Science.gov

Sample records for beam heated target

  1. Heat extraction from targets in high current electron beams

    NASA Astrophysics Data System (ADS)

    Bubb, Ernest; Altemus, Rosemary; McCarthy, James; Biron, Don

    1982-12-01

    Various aspects of heat extraction from targets in high current electron beams are examined, among which are the dependences on boundary temperature, beam current density, and convective effects from an ambient gaseous environment. The design of a cooling system which extracts heat by forcing hydrogen (or helium) gas at a pressure of several Torr at near sonic velocities across a target surface is described. Boundary layer theory calculations and empirical measurements of the average heat transfer coefficient for the system are presented.

  2. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-07-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or "wobbled" beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  3. Modeling double pulsing of ion beams for HEDP target heating experiments

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth; Barnard, John; Stoltz, Peter; Henestroza, Enrique

    2008-04-01

    Recent research on direct drive targets using heavy ion beams suggests optimal coupling will occur when the energy of the ions increases over the course of the pulse. In order to experimentally explore issues involving the interaction of the beam with the outflowing blowoff from the target, double pulse experiments have been proposed whereby a first pulse heats a planar target producing an outflow of material, and a second pulse (˜10 ns later) of higher ion energy (and hence larger projected range) interacts with this outflow before reaching and further heating the target. We report here results for simulations of double pulsing experiments using HYDRA for beam and target parameters relevant to the proposed Neutralized Drift Compression Experiment (NDCX) II at LBNL.

  4. Direct evidence of strongly inhomogeneous energy deposition in target heating with laser-produced ion beams

    SciTech Connect

    Brambrink, E.; Audebert, P.; Schlegel, T.; Malka, G.; Aleonard, M. M.; Claverie, G.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Scheurer, J. N.; Tarisien, M.; Amthor, K. U.; Meot, V.; Morel, P.

    2007-06-15

    We report on strong nonuniformities in target heating with intense, laser-produced proton beams. The observed inhomogeneity in energy deposition can strongly perturb equation of state (EOS) measurements with laser-accelerated ions which are planned in several laboratories. Interferometric measurements of the target expansion show different expansion velocities on the front and rear surfaces, indicating a strong difference in local temperature. The nonuniformity indicates at an additional heating mechanism, which seems to originate from electrons in the keV range.

  5. Direct evidence of strongly inhomogeneous energy deposition in target heating with laser-produced ion beams.

    PubMed

    Brambrink, E; Schlegel, T; Malka, G; Amthor, K U; Aléonard, M M; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Nicolai, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V; Audebert, P

    2007-06-01

    We report on strong nonuniformities in target heating with intense, laser-produced proton beams. The observed inhomogeneity in energy deposition can strongly perturb equation of state (EOS) measurements with laser-accelerated ions which are planned in several laboratories. Interferometric measurements of the target expansion show different expansion velocities on the front and rear surfaces, indicating a strong difference in local temperature. The nonuniformity indicates at an additional heating mechanism, which seems to originate from electrons in the keV range.

  6. Development of a high-heat-flux target for multimegawatt, multisecond neutral beams at ORNL

    SciTech Connect

    Combs, S.K.; Milora, S.L.; Bush, C.E.; Foster, C.A.; Haselton, H.H.; Hayes, P.H.; Menon, M.M.; Moeller, J.A.; Sluss, F.; Tsai, C.C.

    1984-01-01

    A high-heat-flux target has been developed for intercepting multimegawatt, multisecond neutral beam power at the Oak Ridge National Laboratory (ORNL). Water-cooled copper swirl tubes are used for the heat transfer medium; these tubes exhibit an enhancement in burnout heat flux over conventional axial-flow tubes. The target consists of 126 swirl tubes (each 0.95 cm in outside diameter with 0.16-cm-thick walls and approx. =1 m long) arranged in a V-shape. Two arrays of parallel tubes inclined at an angle ..cap alpha.. to the beam axis form the V-shape, and this geometry reduces the surface heat flux by a factor of 1/sin ..cap alpha.. (for the present design, ..cap alpha.. =13/sup 0/ and 21/sup 0/). In tests with the ORNL long-pulse ion source (13- by 43-cm grid), the target has handled up to 3-MW, 30-s beam pulses with no deleterious effects. The peak power density was estimated at approx. =15 kW/cm/sup 2/ normal to the beam axis (5.4 kW/cm/sup 2/ maximum on tube surfaces). The water flow rate through the target was 41.6 L/s (660 gpm) or 0.33 L/s (5.2 gpm) per tube (axial flow velocity = 11.6 m/s). The corresponding pressure drop across the target was 1.14 MPa (165 psi) with an inlet pressure of 1.45 MPa (210 psia). Data are also presented from backup experiments in which individual tubes were heated by a small ion source (10-cm-diam grid) to characterize tube performance. These results suggest that the target should handle peak power densities in the range 25 to 30 kW/cm/sup 2/ normal to the beam axis (approx. =10 kW/cm/sup 2/ maximum on tube surfaces) with the present flow parameters. This translates to beam power levels of 5 to 6 MW for equivalent beam optics.

  7. Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments

    SciTech Connect

    Seidl, Peter; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.A.; Waldron, W.L.; Welch, D.R.

    2009-04-17

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including: beam diagnostics, greater axial compression via a longer velocity ramp; and plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10{sup 13} cm{sup -3}.

  8. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  9. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  10. Two-dimensional electromagnetic quantum-hydrodynamic simulations of isochoric heating of a solid target by proton beams

    SciTech Connect

    Zhang, Ya; Jiang, Wei; Song, Yuan-Hong; Wang, You-Nian

    2015-02-15

    Isochoric heating of an aluminum target by proton beams has been studied with a two-dimensional self-consistent electromagnetic quantum-hydrodynamic model, including the nonlinear quantum effects. It is shown that most protons deposit their energy within several micrometers near the surface, and the aluminum metal target is heated up to several electron volts in tens of Mbar pressure regime within one picosecond. Comparison between electrostatic and electromagnetic cases shows that the strength of electromagnetic field is much smaller than that of the electrostatic field at initial stage but increases more rapidly and becomes larger at later time. The results show that the time evolution of electric field has a significant influence on the interaction of intense beams with a solid target, while the effect of the self-magnetic field is small for non-relativistic beams considered here.

  11. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    NASA Astrophysics Data System (ADS)

    Koester, Petra; Booth, Nicola; Cecchetti, Carlo A.; Chen, Hui; Evans, Roger G.; Gregori, Gianluca; Labate, Luca; Levato, Tadzio; Li, Bin; Makita, Mikako; Mithen, James; Murphy, Christopher D.; Notley, Margaret; Pattathil, Rajeev; Riley, David; Woolsey, Nigel; Gizzi, Leonida A.

    2015-02-01

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 1019 W/cm2. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  12. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    SciTech Connect

    Koester, Petra; Cecchetti, Carlo A.; Booth, Nicola; Woolsey, Nigel; Chen, Hui; Evans, Roger G.; Gregori, Gianluca; Li, Bin; Mithen, James; Murphy, Christopher D.; Labate, Luca; Gizzi, Leonida A.; Levato, Tadzio; Makita, Mikako; Riley, David; Notley, Margaret; Pattathil, Rajeev

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  13. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    SciTech Connect

    Olivas, Eric Richard

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  14. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  15. Demonstration of counter beam fast heating scheme by using a spherical CD shell target

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Nishimura, Y.; Hanayama, R.; Nakayama, S.; Ishii, K.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Kurita, T.; Kato, Y.; Sato, N.; Kurita, N.; Kawashima, T.; Hioki, T.; Motohiro, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2016-10-01

    We report fast heating of a shock-imploded core under counter beam configuration that published in recent. Experiments are performed by using a repetitive IFE driver HAMA. Experiments results show that (i) a shock-imploded core with 70 micron diameter, originally deuterated polystyrene (CD) spherical shell of 500 micron diameter, is flashed by counter irradiating 110 fs, 7 TW laser pulses. The coupling efficiency from the laser to the core emission was inferred 13%. A collisional Particle-In-Cell simulation code PICLS2D indicates a possibility that counter hot electron currents generate magnetic filaments in the imploded core. (ii) Fast electrons with energy bellow a few MeV might be trapped by these filaments in the core region supposed to be contributing to the observed X-ray flash and the high coupling efficiency. These results indicate a possibility that counter irradiating fast heating scheme can improve the energy coupling into the core by hot electrons those are limited to less 10% for one-side irradiation fast heating conducted so far.

