stream free electron laser with background plasma

    SciTech Connect

    Mahdizadeh, N.; Aghamir, F. M.

    2013-02-28

    A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in the TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.

  6. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high

  7. Crystallographic data processing for free-electron laser sources

    SciTech Connect

    White, Thomas A. Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  8. Modelling elliptically polarised free electron lasers

    NASA Astrophysics Data System (ADS)

    Henderson, J. R.; Campbell, L. T.; Freund, H. P.; McNeil, B. W. J.

    2016-06-01

    A model of a free electron laser (FEL) operating with an elliptically polarised undulator is presented. The equations describing the FEL interaction, including resonant harmonic radiation fields, are averaged over an undulator period and generate a generalised Bessel function scaling factor, similar to that of planar undulator FEL theory. Comparison between simulations of the averaged model with those of an unaveraged model show very good agreement in the linear regime. Two unexpected results were found. Firstly, an increased coupling to harmonics for elliptical rather than planar polarisarised undulators. Secondly, and thought to be unrelated to the undulator polarisation, a significantly different evolution between the averaged and unaveraged simulations of the harmonic radiation evolution approaching FEL saturation.

  9. Puffin: A three dimensional, unaveraged free electron laser simulation code

    SciTech Connect

    Campbell, L. T.; McNeil, B. W. J.

    2012-09-15

    An unaveraged 3D model of the free electron laser (FEL) is presented which is capable of modelling electron interactions with broad bandwidth radiation that includes electron beam shot-noise and coherent spontaneous emission effects. Non-localised electron transport throughout the beam is modelled self-consistently allowing better modelling of systems where a larger electron energy range is required. The FEL interaction can be modelled with undulator fields of variable polarisation. A modular undulator system allows insertion of other magnetic structures, such as chicanes. A set of working equations that describe the model are derived, the parallel numerical method that solves them described, and some example FEL interactions presented.

  10. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  11. Echo-enabled Harmonic Generation Free Electron Laser

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    In this paper, we systematically study the echo-enabled harmonic generation (EEHG) free electron laser (FEL). The EEHG FEL uses two modulators in combination with two dispersion sections that allow to generate in the beam a high harmonic density modulation starting with a relatively small initial energy modulation of the beam. After presenting analytical theory of the phenomenon, we address several practically important issues, such as the effect of incoherent synchrotron radiation in the dispersion sections, and the beam transverse size effect in the modulator. Using a representative realistic set of beam parameters, we show how the EEHG scheme enhances the FEL performance and allows to generate a fully (both longitudinally and transversely) coherent radiation. As an example, we demonstrate that 5 nm coherent soft x-rays with GW peak power can be generated directly from the 240 nm seeding laser using the proposed EEHG scheme.

  12. Workshop on scientific and industrial applications of free electron lasers

    SciTech Connect

    Difilippo, F.C. ); Perez, R.B. Tennessee Univ., Knoxville, TN )

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  13. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  14. EIGENMODE ANALYSIS OF OPTICAL GUIDING IN FREE ELECTRON LASERS

    SciTech Connect

    Xie, M.; Deacon, D.A.G.; Madey, J.M.J.

    1989-03-01

    The spatial properties of the optical field and hence the performance of a free electron laser depend on the fact that the electron beam, which acts as both an amplifying and a refractive medium, is transversely nonuniform. Under certain circumstances, optical guiding may be realized, where the optical field is stably confined near the electron beam and amplified along the beam over many Rayleigh ranges. We show that the three-dimensional evolution of the optical field through the interaction region can be determined by a guided mode expansion before saturation. Optical guiding occurs when the fundamental growing mode becomes dominant. The guided mode expansion is made possible by implementing the biorthogonality of the eigenmodes of the coupled electron-beam-optical-wave system. The eigenmodes are found to be of vectorial form with three components; one specifies the guided optical mode and the other two describe the density and the energy modulations of the electron beam.

  15. Free electron lasers for transmission of energy in space

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  16. Explosion, ion acceleration, and molecular fragmentation of methane clusters in the pulsed beam of a free-electron laser

    NASA Astrophysics Data System (ADS)

    Iwan, B.; Andreasson, J.; Bergh, M.; Schorb, S.; Thomas, H.; Rupp, D.; Gorkhover, T.; Adolph, M.; Möller, T.; Bostedt, C.; Hajdu, J.; Tîmneanu, N.

    2012-09-01

    X-ray lasers offer new possibilities for creating and probing extreme states of matter. We used intense and short x-ray pulses from the FLASH soft x-ray laser to trigger the explosions of CH4 and CD4 molecules and their clusters. The results show that the explosion dynamics depends on cluster size and indicate a transition from Coulomb explosion to hydrodynamic expansion in larger clusters. The explosion of CH4 and CD4 clusters shows a strong isotope effect: The heavier deuterons acquire higher kinetic energies than the lighter protons. This may be due to an extended inertial confinement of deuterons vs. protons near a rapidly charging cluster core during exposure.

  17. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  18. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  19. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    SciTech Connect

    Noh, Seon Yeong; Kim, Eun-San Hwang, Ji-Gwang; Heo, A.; Won, Jang Si; Vinokurov, Nikolay A.; Jeong, Young UK Hee Park, Seong; Jang, Kyu-Ha

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  20. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device. PMID:25638104

  1. Diagnostics and electron-optics of a high current electron beam in the TANDEM free electron laser - status report

    SciTech Connect

    Arensburg, A.; Avramovich, A.; Chairman, D.

    1995-12-31

    In the construction of the Israeli TANDEM FEL the major task is to develop a high quality electron optic system. The goal is to focus the e-beam to a minimal radius (1 mm) in the interaction region (the wiggler). Furthermore, good focusing throughout the accelerator is essential in order to achieve high transport efficiency avoiding discharge and voltage drop of the high voltage terminal. We have completed the electron optical design and component procurement, including 8 quadrupole lenses 4 steering coils and an electrostatic control system. All are being assembled into the high voltage terminal and controlled by a fiber optic link. Diagnostic means based on fluorescent screens and compact CCD camera cards placed at the HV terminal and at the end of the e-gun injector have been developed. We report first measurements of the beam emittance at the entrance to the Tandem accelerator tube using the {open_quote}pepper pot{close_quote} technique. The experiment consists of passing the 0.5 Amp beam through a thin plate which is perforated with an army of 0.5 mm holes. The spots produced on a fluorescent screen placed 90 cm from the pepper pot were recorded with a CCD camera and a frame grabber. The measured normalized emittance is lower than 10{pi} mm mR which is quite close to the technical limit of dispenser cathode e-guns of the kind we have. Recent results of the measured transport efficiency and the diagnostics of the high current (1A, 1.5MV) electron-optical system will be reported.

  2. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  3. Midwest free-electron laser program

    NASA Astrophysics Data System (ADS)

    Cerullo, L. J.; Epstein, M.; Marhic, M. E.; Rymer, W. Z.; Spears, K. G.

    1987-03-01

    Developments in infrared waveguides for laser beam delivery include liquid core fibers, germanium coated brass guides, whisper gallery waveguides, Bragg fibers and waveguides with periodic structures. Studies of interaction of laser radiation with tissue over a broad range of wavelengths include absorption of radiant energy by chromophores in a light scattered matrix, effects of heating with pulsed Nd-YAG lasers and the use of the diffusion model of radiative transfer to optical dosimetry in clinical phototherapy. The development of picosecond laser instrumentation for neuroscience research allows for the simulation of the FEL in pulse duration, energy and wavelengths. The effects of laser-beam energy in neural tissue were investigated. These studies included the effects of CO2 laser energy on the rat spinal cord as determined by the evoked potentials recorded from dorsal white matter in the mid-thoracic cord. The latter showed no discernable effects for levels below those causing visible damage to the dorsal column white matter. These studies indicate minimal thermal effects at levels corresponding to the onset of breakdown.

  4. SIMPLEX: simulator and postprocessor for free-electron laser experiments

    PubMed Central

    Tanaka, Takashi

    2015-01-01

    SIMPLEX is a computer program developed for simulating the amplification process of free-electron lasers (FELs). It numerically solves the so-called FEL equations describing the evolution of the radiation field and growth of microbunching while the electron beam travels along the undulator. In order to reduce the numerical cost, the FEL equations have been reduced to more convenient forms for numerical implementation by applying reasonable approximations. SIMPLEX is equipped with a postprocessor to facilitate the retrieval of desired information from the simulation results, which is crucial for practical applications such as designing the beamline and analyzing the experimental results. PMID:26289287

  5. Design Alternatives for a Free Electron Laser Facility

    SciTech Connect

    Jacobs, K; Bosch, R A; Eisert, D; Fisher, M V; Green, M A; Keil, R G; Kleman, K J; Kulpin, J G; Rogers, G C; Wehlitz, R; Chiang, T; Miller, T J; Lawler, J E; Yavuz, D; Legg, R A; York, R C

    2012-07-01

    The University of Wisconsin-Madison is continuing design efforts for a vacuum ultraviolet/X-ray Free Electron Laser facility. The design incorporates seeding the FEL to provide fully coherent photon output at energies up to {approx}1 keV. The focus of the present work is to minimize the cost of the facility while preserving its performance. To achieve this we are exploring variations in the electron beam driver for the FEL, in undulator design, and in the seeding mechanism. Design optimizations and trade-offs between the various technologies and how they affect the FEL scientific program will be presented.

  6. Biophysics applications of free-electron lasers

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    1993-07-01

    There has been a significant financial effort poured into the technology of the Free Electron Laser (FEL) over the last 15 years or so. Much of that money was spent in the hopes that the FEL would be a key element in the Strategic Defense Initiative, but a small fraction of money was allocated for the Medical FEL program. The Medical FELs program was aimed at exploring how the unique capabilities of the FEL could be utilized in medical applications. Part of the Medical FEl effort has been in clinical applications, but some of the effort has also been put into exploring applications of the FEL for fundamental biological physics. It is the purpose of this brief text to outline some of the fundamental biophysics I have done, and some plans we have for the future. Since the FEL is (still) considered to be an avant garde device, the reader should not be surprised to find that much of the work proposed here is also rather radical and avant garde.

  7. Soviet free-electron laser research

    NASA Astrophysics Data System (ADS)

    Kassel, S.

    1985-05-01

    The purpose of this report is to evaluate free-electron laser (FEL) research and development in the Soviet Union and to compare it with the corresponding activity in the U.S. In presenting this material, the intention is to acquaint U.S. researchers with the objectives, techniques, and results of their Soviet counterparts, as well as to provide the broad context of this area of Soviet R&D that consists of the organization, facilities, personalities, and leadership involved. The U.S. Soviet comparison has focused on the experimental programs, the most important area of this new technology. Section 2 compares individual experiments conducted by the USSR and the United States. In Section 3 the history of the theoretical development of FEL is presented, providing an insight into the conceptual issues that shaped FEL research in both countries. The remainder of the report is devoted primarily to the Soviet side of FEL research. Section 4 describes the organizational features of this research in terms of the performer institutes and leadership, focusing on the role of the Academy of Sciences, USSR. Section 5 analyzes the scientific objectives of Soviet FEL research, for the most part as discussed by Soviet reviewers of their research program. Section 6 presents conclusions.

  8. Multidimensional simulations of the ELFA superradiant free electron laser

    NASA Astrophysics Data System (ADS)

    Pierini, P.; Fawley, W. M.; Sharp, W. M.

    1991-07-01

    ELFA (electron laser facility for acceleration) is a high-gain, microwave ( ν = 100 GHz) free electron laser (FEL) facility driven by an rf linac. ELFA will test the existence of the theoretically predicted regimes of strong and weak superradiance. Both regimes can be studied with the same FEL by changing the height of the interaction waveguide, which controls the radiation group velocity, and thus the relative slippage between electrons and photons. The operation of ELFA has been modeled using a modified version of the two-dimensional, time-dependent sideband code GINGER. The simulations take into account the time and space variations of the radiation field, as well as the space charge and transverse emittance of the electron beam. The sensitivity of the superradiant signal to variations of the beam emittance, energy and energy spread is examined.

  9. following an electron bunch for free electron laser

    SciTech Connect

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/, for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)

  10. Gamma-ray free-electron lasers: Quantum fluid model

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Serbeto, A.; Galvão, R. M. O.; Mendonça, J. T.; Monteiro, L. F.

    2014-12-01

    A quantum fluid model is used to describe the interaction of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations is obtained and solved numerically. The numerical results indicate that intense γ-ray free-electron laser emission, with intensities approaching the Schwinger limit, can be driven by the strong nonlinear space-charge wave, for feasible values of the electron beam parameters. However, the achievement of this regime of extreme intensities depends rather critically on the choice of the detuning and of the signal initial phase at the entrance of the interaction region.

  11. Radiofrequency superconductivity applied to free-electron lasers

    SciTech Connect

    Bohn, C.L.; Benson, S.V.

    1998-01-01

    Low wall losses and low wakefields inherent in superconducting radiofrequency (srf) cavities make them attractive candidates for accelerators that operate efficiently at high continuous-wave (cw) gradients. Such accelerators are desirable for free-electron lasers (FELs) that extract high-power cw light from a high-average-current electron beam, or that produce ultrashort-wavelength light from a high-energy electron beam. Efficiency is a prime consideration in the former case, while high electron-beam quality is a prime consideration in the latter case. This paper summarizes the status of FEL projects involving srf accelerators. It also introduces Jefferson Lab`s srf FEL and surveys its design because it is a new machine, with commissioning having commenced in October 1997. Once commissioning is complete, this FEL should produce tunable, cw, kW-level light at 3-6 {mu}m wavelength.

  12. Focusing mirror for x-ray free-electron lasers

    SciTech Connect

    Mimura, Hidekazu; Kimura, Takashi; Yamakawa, Daisuke; Matsuyama, Satoshi; Morita, Shinya; Uehara, Yoshihiro; Ohmori, Hitoshi; Lin, Weimin; Yumoto, Hirokatsu; Ohashi, Haruhiko

    2008-08-15

    We present the design, fabrication, and evaluation of a large total-reflection mirror for focusing x-ray free-electron laser beams to nanometer dimensions. We used an elliptical focusing mirror made of silicon that was 400 mm long and had a focal length of 550 mm. Electrolytic in-process dressing grinding was used for initial-step figuring and elastic emission machining was employed for final figuring and surface smoothing. A figure accuracy with a peak-to-valley height of 2 nm was achieved across the entire area. Characterization of the focused beam was performed at BL29XUL of SPring-8. The focused beam size was 75 nm at 15 keV, which is almost equal to the theoretical size.

  13. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOEpatents

    Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  14. Focusing of Novosibirsk Free Electron Laser (NovoFEL) radiation into paraxial segment

    NASA Astrophysics Data System (ADS)

    Agafonov, Andrey N.; Volodkin, Boris O.; Kachalov, Denis G.; Knyazev, Boris A.; Kropotov, Grigory I.; Tukmakov, Konstantin N.; Pavelyev, Vladimir S.; Tsypishka, Dmitry I.; Choporova, Yulia Yu.; Kaveev, Andrey K.

    2016-06-01

    We demonstrate results of studies of a silicon binary diffractive optical element (DOE) focusing a terahertz laser Gaussian beam into a paraxial segment. The characteristics of the DOE were examined on a Novosibirsk Free Electron Laser beam of 141-μm wavelength.

  15. Biological applications of ultraviolet free-electron lasers

    SciTech Connect

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  16. Focusing effect and modulation mechanism of the beam self-fields on the electronʼs Larmor rotation in a free-electron laser with an axial guide magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Chang

    2013-01-01

    It is revealed that at anti-resonance in a free-electron laser with a reversed guide magnetic field, the beam self-fields can act to focus the beam transport and prevent the electrons from striking on the waveguide wall before the wiggler exit. It is found that the focusing function results from the modulation of the periodically-varying self-field tangential and normal components on the electron's Larmor rotation. As a potential application, substantial improvement of the wave gain and output power at anti-resonance could be expected, since the beam current loss can be obviated by using this modulation mechanism.

  17. Free-electron lasers with very slow wiggler taper

    SciTech Connect

    Bosley, D.L.; Kevorkian, J.

    1990-09-01

    A highly accurate, explicit asymptotic solution of the electron energy and phase is found for a class of free-electron lasers with very long wavelength beams, very low electron energies, and very slow taper of the wiggler field relative to the wiggler period. Dimensionless variables are defined and normalized, and three small parameters which characterize the operation of the FEL are identified. Because of the explicit nature of the solution, our results may be directly used to calculate features such as the escape distance of the electron from the potential well and the effects of the various physical parameters. One important advantage of the very slow wiggler taper is the increased efficiency of the energy transfer from the electron beam to the signal field due to increased bucket width. Numerical calculations are performed to verify all results. 9 refs., 6 figs.

  18. High harmonic generation in the undulators for free electron lasers

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2015-10-01

    We present the analysis of the undulator radiation (UR) with account for major sources of the spectral line broadening. For relativistic electrons we obtain the analytical expressions for the UR spectrum, the intensity and the emission line shape with account for the finite size of the beam, the emittance and the energy spread. Partial compensation of the divergency by properly imposed weak constant magnetic component is demonstrated in the analytical form. Considering the examples of radiation from single and double frequency undulators, we study high harmonic generation with account for all major sources of homogeneous and inhomogeneous broadening with account for the characteristics of the electrons beam. We apply our analysis to free electron laser (FEL) calculations and we compare the obtained results with the radiation of a FEL on the supposition of the ideal undulator.

  19. Long-base free electron laser resonant cavity

    SciTech Connect

    Miller, E.L.; Bender, S.C.; Appert, Q.D.; Saxman, A.C.; Swann, T.A.

    1985-01-01

    A 65-meter resonant cavity has been constructed in order to experimentally determine the characteristics of long resonant cavities as would be required for a free electron laser (FEL). A version using normal incidence mirrors is reported here, and another that includes a grazing incidence mirror is forthcoming. Either version is designed to simulate a FEL operating at 0.5 micron wavelength and is near-concentric with a stability parameter of 0.98. Argon-ion plasma tubes simulate the laser gain that would be provided by a wiggler in an actual FEL. The cavity was constructed on a seismic slab and air turbulence effects were reduced by surrounding the beam with helium in 6 in. diameter tubes. Alignment sensitivities are reported and compared to geometrical and diffraction predictions with good agreement.

  20. The European XFEL Free Electron Laser at DESY

    ScienceCinema

    Weise, Hans [Deutsches Elektronen-Synchrotron, Germany

    2016-07-12

    The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.

  1. Wiggler plane focusing in a linear free electron laser

    DOEpatents

    Scharlemann, Ernst T.

    1988-01-01

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  2. Superconducting accelerators for megawatt-class free-electron lasers

    NASA Astrophysics Data System (ADS)

    Berryman, Kenneth W.; Smith, Todd I.

    1995-04-01

    Power beaming and industrial materials processing are two applications which require high average power lasers operating in the visible or near infrared. Although a handful of gas lasers in the hundred kilowatt range exist, free electron lasers (FELs) should be capable of producing even greater powers, and provide continuous tunability and higher beam quality. While these benefits were realized early in the development of FELs, the highest average power FEL to date has produced just over ten watts. Progress in achieving more average power has been hindered largely by a lack of appropriate accelerators. We believe that superconducting accelerators, which offer continuous operation at high gradients and high efficiency with excellent beam quality are ideal candidates as drivers for such a device. We discuss the challenges of operating both superconducting and room temperature accelerators at high powers and described solutions to these problems. We propose general guidelines along which a superconducting FEL capable of 100 kW to 1 MW could be built and discuss recent experimental demonstrations of these design principles. Finally, we compare the superconducting approach with other possibilities and outline areas requiring future research.

  3. Self-fields in free-electron lasers

    SciTech Connect

    Roberson, C.W.; Hafizi, B.

    1995-12-31

    We have analyzed the free-electron laser (FEL) interaction in the high gain Compton regime. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The theory applies to the case where the optical beam is guided by the electron beam by gain focusing and maintains a constant profile through the wiggler. The finite-emittance electron beam, in turn, is matched to the wiggler. The bitatron motion of the electrons is determined by (i) the focusing force due to wiggler gradients and, (ii) the repulsive force due to self-fields. Based on the single-electron equations, it can be shown that self-field forces tend to increase the period of transverse oscillations of electrons in the wiggler. In the limit, the flow of electrons is purely laminar, with a uniform axial velocity along and across the wiggler resulting in an improved beam quality. We shall also discuss the effects of beam compression on growth rate.

  4. Recent progress of the Los Alamos advanced free electron laser

    SciTech Connect

    Nguyen, D.C.; Austin, R.H.; Chan, K.C.D.; Feldman, D.W.; Goldstein, J.C.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Plato, J.G.; Russell, S.J.

    1994-05-01

    Many industrial and research applications can benefit from the availability of a compact, user-friendly, broadly tunable and high average power free electron laser (FEL). Over the past four years, the Los Alamos Advanced FEL has been built with these design goals. The key to a compact FEL is the integration of advanced beam technologies such as a high-brightness photoinjector, a high-gradient compact linac, and permanent magnet beamline components. These technologies enable the authors to shrink the FEL size yet maintain its high average power capability. The Advanced FEL has been in operation in the near ir (4-6 {mu}m) since early 1993. Recent results of the Advanced FEL lasing at saturation and upgrades to improve its average power are presented.

  5. Optimization of a high efficiency free electron laser amplifier

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-03-01

    The free electron laser (FEL) amplifier is implemented in x-ray FEL facilities to generate short wavelength radiation. The problem of an efficiency increase of an FEL amplifier is now of great practical importance. The technique of undulator tapering in the postsaturation regime is used at the existing x-ray FELs LCLS, SACLA and FERMI, and is planned for use at FLASH, European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform a detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Analysis of the radiation properties from the modulated electron beam and application of similarity techniques allows us to derive the universal law of the undulator tapering.

  6. XUV free-electron laser-based projection lithography systems

    SciTech Connect

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  7. Čerenkov free-electron laser with side walls

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2016-08-01

    In this paper, we have proposed a Čerenkov free-electron laser (CFEL) with metallic side walls, which are used to confine an electromagnetic surface mode supported by a thin dielectric slab placed on top of a conducting surface. This leads to an enhancement in coupling between the optical mode and the co-propagating electron beam, and consequently, performance of the CFEL is improved. We set up coupled Maxwell-Lorentz equations for the system, in analogy with an undulator based conventional FEL, and obtain formulas for the small-signal gain and growth rate. It is shown that small signal gain and growth rate in this configuration are larger compared to the configuration without the side walls. In the nonlinear regime, we solve the coupled Maxwell-Lorentz equations numerically and study the saturation behaviour of the system. It is found that the Čerenkov FEL with side walls saturates quickly, and produces powerful coherent terahertz radiation.

  8. Storage ring two-color free-electron laser

    NASA Astrophysics Data System (ADS)

    Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.; Günster, S.; Wu, Y. K.

    2016-07-01

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradation of FEL mirrors on the two-color FEL operation is reported. Furthermore, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.

  9. A compact x-ray free electron laser

    SciTech Connect

    Barletta, W.; Attac, M.; Cline, D.B.; Kolonko, J.; Wang, X.; Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G.; Gallardo, J.; Pellegrini, C.; Westenskow, G.

    1988-09-09

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  10. A millimeter and submillimeter wavelength free-electron laser

    SciTech Connect

    Kirkpatrick, D. A.; Bekefi, G.; DiRienzo, A. C.; Freund, H. P.; Ganguly, A. K.

    1989-07-01

    Measurements of millimeter and submillimeter wavelength emission (240GHz/lt/..omega../2..pi../lt/470 GHz) from a free-electron laser are reported. The laseroperates as a superradiant amplifier and without an axial guide magnetic field; focusing and transport of the electron beam through the wiggler interactionregion are achieved by means of the bifilar helical wiggler field itself.Approximately 18 MW of rf power has been observed at a frequency of 470 GHz,corresponding to an electronic efficiency of 0.8%. Frequency spectra aremeasured with a grating spectrometer and show linewidths ..delta omega../..omega../similar to/2%--4%.The experimental results are in very good agreement with nonlinear numericalsimulations.

  11. Crystallographic data processing for free-electron laser sources

    PubMed Central

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam. PMID:23793149

  12. Crystallographic data processing for free-electron laser sources.

    PubMed

    White, Thomas A; Barty, Anton; Stellato, Francesco; Holton, James M; Kirian, Richard A; Zatsepin, Nadia A; Chapman, Henry N

    2013-07-01

    A processing pipeline for diffraction data acquired using the `serial crystallography' methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  13. Crystallographic data processing for free-electron laser sources.

    PubMed

    White, Thomas A; Barty, Anton; Stellato, Francesco; Holton, James M; Kirian, Richard A; Zatsepin, Nadia A; Chapman, Henry N

    2013-07-01

    A processing pipeline for diffraction data acquired using the `serial crystallography' methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam. PMID:23793149

  14. Microwave axial free-electron laser with enhanced phase stability

    SciTech Connect

    Carlsten, B.; Fazio, M.; Haynes, W.

    1995-12-31

    Free-electron laser (FEL) amplifiers have demonstrated high efficiencies and high output power at microwave wavelengths. However, measurements and simulations have indicated that the present level of phase stability for these devices is not sufficient for driving linear accelerators. Fluctuations in the diode voltage, which is needed to accelerate the electron beam, are the largest cause of the shifts in the phase of the output power. Pulse-power technology cannot keep the voltage fluctuations less than 1/4%. However, we have found a scheme that will make the output phase much less sensitive to these fluctuations by exploiting the traveling wave nature of the FEL interaction. In this paper we study the phase stability issue by analyzing the dispersion relation for an axial FEL, in which the rf field is transversely wiggled and the electron trajectories are purely longitudinal. The advantage of using the axial FEL interaction instead of the common transverse FEL interaction is that (1) the dispersion relation is not additionally complicated by how the transverse electron motion depends on the diode voltage and (2) such a device is simpler and less expensive to construct than a transverse-coupling FEL because there is no wiggler. The axial FEL interaction is with a fast wave and does involve axial bunching of the electron beam, so the results found for this device also apply to transverse-coupling FELs. By examination of the dispersion relation it is found that the effect of the phase dependency on the beam`s velocity can be cancelled by the effect of the phase dependency on the beam`s plasma wave, for an annular electron beam. By changing the annulus radius, exact cancellation can be found for a variety of beam voltages and currents in the ranges of 0.5-1.0 MV and 1-5 kA. This cancellation leads to first-order phase stability, which is not possible for standing-wave devices, such as klystrons.

  15. Analysis of Čerenkov free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2015-03-01

    We present an analysis of a Čerenkov free-electron laser (FEL) driven by a flat electron beam. In this system, an electron beam traveling close to a dielectric slab placed at the top of an ideal conductor interacts with the copropagating electromagnetic surface mode. The surface mode arises due to singularity in the reflectivity of the dielectric slab for the incident evanescent wave. Under suitable conditions, the surface mode grows as a result of interaction with the electron beam. We show that the interaction of the surface mode with the copropagating electron beam can be rigorously understood by analyzing the singularity in the reflectivity. Using this approach, we set up coupled Maxwell-Lorentz equations for the system, in analogy with conventional undulator based FELs. We solve these equations analytically in the small signal regime to obtain formulas for the small signal gain, and the spatial growth rate. Saturation behavior of the system is analyzed by solving these equations numerically in the nonlinear regime. Results of numerical simulations are in good agreement with the analytical calculations in the linear regime. We find that Čerenkov FEL under appropriate conditions can produce copious coherent terahertz (THz) radiation.

  16. An overview of the Lawrence Livermore National Laboratory Free Electron Laser Program

    SciTech Connect

    Shay, H.D.

    1986-12-18

    This paper reviews the status of the LLNL Free Electron Laser Program. Rather than using the output of an rf linac, the electron pulse from an induction linac enters the wiggler magnet without being bunched into small packets. The laser beam makes a single pass through the FEL amplifier. Wavelengths from several millimeters to less than 10/sup -6/m can be amplified. (JDH)

  17. Proton laser accelerator by means of the inverse free electron laser mechanism

    SciTech Connect

    Zakowicz, W.

    1984-07-01

    The inverse free electron laser accelerator is considered to be a potential high gradient electron accelerator. In this accelerator electrons oscillating in the magnetic field of a wiggler can gain energy from a strong laser beam propagating collinearly. The same mechanism of acceleration can work for protons and all other heavier particles. One can expect that the proton acceleration will be less effective, as it is more difficult to wiggle a heavier particle. It is indeed so, but this less efficient coupling of the proton and laser beam is partly compensated by the negligible radiative losses. These losses impose restrictions on the electron acceleration above 100 Gev. 6 references, 2 figures.

  18. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect

    Bhowmik, A.; Lordi, N. . Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. )

    1990-01-01

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  19. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser.

    PubMed

    Zhang, Pei; Baboi, Nicoleta; Jones, Roger M; Shinton, Ian R R; Flisgen, Thomas; Glock, Hans-Walter

    2012-08-01

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  20. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    SciTech Connect

    Zhang Pei; Baboi, Nicoleta; Jones, Roger M.; Shinton, Ian R. R.; Flisgen, Thomas; Glock, Hans-Walter

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  1. Axial interaction free-electron laser

    DOEpatents

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  2. Axial interaction free-electron laser

    DOEpatents

    Carlsten, Bruce E.

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  3. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  4. Microwave axial free-electron laser with enhanced phase stability

    SciTech Connect

    Carlsten, B.E.; Fortgang, C.M.; Fazio, M.V.; Haynes, W.B.; May, L.M.; Potter, J.M.

    1995-09-01

    Free-electron lasers (FELs) amplifiers have demonstrated high efficiencies and high output power at microwave wavelengths. However, measurements and simulations have indicated that the present level of phase stability for these devices is not sufficient for driving linear accelerators. Fluctuations in the diode voltage, which is needed to accelerate the electron beam, are the largest cause of the shifts in the phase of the output power. Present-day pulse-power technology cannot keep the voltage fluctuations less than 1/4%. However, we have found a scheme that win make the output phase much less sensitive to these fluctuations by exploiting the traveling-wave nature of the FEL interaction. In this paper we study the phase stability issue by analyzing the dispersion relation for an axial FEL, in which the rf field is transversely wiggled and the electron trajectories are purely longitudinal. The advantage of using the axial FEL interaction instead of the common transverse FEL interaction is that the dispersion relation is not additionally complicated by how the transverse electron motion depends on the diode voltage and such a device is simpler and less expensive to construct than a transverse-coupling FEL because there is no wiggler. By examination of the dispersion relation it is found that the effect of the phase dependency on the beam`s velocity can be cancelled by the effect of the phase dependency on the beam`s plasma wave, for an annular electron beam. This cancellation leads to first-order phase stability, which is not possible for standing-wave devices, such as klystrons. Detailed particle-in-cell simulations are included to demonstrate the transverse wiggling of the rf mode and the axial FEL interaction.

  5. A spectral unaveraged algorithm for free electron laser simulations

    SciTech Connect

    Andriyash, I.A.; Lehe, R.; Malka, V.

    2015-02-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes.

  6. NIST-NRL free-electron laser. Status report

    SciTech Connect

    Debenham, P.H.; Ayres, R.L.; Cassatt, W.A.; Johnson, B.C.; Johnson, R.G.

    1990-01-01

    A free-electron laser (FEL) user facility is being constructed. The FEL, which will be operated as an oscillator, will be driven by the 17 MeV to 185 MeV to 185 MeV electron beam of the NIST continuous-wave racetrack microtron. Anticipated performance of the FEL includes: wavelength tuneable from 200 nm to 10 micrometers; a continuous train of 3-ps pulses at either 16.5 or 66.1 MHz; and average power of 10 W to 200 W. Construction of the RTM will be completed in January 1991. The measured rms field error is 0.6%, which is sufficiently small for good gain. With a full-scale model of the 9-m-long optical cavity, we have developed a method of aligning the cavity end mirrors to the required accuracy using white light and an autocollimator/telescope. We have performed three-dimensional simulations of performance including the effects of the electron beam (emittance, pulse length and shape, and timing jitter), undulator field errors, and cavity losses. These calculations predict adequate gain for lasing across the full wavelength range.

  7. LIPSS Free-Electron Laser Searches for Dark Matter

    SciTech Connect

    Afanaciev, Andrei; Beard, Kevin; Biallas, George; Boyce, James R; Minarni, M; Ramdon, R; Robinson, Taylor; Shinn, Michelle D; Slocum, P

    2011-09-01

    A variety of Dark Matter particle candidates have been hypothesized by physics Beyond the Standard Model (BSM) in the very light (10{sup -6} - 10{sup -3} eV) range. In the past decade several international groups have conducted laboratory experiments designed to either produce such particles or extend the boundaries in parameter space. The LIght Pseudo-scalar and Scalar Search (LIPSS) Collaboration, using the 'Light Shining through a Wall' (LSW) technique, passes the high average power photon beam from Jefferson Lab's Free-Electron Laser through a magnetic field upstream from a mirror and optical beam dump. Light Neutral Bosons (LNBs), generated by coupling of photons with the magnetic field, pass through the mirror ('the Wall') into an identical magnetic field where they revert to detectable photons by the same coupling process. While no evidence of LNBs was evident, new scalar coupling boundaries were established. New constraints were also determined for hypothetical para-photons and for millicharged fermions. We will describe our experimental setup and results for LNBs, para-photons, and milli-charged fermions. Plans for chameleon particle searches are underway.

  8. Nonlinear harmonic generation in high-gain free-electron lasers

    SciTech Connect

    Dattoli, G.; Ottaviani, P.L.; Pagnutti, S.

    2005-06-01

    We reconsider the derivation of semianalytical expressions providing the most significant aspects of the high-gain free-electron laser dynamics. We obtain new expressions for the growth of the laser power, of the e-beam-induced energy spread, and of the higher-order nonlinearly generated harmonics. The procedure we employ, based on theoretical ansatz and fitting methods, allows the determination of crucial quantities like the expected harmonic output power and its dependences on the e-beam parameters.

  9. Comparative study of coherent multi-color radiation generation in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiang, Dao; Zhao, Zhentang

    2016-04-01

    We present the comparative study on three representative methods for producing the coherent multi-color radiation in a seeded free electron laser based on the high gain harmonic generation (HGHG). In these schemes, either the electron beam density or the seed laser intensity is modulated to produce a coherent radiation pulse train that yields multiple spectral lines in FEL output. Realistic beam parameters obtained in 3D start-to-end simulations are used to compare the performance of each scheme.

  10. Amplified spontaneous emission in a single pass free electron laser

    SciTech Connect

    Yu, Li Hua; Krinsky, S.

    1988-01-01

    We discuss the relationship of the effective start-up noise in a single pass free electron laser to the spontaneous radiation emitted in the initial gain length of the wiggler magnet. Also, it is noted that the number of modes in the output is related to the phase space volume occupied by the spontaneous radiation emitted in the first gain length. 12 refs.

  11. Wiggler plane focusing in a linear free electron laser

    DOEpatents

    Scharlemann, E.T.

    1988-02-23

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped. 5 figs.

  12. Wiggler plane focusing in a linear free electron laser

    DOEpatents

    Scharlemann, E.T.

    1985-11-21

    This disclosure describes a free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  13. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  14. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  15. Bunch length compression method for free electron lasers to avoid parasitic compressions

    SciTech Connect

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  16. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  17. Efficiency enhancement of a harmonic lasing free-electron laser

    SciTech Connect

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  18. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  19. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  20. Efficiency enhancement of a harmonic lasing free-electron laser

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  1. X-Band Microwave Undulators for Short Wavelength Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.

    2006-01-03

    Microwave undulators have two features that make them attractive to use in free-electron lasers, when compared with conventional static magnetic undulators. One is that the beam aperture is larger than the period, and thus the undulator period is smaller than that achievable with static systems. The second is the possibility of easily producing both circular and planar polarization and dynamically controlling the polarization characteristic and the undulator field intensity. The recent development of high power klystrons and pulse compression techniques at X-band frequency, near 12 GHz, is making this type of undulators very attractive for use in short wavelength free-electron lasers operating in the few nanometers to the Angstrom spectral region. In this paper we discuss the choice of parameters for X-band microwave undulators, the effect of microwave energy losses in the waveguide walls and its possible compensation by tapering the waveguide geometry, and the characteristics of free-electron lasers based on these systems.

  2. Simulation of free-electron lasers seeded with broadband radiation

    SciTech Connect

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon

    2011-03-10

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.

  3. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. ); Bhowmik, A. . Rocketdyne Div.)

    1991-01-01

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

  4. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  5. Storage ring free electron laser dynamics in presence of an auxiliary harmonic radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Thomas, C. A.; Botman, J. I. M.; Bruni, C.; Orlandi, G.; de Ninno, G.; Garzella, D.; Couprie, M. E.

    2005-01-01

    In a Storage Ring Free Electron Laser (SRFEL) there is a strong interdependence between the laser beam and the electron beam from which the laser is generated. The Super ACO storage ring has a second Radio Frequency (RF) cavity at the 5th harmonic of the main RF cavity. It is used to shorten the bunch length, thereby enhancing the laser gain. Employing this RF harmonic cavity instabilities are observed with a strong effect on both the laser radiation properties and the electron beam behaviour. In this paper, we first present beam characteristics of Super-ACO as influenced by the harmonic cavity, and the instabilities of the beam due to this RF cavity. Then we discuss the FEL properties in presence of the harmonic RF cavity. In general the harmonic cavity functions as intended, and it is observed that the laser suppresses the instabilities caused by the harmonic cavity in the absence of the FEL.

  6. Thermal effect control for biomedical tissue by free electron laser

    NASA Astrophysics Data System (ADS)

    Yoshihashi-Suzuki, Sachiko; Kanai, Taizo; Awazu, Kunio

    2007-02-01

    An absorption characteristic and a thermal relaxation time of a target biomedical tissue is an important parameter for development of low-invasive treatment that considers of interaction between biomedical tissue and laser. Laser irradiations with a wavelength corresponding to the absorption characteristics of tissue enable selective treatment. Furthermore, the thermal effect to tissue can be controlled at the laser irradiation time which depends on the laser pulse width and reception rate. A free electron laser (FEL) can continuously vary the wavelength in the mid-infrared region, has a unique pulse structure; the structure at the Institute of the Free Electron Laser (iFEL) consist of train of macropulses with a 15 μs pulse width, and each macropulse contained a train of 300-400 ultrashort micropulse with a 5 ps pulse width. In a previous report, we have proposed a novel laser treatment such as soft tissue cutting, dental treatment and laser angioplasty using the tenability of the FEL. To investigate the thermal effect to the biomedical tissue, we developed a FEL pulse control system using an acousto-optic modulator (AOM). The AOM commonly are used the Q-switch for the pulse laser generation, has a high pulse control efficiency and good operationally. The system can control the FEL macropulse width from 200 ns. This system should be a novel tool for investigating the interaction between the FEL and biomedical tissue. In this report, the interaction between FEL pulse width and biomedical tissue will be discussed.

  7. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  8. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  9. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  10. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect

    Pellegrini, Claudio

    2011-03-02

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  11. First lasing at the high-power free electron laser at Siberian center for photochemistry research

    NASA Astrophysics Data System (ADS)

    Antokhin, E. A.; Akberdin, R. R.; Arbuzov, V. S.; Bokov, M. A.; Bolotin, V. P.; Burenkov, D. B.; Bushuev, A. A.; Veremeenko, V. F.; Vinokurov, N. A.; Vobly, P. D.; Gavrilov, N. G.; Gorniker, E. I.; Gorchakov, K. M.; Grigoryev, V. N.; Gudkov, B. A.; Davydov, A. V.; Deichuli, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Dubrovin, A. N.; Evtushenko, Yu. A.; Zagorodnikov, E. I.; Zaigraeva, N. S.; Zakutov, E. M.; Erokhin, A. I.; Kayran, D. A.; Kiselev, O. B.; Knyazev, B. A.; Kozak, V. R.; Kolmogorov, V. V.; Kolobanov, E. I.; Kondakov, A. A.; Kondakova, N. L.; Krutikhin, S. A.; Kryuchkov, A. M.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Labutskaya, E. A.; Leontyevskaya, L. G.; Loskutov, V. Yu.; Matveenko, A. N.; Medvedev, L. E.; Medvedko, A. S.; Miginsky, S. V.; Mironenko, L. A.; Motygin, S. V.; Oreshkov, A. D.; Ovchar, V. K.; Osipov, V. N.; Persov, B. Z.; Petrov, S. P.; Petrov, V. M.; Pilan, A. M.; Poletaev, I. V.; Polyanskiy, A. V.; Popik, V. M.; Popov, A. M.; Rotov, E. A.; Salikova, T. V.; Sedliarov, I. K.; Selivanov, P. A.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Timoshina, L. A.; Tribendis, A. G.; Kholopov, M. A.; Cherepanov, V. P.; Shevchenko, O. A.; Shteinke, A. R.; Shubin, E. I.; Scheglov, M. A.

    2004-08-01

    The first lasing near wavelength 140 μm was achieved in April 2003 on a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper, we briefly describe the design of FEL driven by an accelerator-recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained at the first experiments, are also presented in the paper.

  12. Free-electron laser simulations on the MPP

    NASA Technical Reports Server (NTRS)

    Vonlaven, Scott A.; Liebrock, Lorie M.

    1987-01-01

    Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.

  13. Component technologies for a recirculating linac free-electron laser

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Madey, John M. J.; Vinokurov, Nikolai A.

    1994-05-01

    The key component technologies required for a high average power free-electron laser (FEL) are described. Some basic aspects of approaches for high average power (scalable to megawatt level) accelerators and FELs are presented. A short description of the Novosibirsk 100 kW average power near infrared (IR) FEL driven by a race-track microtron-recuperator is given. The current status and plans for this facility are provided by Institute of Nuclear Physics (Novosibirsk).

  14. A 3-dimensional theory of free electron lasers

    SciTech Connect

    Webb, S.D.; Wang, G.; Litvinenko, V.N.

    2010-08-23

    In this paper, we present an analytical three-dimensional theory of free electron lasers. Under several assumptions, we arrive at an integral equation similar to earlier work carried out by Ching, Kim and Xie, but using a formulation better suited for the initial value problem of Coherent Electron Cooling. We use this model in later papers to obtain analytical results for gain guiding, as well as to develop a complete model of Coherent Electron Cooling.

  15. INEX modeling of the Boeing ring optical resonator free-electron laser

    SciTech Connect

    Goldstein, J.C.; Tokar, R.L.; McVey, B.D.; Elliott, C.J. ); Dowell, D.H.; Laucks, M.L.; Lowrey, A.R. )

    1990-01-01

    We present new results from the integrated numerical model of the accelerator/beam transport system and ring optical resonator of the Boeing free-electron laser experiment. Modifications of the electron-beam transport have been included in a previously developed PARMELA model and are shown to reduce dramatically emittance growth in the 180{degree} bend. The new numerically generated electron beam is used in the 3-D FEL simulation code FELEX to calculate expected laser characteristics with the ring optical resonator and the 5-m untapered THUNDER wiggler. Gain, extraction efficiency, and optical power are compared with experimental data. Performance sensitivity to optical cavity misalignments is studied.

  16. A free-electron laser for cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-05-01

    A G-band free-electron laser designed for plasma heating is described using a coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite (nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler provides for enhanced beam focusing and the ability to handle intense beams and high-power continuous wave radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are possible using a 690 kV/40 A beam. No beam loss was found in simulation.

  17. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser

    NASA Astrophysics Data System (ADS)

    Gao, Lili; Wang, Feng; Jiang, Lan; Qu, Liangti; Lu, Yongfeng

    2015-11-01

    This paper is focused on the excitation rates of free electrons of an aluminum (Al) bulk irradiated by an elliptically polarized laser in simulation, using time-dependent density functional theory (TDDFT). The polarized 400 nm, 10 fs laser pulse consisted of two elementary sinusoidal beams, and is adjusted by changing the phase difference φ and the intersection angle θ of the polarization directions between the two beams. The simulation includes cases of φ = π/2 with θ = 30°, θ = 45°, θ = 60°, θ = 90°, θ = 120°, θ = 135°, θ = 150°, and cases of θ = 90° with φ = π/4, φ = π/3, φ = π/2, φ = 2π/3, φ = 3π/4. The absorbed energy, the excitation rates and the density distributions of free electrons after laser termination are investigated. At the given power intensity (1×1014Wcm-2), pulse width (10 fs) and wavelength (400 nm) of each elementary laser beam, computational results indicate that the excitation rate of free electrons is impacted by three major factors: the long axis direction of the laser projected profile, the amplitude difference of the first main oscillation (1st AD), and the total amplitude difference of main oscillations (TAD) of the external electric field. Among the aforementioned three factors for the excitation rate of free electrons, the direction of long axis plays the most significant role. The screen effect is crucial to compare the importance of the remaining two factors. The analysis approach to investigate the electron dynamics under an elliptically polarized laser is both pioneering and effective.

  18. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  19. Deep saturated Free Electron Laser oscillators and frozen spikes

    NASA Astrophysics Data System (ADS)

    Ottaviani, P. L.; Pagnutti, S.; Dattoli, G.; Sabia, E.; Petrillo, V.; Slot, P. J. M. van der; Biedron, S.; Milton, S.

    2016-10-01

    We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. These are very stable configurations and the sub-peaks are found to have a duration corresponding to the coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with natural mode-locked structures in FEL oscillators. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.

  20. Harmonic operation of a free-electron laser

    SciTech Connect

    Latham, P.E.; Levush, B.; Antonsen, T.M. Jr. ); Metzler, N. )

    1991-03-18

    Harmonic operation of a free-electron-laser amplifier is studied. The key issue investigated here is suppression of the fundamental. For a tapered amplifier with the right choice of parameters, it is found that the presence of the harmonic mode greatly reduces the growth rate of the fundamental. A limit on the reflection coefficient of the fundamental mode that will ensure stable operation is derived. The relative merits of tripling the frequency by operating at the third harmonic versus decreasing the wiggler period by a factor of 3 are discussed.

  1. Characteristics of the MIT microwiggler for free electron laser applications

    SciTech Connect

    Catravas, P.; Stoner, R.; Bekefi, G.

    1995-12-31

    We report work on the development of microwiggler technology for free electron laser research. The MIT microwiggler is a pulsed electromagnet with 70 periods of 8.8 mm each which generates a peak on-axis field of 4.2 kG. The wiggler is characterized by extensive tunability. We developed a novel tuning regimen to control 140 degrees of freedom afforded by the individually tunable half periods and achieved an rms spread in the peak amplitudes of 0.08%. This is the lowest attained to date in any sub-cm period wiggler. The microwiggler design and comprehensive measurements of its characteristics will be described.

  2. Lasing at 12 µm Mid-Infrared Free-Electron Laser in Kyoto University

    NASA Astrophysics Data System (ADS)

    Ohgaki, Hideaki; Kii, Toshiteru; Masuda, Kai; Zen, Heishun; Sasaki, Satoshi; Shiiyama, Takumi; Kinjo, Ryota; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2008-10-01

    Laser amplification using a 12 µm mid-infrared free-electron laser (MIR-FEL) was observed at the Institute of Advanced Energy (IAE), Kyoto University. A 25 MeV electron beam of 17 A peak current was used for the lasing experiment. A beam loading compensation method with an RF amplitude control in the thermionic RF gun was used to extend the macropulse duration against the backbombardment effect in the thermionic RF gun. As a result, an electron beam with a 4 µs duration was generated. A laser output with an intensity 50 times as high as the spontaneous emission intensity was observed. FEL gain was estimated to be 16% from the exponential growth of the laser output signal, and a cavity loss of 2.8% was estimated from the decay of the laser output signal. Three-dimensional (3D) FEL simulation was also performed to achieve the gain saturation in our FEL device.

  3. Multicolor High-Gain Free-Electron Laser Driven by Seeded Microbunching Instability.

    PubMed

    Roussel, E; Ferrari, E; Allaria, E; Penco, G; Di Mitri, S; Veronese, M; Danailov, M; Gauthier, D; Giannessi, L

    2015-11-20

    Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL. PMID:26636852

  4. Multicolor High-Gain Free-Electron Laser Driven by Seeded Microbunching Instability

    NASA Astrophysics Data System (ADS)

    Roussel, E.; Ferrari, E.; Allaria, E.; Penco, G.; Di Mitri, S.; Veronese, M.; Danailov, M.; Gauthier, D.; Giannessi, L.

    2015-11-01

    Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL.

  5. Gain in the non-steady-state free-electron laser

    SciTech Connect

    Wu, D.; Min, Y.

    1995-09-01

    The non-steady-state self-consistent equation in the linear regime of the free-electron laser (FEL) and the low gain formulas in the non-steady-state FEL are derived in this paper. It is found that due to slippage the nonuniformity effect in the longitudinal distribution of the electron beam density is dominant in the influence of the electron pulse length on the gain of the FEL. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  7. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    PubMed

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  8. Effects of bunch density gradient in high-gain free-electron lasers.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse.

  9. Space-frequency model of ultrawide-band interactions in free-electron lasers.

    PubMed

    Pinhasi, Y; Lurie, Yu; Yahalom, A

    2005-03-01

    The principle of operation of intense radiation devices such as microwave tubes, free-electron lasers, and masers, is based on a distributed interaction between an electron beam and electromagnetic radiation. Some of the effects emerging during the interaction involve a continuum of frequencies in their broadband spectrum. We developed a three-dimensional, space-frequency theory for the analysis and simulation of radiation excitation and propagation in electron devices and free-electron lasers operating in an ultrawide range of frequencies. The total electromagnetic field (radiation and space-charge waves) is presented in the frequency domain as an expansion in terms of transverse eigenmodes of the (cold) cavity, in which the field is excited and propagates. The mutual interaction between the electron beam and the electromagnetic field is fully described by coupled equations, expressing the evolution of mode amplitudes and electron beam dynamics. The approach is applied in a numerical particle code WB3D, simulating wideband interactions in free-electron lasers operating in the linear and nonlinear regimes.