  16. Power deposition measurements at 800 MeV-direct proton beam heating of target materials

    SciTech Connect

    Quintana, D.L.; Langenbrunner, J.; Morgan, G.

    1999-07-01

    A slug calorimetric sensor with several novel design features was developed to measure the power deposition in a cylindrical test article with lead, aluminum, polyethylene and tungsten components. A small, solid slug (volume = 347.5 mm{sup 3}) was suspended by Kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. A small, calibrated, 100-kOhm thermistor was placed in the slug to monitor the temperature. Power deposition caused by the passage of radiation through the slug was measured from the rate of temperature rise. Lead, tungsten, and Inconel-718 slugs were placed on the beam axis of the test article and were irradiated with an 800 MeV proton beam. The data from these sensors will provide an accurate determination of thermal power density and energy deposition from proton beams incident on target/blanket components of accelerator-based systems, such as the Accelerator Production of Tritium (APT) and the Spallation Neutron Source (SNS).

  17. Theoretical studies of defect formation and target heating by intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.

    2015-11-01

    We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.

  18. Numerical model for swirl cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    NASA Astrophysics Data System (ADS)

    Milora, S. L.; Combs, S. K.; Foster, C. A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code was used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cu cm, is modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/sq cm occur at the water cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes with straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  19. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    SciTech Connect

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm/sup 2/, has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm/sup 2/ occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  20. Synchronous heating of two local regions of a biological tissue phantom using automated targeting of phase conjugate ultrasound beams

    NASA Astrophysics Data System (ADS)

    Krutyansky, L. M.; Brysev, A. P.; Klopotov, R. V.

    2015-01-01

    Synchronous heating of two local regions of an absorbing medium by phase conjugate ultrasound beams focused on them has been experimentally demonstrated. A polymeric biological tissue phantom with two small air cavities scattering sound has been used as the medium irradiated by a 5-MHz "probe" ultrasound beam. The scattered field is incident on a parametric device for ultrasonic wave phase conjugation. The conjugate and amplified field is self-adaptive focused on scatterers and heats the medium owing to the absorption of the ultrasonic energy. In this case, these regions are heated by about 5°C in 70 s. Only an insignificant increase in the temperature owing to the heat conduction effect is observed in the remaining volume of the phantom. The implemented effect can be used in medical applications of phase conjugate ultrasound beams.

  1. Linear beam raster for cryogenic targets

    SciTech Connect

    Yan, C; Sinkine, N; Wojcik, R

    2005-02-21

    Based on the H-bridge switch technique a linear beam raster system was developed in 2002. The system generates a rectangular raster pattern with highly uniform ({approx}95%) raster density distribution on cryogenic targets. The two raster frequencies are 24.96 and 25.08 kHz. The turning time at the vertex is 200 ns and the scan linearity is 98%. The beam-heating effect on the target is effectively eliminated. The new raster system allows the use of higher beam current toward 200 muA in many of the experimental proposals at end station Hall A and Hall C of the Jefferson lab.

  2. Improved dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Beam impinges on palladium-silver tube, which is target, and heats impinged surface causing local hot spot. Contained gas diffuses through hot spot to meet incoming beam and produce desired particles. When beam is turned off, target spot cools and stops dispensing contained gas.

  3. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  4. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  5. Test beams and polarized fixed target beams at the NLC

    NASA Astrophysics Data System (ADS)

    Keller, Lewis; Pitthan, Rainer; Rokni, Sayed; Thompson, Kathleen; Kolomensky, Yury

    2001-07-01

    A conceptual program to use NLC beams for test beams and fixed target physics is described. Primary undisrupted polarized beams would be the most simple to use, but for NLC, the disrupted beams are of good enough quality that they could also be used, after collimation of the low energy tails, for test beams and fixed target physics. Pertinent issues are: what is the compelling physics, what are the requirements on beams and running time, and what is the impact on colliding beam physics running. A list of physics topics is given; one topic (Mo/ller Scattering) is treated in more depth.

  6. Test Beams and Polarized Fixed Target Beams at the NLC

    SciTech Connect

    Pitthan, Rainer

    2001-01-17

    A conceptual program to use NLC beams for test beams and fixed target physics is described. Primary undisrupted polarized beams would be the most simple to use, but for NLC, the disrupted beams are of good enough quality that they could also be used, after collimation of the low energy tails, for test beams and fixed target physics. Pertinent issues are: what is the compelling physics, what are the requirements on beams and running time, and what is the impact on colliding beam physics running. A list of physics topics is given; one topic (Moeller Scattering) is treated in more depth.

  7. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  8. Studies of beam heating of proton beam profile monitor SEM's

    SciTech Connect

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  9. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  10. Ion sources and targets for radioactive beams

    SciTech Connect

    Schiffer, J.P.; Back, B.B.; Ahmad, I.

    1995-08-01

    A high-intensity ISOL-type radioactive beam facility depends critically on the performance of the target/ion source system. We developed a concept for producing high-intensity secondary beams of fission fragments, such as {sup 132}Sn, using a two-part target and ion source combination. The idea involves stopping a 1000-kW beam of 200-MeV deuterons in a target of Be or U to produce a secondary beam of neutrons. Just behind the neutron production target is a second target, typically a porous form of UC, coupled to an ISOL-type ion source. In December 1994, we tested this concept with 200-MeV deuterons at low intensity in an experiment at the NSCL. The yields of characteristic gamma rays were measured and confirmed our predictions.

  11. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling

    SciTech Connect

    Stein, W; Sheppard, J C

    2002-06-11

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  12. Pulse beam heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Karlicky, Marian

    1990-12-01

    A response of the solar atmosphere to pulse beam heating is computed using a one-dimensional hybrid code. While the hydrodynamic part of this program is used to compute the atmospheric response, the pulse beam decelerated by electron-electron and electron-neutral hydrogen interactions in the dense layers of the solar atmosphere is represented by particles. In this new description of an electron beam, the finite transit time of accelerated electrons in the flare loops is taken into account and the hard X-ray radiation is computed directly. Four different pulse beams are considered and their effects are compared. Moreover, the return current losses of the pulse beam are discussed.

  13. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  14. Magnetic Guiding of Electron Beam in Imploded Spherical Solid Targets

    NASA Astrophysics Data System (ADS)

    Johzaki, Tomoyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Sunahara, Atsushi; Sakagami, Hitoshi; Fujioka, Shinsuke; Shiraga, Hiroyuki; Endo, Takuma; Firex Team

    2015-11-01

    In fast ignition, the large divergence of electron beam is one of the most critical issues for efficient core heating. For improving the efficiency in FIREX project, we proposed the electron beam guiding by externally applied kT-class longitudinal magnetic fields. The 2D collisional PIC simulations showed that the electron beam can be successfully focused by the moderately-converging fields (mirror ratio RM < 20). On the other hand, in the implosion simulation for a cone-attached CD shell target with B-field, the mirror ratio reaches RM > 100 at the maximum compression, which is too high for efficient guiding. Recently, we introduced a spherical solid target, where the mirror ratio is moderate since the density compressibility stays low (~30) and the magnetic-field compressibility will also be low. In the conference, we will show the integrated simulation results for core heating by fast electron beam with large beam divergence under the compressed core and magnetic fields formed through implosion of a solid spherical target. This work is supported by NIFS Collaboration Research program (NIFS12KUGK057, NIFS15KUGK094), JSPS KAKENHI (25400534, 25400539, 26400532) and DOE/OFES under DE-SC0008827.

  15. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  16. NLC Positron Target Heating(LCC-0065)

    SciTech Connect

    Schultz, D

    2003-10-07

    The NLC requires an intense beam with a large number of positrons. These positrons are produced by a high energy electron beam impinging on a solid tungsten-rhenium alloy target. The particle shower that develops in the solid target deposits significant energy in the material, leading to target stresses and potentially to target damage. The stresses can be analyzed once the magnitude and extent of the energy deposition is known. This note details the modeling of the energy deposition using EGS, performed for the NLC and the SLC targets and for possible NLC targets made of copper or nickel instead of WRe.

  17. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  18. Targets for a Neutral Kaon Beam

    SciTech Connect

    Keith, Christopher

    2016-04-01

    A secondary beam of neutral Kaons is under consideration for Hall D at Jefferson Lab to perform spectroscopic studies of hyperons produced by K 0 L particles scattering from proton and deuteron targets. The proposed physics program would utilize the GlueX detector package currently installed in Hall D. This contribution looks at potential targets for use in the new facility, paying close attention to the existing infrastructure of GlueX and Hall D. Unpolarized cryotargets of liquid hydrogen and deuerium, as well as polarized solid targets of protons and deuterons are examined.

  19. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  20. Use of thermal barriers in conceptual studies of high-temperature, high-intensity targets for producing radioactive ion beams

    SciTech Connect

    Talbert, W.L. |; Hodges, T.A.; Hsu, H.; Fikani, M.M.

    1997-08-01

    Thermal analyses are presented of a cylindrical target concept for the production of radioactive beams by intense, high-energy proton production beams. The basic principle is to extract heat generated internally by the production beam interactions with the target material through appropriate thermal barriers. This approach allows the target material to be operated at an elevated temperature to enhance the release of radioactivities produced by the production beam bombardment, yet remove the heat generated initially. Three classes of targets are considered: high temperature and moderate heat generation; moderate temperature and low heat generation; and low temperature and high heat generation. Various thermal barriers approaches appropriate to the combined temperature and heat removal constraints are included, such as contact thermal resistance, refractory material interfaces, and porous metal interfaces. It is shown that suitable thermal barrier approaches exist to encompass the range of target conditions expected for the production of intense beams of radioactive ions. {copyright} {ital 1997 American Institute of Physics.}

  1. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  2. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect

    Petzoldt, Ronald Wayne

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  3. Approaches to develop targets for production of intense radioactive ion beams

    SciTech Connect

    Talbert, W. L.; Drake, D. M.; Wilson, M. T.; Walker, J. J.; Lenz, J. W.

    1999-06-10

    Approaches to develop targets for production of intense radioactive ion beams (RIBs) have been evaluated over the past five years. It is acknowledged that many desired physics objectives using RIBs can be met only by using production beams of energetic protons with currents up to 100 {mu}A. Such beams can be made available at future spallation neutron facilities. The production targets will require active cooling to control operational temperatures due to internal heating caused by the production beam. A target concept has been selected, and calculational analyses of the target concept have been performed to guide the design of a prototype target for an in-beam test of the actual thermal behavior. For this test, a high-power test facility is needed; fortunately, the beam currents required exist at the TRIUMF accelerator facility. An experimental proposal has been approved for such a test.

  4. Transition from heating to cooling of channeled ion beams

    SciTech Connect

    Toepffer, Christian

    2006-06-15

    Experiments showing a transverse heating or cooling of channeled ion beams are explained in terms of electron capture and loss processes between the projectile ions and the target. Such processes violate reversibility as the projectile captures electrons from occupied bound states and loses them to unoccupied weakly bound or continuum states. The transition probabilities for the transfer of electrons are calculated in the impact parameter Born approximation. Their dependence on the distance from the crystal strings is determined by scale factors which depend in turn on the relative velocity and the binding energies of the transferred electrons in the projectile and in the crystal, respectively. The appearance of transverse heating and cooling depends on the relative size of the scale factors for capture and loss. The transition from heating to cooling as function of velocity is described in good agreement with the experiments.

  5. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  6. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J.

    2006-10-15

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  7. The compensation of the PC beam of the scattered beam by a foam target with FWM for beam steering

    NASA Astrophysics Data System (ADS)

    Kameyama, Nobukazu; Yoshida, Hiroki

    2012-10-01

    It is necessary for the direct IFE to irradiate a target with laser beams. The laser beams have to be steered for accurate laser irradiation since the target is injected at several hundreds meters per second. The method of beam steering with phase conjugate mirrors is one of the candidates. In the method, probe beams whose energies are low enough not to damage it and expanded larger than the target radius are illuminated the target. The scattered beam enters into the phase conjugate mirrors and the phase conjugate beam is generated in the opposite direction of it. The phase conjugate beam retraces the same path for the property and irradiated the target. As the target has moved several hundreds micrometers for the high speed when the phase conjugate beam comes back, it is necessary for the phase conjugate beam to compensate for accurate irradiation. Four wave mixing is used as the compensation way. The interaction of two counter-propagating pump beams and a seed beam generates a phase conjugate beam in four wave mixing. The phase conjugate beam is adjustable by setting the angle between two pump beams. The compensation with a scattered beam by a foam target as a seed beam is reported.

  8. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    NASA Astrophysics Data System (ADS)

    Cai, Han-Jie; Yang, Guanghui; Vassilopoulos, Nikos; Zhang, Sheng; Fu, Fen; Yuan, Ye; Yang, Lei

    2017-02-01

    A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw) superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  9. Cylindrical target Li-beam-driven hohlraum experiments

    SciTech Connect

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

  10. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  11. A beam sweeping system for the Fermilab antiproton production target

    SciTech Connect

    Bieniosek, F.M.

    1993-08-01

    In the Main Injector era beam intensities high enough to damage the antiproton production target will be available. In order to continue to operate with a tightly-focused primary beam spot on the target, and thus maintain yield, it will be necessary to spread the hot spot on the target by use of a beam sweeping system. This report summarizes the requirements for such a system, and addresses the issues involved in the design of a sweeping system.

  12. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2015-09-15

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  13. Neutrino Factory Targets and the MICE Beam

    SciTech Connect

    Walaron, Kenneth Andrew

    2007-01-01

    The future of particle physics in the next 30 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiments which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics. Significantly, one must look to measure the mixing angle θ13 and investigate the possibility of leptonic CP violation. If found this may provide a key insight into the origins of the matter/anti- matter asymmetry seen in the universe, through the mechanism of leptogenesis. The Neutrino Factory will be a large international multi-billion dollar experiment combining novel new accelerator and long-baseline detector technology. Arguably the most important and costly features of this facility are the proton driver and cooling channel. This thesis will present simulation work focused on determining the optimal proton driver energy to maximise pion production and also simulation of the transport of this pion °ux through some candidate transport lattices. Bench-marking of pion cross- sections calculated by MARS and GEANT4 codes to measured data from the HARP experiment is also presented. The cooling channel aims to reduce the phase-space volume of the decayed muon beam to a level that can be e±ciently injected into the accelerator system. The Muon Ionisation Cooling Experiment (MICE) hosted by the Rutherford Appleton laboratory, UK is a proof-of-principle experiment aimed at measuring ionisation cooling. The experiment will run parasitically to the ISIS accelerator and will produce muons from pion decay. The MICE beamline provides muon beams of variable emittance and momentum to the MICE experiment to enable measurement of cooling over a wide range of beam conditions. Simulation work in the design of this beamline is presented in this thesis as

  14. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  15. Near spherical illumination of ion-beam and laser targets

    SciTech Connect

    Mark, J.W.K.

    1985-12-12

    A procedure is developed for reducing energy-deposition asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which is proposed as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driven or reactor scenarios. It also allows the use of beam currents or energy fluxes and beam transverse profiles to help reduce deposition asymmetry with fewer beamlets. In the ideal limit of thin deposition layers and controlled beam profiles, at most six beamlets are needed for target symmetry.

  16. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  17. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Pedersen, T. R.; Rodriguez, S.; SanAntonio, G.

    2012-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using a "twisted beam" excitation mode. Unlike traditional heating beams used at HAARP or other heating facilities, the twisted beam attempts to impart orbital angular momentum (OAM) into the heating region. Analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region. The ring heating pattern may be more conducive to the creation of artificial airglow layers. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  18. Dense plasma heating by crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, N.; Sircombe, N. J.; Ceurvorst, L.; Sadler, J.; Kasim, M. F.; Holloway, J.; Levy, M. C.; Trines, R.; Bingham, R.; Norreys, P. A.

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  19. Dense plasma heating by crossing relativistic electron beams.