  10. Free-electron laser as a driver for a resonant cavity at 35 GHz

    PubMed

    Lefevre; Gardelle; Rullier; Vermare; Donohue; Meurdesoif; Lidia

    2000-02-01

    An intense beam of relativistic electrons (800 A, 6.7 MeV) has been bunched at 35 GHz by a free-electron laser, in which output power levels exceeding 100 MW were obtained. The beam was then extracted and transported through a resonant cavity, which was excited by its passage. Microwave power levels of 10 MW were extracted from the cavity, in reasonable agreement with the simple formula which relates power to known properties of both the beam and the cavity.

  11. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

    SciTech Connect

    Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.; Duffy, Leanne D.; Heath, Cynthia E.; Marksteiner, Quinn R.; Nguyen, Dinh Cong; Russell, Steven J.; Ryne, Robert D.; Sheffield, Richard L.; Simakov, Evgenya I.; Yampolsky, Nikolai A.

    2011-01-01

    The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

  12. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  13. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  14. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  15. Effect of free electron laser (FEL) irradiation on tooth dentine

    NASA Astrophysics Data System (ADS)

    Ogino, Seiji; Awazu, Kunio; Tomimasu, Takio

    1996-12-01

    Free electron laser (FEL) gives high efficiency for the photo-induced effects when the laser is tuned to the absorption maximum of target materials. The effect on dentine was investigated using the FEL tuned to 9.4 micrometers , which is an absorption maximum of phosphoric acid in infrared region. As a result, irradiated dentine surface which was amorphous had changed to the recrystalized structure by the spectroscopic analysis of IR absorption and x-ray diffraction. Furthermore, the atomic ratio of P/Ca had reduced from 0.65 to 0.60. These results indicated that 9.4micrometers -FEL irradiation caused the selective ablation of phosphoric acid ion and the reconstruction of disordered atoms.

  16. Free-electron laser as a laboratory instrument

    SciTech Connect

    Schmerge, J.F.; Lewellen, J.W.; Huang, Y.C.; Feinstein, J.; Pantell, R.H.

    1995-06-01

    A free-electron laser (FEL), with a component cost, including the accelerator, of approximately $300,000, has a laser at a wavelength of 85 microns with approx. 12 ps micropulse duration, achieving a power growth four orders of magnitude greater than the coherent spontaneous emission, and with a small-signal, single-pass gain of 21%. The price is about an order of magnitude less than other FELs for the far infrared, and transforms the device from the role of a national facility to that of a laboratory instrument. Cost reduction was achieved by employing several novel features: a microwave cavity gun for the accelerator, a staggered-array wiggler, and an on-axis hole in the upstream cavity mirror for electron ingress and radiation egress.

  17. Medical free-electron laser: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Bell, James P.; Ponikvar, Donald R.

    1994-07-01

    The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.

  18. High-gain X-ray free electron laser by beat-wave terahertz undulator

    SciTech Connect

    Chang, Chao; Hei, DongWei; Pellegrin, Claudio; Tantawi, Sami

    2013-12-15

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  19. Acoustic analog of a free-electron laser

    SciTech Connect

    Zavtrak, S.T.

    1995-12-31

    As well known, at the present time there are many types of laser the operation of which is based on the stimulated emission of light by an active medium. Lasers are generators of coherent electromagnetic waves in the range from ultraviolet to submillimeters. But acoustic analogs of such devices have not been created up to now in spite of the progress in laser technology. Meanwhile, an acoustic laser could have a lot of interesting applications. Recently a theoretical scheme for an acoustic laser was proposed by the present author. A liquid dielectric with dispersed particles was considered as an active medium. The pumping was created by an oscillating electric field deforming dispersed particle volumes. Different types of oils or distilled water can serve as a liquid dielectric with gas bubbles as dispersed particles. Gas bubbles in water can be created by an electrolysis. The phase bunching of the initially incoherent emitters (gas bubbles) was realized by acoustic radiation forces. This scheme is an analog of the free-electron laser (FEL). It was shown that two types of losses must be overcome for the beginning of a generation. The first type results from the energy dissipation in the active medium and the second one is caused by radiation losses at the boundaries of the resonator. The purposes of this report are: (1) to discuss the analogies between the acoustic laser and FEL; (2) to propose an effective scheme of an acoustic laser with a mechanical pumping (by a piezoelectric emitter of the piston type); (3) to consider the schemes of acoustic lasers with the different types of the resonators (rectangular and cylindrical); (4) to discuss the possibility of the creation of an impact acoustic laser (5) to discuss the experimental works which are planned to be carried out in cooperation with prof. L.A. Crum.

  20. First demonstration of a free-electron laser driven by electrons from a laser irradiated photocathode

    NASA Astrophysics Data System (ADS)

    Curtin, Mark; Bennett, Glenn; Burke, Robert; Benson, Stephen; Madey, J. M. J.

    Results are reported from the first observation of a free-electron laser (FEL) driven by an electron beam from a laser-irradiated photocathode. The Rocketdyne/Stanford FEL achieved sustained oscillations lasting over three hours and driven by photoelectrons accelerated by the Stanford Mark III radio-frequency linac. A LaB6 cathode, irradiated by a tripled Nd:YAG mode-locked drive laser, is the source of the photoelectrons. The drive laser, operating at 95.2 MHz, is phase-locked to the 30th subharmonic of the S-band linac. Peak currents in excess of 125 amps are observed and delivered to the Rocketdyne two-meter undulator, which is operated as a stand-alone oscillator. The electron beam has an energy spread of 0.8 percent (FWHM) at 38.5 MeV and an emittance, at the undulator, comparable to that observed for thermionic operation of the electron source. Small signal gain in excess of 150 percent is observed. Preliminary estimates of the electron beam brightness deliverable to the undulator range from 3.5 to 5.0 x 10 to the 11 amps/sq m.

  1. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  2. Free-electron lasers: Echoes of photons past

    NASA Astrophysics Data System (ADS)

    Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-08-01

    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source.

  3. Studies of fullerene absorption and production using an infrared free-electron laser

    SciTech Connect

    Affatigato, M.; Haglund, R.F.; Ying, Z.C.; Compton, R.N.

    1995-12-31

    Tunable photon sources such as free-electron lasers are potentially valuable tools in spectroscopic studies of fullerenes, a new class of carbon materials with unique cage structures. We have used the infrared free-electron-laser facility at Vanderbilt University to study the infrared absorption of gas-phase fullerene molecules and also to investigate the effects of an infrared laser in the synthesis and crystallization of fullerene materials. In one experiment, fullerene vapor was created in a heat pipe through which the FEL beam was passed; the transmission of the FEL beam relative to a reference detector was measured as a function of wavelength. A large (>10%) absorption of the IR laser was observed when it passed through C{sub 60} vapor at {approximately}800{degrees}C. Due to the broad spectral width of the FEL as well as spectral congestion, no spectral peaks were seen when the laser wavelength was tuned across a T{sub 1u}C{sub 60} IR mode near 7.0 {mu}. However, it is expected that the vibrational features can be resolved experimentally by passing the transmitted beam through a monochromator. In a separate experiment, the FEL beam was focused onto a surface of graphite or graphite/metal mixture target. Various fullerene molecules, including endohedral types, were produced when the soot was recovered from the ablation chamber. The yield of the products was measured to be {approximately}0.4 g/J of the incident laser energy. However, both the yield and the product distribution are virtually, the same as those in experiments using a nanosecond Nd:YAG laser. This suggests that the laser wavelength is not a crucial parameter in making fullerenes by laser ablation. Even when the laser is at resonance with one of the vibrational modes of C{sub 60}, the fullerene production is neither substantially enhanced nor suppressed.

  4. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    SciTech Connect

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-09-15

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  5. Nanofocusing of X-ray free-electron lasers by grazing-incidence reflective optics.

    PubMed

    Yamauchi, Kazuto; Yabashi, Makina; Ohashi, Haruhiko; Koyama, Takahisa; Ishikawa, Tetsuya

    2015-05-01

    Total-reflection mirror devices for X-ray free-electron laser focusing are discussed in terms of optical design, mirror-fabrication technology, a wavefront diagnosis method and radiation-damage testing, as a review of the present status of the focusing optics at the SPring-8 angstrom compact free-electron laser (SACLA). Designed beam sizes of 1 µm and 50 nm, and spot sizes almost matching prediction have been achieved and used to explore topics at the forefront of natural science. The feasibility of these devices is determined to be sufficient for long-term and stable operation at SACLA by investigating the radiation-damage threshold and achievable accuracies in the mirror figure and alignment.

  6. Bunching properties of a classical microtron-injector for a far infrared free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevitch, Grigori M.; Serednyakov, Stanislav S.; Vinokurov, Nikolai A.; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jongmin

    2001-12-01

    Longitudinal bunching properties of a classical microtron have been investigated by the numerical simulation of the longitudinal motion of accelerated electrons. The simulations were performed for the 12-turn microtron that has been used as an injector for the KAERI far infrared free electron laser. Based on the bunching properties of the electron beam, the temporal distribution of the coherent undulator radiation power during a macro pulse from the free electron laser was calculated. In the calculations, we took into account the dispersion properties of the accelerating cavity and deviations of the bunch repetition rate that were measured by the heterodyne method in real operating conditions of the microtron. The calculation results are compared with the experimental data.

  7. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  8. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  9. Chaos in an ion-channel free-electron laser with realistic helical wiggler

    SciTech Connect

    Esmaeilzadeh, Mahdi; Taghavi, Amin

    2012-11-15

    Chaotic behavior of an electron motion in a free-electron laser with realistic helical wiggler and ion-channel guiding is studied using Poincare surface-of-section maps. The effects of a realistic electron beam density on chaotic electron dynamics are investigated by considering an electron beam with Gaussian density profile in radial distance. The effects of self-fields on chaotic electron dynamics are investigated for different Gaussian beam parameters, and the results are compared with those of uniform electron beam. It is shown that the electron chaotic behavior can be controlled by changing the Gaussian beam parameter. Also, the chaotic behavior can be controlled by increasing the ion-channel and/or the electron beam densities.

  10. Recent Developments in Superconducting RF Free Electron Lasers

    SciTech Connect

    Lia Merminga

    2001-09-01

    Superconducting RF (SRF) Free Electron Lasers (FELs) worldwide are reviewed. Two examples of high performance SRF FELs are discussed in detail: First, the Tesla Test Facility (TTF) FEL at DESY, which recently demonstrated Self Amplified Spontaneous Emission (SASE) saturation at the wavelength of 98 nm, an important milestone towards X-ray FELs in the {angstrom} regime. Second, the Jefferson Lab IR FEL, which recently lased with 2.1 kW of average power while energy recovering 5 mA of average current, an important milestone towards high average power FELs and towards Energy Recovering Linacs (ERLs) in general. We discuss the scientific potential and accelerator physics challenges of both classes of SRF-driven FELs.

  11. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  12. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  13. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available. PMID:23331310

  14. Strategies towards a compact XUV free electron laser adopted for the LUNEX5 project

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Szwaj, C.; Bielawski, S.; Hubert, N.; Benabderrahmane, C.; Briquez, F.; Chapuis, L.; Marteau, F.; Valléau, M.; Marcouillé, O.; Marchand, P.; Diop, M.; Marlats, J. L.; Tavakoli, K.; Zerbib, D.; Cassinari, L.; Bouvet, F.; Herbeaux, C.; Bourassin-Bouchet, C.; Dennetière, D.; Polack, F.; Lestrade, A.; Khojoyan, M.; Yang, W.; Sharma, G.; Morin, P.; Loulergue, A.

    2016-02-01

    More than 50 years after the laser discovery, X-ray free electron lasers (FEL), the first powerful tuneable, short pulse lasers in the X-ray spectral range, are now blooming in the world, enabling new discoveries on the ultra-fast dynamics of excited systems and imaging. LUNEX5 demonstrator project aims at investigating paths towards advanced and compact FELs. Two strategies are adopted. The first one concerns the FEL line where seeding and echo harmonic generation are implemented together with compact cryogenic in-vacuum undulators. In the second one, the electron beam is no longer provided by a conventional linear accelerator but by a laser plasma process, while a necessary particular electron beam manipulation is required to handle the electron properties to enable FEL amplification.

  15. High Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    SciTech Connect

    Sears, Christopher M.S.; Colby, Eric; Cowan, Ben; Siemann, Robert H.; Spencer, James; Byer, Robert L.; Plettner, Tomas; /Stanford U., Phys. Dept.

    2005-05-13

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  16. High-Harmonic Inverse Free-Electron-Laser Interaction at 800nm

    SciTech Connect

    Sears, C

    2006-02-17

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator for micro bunching of beams for laser acceleration experiments [1,2]. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.5 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We also compare the experimental results to a simple analytic model that describes coupling to high order harmonics of the interaction.

  17. Modeling of induction-linac based free-electron laser amplifiers

    SciTech Connect

    Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.

  18. Modeling Of Induction-Linac Based Free-Electron Laser Amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, Raynard A.; Fawley, William M.; Scharlemann, Ernst T.

    1989-05-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multi-megawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  19. Modeling of induction-linac based free-electron laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, R. A.; Fawley, W. M.; Scharlemann, E. T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for Free-Electron Laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  20. X-Band Microwave Undulators for Short Wavelength Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2006-01-01

    Microwave undulators have two features that make them attractive to use in free-electron lasers, when compared with conventional static magnetic undulators. One is that the beam aperture is larger than the period, and thus the undulator period is smaller than that achievable with static systems. The second is the possibility of easily producing both circular and planar polarization and dynamically controlling the polarization characteristic and the undulator field intensity. The recent development of high power klystrons and pulse compression techniques at X-band frequency, near 12 GHz, is making this type of undulators very attractive for use in short wavelength free-electron lasers operating in the few nanometers to the Ångstrom spectral region. In this paper we discuss the choice of parameters for X-band microwave undulators, the effect of microwave energy losses in the waveguide walls and its possible compensation by tapering the waveguide geometry, and the characteristics of free-electron lasers based on these systems.

  1. Sensitivity studies of a standing-wave free-electron laser

    SciTech Connect

    Rangarajan, G.; Sessler, A.

    1992-06-01

    A standing-wave free-electron laser (SWFEL) has been proposed for use in a two-beam accelerator (TBA). We modify the previous one-dimensional discrete cavity model of the SWFEL by introducing drifts between cavities. We also vary the input beam energy as a function of the bunch number. In this new model, we obtain a stable equilibrium solution for a well-bunched beam (even after including all nonlinear terms). We obtain analytic expressions characterizing this equilibrium in the limit of small cavity lengths. We study the dependence of fluctuations in signal phase along the device as a function of detuning, input beam energy, beam length, current errors, and initial signal field amplitude. We are able to find an optimized set of parameters for which the output energy changes by less than 3% across the cavities for a 1% detuning. The maximum change in signal phase is less than 0.12 radians.

  2. Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs

    SciTech Connect

    Trent Allison; James Coleman; Richard Evans; Al Grippo; Kevin Jordan

    2002-09-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse controller (DLPC) (photocathode source controller). These range from no beam to nearly 2 megawatts of electron beam power. Automatic masking is used for the BLMs during low-power modes when one might be using beam viewers. The system also reviews the setup for the two different beamlines, the IR path or the UV path, and will allow or disallow operations based on magnet settings and valve positions. This paper will describe the approach taken for the JLab 10-kW FEL. Additional details can be found on our website http://laser.jlab.org [2].

  3. Hemostatic properties of the free-electron laser

    NASA Astrophysics Data System (ADS)

    Cram, Gary P., Jr.; Copeland, Michael L.

    1998-09-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam® (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam® or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely support previous

  4. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  5. Deliberate misalignment in free electron lasers with a hole coupling

    SciTech Connect

    Zhulin, V.I.

    1995-12-31

    In a conventional laser operation misalignment of resonator mirrors leads usually to undesirable effects and has to be avoided. But in some certain types of cavity configurations deliberate introduction of misalignment makes it possible to improve considerably the characteristics of out-put radiation. The example of such configurations is an optical scheme with hole coupling. Two options are considered: (1) the free electron laser (FEL) with the radiation output through the on-axis hole at the exit mirror; (2) the external resonator (used for pulse stacking) where the exit FEL radiation enters this resonator through the on-axis hole at the input mirror. These configurations are investigated with the continuous wave 3-D code. It is shown that in a FEL with a hole coupling the transverse distribution of intracavity mode is characterised under certain conditions by a on-axis dip. The introduction of deliberate misalignment, characterised by a mirror tilt angle {theta}, leads to a shift and variation of the spacial structure. It is shown that due to the complicated structure of intracavity field, the dependences of the output power P on {theta} become nonmonotonic. For optimal value of {theta} = {theta}{sub opt} the output power could be much bigger than for the case {theta} = 0. Moreover, the introduction of deliberate misalignment into optical cavity provides an opportunity not only to increase the output power but also to smooth the dependences of the output characteristics on the radiation wavelength.

  6. Nonlinear pulse evolution in seeded free-electron laser amplifiers and in free-electron laser cascades

    SciTech Connect

    Giannessi, L.; Musumeci, P.; Spampinati, S.

    2005-08-15

    The advances in laser technology have made available very short and intense laser pulses which can be used to seed a high-gain single-pass free-electron laser (FEL) amplifier. With these seed pulses, a regime of the FEL interaction where the radiation evolution is simultaneously dominated by nonlinear effects (saturation) and time-dependent effects (slippage) can be explored. This regime is characterized by the propagation of a solitary wavelike pulse where the power of the optical wave grows quadratically with time, its pulse length decreases and the spectral bandwidth increases. We analyze the interplay between the field and particle dynamics of this propagation regime which was studied before and termed super-radiance. Furthermore we analyze the properties of the strong higher-order harmonic emission from this wave and its behavior when propagating in a cascade FEL. The super-radiant pulse is indeed capable of passing through the stages of a cascade FEL and to regenerate itself at the wavelength of the higher-order harmonic. The optical pulse obtained is shorter than a cooperation length and is strongly chirped in frequency, thus allowing further longitudinal compression down to the attosecond time scale.

  7. Design of a Bragg cavity for a millimeter wave free-electron laser

    SciTech Connect

    Wang, M.C.; Granatstein, V.L.; Kehs, R.A.

    1986-03-31

    This letter concerns a design of a Bragg cavity for TM modes that can be used with a free-electron laser (FEL) or other electron beam generator. If the corrugated wall in the FEL section meets the Bragg condition, the distributed feedback mechanism can function like mirrors in the usual laser cavity; however, the Bragg cavity eliminates the dead space between the interaction region and the reflectors so that it is a preferred design where the pulse duration of the electron beam is limited. The calculations indicate that high reflection coefficients that correspond to high cavity Q factor can be obtained if we carefully choose the parameters of the corrugated wall, such as period, amplitude, and length. Finally, we discuss factors to be considered in the design of a Bragg cavity for a FEL based on an intense relativistic electron beam and an electromagnetic pump wave.

  8. A VUV free electron laser at the TESLA test facility at DESY

    NASA Astrophysics Data System (ADS)

    Rossbach, J.; Tesla Fel Study Group

    1996-02-01

    We present the layout of a single pass free electron laser (FEL) to be driven by the TESLA Test Facility (TTF) currently under construction at DESY. The TTF is a test-bed for high-gradient, high efficiency superconducting acceleration sections for a future linear collider. Due to its unrivaled ability to sustain high beam quality during acceleration, a superconducting rf linac is considered the optimum choice to drive a FEL. We aim at a photon wavelength of λ = 6 nm utilizing the TTF after it has been extended to 1 GeV beam energy. Due to lack of mirrors and seed-lasers in this wavelength regime, a single pass FEL and self-amplified spontaneous emission (SASE) is considered. A first test is foreseen at a larger photon wavelength. The overall design as well as both electron and photon beam properties are discussed.

  9. RF Stability in Energy Recovering Free Electron Lasers: Theory and Experiment

    SciTech Connect

    Lia Merminga

    2001-08-01

    Phenomena that result from the interaction of the beam with the rf fields in superconducting cavities, and can potentially limit the performance of high average power Energy Recovery Free Electron Lasers (FELs), are reviewed. These phenomena include transverse and longitudinal multipass, multibunch Beam Breakup, longitudinal beam-loading types of instabilities and their interaction with the FEL, Higher Order Mode power dissipation, emittance growth and energy spread due to short range wakefields, and rf control issues. We present experimental data obtained at the Jefferson Lab IR FEL with average current up to 5 mA, compare with analytic calculations and simulations and extrapolate the performance of Energy Recovery FELs to much higher average currents, up to approximately 100 mA. This work supported by U.S. DOE Contract No. DE-AC05-84ER40150, the Commonwealth of Virginia and the Laser Processing Consortium.

  10. Suppression of microbunching instability using bending magnets in free-electron-laser linacs.

    PubMed

    Qiang, Ji; Mitchell, Chad E; Venturini, Marco

    2013-08-01

    The microbunching instability driven by collective effects of the beam inside an accelerator can significantly degrade the final electron beam quality for free electron laser (FEL) radiation. In this Letter, we propose an inexpensive scheme to suppress such an instability in accelerators for next generation FEL light sources. Instead of using an expensive device such as a laser heater or RF deflecting cavities, this scheme uses longitudinal mixing associated with the transverse spread of the beam through bending magnets inside the accelerator transport system to suppress the instability. The final uncorrelated energy spread increases roughly by the current compression factor, which is important in seeded FEL schemes in order to achieve high harmonic short-wavelength x-ray radiation.

  11. Three-Dimensional Wigner-Function Description of the Quantum Free-Electron Laser

    SciTech Connect

    Piovella, N.; Cola, M. M.; Volpe, L.; Schiavi, A.; Bonifacio, R.

    2008-02-01

    A free-electron laser (FEL) operating in the quantum regime can provide a compact and monochromatic x-ray source. Here we present the complete quantum model for a FEL with a laser wiggler in three spatial dimensions, based on a discrete Wigner-function formalism taking into account the longitudinal momentum quantization. The model describes the complete spatial and temporal evolution of the electron and radiation beams, including diffraction, propagation, laser wiggler profile and emittance effects. The transverse motion is described in a suitable classical limit, since the typical beam emittance values are much larger than the Compton wavelength quantum limit. In this approximation we derive an equation for the Wigner function which reduces to the three-dimensional Vlasov equation in the complete classical limit. Preliminary numerical results are presented together with parameters for a possible experiment.

  12. An application of laser-plasma acceleration: towards a free-electron laser amplification

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; El Ajjouri, M.; Bouvet, F.; Dietrich, Y.; Valléau, M.; Sharma, G.; Yang, W.; Marcouillé, O.; Vétéran, J.; Berteaud, P.; El Ajjouri, T.; Cassinari, L.; Thaury, C.; Lambert, G.; Andriyash, I.; Malka, V.; Davoine, X.; Tordeux, M. A.; Miron, C.; Zerbib, D.; Tavakoli, K.; Marlats, J. L.; Tilmont, M.; Rommeluère, P.; Duval, J. P.; N'Guyen, M. H.; Rouqier, A.; Vanderbergue, M.; Herbeaux, C.; Sebdouai, M.; Lestrade, A.; Leclercq, N.; Dennetière, D.; Thomasset, M.; Polack, F.; Bielawski, S.; Szwaj, C.; Loulergue, A.

    2016-03-01

    The laser-plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be to use these beams for the production of radiation: undulator emission has been observed but the rather large energy spread (1%) and divergence (1 mrad) prevent straightforward free-electron laser (FEL) amplification. An adequate beam manipulation through the transport to the undulator is then required. The key concept proposed here relies on an innovative electron beam longitudinal and transverse manipulation in the transport towards an undulator: a ‘demixing’ chicane sorts the electrons according to their energy and reduces the spread from 1% to one slice of a few ‰ and the effective transverse size is maintained constant along the undulator (supermatching) by a proper synchronization of the electron beam focusing with the progress of the optical wave. A test experiment for the demonstration of FEL amplification with an LPA is under preparation. Electron beam transport follows different steps with strong focusing with permanent magnet quadrupoles of variable strength, a demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. The FEL simulations and the progress of the preparation of the experiment are presented.

  13. Sustained Kilowatt Lasing in a Free-Electron Laser with Same Cell Energy Recovery

    SciTech Connect

    G.R. Neil; S. Benson; G. Biallas; C.L. Bohn; D. Douglas; H.F. Dylla; R. Evans; J. Fugitt; J. Gubeli; R. Hill; K. Jordan; G. Krafft; R. Li; L. Merminga; D. Oepts; P. Piot; J. Preble; Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-09-01

    TJNAF recently commissioned its high-average-power infrared free-electron laser (FEL). It incorporates a superconducting accelerator that recovers about 75% of the electron-beam power and converts it to radio-frequency power. In achieving first lasing, the accelerator operated straight-ahead to deliver 38 MeV, 1.1 mA cw average current through the wiggler for lasing at wavelengths near 5 {micro}m. The waste beam was then sent directly to a dump. Stable operation at up to 311 W cw was achieved in this mode. Using a transport loop to send the waste electron beam back to the linac for energy recovery, the machine recently lased cw at up to 1720 W average power at 3.1 {micro}m, for which the electron-beam energy and average current were 48 MeV and 4.4 mA, respectively.