    PubMed

    Ratan, N; Sircombe, N J; Ceurvorst, L; Sadler, J; Kasim, M F; Holloway, J; Levy, M C; Trines, R; Bingham, R; Norreys, P A

    2017-01-01

    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.

  20. HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES

    SciTech Connect

    Blokland, Willem; Plum, Michael A; Peters, Charles C; Brown, David L; Galambos, John D

    2013-01-01

    Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam on target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.

  1. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling(LCC-0087)

    SciTech Connect

    Stein, W.

    2003-10-07

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  2. Electron Beam/Converter Target Interactions in Radiographic Accelerators

    SciTech Connect

    McCarrick, J; Caporaso, G; Chambers, F; Chen, Y-J; Falabella, S; Goldin, F; Guethlein, G; Ho, D; Richardson, R; Weir, J

    2003-05-27

    Linear induction accelerators used in X-ray radiography have single-pulse parameters of the order 20 MeV of electron beam energy, 2 kA of beam current, pulse lengths of 50-100 ns, and spot sizes of 1-2 mm. The thermal energy deposited in a bremsstrahlung converter target made of tantalum from such a pulse is {approx}80 kJ/cc, more than enough to bring the target material to a partially ionized state. The tail end of a single beam pulse, or any subsequent pulse in a multi-pulse train, undergoes a number of interactions with the target that can affect beam transport and radiographic performance. Positive ions extracted from the target plasma by the electron beam space charge can affect the beam focus and centroid stability. As the target expands on the inter-pulse time scale, the integrated line density of material decreases, eventually affecting the X-ray output of the system. If the target plume becomes sufficiently large, beam transport through it is affected by macroscopic charge and current neutralization effects and microscopic beam/plasma instability mechanisms. We will present a survey of some of these interactions, as well as some results of an extensive experimental and theoretical campaign to understand the practical amelioration of these effects, carried out at the ETA-II accelerator facility at the Lawrence Livermore National Laboratory.

  3. Feasibility study of heavy-ion beams and compound target materials for muon production

    NASA Astrophysics Data System (ADS)

    Sohn, Jae Bum; Lee, Ju Hahn; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    We have investigated the feasibility of using compound materials as targets for muon production by virtue of simulations using a GEANT4 toolkit. A graphite material and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C), were considered as muon production targets, and their muon production rates for a 600-MeV proton beam were calculated and compared. For the thermal analysis, the total heat deposited on the targets by the proton beams and the secondary particles was calculated with the MCNPX code; then, the temperature distribution of target was derived from the calculated heat by using the ANSYS code with consideration of heat transfer mechanisms such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy-ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with the rates experimentally-obtained for a proton beam.

  4. Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS)

    NASA Astrophysics Data System (ADS)

    Di Nicola, P.; Kalantar, D.; McCarville, T.; Klingmann, J.; Alvarez, S.; Lowe-Webb, R.; Lawson, J.; Datte, P.; Danforth, P.; Schneider, M.; Di Nicola, J.-M.; Jackson, J.; Orth, C.; Azevedo, S.; Tommasini, R.; Manuel, A.; Wallace, R.

    2012-10-01

    The requirements for beam and target alignment for successful ignition experiments on the National Ignition Facility (NIF) are stringent: the average of beams to the target must be within 25 μm. Beam and target alignment are achieved with the Target Alignment Sensor (TAS). The TAS is a precision optical device that is inserted into target chamber center to facilitate both beam and target alignment. It incorporates two camera views (upper/lower and side) mounted on each of two stage assemblies (jaws) to view and align the target. It also incorporates a large mirror on each of the two assemblies to reflect the alignment beams onto the upper/lower cameras for beam alignment. The TAS is located in the chamber using reference features by viewing it with two external telescope views. The two jaws are adjusted in elevation to match the desired beam and target alignment locations. For some shot setups, a sequence of TAS positions is required to achieve the full setup and alignment. In this paper we describe the TAS, the characterization of the TAS coordinates for beam and target alignment, and summarize pointing shots that demonstrate the accuracy of beam-target alignment.

  5. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  6. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  7. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  8. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  9. Visualizing expanding warm dense matter heated by laser-generated ion beams

    SciTech Connect

    Bang, Woosuk

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  10. High power targets for production of intense radioactive ion beams

    SciTech Connect

    Talbert, W. L.; Drake, D. M.; Wilson, M. T.; Walker, J. J.; Lenz, J. W.

    1999-04-26

    Issues are discussed in producing intense Radioactive Ion Beams (RIB) using the Isotope Separator On-Line (ISOL) approach, based on the use of thick targets employed at existing facilities. Some new physics studies may possibly be addressed by improving the performance of these existing targets through improvements in release and effusion properties to optimize the RIB yields. It is, however, acknowledged that many desired physics objectives using RIB can be met only by employing production beams of energetic light ions or protons with currents up to 100 {mu}A. Development of targets that use such intense production beams needs to address the requirement to control operational temperatures derived from internal production beam interactions with the target materials. In addition, issues arise for target materials in terms of their thermal characteristics, such as thermal conductivity and thermo-mechanical properties. A target concept is described for an in-beam test of a prototype target for actual thermal behavior under RIB production conditions. For such a test, a high-power test facility is needed; fortunately, the prototypical production beam currents required exist at the TRIUMF accelerator facility. An experimental proposal has been approved for such a test.

  11. Simulation of transition radiation based beam imaging from tilted targets

    NASA Astrophysics Data System (ADS)

    Sukhikh, L. G.; Kube, G.; Potylitsyn, A. P.

    2017-03-01

    Transverse beam profile diagnostics in linear electron accelerators is usually based on direct imaging of a beam spot via visible transition radiation. In this case the fundamental resolution limit is determined by radiation diffraction in the optical system. A method to measure beam sizes beyond the diffraction limit is to perform imaging dominated by a single-particle function (SPF), i.e. when the recorded image is dominated not by the transverse beam profile but by the image function of a point source (single electron). Knowledge of the SPF for an experimental setup allows one to extract the transverse beam size from an SPF dominated image. This paper presents an approach that allows one to calculate two-dimensional SPF dominated beam images, taking into account the target inclination angle and the depth-of-field effect. In conclusion, a simple fit function for beam size determination in the case under consideration is proposed and its applicability is tested under various conditions.

  12. High power target approaches for intense radioactive ion beam facilities

    SciTech Connect

    Talbert, W.L. ||; Hodges, T.A.; Hsu, H.; Fikani, M.M.

    1997-02-01

    Development of conceptual approaches for targets to produce intense radioactive ion beams is needed in anticipation of activity for a next-generation, intense ISOL-type radioactive beams facility, strongly recommended in the NSAC 1995 Long Range Plan for Nuclear Science. The production of isotopes in vapor form for subsequent mass separation and acceleration will depend on the ability to control target temperature profiles within the target resulting from interactions of the intense production beams with the target material. A number of earlier studies have identified promising approaches which need, however, to be carefully analyzed for specific target systems. A survey will be made of these earlier concepts employing various cooling techniques, including imposition of thermal barriers between the target materials and cooling systems. Some results of preliminary analyses are summarized. {copyright} {ital 1997 American Institute of Physics.}

  13. Antiproton beam polarizer using a dense polarized target

    SciTech Connect

    Wojtsekhowski, Bogdan

    2011-05-01

    We describe considerations regarding the spin filtering method for the antiproton beam. The proposed investigation of the double polarization cross section for antiproton to nucleon interaction is outlined. It will use a single path of the antiproton beam through a dense polarized target, e.g. 3He or CH2, followed by a polarimeter.

  14. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  15. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  16. Ohmic heated sheet for the Ca ion beam production

    SciTech Connect

    Efremov, A.; Bogomolov, S.; Kazarinov, N.; Kochagov, O.; Loginov, V.

    2008-02-15

    The production of intense accelerated {sup 48}Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense {sup 48}Ca{sup 5+} ion beam at the {sup 48}Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 deg. C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam.

  17. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  18. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  19. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E∼20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  20. Modeling the interaction of high power ion or electron beams with solid target materials

    SciTech Connect

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam.

  1. Plasma heating with multi-MeV neutral atom beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D/sup 0/ formed from D/sup -/. The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV.

  2. Neutral beam heating of a RFP plasma in MST

    SciTech Connect

    Waksman, J.; Anderson, J. K.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Liu, D.; Fiksel, G.; Davydenko, V. I.; Ivanov, A. A.; Stupishin, N.; Deichuli, P. P.; Sakakita, H.

    2012-12-15

    Electron temperature is observed to rise due to neutral beam injection (NBI) in the Madison Symmetric Torus (MST). Heating is observed to be 100 {+-} 50 eV in the core of 200 kA plasmas. This is the first definitive measurement of auxiliary heating of a reversed-field pinch (RFP). This heating is consistent with a 1D classical model which was developed. This 1D model calculates the evolving thermal conductivity and ohmic power input profiles during enhanced confinement, and can calculate NBI deposition and classical fast ion diffusion and slowing. The predicted temperature change is consistent with measured beam heating both during and after enhanced confinement, which is consistent with previous observations that fast ions are well confined and behave roughly classically in the RFP.

  3. Shielding calculations for a production target for secondary beams

    SciTech Connect

    Rehm, K.E.; Back, B.B.; Jiang, C.L.

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  4. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  5. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  6. Thermal electric and magnetic fields at the surface of an electron beam target

    SciTech Connect

    Garcia, M

    1999-06-09

    A relativistic electron beam pulse of high current density will heat a thin target plate to a plasma state as it traverses. The gradient of plasma temperature--Te is predominantly radial, and the gradient of plasma density--ne is predominantly axial. The cross product of these terms is significant at the vacuum-to-metal interface through which the beam enters. This cross product is a thermal source of magnetization, which can be much larger than the vacuum magnetic field of the electron beam, and it is of opposite polarity. The thermal energy density in the target can be hundreds of times larger than the energy density of the vacuum magnetic field of the beam. If the nose of the electron beam current pulse rises linearly with time then the thermal magnetization increases as time squared. Heat pushes electrons axially from the interior of the plate to the surfaces, and radially away from the beam axis. The electric field that arises from this effect is essentially the negative of the pressure gradient, it points outward.

  7. The X-Target: A novel high gain target with single-sided heavy-ion beam illumination

    NASA Astrophysics Data System (ADS)

    Henestroza, Enrique

    2012-10-01

    A new inertial-fusion target configuration, the X-target, using one-sided heavy ion axial illumination has been explored [1]. It takes advantage of the unique energy deposition properties of heavy ion beams that have a classical, long penetration range. This class of target uses heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an ``X''. X-targets that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT are capable of assembling fuel areal densities ˜2 g/cm^2 using two MJ-scale annular beams to implode quasi-spherically the target to peak DT densities ˜100 g/cm^3. A 3MJ fast-ignition solid ion beam heats the fuel to thermonuclear temperatures in ˜200 ps to start the burn propagation, obtaining gains of ˜300. The main concern for the X-target is the amount of high-Z atomic mixing at the ignition zone produced by hydro-instabilities, which, if large enough, could cool the fuel during the ignition process and prevent the propagation of the fusion burn. Analytic estimates and implosion calculations using the radiation hydrodynamics code HYDRA in 2D (RZ), at typical Eulerian mesh resolutions of a few microns, have shown that for the relatively low implosion velocities, low stagnation fuel densities, and low quasi-spherical fuel convergence ratios of the X-target, these hydro-instabilities do not have a large effect on the burning process. These preliminary studies need to be extended by further hydrodynamic calculations using finer resolution, complemented with turbulent mix modeling and validated by experiments, to ascertain the stability of the X-target design. We will present the current status of the X-target. [4pt] [1] E. Henestroza and B. G. Logan, Phys. Plasmas 19, 072706 (2012)

  8. A gas jet target for radioactive ion beam experiments

    SciTech Connect

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Smith, M. S.; Blackmon, J. C.; Linhardt, L. E.; Browne, J.; Kontos, A.; Meisel, Z.; Montes, F.; Schatz, H.; Erikson, L. E.; Lemut, A.; and others

    2013-04-19

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  9. Beam Heating of Samples: Modeling and Verification. Part 2

    NASA Technical Reports Server (NTRS)

    Kazmierczak, Michael; Gopalakrishnan, Pradeep; Kumar, Raghav; Banerjee Rupak; Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark

    2006-01-01

    Energy absorbed from the X-ray beam by the sample requires cooling by forced convection (i.e. cryostream) to minimize temperature increase and the damage caused to the sample by the X-ray heating. In this presentation we will first review the current theoretical models and recent studies in the literature, which predict the sample temperature rise for a given set of beam parameters. It should be noted that a common weakness of these previous studies is that none of them provide actual experimental confirmation. This situation is now remedied in our investigation where the problem of x-ray sample heating is taken up once more. We have theoretically investigated, and at the same time, in addition to the numerical computations, performed experiments to validate the predictions. We have modeled, analyzed and experimentally tested the temperature rise of a 1 mm diameter glass sphere (sample surrogate) exposed to an intense synchrotron X-ray beam, while it is being cooled in a uniform flow of nitrogen gas. The heat transfer, including external convection and internal heat conduction was theoretically modeled using CFD to predict the temperature variation in the sphere during cooling and while it was subjected to an undulator (ID sector 19) X-ray beam at the APS. The surface temperature of the sphere during the X-ray beam heating was measured using the infrared camera measurement technique described in a previous talk. The temperatures from the numerical predictions and experimental measurements are compared and discussed. Additional results are reported for the two different sphere sizes and for two different supporting pin orientations.

  10. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  11. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given.

  12. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.

    PubMed

    Rosenberg, I; Awschalom, M; Kuo, T Y; Tom, J L

    1981-01-01

    It is shown that, in the production of p(42)Be neutron beams for clinical use, the use of semithick targets leads to more desirable beam characteristics when appropriate backstop materials are used. Furthermore, an algebraic representation of beam penetration and of dose per unit charge on target, including hardening by polyethylene filters, provides a method for target optimization.

  13. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    NASA Astrophysics Data System (ADS)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  14. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  15. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  16. Crossed Beam Energy Transfer in the NIF ICF Target Design

    SciTech Connect

    Williams, E A; Hinkel, D E; Hittinger, J A

    2003-08-27

    In the National Ignition Facility (NIF) ICF point design, the cylindrical hohlraum target is illuminated by multiple laser beams through two laser entrance holes on the ends. According to simulations by LASNEX and HYDRA plasma created inside the hohlraum will stream out of the LEH, accelerate to supersonic speeds and then fan out radially. Inside the hohlraum, flows are subsonic. Forward Brillouin scattering can transfer energy between pairs of laser beams (0 and 1) if the following frequency matching condition is satisfied: {omega}{sub 0} - {omega}{sub 1} = (k{sub 0} - k{sub 1}) {center_dot} V + |k{sub 0} - k{sub 1}| c{sub s} (1) where {omega}{sub 0.1} and k{sub 0.1} are the frequencies and wave-numbers of the two laser beams, V is the plasma flow velocity and c{sub s} is the local ion sound speed. In the nominal case of equal frequency beams, this requires the component of the plasma flow velocity transverse to the bisector of the beam directions to be sonic, with the resulting transfer being to the downstream beam. In the NIF beam geometry, this is from the outer to inner cones of beams. The physics of this transfer is the same as in beam bending; the difference being that in the case of beam bending the effect is to redistribute power to the downstream side of the single beam. Were significant power transfer to occur in the point design, the delicately tuned implosion symmetry would be spoiled. To directly compensate for the transfer, the incident beam powers would have to be adjusted. The greatest vulnerability in the point design thus occurs at 15.2ns, when the inner beams are at their peak power and are at their nominal design power limit. In this situation, some other means of symmetry control would be required, such as re-pointing. At 15.2ns, the envelope focal intensities of the outer and inner beams are approximately 10{sup 15} and 6.7 10{sup 14} W/cm{sup 2} respectively. There is little absorption or diffractive spreading of the beams in the crossing

  17. a Gas Jet Target for Radioactive Ion Beam Experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Smith, M. S.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Schatz, H.; Montes, F.; Meisel, Z.; Blackmon, J. C.; Linhardt, L. E.; Wiescher, M.; Couder, M.; Berg, G. P. A.; Robertson, D.; Vetter, P. A.; Lemut, A.; Erikson, L.