  14. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  15. Boiling the Vacuum with AN X-Ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2004-10-01

    X-ray free electron lasers will be constructed in this decade, both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called TESLA XFEL laboratory uses techniques developed for the design of the TeV energy superconducting electron-positron linear accelerator TESLA. Such X-ray lasers may allow also for high-field science applications by exploiting the possibility to focus their beams to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. We consider here the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production) and review the prospects to verify this non-perturbative production mechanism for the first time in the laboratory.

  16. Nonlinear study of an ion-channel guiding free-electron laser

    SciTech Connect

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2015-04-15

    A nonlinear model and simulations of the output power of an ion-channel guiding free-electron laser (FEL) are presented in this paper. Results show that the nonlinear output power of an ion-channel guiding FEL is comparable to that of an axial guide magnetic field FEL. Compared to an axial guide magnetic field FEL, an ion-channel guiding FEL substantially weakens the negative effect of the electron-beam energy spread on the output power due to its advantageous focusing mechanism on the electron motion.

  17. The Shanghai high-gain harmonic generation DUV free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Z. T.; Dai, Z. M.; Zhao, X. F.; Liu, D. K.; Zhou, Q. G.; He, D. H.; Jia, Q. K.; Chen, S. Y.; Dai, J. P.

    2004-08-01

    The Shanghai deep ultraviolet free-electron laser source (SDUV-FEL) is an HGHG FEL facility designed for generating coherent output with wavelength down to 88 nm. The design and the relevant R&D of this HGHG FEL source have been under way since 2000. Currently, a 150 MeV S-band electron injector is under construction as the first linac section to produce a high brightness beam. The design study and the present R&D status of the SDUV-FEL have been presented in this paper.

  18. Possibility of a stimulated-C-hacekerenkov free-electron laser

    SciTech Connect

    Bazylev, V.A.; Goloviznin, V.V.

    1986-02-01

    The amplification of a transverse electromagnetic wave by a relativistic electron beam in a refractive medium in an external magnetic field, directed parallel to the magnetic component of the field of the wave, is analyzed. An expression is derived for the efficiency with which electron energy is converted into the energy of coherent electromagnetic radiation in the highly nonlinear case. The effect of multiple scattering of electrons in the medium is analyzed. This approach may have some advantages over other types of free-electron lasers.

  19. Mixing and space-charge effects in free-electron lasers

    SciTech Connect

    Peter, E.; Endler, A.; Rizzato, F. B.; Serbeto, A.

    2013-12-15

    The present work revisits the subjects of mixing, saturation, and space-charge effects in free-electron lasers. Use is made of the compressibility factor, which proves to be a helpful tool in the related systems of charged beams confined by static magnetic fields. The compressibility allows to perform analytical estimates of the elapsed time until the onset of mixing, which in turn allows to estimate the saturated amplitude of the radiation field. In addition, the compressibility helps to pinpoint space-charge effects and the corresponding transition from Compton to Raman regimes.

  20. A review of x-ray free-electron laser theory.

    SciTech Connect

    Huang, Z.; Kim, K.-J.; Accelerator Systems Division; Stanford Linear Accelerator Center

    2007-03-01

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the start-up, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission. The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  1. Saturation mechanism in a two-stream free-electron laser

    NASA Astrophysics Data System (ADS)

    Mahdizadeh, N.

    2015-12-01

    > The effect of a guide field on the saturation mechanism in a two-stream free-electron laser (FEL) is verified. Two monoenergetic electron beams with a vanishing pitch-angle spread are considered. Nonlinear wave-particle interaction is described by a set of coupled differential equations in a 1-D approximation. Output power is presented as a function of the axial distance. It was found that through using a focusing mechanism, the two-stream FEL reached the saturation regime in a shorter axial distance in comparison with the case of no focusing mechanism.

  2. A Review of X-ray Free-Electron Laser Theory

    SciTech Connect

    Huang, Zhirong; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  3. The analysis of Raman scattering in a free-electron laser with a rectangular hybrid wiggler

    SciTech Connect

    Kordbacheh, A. Shahsavand, M.

    2015-10-15

    A one dimensional theory of the stimulated Raman backscattering process in a free electron laser with rectangular hybrid wiggler (RHW) is analyzed. The dispersion relation in the rest frame of the electron beam and also a formula for the lab-frame spatial growth rate are derived. A numerical computation of the growth rate for RHW is conducted and a comparison with that for coaxial hybrid wiggler is made away from the resonance. The growth rate is found larger for the rectangular wiggler than for the coaxial wiggler. A much narrower magnetoresonance associated with the third spatial harmonic is also obtained compared to the first one.

  4. Growth rate and start current in Smith-Purcell free-electron lasers

    SciTech Connect

    Li, D.; Imasaki, K.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S.; Asakawa, M. R.

    2012-05-07

    This letter reports a theory to calculate the growth rate and start current of a Smith-Purcell free-electron laser, which is a promising radiation source in the terahertz domain. A two-dimensional model was used to investigate the interaction between a sheet electron beam and the surface wave above a lamellar grating. After deriving the growth rate from the dispersion equation, the start current was carefully estimated by considering the power flow above the grating. The agreement between the predictions of our theory and the results from the particle-in-cell simulations is acceptable.

  5. Algorithm for loading shot noise microbunching in multi-dimensional, free-electron laser simulation codes

    SciTech Connect

    Fawley, William M.

    2002-03-25

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  6. Algorithm for loading shot noise microbunching in multidimensional, free-electron laser simulation codes

    NASA Astrophysics Data System (ADS)

    Fawley, William M.

    2002-07-01

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multidimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  7. Nonlinear study on the terahertz free electron laser amplifier with elliptical waveguide

    SciTech Connect

    Wang Minghong; Liu Pukun; Xue Qianzhong; Dong Ruixin

    2008-12-15

    The use of an elliptical waveguide and a planar wiggler with parabolically tapered pole pieces as the terahertz free electron laser (FEL) amplifier model is proposed. A set of self-consistent differential equations for the FEL amplifier is derived by using nonlinear theory, and the characteristics of this amplifier are numerically analyzed. Our numerical simulations are conducted to the 1000 GHz amplifier with an electron beam energy of 1.74 MeV. The results indicate that the peak power of 180 kW and frequency bandwidth of 13.5 GHz can be obtained.

  8. Low emittance injector design for free electron lasers

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Pedrozzi, M.; Reiche, S.

    2015-12-01

    Several parameters determine the performance of free electron lasers: the slice and the projected emittance, the slice energy spread, and the peak current are the most crucial ones. The peak current is essentially obtained by magnetic compression stages along the machine or occasionally assisted by velocity bunching at low energy. The minimum emittance and the alignment of the slices along the bunch are mainly determined in the low energy part of the accelerator (injector). Variations at the per-mille level of several parameters in this section of the machine strongly influence these quantities with highly nonlinear dynamic. We developed a numerical tool to perform the optimization of the injector. We applied this code to optimize the SwissFEL injector, assuming different gun designs, initial bunch lengths and intrinsic emittances. We obtained an emittance along the bunch of 0.14 mm mrad and around 0.08 mm mrad for the maximum and the minimum SwissFEL charges (200 and 10 pC, respectively). We applied the same tool to a running injector, where we automatized the optimization of the machine.

  9. Model-based optimization of tapered free-electron lasers

    NASA Astrophysics Data System (ADS)

    Mak, Alan; Curbis, Francesca; Werin, Sverker

    2015-04-01

    The energy extraction efficiency is a figure of merit for a free-electron laser (FEL). It can be enhanced by the technique of undulator tapering, which enables the sustained growth of radiation power beyond the initial saturation point. In the development of a single-pass x-ray FEL, it is important to exploit the full potential of this technique and optimize the taper profile aw(z ). Our approach to the optimization is based on the theoretical model by Kroll, Morton, and Rosenbluth, whereby the taper profile aw(z ) is not a predetermined function (such as linear or exponential) but is determined by the physics of a resonant particle. For further enhancement of the energy extraction efficiency, we propose a modification to the model, which involves manipulations of the resonant particle's phase. Using the numerical simulation code GENESIS, we apply our model-based optimization methods to a case of the future FEL at the MAX IV Laboratory (Lund, Sweden), as well as a case of the LCLS-II facility (Stanford, USA).

  10. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  11. The history of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2012-10-01

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  12. Free-electron laser-based pulsed electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Takahashi, Susumu; Sherwin, Mark S.; Ramian, Gerald; Brunel, Louis-Claude; van Tol, Johan

    2008-03-01

    High-power pulsed electron paramagnetic resonance (EPR) is extremely useful to study the ultrafast dynamics of spins. At present, most high-power pulsed EPR spectrometers operate near the X-band frequency of 9.5 GHz with kW-level power. A trend in the evolution of next generation pulsed EPR is for higher magnetic field and frequency, both for finer spectral and time resolution and because motional averaging becomes negligible. Since the linewidth of resonances studied by pulsed EPR tends to be extremely narrow, the source radiation also has to be stable and have narrow bandwidth. High-power pulsed EPR, using few-ns pulses to rapidly manipulate spins for spin-echo and related experiments, has been demonstrated at 95 GHz using kW- power Klystron-based sources. A bottleneck for higher frequency pulsed EPR spectroscopy is a lack of sources with high power and narrow bandwidth. The University of California Santa Barbara (UCSB) free-electron lasers (FEL) are potential sources for high-power pulsed EPR because they generate kW of power tunable from 120 GHz to 4.7 THz. We present the current status of the UCSB FEL-based 240 GHz pulsed EPR spectrometer.

  13. Optical properties of the output of a high gain, self-amplified free-electron laser.

    SciTech Connect

    Krinsky, S.; Lewellen , J.; Sajaev, V.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  14. Influence of space charge wave on quasilinear theory of the free-electron laser saturation

    SciTech Connect

    Chakhmachi, A.; Maraghechi, B.

    2009-07-15

    A quasilinear theory is presented that describes the self-consistent evolution of the electron beam distribution function and fields in a free-electron laser when the space charge wave is present. In the Raman regime, a high-density electron beam has an appreciable space charge potential. A broad spectrum of waves is assumed in order to have a relatively wide range of resonant particles. A one-dimensional helical magnetic field is considered and the analysis is based on the Vlasov-Maxwell equations. Two coupled differential equations are derived, which, in conjunction with conservation laws, describe the quasilinear development by the diffusion of electrons in the momentum space. This leads to the saturation of the free-electron laser instability by the plateau formation. Analytical expressions for the growth rate and for the diffusion coefficient are derived, which reduced to those in the Compton regime under appropriate conditions. By use of the linear growth rate and diffusion coefficient, an analytical expression for efficiency in Raman regime was derived. A numerical analysis is conducted to study the effects of the spectral width of radiation and the thermal spread of the electron beam on the efficiency.

  15. A high-power free electron laser using a short rayleigh length

    SciTech Connect

    William Colson; Alan Todd; George Neil

    2004-09-01

    Free electron lasers have always had the potential for high average power, since the laser medium cannot be damaged and is transparent to all wavelengths while the exhaust heat is removed at the speed of light. At MW power levels, the resonator mirrors of the oscillator are vulnerable to damage because of the small beam size in the undulator. We present a description of an FEL that uses a resonator with a short Rayleigh length in order to increase the mode area at the mirrors and reduce the intensity. The corresponding undulator must also be short. The whole FEL system is designed to be compact and efficient, producing about 1 MW of power at 1 mu-m infrared wavelength using an electron beam of about 140 MeV with about 0.6A of recirculating average current.

  16. Overview Of Control System For Jefferson Lab`s High Power Free Electron Laser

    SciTech Connect

    Hofler, A. S.; Grippo, A. C.; Keesee, M. S.; Song, J.

    1997-12-31

    In this paper the current plans for the control system for Thomas Jefferson National Accelerator Facility`s (Jefferson Lab`s) Infrared Free Electron Laser (FEL) are presented. The goals for the FEL control system are fourfold: (1) to use EPICS and EPICS compatible tools, (2) to use VME and Industry Pack (IPs) interfaces for FEL specific devices such as controls and diagnostics for the drive laser, high power optics, photocathode gun and electron-beam diagnostics, (3) to migrate Continuous Electron Beam Accelerator Facility (CEBAF) technologies to VME when possible, and (4) to use CAMAC solutions for systems that duplicate CEBAF technologies such as RF linacs and DC magnets. This paper will describe the software developed for FEL specific devices and provide an overview of the FEL control system.

  17. Thermal analysis of multifacet-mirror ring resonator for XUV free-electron lasers

    SciTech Connect

    McVey, B.D.; Goldstein, J.C.; McFarland, R.D.; Newnam, B.E.

    1990-01-01

    XUV (10 nm {le} {lambda} {le} 100 nm) free-electron lasers (FELs) are potentially important light sources for advanced lithography and materials applications. The average power of an XUV FEL oscillator may be limited by thermal loading of the resonator mirrors. We analyze the requirements for the thermal performance of the mirrors of a metal, multifacet-mirror ring resonator for use at 12 nm. We use analytical methods and numerical approaches which include simulations with the 3-D FEL code FELEX. Thermal distortion of mirror surfaces leads to optical wavefront aberrations which reduce the focusability of the light beam in the gain medium (wiggler/electron beam) and limit the laser performance. 10 refs., 6 figs., 1 tab.

  18. Strongly aligned gas-phase molecules at free-electron lasers

    DOE PAGES

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sebastien; Bucksbaum, Philip; et al

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less

  19. Strongly aligned gas-phase molecules at free-electron lasers

    SciTech Connect

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sebastien; Bucksbaum, Philip; Chapman, Henry N.; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E.; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thogersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Kupper, Jochen

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  20. Strongly aligned gas-phase molecules at free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N.; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E.; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-10-01

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of < {{cos}}2{θ }2{{D}}> =0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  1. A Three Dimensional Calculation of Electron Energy Loss in a Variable Parameter Free-Electron Laser

    SciTech Connect

    Luccio, A.; Pellegrini, C.

    1980-03-01

    A single-pass free-electron laser (FEL) using a wiggler magnet with either the period, and/or the magnetic field, varying along the magnet axis has been proposed. The main advantage of this system over a conventional free-electron laser, having a constant period and magnetic field wiggler, is in the higher efficiency of the energy transfer from the electron beam to the laser radiation field. This efficiency, which is of the order of 1% in a conventional FEL, can be of the order of 30% in a variable wiggler FEL. The theory of the variable wiggler FEL is based on a one dimensional model, in which the electron motion transverse to the laser axis is assumed to be given and only the motion parallel to the axis is studied. In this paper, the effect on the laser efficiency of the electron transverse motion is studied and the electron energy loss is evaluated for a beam having a spread in angle and in the transverse position at the wiggler entrance. The complete three dimensional equations of motion for an electron interacting with the laser field and the wiggler field are integrated numerically. Only the case of a small gain regime, assuming that the laser field intensity remains constant, is considered. Also, this study is limited to the case of a helical wiggler. The results are compared with the one dimensional model. The effect of the initial position and angular spread can, to a good approximation, be considered equivalent to an increase in the energy spread. The limits for this increased energy spread that must not be exceeded in order to avoid a loss in efficiency are nearly the same as in the one dimensional model.

  2. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility

    SciTech Connect

    Perucchi, A.; Di Mitri, S.; Penco, G.; Allaria, E.; Lupi, S.

    2013-02-15

    We describe the project for the construction of a terahertz (THz) beamline to be called TeraFERMI at the seeded FERMI free electron laser (FEL) facility in Trieste, Italy. We discuss topics as the underlying scientific case, the choice of the source, the expected performance, and THz beam propagation. Through electron beam dynamics simulations we show that the installation of the THz source in the beam dump section provides a new approach for compressing the electron bunch length without affecting FEL operation. Thanks to this further compression of the FEL electron bunch, the TeraFERMI facility is expected to provide THz pulses with energies up to the mJ range during normal FEL operation.

  3. A Far-infrared Undulator for Coherent Synchrotron Radiation and Free Electron Laser at Tohoku University

    NASA Astrophysics Data System (ADS)

    Hama, Hiroyuki; Hinode, Fujio; Kawai, Masayuki; Nanbu, Kenichi; Miyahara, Fusashi; Yasuda, Mafuyu

    2010-06-01

    In order to develop an intense far-infrared radiation source, a high quality electron beam has been studied at Tohoku University, Sendai. The bunch length of the beam expected is very much shorter than terahertz (THz) wavelength, so that coherent spontaneous emission of synchrotron radiation will be a promising high brilliant far-infrared source. An undulator consisting of permanent magnets has been designed in which optional free electron laser (FEL) will be operated in free space mode. Consequently the minimum gap of the undulator is decided to be 54 mm for 0.36 mm radiation to avoid diffraction loss, and then the period length of 10 cm is employed. The undulator may cover a wavelength range from 0.18 to 0.36 mm with the beam energy of 17 MeV. Property of coherent THz radiation from the undulator and possibility of novel pre-bunched THz FEL is discussed.

  4. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    SciTech Connect

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  5. High frequency limit of vacuum microelectronic grating free-electron laser

    SciTech Connect

    Goldstein, M.; Walsh, J.E.

    1995-12-31

    The dependencies that limit high frequency operation of a vacuum microelectronic grating free-electron laser are examined. The important parameters are identified as the electron beam energy, emittance, and generalized perveance. The scaling of power with emittance and frequency is studied in the far-infrared spectral range using a modified scanning electron microscope (SEM) and submillimeter diffraction gratings. The SEM is suited to the task of generating and positioning a low emittance (10{sup -2}{pi}-mm-mrad), low current (100 {mu}A), but high current density (50-500 A cm{sup -2}) electron beam. It has been used to demonstrate the spontaneous emission process known as the Smith-Purcell effect. A vacuum microelectronic grating free-electron laser has the potential of generating radiation throughout the entire far-infrared spectral range which extends from approximately 10 to 10{sup 3}{mu}m. An introduction to the theory, initial results, and details of the experiment are reported.

  6. First Demonstration of the Echo-Enabled Harmonic Generation Technique for Short-Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Pernet, P.-L.; /Ecole Polytechnique, Lausanne

    2010-08-25

    We report the first experimental demonstration of the echo-enabled harmonic generation (EEHG) technique which holds great promise for generation of high power, fully coherent short-wavelength radiation. In this experiment, coherent radiation at the 3rd and 4th harmonic of the second seed laser is generated from the so-called beam echo effect. The experiment confirms the physics behind this technique and paves the way for applying the EEHG technique for seeded x-ray free electron lasers.

  7. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  8. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  9. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  10. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    SciTech Connect

    Pernet, Pierre-Louis

    2010-06-24

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  11. Laser mode complexity analysis in infrared waveguide free-electron lasers

    NASA Astrophysics Data System (ADS)

    Prazeres, Rui

    2016-06-01

    We analyze an optical phenomenon taking place in waveguide free-electron lasers, which disturbs, or forbids, operation in far infrared range. Waveguides in the optical cavity are used in far-infrared and THz ranges in order to avoid diffraction optical losses, and a hole coupling on output mirror is used for laser extraction. We show that, when the length of the waveguide exceeds a given limit, a phenomenon of "mode disorder" appears in the cavity, which makes the laser difficult, or impossible, to work properly. This phenomenon is even more important when the waveguide covers the whole length of the cavity. A numerical simulation describes this effect, which creates discontinuities of the laser power in the spectral domain. We show an example with an existing infrared Free-Electron Laser, which exhibits such discontinuities of the power, and where no convincing explanation was proposed until now.

  12. Relativistic x-ray free-electron lasers in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2012-06-01

    We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy. PMID:23005155

  13. Relativistic x-ray free-electron lasers in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2012-06-01

    We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy.

  14. Effects of gain displacements on a tapered wiggler free-electron laser

    NASA Astrophysics Data System (ADS)

    Bhowmik, A.; Cover, R. A.

    1984-01-01

    The performance of a low gain, free-electron laser (FEL) operating in the Compton regime is evaluated in the presence of e-beam displacements in planes parallel or perpendicular to the FEL linearly polarized wiggler magnetic field. In this fully coupled, nonlinear formalism, the gain is described by a 3-D extension of the Kroll-Morton-Rosenbluth (KMR) equations and evaluated by using optical fields that are propagated numerically between sections of the wiggler (and the oscillator) using the Gardner-Fresnel-Kirchhoff (GFK) algorithm. The oscillator extraction efficiency, optical gain, and the 3-D transverse mode and gain distributions are computed in the absence of slippage between the optical and e-beam pulses, using standard iterative techniques for obtaining resonator solutions. The influence of local off-axis magnetic fields and betatron oscillations on individual particles is included in the gain computations.

  15. A novel approach in the free-electron laser diagnosis based on a pixelated phosphor detector.

    PubMed

    Matruglio, Alessia; Dal Zilio, Simone; Sergo, Rudi; Mincigrucci, Riccardo; Svetina, Cristian; Principi, Emiliano; Mahne, Nicola; Raimondi, Lorenzo; Turchet, Alessio; Masciovecchio, Claudio; Lazzarino, Marco; Cautero, Giuseppe; Zangrando, Marco

    2016-01-01

    A new high-performance method for the free-electron laser (FEL) focused beam diagnosis has been successfully tested at the FERMI FEL in Trieste, Italy. The novel pixelated phosphor detector (PPD) consists of micrometric pixels produced by classical UV lithography and dry etching technique, fabricated on a silicon substrate, arranged in a hexagonal geometry and filled with suitable phosphors. It has been demonstrated that the overall resolution of the system has increased by reducing the diffusion of the light in the phosphors. Various types of PPD have been produced and tested, demonstrating a high resolution in the beam profile and the ability to measure the actual spot size shot-to-shot with an unprecedented resolution. For these reasons, the proposed detector could become a reference technique in the FEL diagnosis field. PMID:26698042

  16. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  17. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    SciTech Connect

    Baptiste, Kenneth; Corlett, John; Kwiatkowski, Slawomir; Lidia, Steven; Qiang, Ji; Sannibale, Fernando; Sonnad, Kiran; Staples, John; Virostek, Steven; Wells, Russell

    2008-10-08

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to {approx} 1 nC bunch charges with less than 1 mmmrad normalized emittance at high repetition rates (greater than {approx} 1 MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  18. Variable-energy microtron-injector for a compact wide-band FIR free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevitch, Grigori M.; Jeong, Young Uk; Lee, Byung Cheol; Gavrilov, Nikolay G.; Kondaurov, Mikhail N.

    2003-07-01

    A microtron-injector (Proceedings of the 2001 Particle Accelerator Conference, USA, 2001, 2739) for the KAERI compact far infrared free electron laser (FIR FEL) facility has been upgraded to provide tuning of the FEL wavelength from 100 μm to more than 300 μm. The wide-band tunability of the radiation has been achieved by changing the kinetic energy of the accelerated electrons from 6.5 to 4.9 MeV. To do so, the position of an RF cavity inside the microtron is movable within the range of ˜170 mm, and it changes the maximum orbit number of the electrons from 12 to 8. Dependence of the electron beam parameters on the orbit number has been investigated to choose acceptable operating conditions of the microtron for stable operation of the wide-band FIR FEL. Measured parameters of the electron beam and corresponding lasing results of the FIR FEL are presented and discussed.

  19. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  20. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  1. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  2. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  3. Simulation of a prebunched free-electron laser with planar wiggler and ion channel guiding

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2010-02-15

    A one-dimensional and nonlinear simulation of a free-electron laser with a prebunched electron beam, a planar wiggler, and ion-channel guiding is presented. Using Maxwell's equations and full Lorentz force equation of motion for the electron beam, a set of coupled nonlinear differential equations is derived in slowly varying amplitude and wave number approximation and is solved numerically. This set of equations describes self-consistently the longitudinal dependence of radiation amplitude, growth rates, space-charge amplitude, and wave numbers together with the evolution of the electron beam. Because of using full Lorentz force equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam is assumed cold, propagates with a relativistic velocity, ions are assumed immobile, and slippage is ignored. The effect of prebunched electron beam on saturation is studied. Ion-channel density is varied and the results for groups I and II orbits are compared with the case when the ion channel is absent. It is found that by using an ion channel/a prebunched electron beam growth rate can be increased, saturation length can be decreased, and the saturated amplitude of the radiation can be increased.

  4. Measuring Molecules by the Attomole: Laser-Assisted Mass Spectrometry using a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Haglund, Richard

    1999-11-01

    Laser-induced desorption is an increasingly important technique for producing positive and negative ions of fragile, thermally labile molecules for mass spectrometry. Although compact ultraviolet lasers have traditionally been used for this purpose, there is increasing evidence that infrared laser light is surprisingly efficient and gentle; indeed, infrared-laser-assisted desorption confers some unique advantages in the ionization process. We have been using the tunable, ultrashort laser pulses from the Vanderbilt free-electron laser (FEL) to study the basic mechanisms of desorption and ionization of molecules ranging from small organic species to large proteins. It now seems clear that both the tunability and the unique picosecond substructure of the FEL laser pulses play a significant role in efficient desorption and ionization via resonant vibrational excitation. The inherently high sensitivity of laser-assisted mass spectrometry can be enhanced by the independent control over the laser intensity and fluence afforded by the FEL a unique opportunity unavailable using conventional lasers. Use of the FEL is helping us to identify possibilities for adapting solid-state, ultrafast laser technology to applications ranging from studies of proteomics to mass spectrometric imaging of biological tissues with sub-cellular resolution. Supported by the Office of Naval Research through the Medical Free-Electron Laser Program (Contract Number N00014-1-94-1023) and the United States Department of Energy, Office of Science (Grant Number DE-FG07-98ER62710).