    2013-03-01

    With the development of new radioactive ion beam (RIB) facilities such as FRIB, which will push measurements further away from stability, the need for improved RIB targets is more crucial than ever. Important scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on hydrogen and helium require targets that are dense, highly localized, and pure. To this end, the JENSA Collaboration led by the Colorado ol of Mines (CSM) is designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target allows for a high density and purity of target nuclei (such as 3He) within a highly confined region, without the use of windows or backing materials, and will also enable the use of state-of-the-art detection systems. The motivation, specifications and status of the CSM gas jet target system is discussed.

  18. Resistively Heated SiC Nozzle for Generating Molecular Beams

    NASA Technical Reports Server (NTRS)

    Cagiano, Steven; Abell, Robert; Patrick, Edward; Bendt, Miri; Gundersen, Cynthia

    2007-01-01

    An improved nozzle has been developed to replace nozzles used previously in an apparatus that generates a substantially unidirectional beam of molecules passing through a vacuum at speeds of several kilometers per second. The basic principle of operation of the apparatus is the same for both the previous and the present nozzle designs. The main working part of the nozzle is essentially a cylinder that is closed except that there is an inlet for a pressurized gas and, at one end, the cylinder is closed by a disk that contains a narrow central hole that serves as an outlet. The cylinder is heated to increase the thermal speeds of the gas molecules into the desired high-speed range. Heated, pressurized gas escapes through the outlet into a portion of the vacuum chamber that is separated, by a wall, from the rest of the vacuum chamber. In this portion of the vacuum chamber, the gas undergoes a free jet expansion. Most of the expanded gas is evacuated and thus does not become part of the molecular beam. A small fraction of the expanded beam passes through a narrow central orifice in the wall and thereby becomes a needle- thin molecular beam in the portion of the vacuum on the downstream side of the wall.

  19. Beamed Energy Propulsion by Means of Target Ablation

    NASA Astrophysics Data System (ADS)

    Rosenberg, Benjamin A.

    2004-03-01

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  20. Beamed Energy Propulsion by Means of Target Ablation

    SciTech Connect

    Rosenberg, Benjamin A.

    2004-03-30

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  1. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  2. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications.

  3. Status of the ITER heating neutral beam system

    NASA Astrophysics Data System (ADS)

    Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.

    2009-04-01

    The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.

  4. Proton Beam Focusing and Heating in Petawatt Laser-Solid Interactions

    SciTech Connect

    Snavely, R A; Gu, P; King, J; Hey, D; Akli, K; Zhang, B B; Freeman, R; Hatchett, S; Key, M H; Koch, J; Langdon, A B; Lasinsky, B; MacKinnon, A; Patel, P; Town, R; Wilks, S; Stephens, R; Tsutsumi, T; Chen, Z; Yabuuchi, T; Kurahashi, T; Sato, T; Adumi, K; Toyama, Y; Zheng, J; Kodama, R; Tanaka, K A; Yamanaka, T

    2003-08-13

    It has recently been demonstrated that femtosecond-laser generated proton beams may be focused. These protons, following expansion of the Debye sheath, emit off the inner concave surface of hemispherical shell targets irradiated at their outer convex pole. The sheath normal expansion produces a rapidly converging proton beam. Such focused proton beams provide a new and powerful means to achieve isochoric heating to high temperatures. They are potentially important for measuring the equation of state of materials at high energy density and may provide an alternative route to fast ignition. We present the first results of proton focusing and heating experiments performed at the Petawatt power level at the Gekko XII Laser Facility at ILE Osaka Japan. Solid density Aluminum slabs are placed in the proton focal region at various lengths. The degree of proton focusing is measured via XUV imaging of Planckian emission of the heated zone. Simultaneous with the XUV measurement a streaked optical imaging technique, HISAK, gave temporal optical emission images of the focal region. Results indicate excellent coupling between the laser-proton conversion and subsequent heating.

  5. Wake of a beam passing through a diffraction radiation target

    NASA Astrophysics Data System (ADS)

    Xiang, Dao; Huang, Wen-Hui; Lin, Yu-Zheng; Park, Sung-Ju; Ko, In Soo

    2008-02-01

    Diffraction radiation (DR) is one of the most promising candidates for electron beam diagnostics for International Linear Collider and x-ray free electron lasers due to its nonintercepting characteristic. One of the potential problems that may restrict its applications in real-time monitoring beam parameters is the wakefield generated by the presence of the DR target. In this paper, a comparative study of the wakefield and the backward DR (BDR) field is performed to clarify the relationship between them. The wakefield is studied with a particle-in-cell code MAGIC and the DR field is calculated based on virtual photon diffraction model. It is found that they have the same frequency spectrum and angular distribution, which indicates that the difference only exists in the subjective terminology. The longitudinal and transverse wake for a beam passing through a DR target is calculated for a general case when the beam’s velocity is smaller than that of light. The resulted emittance growth and energy spread growth due to the short range wakefield is estimated and found to be permissible. In real measurement where BDR propagates in the direction perpendicular to the trajectory, it may add a transverse kick to the beam as a requirement of momentum conservation. The kick is found to be large enough to degrade the performance of accelerator driven facilities and needs to be corrected.

  6. Ion beam sputter target and method of manufacture

    DOEpatents

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  7. Simulation of target response due to uranium ion beam impact

    NASA Astrophysics Data System (ADS)

    Richter, H.; Noah, E.; Aiginger, H.; Poljanc, K.

    2009-12-01

    Metal targets were irradiated at GSI with a highly focused uranium ion beam with a kinetic energy of 350MeV/u. Out of these targets two copper samples, that had been irradiated multiple times with a maximum intensity of 2.36 · 109 , were chosen for simulations. In order to characterize the behavior of the target under the load of the ion beam, FLUKA was used to generate the initial distribution of deposited energy which was in turn used as an input for ANSYS AUTODYN to calculate the dynamic response of the target. In the simulations of the first sample a good approximation of the so-called hydrodynamic tensile limit, the crucial parameter for target failure, was found to be -1.08 GPa. This acquired value was used for the simulation of the second sample which had been irradiated with two high-intensity shots. These simulations resulted in the full penetration of the sample which was in agreement with metallurgical examinations. This paper presents the performed simulations.

  8. Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Fujioka, S.; Nakai, M.; Watari, T.; Nakamura, H.; Arikawa, Y.; Hosoda, H.; Nagai, T.; Koga, M.; Kikuchi, H.; Ishii, Y.; Sogo, T.; Shigemori, K.; Nishimura, H.; Zhang, Z.; Tanabe, M.; Ohira, S.; Fujii, Y.; Namimoto, T.; Sakawa, Y.; Maegawa, O.; Ozaki, T.; Tanaka, K. A.; Habara, H.; Iwawaki, T.; Shimada, K.; Key, M.; Norreys, P.; Pasley, J.; Nagatomo, H.; Johzaki, T.; Sunahara, A.; Murakami, M.; Sakagami, H.; Taguchi, T.; Norimatsu, T.; Homma, H.; Fujimoto, Y.; Iwamoto, A.; Miyanaga, N.; Kawanaka, J.; Kanabe, T.; Jitsuno, T.; Nakata, Y.; Tsubakimoto, K.; Sueda, K.; Kodama, R.; Kondo, K.; Morio, N.; Matsuo, S.; Kawasaki, T.; Sawai, K.; Tsuji, K.; Murakami, H.; Sarukura, N.; Shimizu, T.; Mima, K.; Azechi, H.

    2013-11-01

    The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model.

  9. High heat flux accelerator targets cooling with liquid-metal jet impingement

    NASA Astrophysics Data System (ADS)

    Silverman, I.; Arenshtam, A.; Kijel, D.; Nagler, A.

    2005-12-01

    Accelerator targets for radioisotope production generate very high density of thermal energy in the target material, which absorbs the particles beam. The design of these targets requires efficient heat removal techniques in order to preserve the integrity of the target. Normal average heat fluxes from these targets are around 1 kW/cm2 and may reach order of magnitude higher values at hot spots. Few techniques exist to deal with such high heat fluxes. One of them is jet impingement that has been proved to be able to deal with heat fluxes as high as 40 kW/cm2 using water as coolant. However, this requires very high jet velocities of more than 100 m/s. A few theoretical and experimental studies indicate that liquid-metal coolants (e.g., gallium or gallium alloys) can improve the heat transfer efficiency in this configuration. Experimental cooling loops based on water and liquid-metal jet impingement have been designed and built at Soreq to evaluate this method. For the current liquid-metal system an eutectic alloy of gallium and indium (GaIn) is used. Initial experiments demonstrate that the GaIn cooling system can deal with heat flux of about 2 kW/cm2 over an area of 1 cm2. The jet velocity is less than 4 m/s and the required differential pressure from the pump is less than 1 bar.

  10. Efficient Non-Resonant Absorption of Electromagnetic Beams in Thin Cylindrical Targets: Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey; Kokodiy, Nikolay; Safronov, Boris; Balkashin, Valeriy; Priz, Ivan; Tarasevitch, Alexander

    2014-03-01

    A theoretical possibility of non-resonant, fast, and efficient (up to 40 percent) heating of very thin conducting cylindrical targets by broad electromagnetic beams was predicted in [Akhmeteli, arXiv:physics/0405091 and 0611169] based on rigorous solution of the diffraction problem. The diameter of the cylinder can be orders of magnitude smaller than the wavelength (for the transverse geometry) or the beam waist (for the longitudinal geometry) of the electromagnetic radiation. This can be used for numerous applications, such as pumping of active media of short-wavelength lasers, e.g., through efficient heating of nanotubes with laser radiation. Experimental confirmation of the above results is presented [Akhmeteli, Kokodiy, Safronov, Balkashin, Priz, Tarasevitch, arXiv:1109.1626 and 1208.0066]. Significant (up to 6%) absorption of microwave power focused on a thin fiber (the diameter is three orders of magnitude less than the wavelength) by an ellipsoidal reflector is demonstrated experimentally. For the longitudinal geometry, significant absorption (10%) of the power of a wide CO2 laser beam propagating along a thin wire is demonstrated experimentally (the diameter of the wire is two orders of magnitude less than the beam waist width).

  11. Creation of mixed beam from alloy target and couple of pure targets with laser

    SciTech Connect

    Ikeda, Shunsuke Sekine, Megumi; Romanelli, Mark; Cinquegrani, David; Kumaki, Masafumi; Fuwa, Yasuhiro; Munemoto, Naoya; Horioka, Kazuhiko; Kanesue, Takeshi; Okamura, Masahiro; Jin, Qianyu

    2014-02-15

    To create mixed species ion beam with laser pulses, we investigated charge state distributions of plasma formed from both Al-Fe alloy targets and pure Al and Fe targets placed close together. With two targets, we observed that the two kinds of atoms were mixed when the interval of two laser pulses was large enough (40 μs). On the other hand, when the interval was 0.0 μs, we observed fewer Fe ions and they did not mix well with the Al ions. The two species were mixed well in the plasma from the alloy target. Furthermore, we observed that specific charge states of Fe ions increased. From the results, it was determined that we can use two pure targets to mix two species whose difference of the drift velocity is large. On the other hand, we must use an alloy target when the drift velocities of the species are close.

  12. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    SciTech Connect

    Sartori, E. Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Sonato, P.

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  13. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  14. Comparative study of beam losses and heat loads reduction methods in MITICA beam source.

    PubMed

    Sartori, E; Agostinetti, P; Dal Bello, S; Marcuzzi, D; Serianni, G; Sonato, P; Veltri, P

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  15. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  16. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  17. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.

    PubMed

    Kriminski, S; Kazmierczak, M; Thorne, R E

    2003-04-01

    Three problems involving heat transfer from a protein crystal to a cooling agent are analyzed: flash-cooling in a cold nitrogen- or helium-gas stream, plunge-cooling into liquid nitrogen, propane or ethane and crystal heating in a cold gas stream owing to X-ray absorption. Heat transfer occurs by conduction inside the crystal and by convection from the crystal's outer surface to the cooling fluid. For flash-cooling in cold gas streams, heat transfer is limited by the rate of external convection; internal temperature gradients and crystal strains during cooling are very small. Helium gas provides only a threefold improvement in cooling rates relative to nitrogen because its much larger thermal conductivity is offset by its larger kinematic viscosity. Characteristic cooling times vary with crystal size L as L(3/2) and theoretical estimates of these times are consistent with experiments. Plunge-cooling into liquid cryogens, which can give much smaller convective thermal resistances provided that surface boiling is eliminated, can increase cooling rates by more than an order of magnitude. However, the internal conduction resistance is no longer negligible, producing much larger internal temperature gradients and strains that may damage larger crystals. Based on this analysis, factors affecting the success of flash-cooling experiments can be ordered from most to least important as follows: (1) crystal solvent content and solvent composition, (2) crystal size and shape, (3) amount of residual liquid around the crystal, (4) cooling method (liquid plunge versus gas stream), (5) choice of gas/liquid and (6) relative speed between cooling fluid and crystal. Crystal heating by X-ray absorption on present high-flux beamlines should be small. For a fixed flux and illuminated area, heating can be reduced by using crystals with areas normal to the beam that are much larger than the beam area.

  18. Development of neutral beams for fusion plasma heating

    SciTech Connect

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  19. Surface heating by optical beams and application to mid-infrared imaging.

    PubMed

    Haché, Alain; Do, Phuong Anh; Bonora, Stefano

    2012-09-20

    Heating of surfaces by optical beams is investigated theoretically and compared with experimental results in the context of infrared imaging with vanadium dioxide thin films. Using known solutions for the diffusion of point heat sources at the interface between two semi-infinite media, the theory is extended to beams of Gaussian and flat profiles, for steady-state and dynamic regimes. Parameters relevant to imaging, such as spatial resolution and response time, are linked to thermal diffusivity, beam dimensions, and intensity.

  20. Laser induced heating and emission of electrons from metallic targets

    NASA Astrophysics Data System (ADS)

    Bharuthram, R.; Tripathi, V. K.

    1999-08-01

    A high power laser incident on a metallic target heats the electrons in the skin layer within a few ps. For a specific dependence of electron-phonon collision frequency on electron temperature, ν∝ Te1/2, the steady state electron temperature profile turns out to be an exponential function of depth. The heated electrons raise the rate of thermionic emission. When the laser is significantly converted into a surface plasma wave the rate of heating and emission is considerably enhanced.

  1. Design Options for Polar-Direct-Drive Targets: From Alpha Heating to Ignition

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Marozas, J. A.; McKenty, P. W.; Skupsky, S.

    2015-11-01

    Polar direct drive (PDD) makes it possible to perform direct-drive-ignition experiments at the National Ignition Facility while the facility is configured for x-ray drive. We present the first PDD ignition-relevant target designs to include the physical effects of cross-beam energy transfer (CBET) and nonlocal heat transport, both of which substantially affect the target drive. These effects are complementary: CBET reduces target drive, while nonlocal heat transport increases the drive (relative to flux-limited models). Previous ignition designs incorporated these processes in only an approximate way through use of an ad-hoc flux limiter applied to the classical expression for heat conduction. In the PDD configuration, a multiwavelength detuning strategy was found to be effective in mitigating the loss of coupling caused by CBET, allowing for implosion speeds comparable to those of previous designs. Target designs are found that span the region from alpha-particle heating to ignition. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Tan, Chang; Han, Xianwei; Tan, Yonghua

    2012-02-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  3. Creating metallic under-dense radiators by electron beam heating prior to laser impact

    SciTech Connect

    Garcia, M

    1998-12-15

    A pulsed, relativistic electron beam can heat a metal foil to a plasma state, and initiate an expanding flow into vacuum. At a given time in its evolution, this flow fills a nearly spherical volume with nearly uniform density, assuming a rapid expansion prior to any condensation. A metal cloud produced in this way can serve as a target of intense laser illumination to create an under-dense radiator of x-rays. The phrase ''under-dense radiator'' means that the cloud, assumed ionized, has a plasma density that is less than the critical density for the wavelength of the laser light. The example described here is of a 2 {micro}g copper foil 23 {micro}m thick and 0.16 mm in diameter, heated by 8 mJ of electron beam energy in as short a time as possible, perhaps under 50 ns. The electron beam pulse must be at least 140 nC at 100 keV in order to transit the foil and deposit 8 mJ. A 50 ns pulse focused on the target would have a current of 2.8 A, and a current density of 14 kA/cm{sup 2}. The initial plasma temperature is 0.5 eV. After 300 ns, the flow has expanded to fill a nearly spherical volume of 1 mm diameter, with a nearly uniform copper density of 1.5 x 10{sup 20} cm{sup {minus}3}. The leading edge of the cloud is expanding at 1700 m/s, while flow at the original position of the foil surface expands at 150 m/s. This cloud is nearly stationary during the short time of a laser pulse at the National Ignition Facility (NIF).