  5. The effects of slipage and diffraction in long wavelength operation of a free electron laser

    SciTech Connect

    Zhulin, V.I.; Haselhoff, E.H.; Amersfoort, P.W. van

    1995-01-01

    The Free-Electron Laser user facility FELIX produces picosecond optical pulses in the wavelength range of 5-110 {mu}m. The proposed installation of a new undulator with a larger magnetic period would allow extension towards considerably larger wavelengths. This would result in the production of extremely short, far-infrared pulses, with a duration of a single optical period or even less. In order to investigate the pulse propagation for free-electron lasers operating in the long wavelength limit, a three-dimensional simulation code was developed. Using the FELIX parameters, with the addition of a long-period undulator, the effects of slippage, diffraction losses, changes in the filling factor, as well as the effects of the optical cavity geometry were studied for wavelengths up to 300 {mu}m, with electron pulses in the ps regime. It is shown that slippage effects are less restrictive for long wavelength operation than the increasing losses due to optical beam diffraction.

  6. Microbunching-instability-induced sidebands in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Lindberg, Ryan; Fawley, William M.; Huang, Zhirong; Krzywinski, Jacek; Lutman, Alberto; Marcus, Gabriel; Marinelli, Agostino

    2016-05-01

    Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL) undulator. We show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulator length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.

  7. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    NASA Astrophysics Data System (ADS)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  8. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  9. Evidence of high harmonics from echo-enabled harmonic generation for seeding x-ray free electron lasers.

    PubMed

    Xiang, D; Colby, E; Dunning, M; Gilevich, S; Hast, C; Jobe, K; McCormick, D; Nelson, J; Raubenheimer, T O; Soong, K; Stupakov, G; Szalata, Z; Walz, D; Weathersby, S; Woodley, M

    2012-01-13

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  10. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  11. Proceedings of the workshop prospects for a 1 angstrom free-electron laser

    SciTech Connect

    Gallardo, J.C.

    1990-01-01

    This report contains papers on the following topics free-electron laser theory, scaling relations and simulations; micro-wigglers; photocathode and switched power gun; applications; and summary of working groups.

  12. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  13. Studies on a VUV free electron laser at the TESLA Test Facility at DESY

    SciTech Connect

    Rossbach, J.

    1995-12-31

    The TESLA Test Facility (TTF) currently under construction at DESY is a test-bed for acceleration sections of a high-gradient, high efficiency superconducting linear collider. Due to ist unrivaled ability to sustain high beam quality during acceleration, a superconducting rf linac is considered the optimum choice to drive a Free Electron Laser (FEL). We aim at a photon wavelength of {lambda} = 6 manometer utilizing the TTF after is has been extended to 1 GeV beam energy. Due to lack of mirrors and seed-lasers in this wavelength regime, a single pass FEL and Self-Amplified-Spontaneous-Emission (SASE) is considered. A first test is foreseen at a larger photon wavelength. The overall design as well as both electron and photon beam properties will be discussed. To reach the desired photon wavelength, the main components that have to be added to the TTF are: (a) a low emittance rf gun including space charge compensation (b) a two stage bunch compressor increasing the peak bunch current from 100 A up to 2500 A (c) four more accelerating modules to achieve 1 GeV beam energy (d) a 25 m long undulator (period length 27 mm, peak field 0.5 T) The average brillance will be larger than 1-10{sup 22}photons/s/mm{sup 2}/mrad{sup 2}/0.1%. Each 800 {mu}s long pulse will contain up to 7200 equidistant bunches. The repetition frequency of the linac is 10 Hz.

  14. Demonstration of inverse free-electron laser seeding in a sub-80 K, short period cryogenic undulator

    NASA Astrophysics Data System (ADS)

    OʼShea, F. H.; Knyazik, Andrey; Marinelli, A.; Rosenzweig, J. B.; Dunning, M.; Hast, C.; Hemsing, E.; Jobe, K.; Nelson, J.; Weathersby, S.; Xiang, D.; Holy, F.; Grüner, F.; Bahrdt, J.

    2014-12-01

    Short period, high field undulators have been shown to permit operation of x-ray free-electron lasers with short gain-lengths, and at unprecedented short wavelengths. In addition, the reduced beam energy required to reach resonance with a given radiation wavelength in short period undulators could prove useful in advanced inverse free-electron laser (IFEL) seeding schemes for future light sources, such as high-gain harmonic generation and echo-enabled harmonic generation, or in IFEL acceleration. We report here the in situ beam testing of a 9 mm period length cryogenic undulator having undulator parameter near unity in the context appropriate for advanced seeding and acceleration schemes, a linear accelerator. Because of the short period length of the undulator, a 47 MeV high-brightness electron beam could be used to produce near infrared photons via the undulator radiation mechanism. The undulator radiation was observed through a filter and the spectral response of the undulator is compared to simulation. Finally, an 800 nm seed laser was introduced in order to generate an energy modulation via the IFEL mechanism. Resonance between the electron beam and the laser seed was achieved without detailed knowledge of the temperature dependent undulator magnetic field through the observation of the undulator radiation. The energy modulation (and concomitant energy spread increase) of the electron beam was observed both directly in an electron beam spectrometer and indirectly via coherent transition radiation after conversion to a density modulation in a longitudinally dispersive chicane.

  15. Saturable absorption of an x-ray free-electron-laser heated solid-density aluminum plasma.

    PubMed

    Rackstraw, D S; Ciricosta, O; Vinko, S M; Barbrel, B; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Dakovski, G L; Engelhorn, K; Hájková, V; Heimann, P; Holmes, M; Juha, L; Krzywinski, J; Lee, R W; Toleikis, S; Turner, J J; Zastrau, U; Wark, J S

    2015-01-01

    High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

  16. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  17. Performance simulation of infrared free electron laser at the Pohang Light Source test linac

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2004-08-01

    Numerical simulation studies are performed for the proposed infrared self-amplified spontaneous-emission free-electron laser (SASE-FEL) at the existing PLS test linac. It is shown that a high-gain SASE-FEL with a 1.5 μm radiation wavelength could be driven by a 61-MeV electron beam from the S-band rf linac and a 5-m long undulator. Third-harmonic generation to 0.5 μm radiation wavelength was also investigated to enhance the usefulness of the infrared SASE-FEL facility. Bunching fractions of the nonlinear third harmonic to the fundamental mode in the designed SASE-FEL is estimated and showed that the third-harmonic emission resulted in the same trend as the fundamental. This paper attempts to investigate the effect of the beam parameters such as the emittance, the energy spread, the beam energy, and the peak beam current to the designed infrared SASE-FEL. The wake effects due to the surface roughness of beam chamber in the undulator are also estimated.

  18. External magnetic field effect on the growth rate of a plasma-loaded free-electron laser

    NASA Astrophysics Data System (ADS)

    Esmaeildoost, N.; Jafari, S.; Abbasi, E.

    2016-06-01

    In order to extend the production of intense coherent radiation to angstrom wavelengths, a laser wave is employed as a laser wiggler which propagates through a magnetized plasma channel. The plasma-loaded laser wigglers increase the ability of laser guidance and electron bunching process compared to the counterpropagating laser wigglers in vacuum. The presence of the plasma medium can make it possible to propagate the laser wiggler and the electron beam parallel to each other so that the focusing of the pulse will be saved. In addition, employing an external guide magnetic field can confine both the ambient plasma and the transverse motions of the electron beam, therefore, improving the free-electron lasers' efficiency, properly. Electron trajectories have been obtained by solving the steady state equations of motion for a single particle and the fourth-order Runge-Kutta method has been used to simulate the electron orbits. To study the growth rate of a laser-pumped free-electron laser in the presence of a plasma medium, perturbation analysis has been performed to combine the momentum transfer, continuity, and wave equations, respectively. Numerical calculations indicate that by increasing the guide magnetic field frequency, the growth rate for group I orbits increases, while for group II and III orbits decreases.

  19. Generation of large-bandwidth x-ray free-electron-laser pulses

    NASA Astrophysics Data System (ADS)

    Saa Hernandez, Angela; Prat, Eduard; Bettoni, Simona; Beutner, Bolko; Reiche, Sven

    2016-09-01

    X-ray free-electron lasers (XFELs) are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  20. Free-electron laser harmonic generation in an electromagnetic-wave wiggler and ion channel guiding

    SciTech Connect

    Mehdian, H.; Hasanbeigi, A.; Jafari, S.

    2010-02-15

    A theoretical study of electron trajectories, harmonic generation, and gain in a free-electron laser (FEL) with a linearly polarized electromagnetic-wave wiggler is presented for axial injection of electron beam. The relativistic equation of motion for a single electron has been derived and solved numerically. It is found that the trajectories consist of two regimes. The stability of these regimes has been investigated. The results show that the trajectories are stable except for some parts of the regime one. The effects of interaction on the transverse velocity of the electron are a superposition of two oscillation terms, one at the wiggler frequency and the other at the betatron ion-channel frequency. A detailed analysis of the gain equation in the low-gain-per-pass limit has been employed to investigate FEL operation in higher harmonics generation. The possibility of wave amplification at both wiggler frequency and betatron ion-channel frequency for their odd harmonics has been illustrated.

  1. Saturable Absorption of an X-Ray Free-Electron-Laser Heated Solid-Density Plasma

    NASA Astrophysics Data System (ADS)

    Wark, J. S.; Rackstraw, D. S.; Ciricosta, O.; Vinko, S. M.; Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Barbrel, B.; Engelhorn, K.; Cho, B.-I.; Chung, H.-K.; Dakovski, G.; Krzywinski, J.; Heimann, P.; Holmes, M.; Turner, J.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2015-11-01

    High-intensity ~1017 Wcm-2, short duration (100 fsec) x-ray pulses from the LCLS x-ray free-electron laser, with photon energies ranging from below to above the K-edge of cold Al (1560 eV), are used to generate and probe a solid-density aluminum plasma. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, with the increased transmission being due to the K-edge energy of the dominant ion species shifting in time as the solid-density target is heated, in good agreement with atomic-kinetics simulations.

  2. Design of a far-infrared CHI wiggler free-electron laser

    SciTech Connect

    Jackson, R.H.; Blank, M.; Freund, H.P.

    1995-12-31

    The preliminary design of a far-infrared free-electron laser with a Coaxial Hybrid Iron (CHI) wiggler is presented. The CHI wiggler consists of a central rod and outer ring of alternating ferrite and dielectric spacers. A periodic wiggler field is produced when the CHI structure is immersed in an axial magnetic field. The design under investigation makes use of 1A, 1MV annular electron beam interacting with the TE{sub 01} coaxial waveguide mode at approximately 1 THz ({lambda} = 300 {mu}m). The nominal wiggler period is 0.5 cm and the inner and outer waveguide radii are 0.4 and 0.8 cm, respectively. An axial guide field of 5-10 kG is used. The device performance is modeled with slow-time-scale nonlinear code. Self fields and axial velocity spread are included in the model. Theoretical results will be presented.

  3. Applications of free electron lasers and synchrotrons in industry and research

    SciTech Connect

    Barletta, William A.

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  4. A wide bandwidth free-electron laser with mode locking using current modulation.

    SciTech Connect

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. )

    2011-06-08

    A new scheme for mode locking a free-electron laser (FEL) amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept (Thompson and McNeil 2008 Phys. Rev. Lett. 100 203901), based on the energy modulation of electrons, are improved, including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked FEL and a self-amplified spontaneous emission FEL. Illustrative examples using a hypothetical mode-locked FEL amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  5. Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation

    NASA Astrophysics Data System (ADS)

    Reschke, D.; Bandelmann, R.; Buettner, T.; Escherich, K.; Goessel, A.; v. D. Horst, B.; Iversen, J.; Klinke, D.; Kreps, G.; Krupka, N.; Lilje, L.; Matheisen, A.; Moeller, W.-D.; Zimmermann, H. Morales; Mueller, C.; Petersen, B.; Proch, D.; Schmoekel, M.; Steinhau-Kuehl, N.; Thie, J.-H.; Weise, H.; Weitkaemper, H.; Carcagno, R.; Khabiboulline, T. N.; Kotelnikov, S.; Makulski, A.; Nogiec, J.; Nehring, R.; Ross, M.; Schappert, W.

    2010-07-01

    The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY). The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semiautomated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational.

  6. Generation and measurement of ultrashort pulses from the Stanford Superconducting Accelerator free-electron laser

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-11-01

    The authors present results of frequency resolved optical gating (FROG) measurements on the Superconducting Accelerator (SCA) mid-IR free-electron laser (FEL) at Stanford. FROG retrieves complete amplitude and phase content of an optical pulse. First, they review the properties of FELs including the ability to tune wavelength and pulse length. In addition, the electron beam driving the FEL often affects the optical pulse shape. The SCA mid-IR FEL currently operates at wavelengths between 4 {micro}m and 10 {micro}m and its pulse length can be varied from 700 fs to 2 ps. They then describe details of the experimental layout and procedures particular to FELs and to the mid-IR. Finally, they show FROG measurements on the FEL including examples of nearly transform limited pulses, frequency chirped pulses, and pulses distorted by atmospheric water vapor absorption.

  7. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses.

    PubMed

    Prat, Eduard; Reiche, Sven

    2015-06-19

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal.

  8. Present status of the NIJI-IV storage-ring free-electron lasers

    SciTech Connect

    Yamazaki, T.; Yamada, K.; Sei, N.

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  9. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect

    Bohn, C.L.

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  10. Nonlinear theory of the free-electron laser based upon a coaxial hybrid wiggler

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1994-04-01

    A three-dimensional nonlinear formulation of a free-electron laser based upon a coaxial hybrid iron (CHI) wiggler is described. The CHI wiggler is created by insertion of a central rod and an outer ring [composed of alternating ferrite and dielectric spacers in which the ferrite (dielectric) spacer on the central rod is opposite to the dielectric (ferrite) spacer on the outer ring] along the axis of a solenoidal. An analytic model of the CHI wiggler is developed which is in good agreement with the Poisson/Superfish group of codes. The free-electron laser (FEL) formulation is a slow-time-scale analysis of the interaction of an annular electron beam with the CHI wiggler in a coaxial waveguide. The electromagnetic field is represented as the superposition of the vacuum transverse electric (TE), transverse magnetic (TM), and transverse electromagnetic (TEM) modes of the waveguide, and a set of nonlinear second-order differential equations is derived for the amplitudes and phases of these modes. These equations are solved simultaneously with the three-dimensional Lorentz force equations for the combined magnetostatic and electromagnetic fields. An adiabatic taper is used to model the injection of the beam, and an amplitude taper is included for efficiency enhancement. Simulations are presented for Ka-, Ku- and W-band operation. Multimode operation is also studied. The results indicate that operation over a wide bandwidth is practical with the CHI wiggler, and that the bandwidth in the tapered-wiggler cases is comparable to that for a uniform wiggler. Therefore, relatively high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is possible in many other conventional wiggler designs.

  11. Electron-Beam Noise and spontaneous emission Suppression and the Fundamental Coherence Limits of Free Electron Radiators

    NASA Astrophysics Data System (ADS)

    Gover, Avraham

    2010-02-01

    It is shown that the electron beam current noise can be reduced at optical frequencies below the classical shot-noise limit. This self-ordering phenomenon takes place due to longitudinal collective Coulomb interaction when the beam parameters are set to excite Langmuir plasma-wave single mode oscillation [1]. Full 3-D particle dynamics simulations confirm the theoretical model. Based on this result, it is shown that it is possible to obtain sub-radiance (in the sense of Dicke [2]) of spontaneous emission from electron-beam radiators. This results in fundamental limit expressions for the coherence of FELs and other e-beam radiators, analogously to the Schawlow-Towns limit [3]. Surpassing the shot-noise limit, the coherence of free electron laser radiation is limited by the e-beam energy spread at frequencies below the IR, and fundamentally limited by quantum noise at higher frequencies. )

  12. Pair production from vacuum at the focus of an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2001-06-01

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: one could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this Letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  13. Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses

    PubMed Central

    Nakajima, Kyo; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Minemoto, Shinichirou; Ogawa, Kanade; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yagishita, Akira

    2015-01-01

    We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures. PMID:26369428

  14. Generation of Phase-Locked Pulses from a Seeded Free-Electron Laser.

    PubMed

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca

    2016-01-15

    In a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser. Furthermore, we use the driving seed laser to lock and precisely control the relative phase between the two free-electron laser pulses. This new capability opens the way to a multitude of coherent control experiments, which will take advantage of the high intensity, short wavelength, and short duration of the pulses generated by seeded free-electron lasers. PMID:26824544

  15. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  16. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  17. Low-frequency wiggler modes in the free-electron laser with a dusty magnetoplasma medium

    NASA Astrophysics Data System (ADS)

    Jafari, S.

    2015-07-01

    An advanced incremental scheme for generating tunable coherent radiation in a free-electron laser has been presented: the basic concept is the use of a relativistic electron beam propagating through a magnetized dusty plasma channel where dust helicon, dust Alfven and coupled dust cyclotron-Alfven waves can play a role as a low-frequency wiggler, triggering coherent emissions. The wiggler wavelength at the sub-mm level allows one to reach the wavelength range from a few nm down to a few Å with moderately relativistic electrons of kinetic energies of a few tens/hundreds of MeV. The laser gain and the effects of beam self-electric and self-magnetic fields on the gain have been estimated and compared with findings of the helical magnetic and electromagnetic wigglers in vacuum. To study the chaotic regions of the electron motion in the dusty plasma wave wiggler, a time independent Hamiltonian has been obtained. The Poincare surface of a section map has been used numerically to analyze the nonintegrable system where chaotic regions in phase-space emerge. This concept opens a path toward a new generation of synchrotron sources based on compact plasma structures.

  18. Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kida, Yuichiro; Kinjo, Ryota; Tanaka, Takashi

    2016-10-01

    An approach is proposed to generate a quasi-isolated sub-cycle pulse in X-ray free-electron lasers. Its principle is based on the recently proposed concept of mono-cycle harmonic generation [T. Tanaka, Phys. Rev. Lett. 114, 044801 (2015)], but uses the chirped microbunch with high-order harmonic frequencies. This allows the synthesis of a sub-cycle field structure in the coherent radiation. Moreover, the tolerance in energy spread is greatly relaxed compared with the originally proposed scheme. Additionally, the practical procedure for realizing the scheme is greatly simplified. Numerical investigations show that a quasi-isolated sub-cycle pulse with a gigawatt peak power can be generated using an electron beam with a realistic energy spread as conventional accelerators for free-electron lasers.

  19. Damage threshold of platinum/carbon multilayers under hard X-ray free-electron laser irradiation.

    PubMed

    Kim, Jangwoo; Nagahira, Ayaka; Koyama, Takahisa; Matsuyama, Satoshi; Sano, Yasuhisa; Yabashi, Makina; Ohashi, Haruhiko; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2015-11-01

    We evaluated the irradiation damage induced by hard X-ray free-electron lasers to platinum/carbon multilayers intended for use in a focusing reflective mirror. In order to determine the damage threshold, we compared X-ray reflectivities before and after irradiation at the first-order Bragg angle using a focused X-ray free-electron laser with a beam size of approximately 1 μm and a pulse energy ranging from 0.01 to 10 μJ at a photon energy of 10 keV. We confirmed that the damage threshold of the platinum/carbon multilayer with a bilayer period of 3 nm was 0.051 μJ/μm(2), which is sufficiently higher than that in practical applications.

  20. Potential biomedical application of the Los Alamos infrared free-electron laser: DNA spectroscopy

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Trewhella, J.; Garcia, A. E.

    Recently, the Los Alamos Free-Electron Laser has demonstrated optical output at wavelengths from 9 to 45 microns. Potential application of such a laser are proposed for the study of vibrational modes predicted in different conformations of DNA and in DNA complexed with drugs and/or proteins that regulate replication and/or transcription.

  1. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  2. Compton backscattering of intracavity storage ring free-electron laser radiation

    SciTech Connect

    Dattoli, G.; Giannessi, L.; Torre, A.

    1995-12-31

    We discuss the{gamma}-ray production by Compton backscattering of intracavity storage ring Free-Electron Laser radiation. We use a semi-analytical model which provides the build up of the signal combined with the storage ring damping mechanism and derive simple relations yielding the connection between backscattered. Photons brightness and the intercavity laser equilibrium intensity.

  3. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-03-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  4. Efficiency enhancement in a single-pass Raman free electron laser

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2009-09-15

    Efficiency enhancement in free electron laser (FEL) with ion channel and axial magnetic field is compared. By using Maxwell's equations and nonwiggler averaged equation of motion of electron beam, a set of coupled nonlinear differential equations is derived in the slowly varying amplitude and wave number approximation. Because of using nonwiggler averaged equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam propagates with a relativistic velocity, ions are assumed immobile and slippage is ignored. The final set of nonlinear first-order differential equations describing the nonlinear evolution of the FEL is solved by the Runge-Kutta method. Efficiency enhancement in group I orbits is almost the same for both ion channel and axial magnetic field cases, with somewhat larger growth rate for the latter. In group II orbits, efficiency enhancement is not possible for the ion-channel guiding; however, the intrinsic efficiency can be larger than that of the axial magnetic field case.

  5. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    SciTech Connect

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented.

  6. Equations of motion for a free-electron laser with an electromagnetic pump field and an axial electrostatic field

    NASA Technical Reports Server (NTRS)

    Hiddleston, H. R.; Segall, S. B.

    1981-01-01

    The equations of motion for a free-electron laser (FEL) with an electromagnetic pump field and a static axial electric field are derived using a Hamiltonian formalism. Equations governing the energy transfer between the electron beam and each of the electromagnetic fields are given, and the phase shift for each of the electromagnetic fields is derived from a linearized Maxwell wave equation. The relation between the static axial electric field and the resonant phase is given. Laser gain and the fraction of the electron energy converted to photon energy are determined using a simplified resonant particle model. These results are compared to those of a more exact particle simulation code.

  7. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    NASA Astrophysics Data System (ADS)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  8. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    SciTech Connect

    Hama, H. |; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  9. Operating synchrotron light sources with a high gain free electron laser

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-11-01

    Since the 1980s synchrotron light sources have been considered as drivers of a high repetition rate (RR), high gain free electron laser (FEL) inserted in a by-pass line or in the ring itself. As of today, the high peak current required by the laser is not deemed to be compatible with the standard multi-bunch filling pattern of synchrotrons, and in particular with the operation of insertion device (ID) beamlines. We show that this problem can be overcome by virtue of magnetic bunch length compression in a ring section, and that, after lasing, the beam returns to equilibrium conditions without beam quality disruption. Bunch length compression brings a double advantage: the high peak current stimulates a high gain FEL emission, while the large energy spread makes the beam less sensitive to the FEL heating and to the microwave instability in the ring. The beam’s large energy spread at the undulator is matched to the FEL energy bandwidth through a transverse gradient undulator. Feasibility of lasing at 25 nm is shown for the Elettra synchrotron light source at 1 GeV, and scaling to shorter wavelengths as a function of momentum compaction, beam energy and transverse emittance in higher energy, larger rings is discussed. For the Elettra case study, a low (100 Hz) and a high (463 kHz) FEL RR are considered, corresponding to an average FEL output power at the level of ∼1 W (∼1013 photons per pulse) and ∼300 W (∼1011 photons per pulse), respectively. We also find that, as a by-product of compression, the ∼5 W Renieri’s limit on the average FEL power can be overcome. Our conclusion is that existing and planned synchrotron light sources may be made compatible with this new hybrid IDs-plus-FEL operational mode, with little impact on the standard beamlines functionality.

  10. Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    O'Shea, F. H.; Marcus, G.; Rosenzweig, J. B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F.

    2010-07-01

    Short period, high field undulators can enable short wavelength free electron lasers (FELs) at low beam energy, with decreased gain length, thus allowing much more compact and less costly FEL systems. We describe an ongoing initiative to develop such an undulator based on an approach that utilizes novel cryogenic materials. While this effort was begun in the context of extending the photon energy regime of a laser-plasma accelerator based electron source, we consider here implications of its application to sub-fs scenarios in which more conventional injectors are employed. The use of such low-charge, ultrashort beams, which has recently been proposed as a method of obtaining single-spike performance in x-ray FELs, is seen in simulation to give unprecedented beam brightness. This brightness, when considered in tandem with short wavelength, high field undulators, enables extremely high performance FELs. Two examples discussed in this paper illustrate this point well. The first is the use of the SPARX injector at 2.1 GeV with 1 pC of charge to give 8 GW peak power in a single spike at 6.5 Å with a photon beam peak brightness greater than 1035photons/(smm2mrad20.1%BW), which will also reach LCLS wavelengths on the 5th harmonic. The second is the exploitation of the LCLS injector with 0.25 pC, 150 as pulses to lase at 1.5 Å using only 4.5 GeV energy; beyond this possibility, we present start-to-end simulations of lasing at unprecedented short wavelength, 0.15 Å, using 13.65 GeV LCLS design energy.

  11. Exploring Interatomic Coulombic Decay by Free Electron Lasers

    SciTech Connect

    Demekhin, Philipp V.; Stoychev, Spas D.; Kuleff, Alexander I.; Cederbaum, Lorenz S.

    2011-12-30

    To exploit the high intensity of laser radiation, we propose to select frequencies at which single-photon absorption is of too low energy and two or more photons are needed to produce states of an atom that can undergo interatomic Coulombic decay (ICD) with its neighbors. For Ne{sub 2} it is explicitly demonstrated that the proposed multiphoton absorption scheme is much more efficient than schemes used until now, which rely on single-photon absorption. Extensive calculations on Ne{sub 2} show how the low-energy ICD electrons and Ne{sup +} pairs are produced for different laser intensities and pulse durations. At higher intensities the production of Ne{sup +} pairs by successive ionization of the two atoms becomes competitive and the respective emitted electrons interfere with the ICD electrons. It is also shown that a measurement after a time delay can be used to determine the contribution of ICD even at high laser intensity.

  12. Seeded free electron laser operating with two colors: Comments on experimental results

    NASA Astrophysics Data System (ADS)

    Carpanese, M.; Ciocci, F.; Dattoli, G.; Petralia, A.; Petrillo, V.; Torre, A.

    2016-05-01

    Free electron lasers operating with two colors are promising devices for applications. The relevant modelization has provided a good understanding of the underlying physics. In this paper we present an analysis of the experimental results obtained at SPARC_LAB concerning seeded two-colors free electron laser (FEL) operation. The use of an ad hoc developed semi-analytical model based on the small-signal FEL integral equation reproduces most of the observed phenomenology. The paper discusses the reliability of the proposed method, the range of validity and its possible improvement.

  13. Narrow high power microwave pulses from a free electron laser

    SciTech Connect

    Marshall, T.C.; Zhang, T.B.

    1995-11-01

    The authors have explored high power microwave ({lambda} = 1.5mm) pulse amplification along a tapered undulator FEL using the 1D Compton FEL equations with slippage. For an appropriate taper, sideband instabilities are suppressed and a short ({approximately}50psec) Gaussian pulse will propagate in a nearly self-similar way as it grows in power, slipping through a much longer electron pulse (beam energy, 750kV; current, 100A; radius = 2mm; length = 200 radiation periods). This is in contrast to the example of pulse propagation in a constant parameter undulator, where the Gaussian pulse breaks up into irregularities identified with sidebanding. Variation of initial pulse width shows convergence to a 50psec wide output pulse. Because of the slippage of the radiation pulse through the electron pulse, the peak microwave pulse intensity, {approximately}3GW/cm2, is about three times the kinetic energy density of the electron beam.

  14. Use of the Lorentz-Boosted Frame Transformation to Simulate Free-Electron Laser Amplifier Physics

    SciTech Connect

    Fawley, W. M.; Vay, J.-L.

    2009-01-22

    Recently it has been pointed out that numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz boosted frame. A particularly good example is that of short wavelength free-electron lasers (FELs) in which a high energy (E{sub 0}{>=}250 MeV) electron beam interacts with a static magnetic undulator. In the optimal boost frame with Lorentz factor {gamma}F, the red-shifted FEL radiation and blue shifted undulator have identical wavelengths and the number of required time-steps (presuming the Courant condition applies) decreases by a factor of {gamma}{sub F}{sup 2} for fully electromagnetic simulation.We have adapted the WARP code to apply this method to several FEL problems including coherent spontaneous emission (CSE) from pre-bunched e-beams, and strong exponential gain in a single pass amplifier configuration. We discuss our results and compare with those from the 'standard' FEL simulation approach which adopts the eikonal approximation for propagation of the radiation field.

  15. Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser

    SciTech Connect

    Jafarinia, F.; Jafari, S.; Mehdian, H.

    2013-04-15

    A free-electron laser (FEL) scheme, which employs the whistler wave as a slow electromagnetic wave wiggler, was studied theoretically. Subjected to the transverse fields of whistler wave wiggler, the beam electrons are the source of the energy needed to produce electromagnetic radiation. The strength and the period of the wiggler field depend on the parameters of the magnetoplasma medium. This configuration has a higher tunability by controlling the plasma density, on top of the {gamma}-tunability of the conventional FELs. The theory of linear gain and electron trajectories was presented and four groups (I, II, III, and IV) of electron orbits were found in the presence of an axial guide magnetic field. Using perturbation analysis, it is found that these groups of orbits were stable except small regions of group I and IV orbits. The function {Phi} which determines the rate of change of axial velocity with beam energy was also derived. In the case in which {Phi}<0 represents a negative-mass regime in which the axial velocity accelerates as the electrons lose energy. Numerical solutions showed that by increasing the cyclotron frequency, the gain for group I and III orbits increased, while a gain decrement was obtained for group II and IV orbits.

  16. Use of the Lorentz-Boosted Frame Transformation to Simulate Free-Electron Laser Amplifier Physics

    SciTech Connect

    Fawley, W.M.; Vay, J.-L.

    2008-07-27

    Recently [1]it has been pointed out that numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz boosted frame. A particularly good example is that of short wavelength free-electron lasers (FELs) in which a high energy (E0>_ 250 MeV) electron beam interacts with a static magnetic undulator. In the optimal boost frame with Lorentz factor gamma F, the red-shifted FEL radiation and blue shifted undulator have identical wavelengths and the number of required time-steps (presuming the Courant condition applies) decreases by a factor of g2 F for fullyelectromagnetic simulation. We have adapted the WARP code [2]to apply this method to several FEL problems including coherent spontaneous emission (CSE) from pre-bunched e-beams, and strong exponential gain in a single pass amplifier configuration. We discuss our results and compare with those from the"standard" FEL simulation approach which adopts the eikonal approximation for propagation ofthe radiation field.

  17. The VUV/IR/THz Free Electron Laser Program at Jefferson Lab

    SciTech Connect

    Benson, S V; Boyce, J R; Douglas, D R; Evtushenko, P; Hannon, F E; Hernandez-Garcia, C; Klopf, J M; Neil, G R; Shinn, Michelle D; Tennant, C D; Zhang, S; Williams, G P

    2011-09-01

    Jefferson Lab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source with pulse repetition rates up to 75 MHz. The facility uses an energy recovered linac design for efficiency of operation. Recent advances in superconducting technology have been implemented to produce higher acceleration gradients in the linac to produce higher electron beam energies that result in higher photon energies. Thus, while the system originally operated only in the IR, it now covers the photon energy range from the UV to THz, with harmonics upwards of 10 eV with an average spectral flux that is calculated to be 5x1017 photons/sec/0.1%BW. Pulse lengths are in the sub-picosecond regime, and the fully coherent nature of the source, both transversely and longitudinally, results in peak and average brightness values that are several orders of magnitude higher than storage rings. The system provides an R&D test-bed for studies of electron beam dynamics in a regime appropriate for next generation light sources operating at MHz repetition rates.

  18. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  19. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates

    PubMed Central

    David, C.; Gorelick, S.; Rutishauser, S.; Krzywinski, J.; Vila-Comamala, J.; Guzenko, V. A.; Bunk, O.; Färm, E.; Ritala, M.; Cammarata, M.; Fritz, D. M.; Barrett, R.; Samoylova, L.; Grünert, J.; Sinn, H.

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×1017 W/cm2 was obtained at 70 fs pulse length. PMID:22355576

  20. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  1. Aerosol Imaging with a Soft X-ray Free Electron Laser

    SciTech Connect

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W.Henry Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim; /DESY

    2011-08-22

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  2. Study of squeezed state on free electron lasers

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Madey, J. M. J.

    1998-02-01

    Preliminary investigations on squeezed state of FEL have been undertaken at the Duke FEL lab by means of photon counting experiments. We report photon statistics for spontaneous undulator radiation from Duke Storage Ring. Photon counting measurements have also been constructed on the Mark III FEL to obtain the statistical behavior of the visible harmonics of the infrared radiation. The initial experimental data demonstrate that the squeezing of optical phase fluctuations in an FEL is directly associated with the phase regulation of the electron beam as a result of FEL bunching. Simulation results on phase fluctuations in FEL radiation are also presented which support the above viewpoint. Further measurements are in process in an attempt to obtain better understanding on the effect of quantum fluctuations on the FEL interaction.

  3. VUV free electron laser with a distributed feedback cavity

    SciTech Connect

    Chen, J.; Fujita, M.; Asakawa, M.

    1995-12-31

    Development of FEL to the VUV/x-ray regime is looked as one of the possible directions to its success. For eliminating the need for optical cavities, difficult to be built at that regime, we propose a VUV (50nm) SASE FEL. According to Pellegrini`s scaling law, for a 290MeV/200A e-beam passing through a 10.8m long and 2cm period wiggler, a high peak power 85.5MW and a high average brightness 2.44 X 10{sup +21} (photons/[mm{sup 2}.mrad{sup 2}.bw]) can be obtained. However, it requires {epsilon} n=2.3mm.mrad and {Delta}{gamma}/{gamma} = 0.15% about one order above the practical parameters we can realize. For enhancing the efficiency and decreasing the requirements on the e-beam quality and the wiggler length, we put forward a concept of VUV FEL with a distributed feedback cavity. In x-ray region, the natural periodicity of crystals provides strong Bragg coupling and it has been demonstrated as the parametric radiation. In vuv region, current intense research on superlattice can provide a periodical structure with a short period in 250 {Angstrom} order. High-performance vuv multilayer coatings on the inner-wall of the waveguide are used to guide the spontaneous emission and decrease the x-ray ohmic losses on the roundtrip passes. By this DFB cavity structure, it is expected to realize the lasing in a smaller size. Other practical methods such as the optical klystron for shortening the wiggler length and the tapper wiggler for enhancing the saturation power are also considered. The analytical considerations are based on the 1-D FEL equations and 1-D perturbation theory of dielectric waveguide.

  4. Current status of the superconducting RF linac driver for the JAERI Free Electron Laser Facility

    SciTech Connect

    Minehara, E.J.; Sugimoto, M.; Sawamura, M.

    1995-12-31

    The commissioning of the superconducting rf linac driver for the JAERI free electron laser facility has been successfully performed at 10{approx}20 MeV before the end of the 1994 Japanese fiscal year. The performance obtained during the commissioning and current status of the JAERI FEL program at Tokai will be reported in detail.

  5. Status of the high power free electron laser using the race-track microtron-recuperator

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1996-02-01

    The high power infrared free electron laser is under construction at the Novosibirsk Scientific Centre. The goal of this project is to provide a user facility for Siberian Centre of Photochemical Researches. The features of the installation and its status are described.

  6. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  7. The “SF” System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade

    SciTech Connect

    George Biallas, Mark Augustine, Kenneth Baggett, David Douglas, Robin Wines

    2009-05-01

    The characteristics of the system of “SF” Sextupoles for the infrared Free Electron Laser Upgrade1 at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with +/- 0.2%

  8. Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain

    1990-01-01

    Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.

  9. Multi-dimensional free-electron laser simulation codes: a comparison study

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    2000-05-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  10. Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-04-28

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  11. Multi-dimensional free-electron laser simulation codes : a comparison study.

    SciTech Connect

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    1999-08-23

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  12. Gain characteristics of free-electron lasers using the Smith-Purcell effect

    SciTech Connect

    Zhang Dake

    1986-02-01

    Coupled-mode approach and electron Bloch equations are combined to calculate the gain of free-electron lasers using the Smith-Purcell effect in the gain quantum model. The possibility of increasing gain by changing the spatial frequency of the grating is studied.

  13. EXPERIMENTAL DEMONSTRATION OF WAVELENGTH TUNING IN HIGH-GAIN HARMONIC GENERATION FREE ELECTRON LASER.

    SciTech Connect

    SHAFTAN,T.; JOHNSON,E.; KRINSKY,S.; LOOS,H.; MURPHY,J.B.; RAKOWSKY,G.; ROSE,J.; SHEEHY,B.; SKARITKA,J.; WANG,X.J.; WU,Z.; YU,L.H.

    2004-08-29

    Tunability is one of the key aspects of any laser system. In High-Gain Harmonic Generation Free Electron Laser (HGHG FEL) the seed laser determines the output wavelength. Conventional scheme of tunable HGHG FEL requires tunable seed laser. The alternative scheme [1] is based on compression of the electron bunch with energy-time correlation (chirped bunch) in the FEL dispersive section. The chirped energy modulation, induced by the seed laser with constant wavelength, compressed as the whole bunch undergoes compression. In this paper we discuss experimental verification of the proposed approach at the DUV FEL [2,3] and compare experimental results with analytical estimates.

  14. Design Challenges in High Power Free-electron Laser Oscillators

    SciTech Connect

    S.V. Benson

    2005-08-21

    Several FELs have now demonstrated high power lasing and several projects are under construction to deliver higher power or shorter wavelengths. This presentation will summarize progress in upgrading FEL oscillators towards higher power and will discuss some of the challenges these projects face. The challenges fall into three categories: 1. energy recovery with large exhaust energy spread, 2. output coupling and maintaining mirror figure in the presence of high intracavity power loading, and 3. high current operation in an energy recovery linac (ERL). Progress in all three of these areas has been made in the last year. Energy recovery of over 12% of exhaust energy spread has been demonstrated and designs capable of accepting even larger energy spreads have been proposed. Cryogenic transmissive output couplers for narrow band operation and both hole and scraper output coupling have been developed. Investigation of short Rayleigh range operation has started as well. Energy recovery of over 20 mA CW has been demonstrated and several methods of mitigating transverse beam breakup instabilities were demonstrated. This talk will summarize these achievements and give a roadmap of where the field is headed.

  15. Single pass, THz spectral range free-electron laser driven by a photocathode hybrid rf linear accelerator

    NASA Astrophysics Data System (ADS)

    Lurie, Yu.; Friedman, A.; Pinhasi, Y.

    2015-07-01

    A single pass, THz spectral range free-electron laser (FEL) driven by a photocathode hybrid rf-LINAC is considered, taking the Israeli THz FEL project developed in Ariel University as an example. Two possible configurations of such FEL are discussed: an enhanced coherent spontaneous emission FEL, and a prebunched FEL utilizing periodically modulated short electron beam pulses. A general study of the FEL configurations is carried out in the framework of a space-frequency approach, realized in WB3D numerical code. The configurations are studied and compared based on preliminary parameters of a drive hybrid rf-LINAC gun under development in University of California, Los Angeles.

  16. A proposal for an x-ray free-electron laser oscillator with an energy-recovery linac.

    SciTech Connect

    Kim, K. J.; Shvyd'ko, Y.; Reiche, S.; Accelerator Systems Division; UCLA

    2008-06-01

    We show that a free-electron laser oscillator generating x rays with wavelengths of about 1 {angstrom} is feasible using ultralow emittance electron beams of a multi-GeV energy-recovery linac, combined with a low-loss crystal cavity. The device will produce x-ray pulses with 10{sup 9} photons at a repetition rate of 1-100 MHz. The pulses are temporarily and transversely coherent, with a rms bandwidth of about 2 meV, and rms pulse length of about 1 ps.

  17. Nonlinear delayed symmetry breaking in a solid excited by hard x-ray free electron laser pulses

    SciTech Connect

    Ferrer, A.; Johnson, J. A. Mariager, S. O.; Grübel, S.; Staub, U.; Huber, T.; Trant, M.; Johnson, S. L.; Zhu, D.; Chollet, M.; Robinson, J.; Lemke, H. T.; Ingold, G.; Beaud, P.; Milne, C.

    2015-04-13

    We have studied the ultrafast changes of electronic states in bulk ZnO upon intense hard x-ray excitation from a free electron laser. By monitoring the transient anisotropy induced in an optical probe beam, we observe a delayed breaking of the initial c-plane symmetry of the crystal that lasts for several picoseconds. Interaction with the intense x-ray pulses modifies the electronic state filling in a manner inconsistent with a simple increase in electronic temperature. These results may indicate a way to use intense ultrashort x-ray pulses to investigate high-energy carrier dynamics and to control certain properties of solid-state materials.

  18. A Proposal for an X-Ray Free-Electron Laser Oscillator with an Energy-Recovery Linac

    SciTech Connect

    Kim, Kwang-Je; Shvydko, Yuri; Reiche, Sven

    2008-06-20

    We show that a free-electron laser oscillator generating x rays with wavelengths of about 1 A is feasible using ultralow emittance electron beams of a multi-GeV energy-recovery linac, combined with a low-loss crystal cavity. The device will produce x-ray pulses with 10{sup 9} photons at a repetition rate of 1-100 MHz. The pulses are temporarily and transversely coherent, with a rms bandwidth of about 2 meV, and rms pulse length of about 1 ps.

  19. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    SciTech Connect

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Deutsches Elektronen-Synchrotron, Hamburg; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zhang, Wenkai; Robert, Aymeric; Zhu, Diling

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  20. Transverse and temporal characteristics of a high-gain free-electron laser in the saturation regime

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Kim, Kwang-Je

    2002-05-01

    The transverse and the temporal characteristics of a high-gain free-electron laser are governed by refractive guiding and sideband instability, respectively. Using the self-consistent Vlasov-Maxwell equations, we explicitly determine the effective index of refraction and the guided radiation mode for an electron beam with arbitrary transverse size. Electrons trapped by the guided radiation execute synchrotron oscillation and hence are susceptible to the sideband instability. We explain the spectral evolution and determine the sideband growth rate. These theoretical predictions agree well with GINGER simulation results.

  1. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    SciTech Connect

    Schroeder, Carl B.; Fawley, William M.; Esarey, Eric

    2002-09-24

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond first saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuation level reaches a minimum.

  2. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    PubMed Central

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zhang, Wenkai; Robert, Aymeric; Zhu, Diling

    2015-01-01

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus’ location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging. PMID:25931074

  3. Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.

    PubMed

    Nilsson, Daniel; Uhlén, Fredrik; Holmberg, Anders; Hertz, Hans M; Schropp, Andreas; Patommel, Jens; Hoppe, Robert; Seiboth, Frank; Meier, Vivienne; Schroer, Christian G; Galtier, Eric; Nagler, Bob; Lee, Hae Ja; Vogt, Ulrich

    2012-12-15

    We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes. The method is simple to implement and can provide single-shot information about the focusing quality. We used the Ronchi test to measure the aberrations in a nanofocusing Fresnel zone plate at the Linac Coherent Light Source at 8.194 keV.

  4. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    SciTech Connect

    Hilbert, V.; Rödel, C.; Zastrau, U.; Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S.; Döppner, T.; Ma, T.; Fletcher, L.; Förster, E.; Glenzer, S. H.; Lee, H. J.; Hartley, N. J.; Kazak, L.; Komar, D.; Skruszewicz, S.; and others

    2014-09-08

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  5. Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers

    SciTech Connect

    Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U.

    2012-11-27

    Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

  6. Nonlinear resonances in a multi-stage free-electron laser amplifier

    SciTech Connect

    Hashimoto, S.; Takayama, K.

    1995-12-31

    A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.

  7. Soft x-ray free-electron laser induced damage to inorganic scintillators

    DOE PAGES

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, Jan; Özkan, Cigdem; Coppola, Nicola; Farahani, Shafagh Dastjani; et al

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less

  8. Soft x-ray free-electron laser induced damage to inorganic scintillators

    SciTech Connect

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, Jan; Özkan, Cigdem; Coppola, Nicola; Farahani, Shafagh Dastjani; Schulz, Joachim; Sinn, Harald; Tschentscher, Thomas; Gaudin, Jérôme; Bajt, Saša; Tiedtke, Kai; Toleikis, Sven; Chapman, Henry N.; Loch, Rolf A.; Jurek, Marek; Sobierajski, Ryszard; Krzywinski, Jacek; Moeller, Stefan; Harmand, Marion; Galasso, Germano; Nagasono, Mitsuru; Saskl, Karel; Sovák, Pavol; Juha, Libor

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determined by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.

  9. Optical properties of the output of a high-gain, self-amplified free-electron laser.

    SciTech Connect

    Li, Y.; Lewellen, J.; Huang, Z.; Krinsky, S.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  10. R&D for a Soft X-Ray Free Electron Laser Facility

    SciTech Connect

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  11. Internal injection for a microtron driving a terahertz free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevich, Grigory M.; Pavlov, Viatcheslav M.; Kuznetsov, Gennady I.; Jeong, Young Uk; Park, Seong Hee; Lee, Byung Cheol

    2007-08-01

    A terahertz free electron laser (FEL) driven by a high-current classical S-band 12-orbit microtron with internal injection and a magnetron-based radio frequency system has been developed. The laboratory-size, inexpensive facility is widely tunable in the terahertz range. This makes it attractive for application in research laboratories and universities. Stability and reliability in operation of such microtron-based FEL is determined generally by the microtron injection system. Operation of the injection system employing a thermionic cathode has been analyzed. The analysis was performed using two-dimensional tracking simulations in which we considered bombardment of the cathode emitting surface with the back-streaming electrons. The analysis showed that the bombardment causes pulse overheating of the emitting surface and, as a result, an increase of beam loading of the accelerating cavity during the macropulse. The phenomenon affects the intrapulse stability of the accelerated current and the FEL operation. The analysis and measurements show how to optimize the microtron operation minimizing affects of the back-streaming electrons. The developed injection system based on LaB6 thermionic cathode provides operation of the widely tunable terahertz FEL in the ordinary regime with radiated macropulse power of 40-50W at the pulse duration of 2-4μs. The standard deviation of the lasing macropulse energy is less than 10% for long-time operation.

  12. Coherence Properties of Individual Femtosecond Pulses of an X-Ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Vartanyants, I. A.; Singer, A.; Mancuso, A. P.; Yefanov, O. M.; Sakdinawat, A.; Liu, Y.; Bang, E.; Williams, G. J.; Cadenazzi, G.; Abbey, B.; Sinn, H.; Attwood, D.; Nugent, K. A.; Weckert, E.; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J. J.; Schlotter, W. F.; Messerschmidt, M.; Lüning, J.; Acremann, Y.; Heimann, P.; Mancini, D. C.; Joshi, V.; Krzywinski, J.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Peele, A. G.; Feng, Y.; Krupin, O.; Moeller, S.; Wurth, W.

    2011-09-01

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in “diffract-and-destroy” mode. We determined a coherence length of 17μm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  13. Multiphoton absorption in germanium using pulsed infrared free-electron laser radiation

    NASA Astrophysics Data System (ADS)

    Seo, D.; Gregory, J. M.; Feldman, L. C.; Tolk, N. H.; Cohen, P. I.

    2011-05-01

    We report wavelength- and intensity-dependent transmission measurements of intense mid-infrared radiation from the Vanderbilt free-electron laser in single-crystal Ge(100) in the wavelength range of 2.8-5.2 μm. This range accesses both the direct and indirect energy gaps in Ge, requiring in each case either two or three photons (2PA or 3PA) for absorption. Large changes in the multiphoton absorption rate are seen at the direct-to-indirect and 2PA-to-3PA transitions. Photon interactions are dominated by free-carrier absorption (FCA), primarily due to holes. The entire absorption process is modeled with the two- and three-photon absorption coefficients (β and γ) as fitting parameters. Using newly measured values of the low-intensity FCA cross sections, we find a best fit to the data at 2.8 μm that is in agreement with theory and previous measurements. We report a ratio of 175 for β across the direct-to-indirect transition, and a ratio of 5 across the same transition for γ. These ratios are independent of systematic variations in free-carrier cross sections and beam diameter.

  14. Multimode nonlinear analysis of free-electron laser amplifiers in three dimensions

    SciTech Connect

    Freund, H.P.

    1988-05-01

    The nonlinear evolution of a free-electron laser (FEL) amplifier is investigated for a configuration in which an electron beam propagates through an overmoded rectangular waveguide in the presence of a planar wiggler with parabolically tapered pole pieces. The analysis is fully three dimensional and describes the evolution of an arbitrary number of resonant TE and/or TM modes of the rectangular guide as well as the trajectories of an ensemble of electrons. Numerical simulations are conducted for parameters consistent with the 35-GHz amplifier experiment performed by Orzechowski and co-workers (Phys. Rev. Lett. 54, 889 (1985); 57, 2172 (1986)), in which the TE/sub 01/, TE/sub 21/, and TM/sub 21/ modes were observed. The theory is found to be in good agreement with the experiment. Surprisingly, comparison with a single-mode analysis shows that the enhancement of the efficiency of the TE/sub 01/ mode obtained by means of a tapered wiggler is significantly greater (as well as being in substantial agreement with the experiment) when the TE/sub 21/ and TM/sub 21/ modes are included in the simulation.

  15. Operation of a free-electron laser from the extreme ultraviolet to the water window

    NASA Astrophysics Data System (ADS)

    Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Costello, J. T.; Cubaynes, D.; Dardis, J.; Decking, W.; Delsim-Hashemi, H.; Delserieys, A.; di Pirro, G.; Dohlus, M.; Düsterer, S.; Eckhardt, A.; Edwards, H. T.; Faatz, B.; Feldhaus, J.; Flöttmann, K.; Frisch, J.; Fröhlich, L.; Garvey, T.; Gensch, U.; Gerth, Ch.; Görler, M.; Golubeva, N.; Grabosch, H.-J.; Grecki, M.; Grimm, O.; Hacker, K.; Hahn, U.; Han, J. H.; Honkavaara, K.; Hott, T.; Hüning, M.; Ivanisenko, Y.; Jaeschke, E.; Jalmuzna, W.; Jezynski, T.; Kammering, R.; Katalev, V.; Kavanagh, K.; Kennedy, E. T.; Khodyachykh, S.; Klose, K.; Kocharyan, V.; Körfer, M.; Kollewe, M.; Koprek, W.; Korepanov, S.; Kostin, D.; Krassilnikov, M.; Kube, G.; Kuhlmann, M.; Lewis, C. L. S.; Lilje, L.; Limberg, T.; Lipka, D.; Löhl, F.; Luna, H.; Luong, M.; Martins, M.; Meyer, M.; Michelato, P.; Miltchev, V.; Möller, W. D.; Monaco, L.; Müller, W. F. O.; Napieralski, O.; Napoly, O.; Nicolosi, P.; Nölle, D.; Nuñez, T.; Oppelt, A.; Pagani, C.; Paparella, R.; Pchalek, N.; Pedregosa-Gutierrez, J.; Petersen, B.; Petrosyan, B.; Petrosyan, G.; Petrosyan, L.; Pflüger, J.; Plönjes, E.; Poletto, L.; Pozniak, K.; Prat, E.; Proch, D.; Pucyk, P.; Radcliffe, P.; Redlin, H.; Rehlich, K.; Richter, M.; Roehrs, M.; Roensch, J.; Romaniuk, R.; Ross, M.; Rossbach, J.; Rybnikov, V.; Sachwitz, M.; Saldin, E. L.; Sandner, W.; Schlarb, H.; Schmidt, B.; Schmitz, M.; Schmüser, P.; Schneider, J. R.; Schneidmiller, E. A.; Schnepp, S.; Schreiber, S.; Seidel, M.; Sertore, D.; Shabunov, A. V.; Simon, C.; Simrock, S.; Sombrowski, E.; Sorokin, A. A.; Spanknebel, P.; Spesyvtsev, R.; Staykov, L.; Steffen, B.; Stephan, F.; Stulle, F.; Thom, H.; Tiedtke, K.; Tischer, M.; Toleikis, S.; Treusch, R.; Trines, D.; Tsakov, I.; Vogel, E.; Weiland, T.; Weise, H.; Wellhöfer, M.; Wendt, M.; Will, I.; Winter, A.; Wittenburg, K.; Wurth, W.; Yeates, P.; Yurkov, M. V.; Zagorodnov, I.; Zapfe, K.

    2007-06-01

    We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

  16. Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window

    SciTech Connect

    Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; Brinkmann, R.; Brovko, O.I.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Costello, J.T.; Cubaynes, D.; Dardis, J.; /Dublin City U. /DESY /Hamburg U. /Queen's U., Belfast /Frascati /DESY /DESY /Hamburg U. /Fermilab /DESY /DESY /DESY /SLAC /Hamburg U. /Orsay, LAL /DESY, Zeuthen /DESY /DESY /DESY /DESY, Zeuthen /Lodz, Tech. U. /DESY /DESY /Hamburg U. /DESY /DESY /Hamburg U. /DESY /DESY /Kharkov Natl. U. /BESSY, Berlin /Warsaw U. of Tech. /Lodz, Tech. U. /DESY /DESY /Dublin City U. /Dublin City U. /DESY, Zeuthen /DESY, Zeuthen /DESY /DESY /DESY /Warsaw U. of Tech. /DESY, Zeuthen /DESY /DESY, Zeuthen /DESY /DESY /Queen's U., Belfast /DESY /DESY /DESY /Hamburg U. /Dublin City U. /Saclay /Hamburg U. /Orsay, IPN /LASA, Segrate /Hamburg U. /DESY /LASA, Segrate /Darmstadt, Tech. Hochsch. /Lodz, Tech. U. /Saclay /Padua U. /DESY /DESY /DESY, Zeuthen /LASA, Segrate /Saclay /DESY /Hamburg U. /Dublin City U. /DESY /DESY, Zeuthen /DESY /DESY /DESY /DESY /DESY, Zeuthen /Warsaw U. of Tech. /DESY /Hamburg U. /DESY /Warsaw U. of Tech. /DESY /DESY /DESY /Berlin, Phys. Tech. Bund. /DESY /Hamburg U. /Hamburg U. /Warsaw U. of Tech. /SLAC /Hamburg U. /DESY /DESY, Zeuthen /DESY /Max Born Inst., Berlin /DESY /DESY /DESY /Hamburg U. /DESY /DESY /Darmstadt, Tech. Hochsch. /DESY /DESY /PSI, Villigen /LASA, Segrate /Dubna, JINR /Saclay /DESY /DESY /Ioffe Phys. Tech. Inst. /Berlin, Phys. Tech. Bund. /Humboldt U., Berlin /Kharkov Natl. U. /DESY, Zeuthen /DESY /DESY, Zeuthen /DESY /DESY /DESY /DESY /DESY /DESY /DESY /Sofiya, Inst. Nucl. Res. /DESY /Darmstadt, Tech. Hochsch. /DESY /Hamburg U. /DESY /Fermilab /Max Born Inst., Berlin /DESY /DESY /Hamburg U. /Dublin City U. /DESY /DESY /DESY

    2007-12-17

    We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 {micro}J for individual pulses, and the average energy per pulse reached 70 {micro}J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

  17. Enhancing the performance of a high-gain free electron laser operating at millimeter wavelengths

    SciTech Connect

    Barletta, W.A.; Anderson, B.; Fawley, W.M.; Neil, V.K.; Orzechowski, T.J.; Prosnitz, D.; Scharlemann, E.T.; Yarema, S.M.; Paul, A.C.; Hopkins, D.

    1984-10-25

    A high-gain, high extraction efficiency, free electron laser (FEL) amplifier operating at the Experimental Test Accelerator (ETA) at 34.6 GHz has demonstrated a small signal gain of 13.4 dB/m. With a 30 kW input signal, the amplifier has produced a saturated output of 80 MW and a 5% extraction efficiency. Comparison of these results with a linear model at small signal levels indicates that the amplifier can deliver saturated output starting from noise, if the brightness of the electron beam is sufficiently high. The brightness of the ETA is far below that possible with optimized choice of practical design characteristics such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. In particular, the measured brightness of the ETA injector is limited by plasma effects from the present cold, plasma cathode. As part of a coordinated theoretical and experimental effort to improve injector performance, we are using the EBQ gun design code to explore the current limits of gridless, relativistic, Pierce columns with moderate current density (>50 A/cm/sup 2/) at the cathode. The chief component in our experimental effort is a readily modified electron gun that will allow us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MV/cm. 8 references, 5 figures.

  18. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    SciTech Connect

    Chapman, Henry N.; Barty, Anton: AUTHOR = Bogan, Michael J.; Boutet, Sebastian; Frank, Matthias; Hau-Riege, Stefan P.; Marchesini, Stefano; Woods, Bruce W.; Bajt, Sasa; Benner, W.Henry; London, Richard A.; Plonjes, Elke; Kuhlmann, Marion; Treusch, Rolf; Dusterer, Stefan; Tschentscher, Thomas; Schneider, Jochen R.; Spiller, Eberhard; Moller, Thomas; Bostedt, Christoph; Hoener, Matthias; Shapiro, David A.; /UC, Davis /SLAC /Uppsala U. /LLNL, Livermore /Uppsala U. /Uppsala U. /SLAC /Uppsala U.

    2010-10-07

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  19. Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser

    SciTech Connect

    Chapman, H N; Barty, A; Bogan, M; Boutet, S; Frank, M; Hau-Riege, S P; Marchesini, S; Woods, B; Bajt, S; Benner, W H; London, R; Ploenjes-Palm, E; Kuhlmann, M; Treusch, R; Dusterer, S; Tschentscher, T; Schneider, J; Spiller, E; Moller, T; Bostedt, C; Hoener, M; Shapiro, D; Hodgson, K O; der Spoel, D v; Burmeister, F; Bergh, M; Caleman, C; Huldt, G; Seibert, M; Maia, F; Lee, R; Szoke, A; Timneanu, N; Hajdu, J

    2006-03-13

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  20. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    NASA Astrophysics Data System (ADS)

    Hadmack, M. R.; Jacobson, B. T.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B.

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai`i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  1. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser.

    PubMed

    Hadmack, M R; Jacobson, B T; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system. PMID:23822338

  2. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    SciTech Connect

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B.; Jacobson, B. T.

    2013-06-15

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  3. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  4. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  5. High-power, high-frequency, annular-beam free-electron maser

    SciTech Connect

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.

    1998-11-01

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 {micro}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM{sub 02} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability.

  6. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    SciTech Connect

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  7. Free electron laser (FEL) laser-tissue interaction with human cornea and optic nerve

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Edwards, Glenn S.; Shen, Jin-Hui; Shetlar, Debra J.; Robinson, Richard D.; O'Day, Denis M.

    1996-05-01

    A free electron laser (FEL) may be tuned to novel wavelengths to explore laser-tissue interactions for development or improvement of laser surgical procedures. This study investigated the effect of selected infrared wavelengths upon human cornea and optic nerve tissues. Human cadaver eyes were placed in 10% dextran solution to normalize corneal thickness, and solution was injected intraocularly to achieve a physiologic intraocular pressure. The corneas and optic nerves were lased with the 6.0 micrometer amide I band, 6.1 micrometer water absorbency peak, 6.45 micrometer amide II band, and 7.7 micrometer. The Vanderbilt FEL produces 5 microsecond long macropulses at 10 Hz with each macropulse consisting of 1 ps micropulses at 3 GHz. Histologic examination of the corneal tissue showed the least amount of collateral damage (10 - 20 micrometers) with the 6.0 micrometer amide I band, while marked shrinkage occurred with the 7.7 micrometer wavelength. For optic nerve tissue, the least amount of collateral damage (0 micrometer visible) occurred at 6.1 micrometer water absorbency peak and 6.45 micrometer amide II band, while the most damage (30 - 50 micrometers) was observed with the 7.7 micrometer wavelength. We conclude that different tissues may have different optimal wavelengths for surgical laser procedures.

  8. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers.

    PubMed

    Kirian, R A; Awel, S; Eckerskorn, N; Fleckenstein, H; Wiedorn, M; Adriano, L; Bajt, S; Barthelmess, M; Bean, R; Beyerlein, K R; Chavas, L M G; Domaracky, M; Heymann, M; Horke, D A; Knoska, J; Metz, M; Morgan, A; Oberthuer, D; Roth, N; Sato, T; Xavier, P L; Yefanov, O; Rode, A V; Küpper, J; Chapman, H N

    2015-07-01

    A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam. PMID:26798816

  9. Free-electron laser effects on fibrin tissue glue: a preliminary study

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Topadze, Katie; Shieh, Charles; Shen, Jin-Hui; Casagrande, Vivien A.

    2000-06-01

    One glaucoma challenge is the treatment of leaking trabeculectomy blebs. Simple methods such as patching, autologous blood injection, compression sutures or cyanoacrylate glue application often fail. Because the conjunctiva is thin and ischemic, it often can't be sutured together so major surgery is required to excise the thin tissue and advance healthy conjunctiva. We report the preliminary results of Tisseel and Tisseel treated with two wavelengths from Vanderbilt's free electron laser placed on leaking trabeculectomy bleb holes in Dutch belted rabbits. The holes were healed at one week in the sutured group and in the 7.7 micrometer FEL-treated Tisseel group. One hole was healed in the cyanoacrylate glue-treated group. Holes remained in the other treatment groups. Tisseel irradiated with 7.7 micrometer energy from the free electron laser may promote healing of trabeculectomy bleb holes.

  10. A tunable optical cavity for an x-ray free-electron laser oscillator.

    SciTech Connect

    Kim, K.-J.; Shvyd'ko, Y.

    2009-03-01

    An x-ray free-electron laser oscillator proposed recently for hard x rays [K. Kim, Y. Shvydko, and S. Reiche, Phys. Rev. Lett. 100, 244802 (2008)] can be made tunable by using an x-ray cavity composed of four crystals, instead of two. The tunability of x-ray energy will significantly enhance the usefulness of an x-ray free-electron laser oscillator. We present a detailed analysis of the four-crystal optical cavity and choice of crystals for several applications: inelastic x-ray scattering, nuclear resonant scattering, bulk-sensitive hard x-ray photoemission spectroscopy, other high-energy-resolution ({le} 1 meV) spectroscopic probes, and for imaging with hard x rays at near-atomic resolution ({approx} 1 nm).

  11. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  12. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser.

    PubMed

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  13. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  14. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  15. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  16. Effects of free-electron-laser field fluctuations on the frequency response of driven atomic resonances

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, G. M.; Lambropoulos, P.

    2012-09-01

    We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyze separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.

  17. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    SciTech Connect

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  18. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  19. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.

  20. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation. PMID:27250368

  1. Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser.

    PubMed

    Bajt, Sasa; Chapman, Henry N; Spiller, Eberhard A; Alameda, Jennifer B; Woods, Bruce W; Frank, Matthias; Bogan, Michael J; Barty, Anton; Boutet, Sebastien; Marchesini, Stefano; Hau-Riege, Stefan P; Hajdu, Janos; Shapiro, David

    2008-04-01

    We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10(14) W/cm2. The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance.

  2. Data acquisition system for X-ray free-electron laser experiments at SACLA

    PubMed Central

    Joti, Yasumasa; Kameshima, Takashi; Yamaga, Mitsuhiro; Sugimoto, Takashi; Okada, Kensuke; Abe, Toshinori; Furukawa, Yukito; Ohata, Toru; Tanaka, Ryotaro; Hatsui, Takaki; Yabashi, Makina

    2015-01-01

    A data acquisition system for X-ray free-electron laser experiments at SACLA has been developed. The system has been designed for reliable shot-to-shot data storage with a high data stream greater than 4 Gbps and massive data analysis. Configuration of the system and examples of prompt data analysis during experiments are presented. Upgrade plans for the system to extend flexibility are described. PMID:25931070

  3. Plans for a far-infrared free-electron laser in India

    SciTech Connect

    Krishnagopal, S.; Kumar, V.; Ramamurthi, S.S.

    1995-12-31

    The Centre for Advanced Technology is building the INDUS complex of synchrotron radiation sources. As part of this programme it is also proposed to build a far-infrared free-electron laser oscillator. This will use a microtron injector and a 40 period undulator made of NdFeB permanent magnets, and is designed to law around 200 microns. We discuss details of the FEL design and the present status of experimental activities on this front.

  4. Cavity dumping of an injection-locked free-electron laser

    SciTech Connect

    Takahashi, Susumu; Ramian, Gerald; Sherwin, Mark S.

    2009-12-07

    This letter reports cavity dumping of an electrostatic-accelerator-driven free-electron laser (FEL), while it is injection-locked to a frequency-stabilized 240 GHz solid-state source. Cavity dumping enhances the FEL output power by a factor of {approx}8, and abruptly cuts off the end of the FEL pulse. The cavity-dumped, injection-locked FEL output is used in a 240 GHz pulsed electron spin resonance experiment.

  5. Absorption and Diffusion Measurements of Biological Samples using a THz Free Electron Laser.

    PubMed

    Giovenale, E; D'Arienzo, M; Doria, A; Gallerano, G P; Lai, A; Messina, G; Piccinelli, D

    2003-06-01

    A compact THz Free Electron Laser (FEL) isbeing used to perform irradiation ofbiological samples to investigate possiblegenotoxic effects. In order to evaluate theexact radiation dose absorbed by the singlecomponents of the samples it is necessaryto study the optical properties of thesamples, separating the contributions tothe radiation attenuation coefficientcoming from absorption and from diffusion.Spectroscopic measurements have beenperformed on different biological samples, comparing the experimental results withtheoretical models. PMID:23345832

  6. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  7. Chorus wave amplification: A free electron laser in the Earth's magnetosphere

    SciTech Connect

    Soto-Chavez, A. R.; Bhattacharjee, A.; Ng, C. S.

    2012-01-15

    A new theoretical model for whistler-mode chorus amplification in the Earth's magnetosphere is presented. We derive, based on the free-electron laser mechanism in a high-gain amplifier, a new closed set of self-consistent relativistic equations that couple the Hamiltonian equations for particles with Maxwell's equations. We demonstrate that these equations predict, through a cubic equation, whistler amplification levels in good agreement with those observed in the Earth's magnetosphere.

  8. Visualizing a protein quake with time resolved X-ray scattering at a free electron laser

    PubMed Central

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Barty, Anton; Williams, Garth J.; Malmerberg, Erik; Davidsson, Jan; Milathianaki, Despina; DePonte, Daniel P.; Shoeman, Robert L.; Wang, Dingjie; James, Daniel; Katona, Gergely; Westenhoff, Sebastian; White, Thomas A.; Aquila, Andrew; Bari, Sadia; Berntsen, Peter; Bogan, Mike; van Driel, Tim Brandt; Doak, R. Bruce; Kjær, Kasper Skov; Frank, Matthias; Fromme, Raimund; Grotjohann, Ingo; Henning, Robert; Hunter, Mark S.; Kirian, Richard A.; Kosheleva, Irina; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nielsen, Martin Meedom; Messerschmidt, Marc; Seibert, M. Marvin; Sjöhamn, Jennie; Stellato, Francesco; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Boutet, Sébastien; Groenhof, Gerrit; Chapman, Henry N.; Neutze, Richard

    2014-01-01

    A ‘protein quake’ describes the hypothesis that proteins rapidly dissipate energy through quake like structural motions. Here we measure ultrafast structural changes in the Blastochloris viridis photosynthetic reaction center following multi-photon excitation using time-resolved wide angle X-ray scattering at an X-ray free electron laser. A global conformational change arises within picoseconds, which precedes the propagation of heat through the protein. This motion is damped within a hundred picoseconds. PMID:25108686

  9. Three-dimensional analysis of the surface mode supported in Čerenkov and Smith-Purcell free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2016-06-01

    In Čerenkov and Smith-Purcell free-electron lasers (FELs), a resonant interaction between the electron beam and the copropagating surface mode can produce a copious amount of coherent terahertz radiation. We perform a three-dimensional (3D) analysis of the surface mode, taking the effect of attenuation into account, and set up 3D Maxwell-Lorentz equations for both these systems. Based on this analysis, we determine the requirements on the electron beam parameters, i.e., beam emittance, beam size and beam current for the successful operation of a Čerenkov FEL.

  10. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  11. Direct and secondary nuclear excitation with x-ray free-electron lasers

    SciTech Connect

    Gunst, Jonas; Wu, Yuanbin Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  12. Direct and secondary nuclear excitation with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Wu, Yuanbin; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-01

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of 93Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in 57Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  13. Two nonlinear models of the free-electron laser. Master's thesis

    SciTech Connect

    Kiel, D.H.

    1990-11-01

    The dynamics of the Free Electron Laser are governed by Maxwell's equations which causes many highly nonlinear regimes to exist in Free Electron Laser Physics. This thesis will examine two such areas and develop simple models to describe the highly dynamic and rich behavior two of these regimes. In the strong-field, high current regime, the Free Electron Laser driving current can be modeled by a single macroparticle representing the trapped electrons. When the trapped electrons act collectively as a macroparticle, solutions which include synchrotron oscillations can be found for the self-consistent pendulum and wave equations. In an FEL oscillator with low single-pass gain, the evolution of the optical wave can lead to sideband development. This phenomenon is studied by applying Maxwell's equations to an oscillator with two optical modes and deriving a two-mode wave and pendulum equation. The two-mode wave and pendulum equations are implemented numerically on computers so that the onset of the sideband can be explored.

  14. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  15. Prospects for using X-ray free-electron lasers to investigate shock-compressed matter

    SciTech Connect

    Nagler, Bob; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Whitcher, Thomas; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lee, Richard; Lorenzana, Hector; Remington, Bruce; Larsson, Jorgen; Park, Nigel; Sokolowski-Tinten, Klaus

    2007-12-12

    Within the next few years hard X-ray Free Electron Lasers will come on line. Such systems will have spectral brightnesses ten orders of magnitude greater than any extant synchrotron, with pulse lengths as short as a few femtoseconds. It is anticipated that large-scale optical lasers capable of shock-compressing matter to multi-megabar pressures will be sited alongside the X-ray source. We discuss how such systems can further our knowledge of shocked and isochorically heated matter, in particular investigating the potential to perform polycrystalline diffraction and the creation of warm dense matter.

  16. Note: Measurement of saturable absorption by intense vacuum ultraviolet free electron laser using fluorescent material

    SciTech Connect

    Inubushi, Y.; Kumagai, T.; Morimoto, S.; Tanaka, T.; Kodama, R.; Yoneda, H.; Higashiya, A.; Ishikawa, T.; Nagasono, M.; Tono, K.; Yabashi, M.; Kimura, H.; Ohashi, H.; Togashi, T.; Sato, F.; Yamaguchi, Y.

    2010-03-15

    Advances in free electron lasers (FELs) which generate high energy photons are expected to open novel nonlinear optics in the x-ray and vacuum ultraviolet (VUV) regions. In this paper, we report a new method for performing VUV-FEL focusing experiments. A VUV-FEL was focused with Kirkpatrick-Baez optics on a multilayer target, which contains fused silica as a fluorescent material. By measuring the fluorescence, a 5.6x4.9 {mu}m{sup 2} focal spot was observed in situ. Fluorescence was used to measure the saturable absorption of VUV pulses in the tin layer. The transmission increases nonlinearly higher with increasing laser intensity.

  17. What defines the quantum regime of the free-electron laser?

    NASA Astrophysics Data System (ADS)

    Kling, Peter; Giese, Enno; Endrich, Rainer; Preiss, Paul; Sauerbrey, Roland; Schleich, Wolfgang P.

    2015-12-01

    The quantum regime of the free-electron laser (FEL) emerges when the discreteness of the momentum of the electron plays a dominant role in the interaction with the laser and the wiggler field. Motivated by a heuristic phase space approach we pursue two different routes to define the transition from the classical FEL to the quantum domain: (i) standard perturbation theory and (ii) the method of averaging. Moreover, we discuss the experimental requirements for realizing a Quantum FEL and connect them to today's capabilities.

  18. Conductors, semiconductors, and insulators irradiated with short-wavelength free-electron laser

    NASA Astrophysics Data System (ADS)

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, L.; Bittner, M.; Létal, V.; Vorlíček, V.; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E. L.; Schneidmiller, E. A.; Treusch, R.; Yurkov, M. V.

    2007-02-01

    The results of a study of irreversible changes induced at surfaces of metals, semiconductors, and insulators by extreme ultraviolet (λ<100nm) ultrashort pulses provided by TESLA Test Facility Free-Electron Laser, Phase 1 (TTF1 FEL) are reported and discussed. The laser was tuned at 86, 89, and 98nm during the experiments reported here. Energy spectra of ions ejected from the irradiated surfaces are also reported. Special attention is paid to the difference in the ablation behavior of (semi)conductors and insulators that we have observed. The difference is dramatic, while the absorption coefficients are similar for all materials at the TTF1 FEL wavelength.

  19. Endstation for ultrafast magnetic scattering experiments at the free-electron laser in Hamburg

    SciTech Connect

    Mueller, L.; Gutt, C.; Streit-Nierobisch, S.; Walther, M.; Gruebel, G.; Schaffert, S.; Pfau, B.; Flewett, S.; Geilhufe, J.; Eisebitt, S.; Buettner, F.; Guenther, C. M.; Kobs, A.; Hille, M.; Stickler, D.; Froemter, R.; Oepen, H. P.; Luening, J.

    2013-01-15

    An endstation for pump-probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump-probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si{sub 3}N{sub 4} membranes and pump-laser-induced grid structures in multilayer samples.

  20. The nonlinear wave equation for higher harmonics in free-electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1981-01-01

    The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.

  1. Efficiency and Spectrum Enhancement in a Tapered Free-Electron Laser Amplifier

    SciTech Connect

    Wang, X. J.; Harder, D.; Murphy, J. B.; Qian, H.; Shen, Y.; Yang, X.; Freund, H. P.; Miner, W. H. Jr.

    2009-10-09

    We report the first experimental characterization of efficiency and spectrum enhancement in a laser-seeded free-electron laser using a tapered undulator. Output and spectra in the fundamental and third harmonic were measured versus distance for uniform and tapered undulators. With a 4% field taper over 3 m, a 300% (50%) increase in the fundamental (third harmonic) output was observed. A significant improvement in the spectra with the elimination of sidebands was observed using a tapered undulator. The experiment is in good agreement with predictions using the MEDUSA simulation code.

  2. Efficiency and spectrum enhancement in a tapered free-electron laser amplifier.

    PubMed

    Wang, X J; Freund, H P; Harder, D; Miner, W H; Murphy, J B; Qian, H; Shen, Y; Yang, X

    2009-10-01

    We report the first experimental characterization of efficiency and spectrum enhancement in a laser-seeded free-electron laser using a tapered undulator. Output and spectra in the fundamental and third harmonic were measured versus distance for uniform and tapered undulators. With a 4% field taper over 3 m, a 300% (50%) increase in the fundamental (third harmonic) output was observed. A significant improvement in the spectra with the elimination of sidebands was observed using a tapered undulator. The experiment is in good agreement with predictions using the MEDUSA simulation code. PMID:19905644

  3. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.

  4. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers. PMID:25415561

  5. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    SciTech Connect

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-05-18

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne{sup 2+} production reveals the dominance of nonsequential two-photon double ionization at intensities of I<6x10{sup 12} W/cm{sup 2} and significant contributions of three-photon ionization as I increases. Ne{sup 2+} recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies.

  6. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    SciTech Connect

    Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; Nelson, Garrett; James, Daniel; Calero, Guillermo; Wachter, Rebekka M.; Spence, John C. H.; Weierstall, Uwe; Fromme, Petra; Ros, Alexandra

    2015-08-19

    We report that the advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ~4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. Ultimately, this method will also

  7. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    DOE PAGES

    Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; et al

    2015-08-19

    We report that the advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles canmore » be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ~4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. Ultimately, this method

  8. Non-wiggler-averaged theory of short wavelength free-electron lasers

    SciTech Connect

    Freund, H.P.

    1995-12-31

    A three-dimensional nonlinear analysis of the interaction in short wavelength free-electron lasers is presented using a non-wiggler-averaged formulation for the electron trajectories. The analysis and simulation code is based upon a slow-time-scale amplifier model in which it is assumed that the interaction is with a single frequency wave, and Maxwell`s equations are averaged over a wave period. This eliminates the fast time scale from the analysis. Note that although Maxwell`s equations are averaged over the wave period, no average is imposed on the Lorentz force equations. The electromagnetic field is represented as a superposition of Gaussian optical modes. The wiggler model used is that of a three-dimensional planar wiggler which dictates the choice of a Gauss-Hermite mode decomposition. These fields are substituted into Maxwell`s equations and, after averaging over the wave period and integration over the transverse coordinates, yields nonlinear differential equations for the evolution of the amplitude and phase of each mode. These equations are integrated simultaneously with the three-dimensional Lorentz force equations for an ensemble of electrons. Advantages which are derived from the non-wiggler-averaged orbit treatment are: the adiabatic injection of the beam into the wiggler can be modeled; effects due to the transverse wiggler inhomogeniety such as betatron oscillations and synchrotron-betatron coupling are implicitly included in the treatment; wiggler imperfections can be included in the analysis by the relatively simple expedient of allowing the wiggler amplitude to vary with axial position; and harmonic interactions are implicitly included. The first two advantages relate to the self-consistent treatment of emittance growth due to the injection process and the transverse wiggler inhomogenieties. It should be noted that MEDUSA is also capable of analyzing the effect of the measured imperfections of a specific wiggler magnet to be used in an experiment.

  9. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    PubMed Central

    Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; Nelson, Garrett; James, Daniel; Calero, Guillermo; Wachter, Rebekka M.; Spence, John C. H.; Weierstall, Uwe; Fromme, Petra; Ros, Alexandra

    2015-01-01

    The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis

  10. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    NASA Astrophysics Data System (ADS)

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  11. Free-electron laser design for four-wave mixing experiments with soft-x-ray pulses.

    PubMed

    Marcus, G; Penn, G; Zholents, A A

    2014-07-11

    We present the design of a single-pass free-electron laser amplifier suitable for enabling four-wave mixing x-ray spectroscopic investigations. The production of longitudinally coherent, single-spike pulses of light from a single electron beam in this scenario relies on a process of selective amplification where a strong undulator taper compensates for a large energy chirp only for a short region of the electron beam. This proposed scheme offers improved flexibility of operation and allows for independent control of the color, timing, and angle of incidence of the individual pulses of light at an end user station. Detailed numerical simulations are used to illustrate the more impressive characteristics of this scheme. PMID:25062194

  12. Demonstration of Feasibility of X-Ray Free Electron Laser Studies of Dynamics of Nanoparticles in Entangled Polymer Melts

    PubMed Central

    Carnis, Jerome; Cha, Wonsuk; Wingert, James; Kang, Jinback; Jiang, Zhang; Song, Sanghoon; Sikorski, Marcin; Robert, Aymeric; Gutt, Christian; Chen, San-Wen; Dai, Yeling; Ma, Yicong; Guo, Hongyu; Lurio, Laurence B.; Shpyrko, Oleg; Narayanan, Suresh; Cui, Mengmeng; Kosif, Irem; Emrick, Todd; Russell, Thomas P.; Lee, Hae Cheol; Yu, Chung-Jong; Grübel, Gerhard; Sinha, Sunil K.; Kim, Hyunjung

    2014-01-01

    The recent advent of hard x-ray free electron lasers (XFELs) opens new areas of science due to their exceptional brightness, coherence, and time structure. In principle, such sources enable studies of dynamics of condensed matter systems over times ranging from femtoseconds to seconds. However, the studies of “slow” dynamics in polymeric materials still remain in question due to the characteristics of the XFEL beam and concerns about sample damage. Here we demonstrate the feasibility of measuring the relaxation dynamics of gold nanoparticles suspended in polymer melts using X-ray photon correlation spectroscopy (XPCS), while also monitoring eventual X-ray induced damage. In spite of inherently large pulse-to-pulse intensity and position variations of the XFEL beam, measurements can be realized at slow time scales. The X-ray induced damage and heating are less than initially expected for soft matter materials. PMID:25109363

  13. Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise.

    SciTech Connect

    Lindberg, R. R.; Kim, K.-J.; Accelerator Systems Division

    2009-07-01

    We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth rates are comparable, we find that only after many oscillator passes is the output pulse dominantly characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations. Understanding the full longitudinal structure during the initial amplification will be critical in assessing the tolerances on the electron beam, undulator, and optical cavity required for robust operation.

  14. Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise.

    SciTech Connect

    Lindberg, R. R.; Kim, K.-J. )

    2009-07-02

    We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth rates are comparable, we find that only after many oscillator passes is the output pulse dominantly characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations. Understanding the full longitudinal structure during the initial amplification will be critical in assessing the tolerances on the electron beam, undulator, and optical cavity required for robust operation.

  15. Photon transport of the superradiant TeraFERMI THz beamline at the FERMI free-electron laser.

    PubMed

    Svetina, Cristian; Mahne, Nicola; Raimondi, Lorenzo; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Schmidt, Bernhard; Zangrando, Marco

    2016-01-01

    TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented. PMID:26698051

  16. Free-electron laser design for four-wave mixing experiments with soft-x-ray pulses.

    PubMed

    Marcus, G; Penn, G; Zholents, A A

    2014-07-11

    We present the design of a single-pass free-electron laser amplifier suitable for enabling four-wave mixing x-ray spectroscopic investigations. The production of longitudinally coherent, single-spike pulses of light from a single electron beam in this scenario relies on a process of selective amplification where a strong undulator taper compensates for a large energy chirp only for a short region of the electron beam. This proposed scheme offers improved flexibility of operation and allows for independent control of the color, timing, and angle of incidence of the individual pulses of light at an end user station. Detailed numerical simulations are used to illustrate the more impressive characteristics of this scheme.

  17. Narrow-band GeV photons generated from an x-ray free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Hajima, Ryoichi; Fujiwara, Mamoru

    2016-02-01

    We propose a scheme to generate narrow-band GeV photons, γ -rays, via Compton scattering of hard x-ray photons in an x-ray free-electron laser oscillator. Generated γ -rays show a narrow-band spectrum with a sharp peak, ˜0.1 % (FWHM), due to large momentum transfer from electrons to photons. The γ -ray beam has a spectral density of ˜102 ph /(MeV s ) with a typical set of parameters based on a 7-GeV electron beam operated at 3-MHz repetition, Such γ -rays will be a unique probe for studying hadron physics. Features of the γ -ray source, flux, spectrum, polarization, tunability and energy resolution are discussed.

  18. Free-Electron Laser Design for Four-Wave Mixing Experiments with Soft-X-Ray Pulses

    NASA Astrophysics Data System (ADS)

    Marcus, G.; Penn, G.; Zholents, A. A.

    2014-07-01

    We present the design of a single-pass free-electron laser amplifier suitable for enabling four-wave mixing x-ray spectroscopic investigations. The production of longitudinally coherent, single-spike pulses of light from a single electron beam in this scenario relies on a process of selective amplification where a strong undulator taper compensates for a large energy chirp only for a short region of the electron beam. This proposed scheme offers improved flexibility of operation and allows for independent control of the color, timing, and angle of incidence of the individual pulses of light at an end user station. Detailed numerical simulations are used to illustrate the more impressive characteristics of this scheme.

  19. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    NASA Astrophysics Data System (ADS)

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; de Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  20. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    PubMed

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  1. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  2. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    PubMed

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  3. Design and installation of a low particulate, ultrahigh vacuum system for a high power free-electron laser

    SciTech Connect

    Fred Dylla; George Biallas; Butch Dillon-Townes; Erich Feldl; Ganapati Rao Myneni; Jim Parkinson; Joe Preble; Tim Siggins; S. Williams; Mark Wiseman

    1999-03-01

    A high-average power (kW) infrared (IR) free-electron laser (FEL) is currently being commissioned for the Jefferson Laboratory FEL User Facility. The IR FEL is driven by a unique superconducting rf linac which is recirculated to recover electron beam power that is not radiated in the FEL. The design and installation of the vacuum system for the FEL involved particular attention to minimizing particulate contamination which could cause problems with the superconducting acceleration cavities and the high power FEL optics. Particulate contamination levels of all vacuum components were monitored during the cleaning process using laser scattering. Cleaning, transport, and installation procedures were developed to minimize the contamination of the complete system. We will summarize a data base we compiled of particulate contamination levels of the various components installed in the FEL vacuum system.

  4. Temporal characterization of mid-IR free-electron-laser pulses by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; Krumbuegel, M.A.; Trebino, R.

    1997-05-01

    We performed what we believe are the first practical full-temporal-characterization measurements of ultrashort pulses from a free-electron laser (FEL). Second-harmonic-generation frequency-resolved optical gating (FROG) was used to measure a train of mid-IR pulses distorted by a saturated water-vapor absorption line and showing free-induction decay. The measured direction of time was unambiguous because of prior knowledge regarding free-induction decay. These measurements require only 10{percent} of the power of the laser beam and demonstrate that FROG can be implemented as a pulse diagnostic simultaneously with other experiments on a FEL. {copyright} {ital 1997} {ital Optical Society of America}

  5. Formation of low time-bandwidth product, single-sided exponential optical pulses in free-electron laser oscillators

    PubMed

    MacLeod; Yan; Gillespie; Knippels; Oepts; van Der Meer AF; Rella; Smith; Schwettman

    2000-09-01

    The detailed shape of picosecond optical pulses from a free-electron laser (FEL) oscillator has been studied for various cavity detunings. For large values of the cavity detuning the optical pulse develops an exponential leading edge, with a time constant proportional to the applied cavity detuning and the quality factor of the resonator. This behavior has been observed at two separate FELs that have completely different resonator layouts and electron beam characteristics, and using different methods of optical pulse length measurement. The optical pulses have a full width at half maximum time-bandwidth product Deltat(FWHM)Deltaf(FWHM) of 0.2-0.3. The results presented here can be used to predict the optical pulse length and corresponding minimum spectral width that can be generated in a FEL pumped by short electron bunches. This is important for the design of new infrared free-electron laser user facilities, which need to make a balanced choice between short pulses for high temporal resolution and narrow bandwidth for linear and nonlinear spectroscopy. PMID:11088949

  6. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser

    SciTech Connect

    Bajt, S; Chapman, H N; Spiller, E; Alameda, J; Woods, B; Frank, M; Bogan, M J; Barty, A; Boutet, S; Marchesini, S; Hau-Riege, S P; Hajdu, J; Shapiro, D

    2007-09-24

    We describe a camera to record coherent scattering patterns with a soft-X-ray free-electron laser. The camera consists of a laterally-graded multilayer mirror which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter both for wavelength and angle, which isolates the desired scattering pattern from non-sample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10{sup 14} W/cm{sup 2}. The strong undiffracted pulse passes through a hole in the mirror and propagates on to a beam dump at a distance behind the instrument rather than interacting with a beamstop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the FLASH FEL (i.e. between 6 nm and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32 nm, 16 nm, 13.5 nm, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH free-electron laser with no observable mirror damage or degradation of performance.

  7. An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser

    NASA Astrophysics Data System (ADS)

    Hadmack, Michael R.

    A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point

  8. The project of the high power free electron laser based on the race-track microtron-recuperator

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1995-02-01

    To provide a user facility for the Siberian Centre of Photochemical Researches in Novosibirsk a high power free electron laser is under construction. The project status and installation are described.

  9. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    SciTech Connect

    Thompson, Neil

    2010-10-20

    The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator

  10. Laser absorption and third-harmonic generation in free-electron nanofilms

    SciTech Connect

    Fomichev, Sergey V.; Zaretsky, David F.; Becker, Wilhelm

    2009-02-15

    The collective collisionless dynamics of the electron gas in free-electron nanofilms irradiated by an obliquely incident p-polarized laser wave are considered in the classical hydrodynamic and jellium-model approximations. The two cases of cold metallic nanofilms and hot free-electron nanofilms laser ionized and laser heated by a pump-laser prepulse are investigated with proper electron statistics. Both linear and nonlinear properties of the plasma resonance excitation in the nanofilms are studied in detail for different film parameters (film thickness, thickness of the diffuse film boundary, outer-ionization degree for hot laser-ionized/heated films, etc.). The significant role of the diffuse film boundaries for both linear absorption of the laser field and third-harmonic generation is demonstrated. For this goal, we do not use the standard dielectric-permittivity approach with boundary conditions between two different media but solve continuously over all space the full set of hydrodynamic and electrodynamic equations in nonrelativistic one-dimensional approximation. It is shown that collisionless edge absorption may be dominant in thin nanofilms, while in cold metal nanofilms it results in the appearance of several linear-absorption resonances below the bulk-plasma resonance frequency. For hot nanofilms, drastic broadening of the linear-plasma-resonance profile is obtained in calculations when the film thickness is reduced. In our model, the third-harmonic generation is determined by the density gradient in the diffuse film edges. Additional resonances in third-harmonic generation as a function of laser frequency are obtained for cold metal nanofilms. They differ from the standard third-order nonlinear resonance, which is located at one third of the plasma resonance frequency. The important role of the outer-ionization degree in forming the third-order nonlinear response of the hot laser-ionized film is also analyzed and discussed.

  11. X-ray free-electron lasers: Scientific goals and machine implications

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2001-07-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1. [1] The physics of the high-gain, single pass FEL process requires extremely bright electron pulses in the 10-20 GeV range. This electron brightness should be achievable using an RF-photocathode source and a linear accelerator, such as the initial acceleration stage of a TeV-range linear electron-positron collider. The x-ray FEL radiation produced will have unique properties. In particular: • The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. • The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. • The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 109 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. [2] The high peak power of the FEL radiation (greater than 1014W/cm2) could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. The exploration of these new x-ray techniques will require considerable development, not only in technical areas such as optics and detectors, but also in understanding the basic physics of the interaction of very intense x-radiation with matter. A large collaboration of US institutions is now conducting preliminary research and development in these areas, with the intention of

  12. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge–Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  13. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  14. Impact of non-Gaussian electron energy heating upon the performance of a seeded free-electron laser.

    PubMed

    Ferrari, E; Allaria, E; Fawley, W; Giannessi, L; Huang, Z; Penco, G; Spampinati, S

    2014-03-21

    Laser-heater systems have been demonstrated to be an important component for the accelerators that drive high gain free electron laser (FEL) facilities. These heater systems suppress longitudinal microbunching instabilities by inducing a small and controllable slice energy spread to the electron beam. For transversely uniform heating, the energy spread augmentation is characterized by a non-Gaussian distribution. In this Letter, we demonstrate experimentally that in addition to suppression of the microbunching instability, the laser heater-induced energy distribution can be preserved to the FEL undulator entrance, significantly impacting the performance of high-gain harmonic generation (HGHG) FELs, especially at soft x-ray wavelengths. In particular, we show that the FEL intensity has several local maxima as a function of the induced heating caused by the non-Gaussian energy distribution together with a strong enhancement of the power at high harmonics relative to that expected for an electron beam with an equivalent Gaussian energy spread at an undulator entrance. These results suggest that a single stage HGHG FEL can produce scientifically interesting power levels at harmonic numbers m ≥ 25 and with current seed laser technology could reach output photon energies above 100 eV or greater.

  15. Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser

    SciTech Connect

    Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L.; Smith, Patrick M.; Nataraj, Pradeep

    2008-11-17

    Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B{sub 4}C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10{sup 5} pulses is {approx}20% to 70% lower than the melting threshold.

  16. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    PubMed Central

    Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.

    2015-01-01

    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835

  17. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  18. A fully quantum theory of high-gain free-electron laser

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; Fares, H.

    2016-08-01

    The previous theory of high-gain free-electron laser (FEL) operating in the quantum regime is semiclassical because the electron dynamic is quantized but the radiation field is classically described. Here, we present for the first time a fully quantum-mechanical theory where also the field is quantized. We shall restrict to the FEL operation in the steady-state regime where the slippage length is much smaller than the bunch length. The results predicted by this theory are quite different from those of the semiclassical theory.

  19. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  20. 3-D wave propagation solution of a stable resonator, free-electron laser

    NASA Astrophysics Data System (ADS)

    Bhowmik, A.; Cover, R. A.; Labbe, R. H.

    1983-11-01

    Rigorous numerical solutions of a stable resonator, free-electron laser are obtained using 3-D wave propagation algorithms in the presence of a radially and azimuthally varying gain. Assumptions of this time-independent formulation of the loaded-resonator cavity are discussed. Wave propagation in the cavity is performed by computing numerically the Fresnel-Kirchoff diffraction integral by the Gardner-Fresnel-Kirchoff algorithm. Results of steady-state numerical iterative solutions, in which both the gain and the optical fields achieve self-consistency throughout the resonator, are presented. These consist of: (1) mode pattern and (2) variations in gain with variations in the resonator parameters.

  1. Matter under extreme conditions probed by a seeded free-electron-laser

    SciTech Connect

    Bencivenga, F.; Principi, E.; Cucini, R.; Danailov, M. B.; Demidovich, A.; D’Amico, F.; Di Fonzo, S.; Gessini, A.; Kurdi, N.; Mahne, N.; Raimondi, L.; Zangrando, M.; Masciovecchio, C.; Giangrisostomi, E.; Battistoni, A.; Svetina, C.; Di Cicco, A.; Gunnella, R.; Hatada, K.; Filipponi, A.; and others

    2015-08-17

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  2. Imaging Ultra-fast Molecular Dynamics in Free Electron Laser Field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Jiang, Y. H.

    The free electron laser (FEL) provides the coherent, brilliant and ultrashort light pulse in short wavelength (extreme ultraviolet and X-ray) regimes, opening up possibilities to study ultra-fast molecular dynamics in photo-induced chemical reactions with new methodologies. In this chapter, we introduce the time-resolved pump-probe experiments on gas-phase targets with FEL facilities to image the nuclear and electronic motions in molecular reactions, which serve as a benchmark for further FEL applications like coherent diffraction imaging and coherent control of functional dynamics in complex molecular reactions.

  3. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    SciTech Connect

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-08-22

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY.

  4. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    PubMed Central

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2013-01-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  5. Transverse-coherence properties of the free-electron-laser FLASH at DESY.

    PubMed

    Singer, A; Vartanyants, I A; Kuhlmann, M; Duesterer, S; Treusch, R; Feldhaus, J

    2008-12-19

    A general theoretical approach based on the decomposition of statistical fields into a sum of independently propagating transverse modes was used for the analysis of the coherence properties of the new free-electron laser source FLASH operated at 13.7 nm wavelength. The analysis shows that several transverse modes are contributing to the total radiation field of FLASH. The results of theoretical calculations are compared with measurements using Young's double-slit experiment. The coherence lengths in the horizontal and in the vertical directions 20 m downstream from the source are estimated at 300 and 250 microm, respectively.

  6. Saturation-power enhancement of a free-electron laser amplifier through parameters adjustment

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Pin; Xu, Y.-G.; Wang, S.-J.; Xu, J.-Y.; Liu, X.-X.; Zhang, S.-C.

    2015-06-01

    Saturation-power enhancement of a free-electron laser (FEL) amplifier by using tapered wiggler amplitude is based on the postponement of the saturation length of the uniform wiggler. In this paper, we qualitatively and quantitatively demonstrate that the saturation-power enhancement can be approached by means of the parameters adjustment, which is comparable to that by using a tapered wiggler. Compared to the method by tapering the wiggler amplitude, the method of parameters adjustment substantially shortens the saturation length, which is favorable to cutting down the manufacture and operation costs of the device.

  7. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser.

    PubMed

    Lomb, Lukas; Barends, Thomas R M; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hunter, Mark S; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C H; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

  8. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

  9. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser.

    PubMed

    Lomb, Lukas; Barends, Thomas R M; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hunter, Mark S; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C H; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  10. Kinetic description of a free electron laser with an electromagnetic-wave wiggler and ion-channel guiding by using the Einstein coefficient technique

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; AbasiRostami, S.; Hasanbeigi, A.

    2016-04-01

    A theoretical study of electron trajectories and gain in a free electron laser (FEL) with an electromagnetic-wave wiggler and ion-channel guiding is presented based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.

  11. Two-color photoionization in xuv free-electron and visible laser fields

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Cubaynes, D.; O'Keeffe, P.; Luna, H.; Yeates, P.; Kennedy, E. T.; Costello, J. T.; Orr, P.; Taïeb, R.; Maquet, A.; Düsterer, S.; Radcliffe, P.; Redlin, H.; Azima, A.; Plönjes, E.; Feldhaus, J.

    2006-07-01

    Two-photon ionization of atomic helium has been measured by combining femtosecond extreme-ultraviolet pulses from the free-electron laser in Hamburg (FLASH at DESY) with intense light pulses from a synchronized neodymium-doped yttrium lithium fluoride laser. Sidebands appear in the photoelectron spectra when the two laser pulses overlap in both space and time. Their intensity exhibits a characteristic dependence on the relative time delay between the ionizing and the dressing pulses and provides an inherent time marker for time-resolved pump-probe experiments. The measurements of the sidebands are in good agreement with theoretical predictions and allow for a direct analysis of two-photon ionization, free from processes related to interference between multiple quantum paths.

  12. Plasma ablation of hard tissue by the free-electron laser

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou; Ossoff, Robert H.

    1993-07-01

    The Vanderbilt Free Electron Laser operating at wavelengths from 2.8 to 5.0 micrometers was focused and used to ablate samples of human temporal bone from cadavers, swatches of leather, and Plexiglas. The ablation efficiency, energy density necessary for ablation, and thermal damage to the surrounding tissue was investigated in all three samples. Comparisons are made between the different wavelength and the light interaction with tissue. At the highest intensities, a plasma is formed at the air tissue interface. The ablation process at these intensities is strongly influenced by the plasma, and the rate of ablation appears to become nearly independent of the laser wavelength. At lower intensities, the laser light interacts with the tissue in a more traditional fashion.

  13. Vanderbilt Free-Electron Laser Center for Biomedical and Materials Research

    NASA Astrophysics Data System (ADS)

    Tolk, Norman H.; Brau, Charles A.; Edwards, Glenn S.; Margaritondo, Giorgio; McKinley, Jim T.

    1991-12-01

    The newly commissioned Vanderbilt Free Electron Laser Center for Biomedical and Materials Research is a multidisciplinary users facility intended as an international resource. It provides extremely intense, continuously tunable, pulsed radiation in the mid-infrared (2-10 j.tm). Projects already underway include the linear and nonlinear interaction of laser radiation with optical materials, semiconductors, and mammalian tissue, the spectroscopy of species adsorbed on surfaces, measurement of vibrational energy transfer in DNA and RNA, the dynamics of proteins in cell membranes, the biomodulation of wound healing by lasers, image-guided stereotactic neurosurgery, and the use of monochromatic X-rays in medical imaging and therapy. The purpose of this article is to introduce the machine to the user community and to describe some of the new experimental opportunities that it makes possible. Details of several research projects are presented.

  14. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  15. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    SciTech Connect

    Ding, Y.; Behrens, C.; Coffee, R.; Decker, F. -J.; Emma, P.; Field, C.; Helml, W.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J.

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  16. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  17. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  18. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  19. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  20. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less