  4. Thermal analysis and neutron production characteristics of a low power copper beam dump-cum-target for LEHIPA

    NASA Astrophysics Data System (ADS)

    Sawant, Y. S.; Thomas, R. G.; Verma, V.; Agarwal, A.; Prasad, N. K.; Bhagwat, P. V.; Saxena, A.; Singh, P.

    2016-01-01

    Monte Carlo simulations of heat deposition and neutron production have been carried out for the low power beam dump-cum-target for the 20 MeV Low Energy High Intensity Proton Accelerator (LEHIPA) facility at BARC using GEANT4 and FLUKA. Thermal analysis and heat transfer calculations have also been carried out using the computational fluid dynamics code CFD ACE+. In this work we present the details of the analysis of the low power beam dump-cum-target designed for conditioning of the accelerator upto a maximum power of 600 kW with a duty cycle of 2% which corresponds to an average power of 12 kW in the first phase.

  5. Equation of state studies of warm dense matter samples heated by laser produced proton beams

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Guymer, T.; James, S. F.; Gumbrell, E.; Brown, C. R. D.; Hill, M.; Morton, J.; Doyle, H.

    2012-03-01

    Heating of matter by proton beams produced by short pulse, laser-solid target interaction has been demonstrated over the last ten years by a number of workers. In the work described in this paper heating by a pulse of laser produced protons has been combined with high-resolution soft x-ray radiography to record the expansion of thin wire targets. Analysis of the radiographs yields material properties in the warm dense matter regime. These measurements imply initial temperatures in the experimental samples over a range from 14 eV up to 40 eV; the sample densities varied from solid to a tenth solid density. Assuming an adiabatic expansion after the initial proton heating phase isentropes of the aluminium sample material were inferred and compared to tabulated data from the SESAME equation of state library. The proton spectrum was also measured using calibrated magnetic spectrometers and radiochromic film. The accuracy of the technique used to infer material data is discussed along with possible future development.

  6. Proton beam production by a laser ion source with hydride target

    SciTech Connect

    Okamura, M.; Stifler, C.; Palm, K.; Steski, D.; Kanesue, T.; Ikeda, S.; Kumaki, M.

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  7. Monitoring and managing of cyclotron beam distribution on the surface of irradiated targets

    NASA Astrophysics Data System (ADS)

    Kirsanov, B. N.; Obleukhov, A. B.; Razbash, A. A.

    2016-12-01

    A system for monitoring and managing of the proton-beam distribution on the surface of the targets in the cyclotrons of the Cyclotron Co. is presented in this report. Parameters of proton beams, designs of the target and target devices, used for isotope production, and the system of the managing of the beam distribution on the target are given. The control is fulfilled via monitoring of the temperature distributions using infrared radiation from the target surface. The need in such system for increasing of the isotope productivity and reducing of the likelihood of the target damage is substantiated.

  8. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  9. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  10. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations

    SciTech Connect

    Zhu Fan; Tan Jiubin; Cui Jiwen

    2013-06-15

    Beam splitting target reflector based compensation for the angular drift of laser beam in laser autocollimation is proposed in this article to improve the measurement accuracy and stability of small angle deviations. A beam splitting target reflector is used to replace the plane mirror in laser autocollimation to generate a reference beam when returning the measurement beam. The reference beam and measurement beam have the same angular drift, but have different sensitivities to the rotation angle of the reflector due to the unique characteristics of the reflector. Thus, the angular drift of laser beam in laser autocollimation can be compensated in real time by using the drift of reference beam. Experimental results indicate that an output stability of 0.085 arc sec in 2 h can be achieved after compensation. And a measurement accuracy of {+-}0.032 arc sec can be obtained over the range of {+-}1190 arc sec with an effective resolution of 0.006 arc sec. It is confirmed that the compensation method for the angular drift of laser beam is necessary for improving the measurement accuracy and stability in laser autocollimation.

  11. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Binh, D. N.; He, J. J.; Kim, A.; Kubono, S.

    2008-05-01

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N2 finger and the circulation of the target gas that goes through the liquid N2 tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm2 at the gas pressure of 760 Torr. Intense RI beams, such as a 7Be beam of 2×108 particles per second, were successfully produced using the target.

  12. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    SciTech Connect

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Binh, D. N.; He, J. J.; Kim, A.

    2008-05-21

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N{sub 2} finger and the circulation of the target gas that goes through the liquid N{sub 2} tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm{sup 2} at the gas pressure of 760 Torr. Intense RI beams, such as a {sup 7}Be beam of 2x10{sup 8} particles per second, were successfully produced using the target.

  13. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    SciTech Connect

    Kim, S. H. )

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  14. Measurement of the transverse target and beam-target asymmetries in η meson photoproduction at MAMI.

    PubMed

    Akondi, C S; Annand, J R M; Arends, H J; Beck, R; Bernstein, A; Borisov, N; Braghieri, A; Briscoe, W J; Cherepnya, S; Collicott, C; Costanza, S; Downie, E J; Dieterle, M; Fix, A; Fil'kov, L V; Garni, S; Glazier, D I; Gradl, W; Gurevich, G; Hall Barrientos, P; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lazarev, A; Lisin, V; Livingston, K; MacGregor, I J D; Mancel, J; Manley, D M; Martel, P; McNicoll, E F; Meyer, W; Middleton, D; Miskimen, R; Mushkarenkov, A; Nefkens, B M K; Neganov, A; Nikolaev, A; Oberle, M; Ostrick, M; Ortega, H; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Polyanski, V V; Prakhov, S; Reicherz, G; Rostomyan, T; Sarty, A; Schumann, S; Steffen, O; Strakovsky, I I; Strub, Th; Supek, I; Tiator, L; Thomas, A; Unverzagt, M; Usov, Yu A; Watts, D P; Werthmüller, D; Witthauer, L; Wolfes, M

    2014-09-05

    We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γ[over →]p[over →]→ηp reaction up to a center-of-mass energy of W=1.9  GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.

  15. Convective Heating of the LIFE Engine Target During Injection

    SciTech Connect

    Holdener, D S; Tillack, M S; Wang, X R

    2011-10-24

    Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

  16. Surface heat loads on the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  17. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    SciTech Connect

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D.; Driemeyer, D.E. Kubik, D.L.; Slattery, K.T.; Hellwig, T.H.

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.

  18. Feasibility study of fusion plasma heating by relativistic high-current electron beams

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.

    2017-03-01

    The goal of this research will be to study the feasibility of fusion plasma heating using ultra-short high intensity electron beam by dissipating the energy of excited wakes either in linear or nonlinear regimes.

  19. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  20. Apparatus for precision focussing and positioning of a beam waist on a target

    NASA Technical Reports Server (NTRS)

    Lynch, Dana H. (Inventor); Gunter, William D. (Inventor); Mcalister, Kenneth W. (Inventor)

    1991-01-01

    The invention relates to optical focussing apparatus and, more particularly, to optical apparatus for focussing a highly collimated Gaussian beam which provides independent and fine control over the focus waist diameter, the focus position both along the beam axis and transverse to the beam, and the focus angle. A beam focussing and positioning apparatus provides focussing and positioning for the waist of a waisted beam at a desired location on a target such as an optical fiber. The apparatus includes a first lens, having a focal plane f sub 1, disposed in the path of an incoming beam and a second lens, having a focal plane f sub 2 and being spaced downstream from the first lens by a distance at least equal to f sub 1 + 10 f sub 2, which cooperates with the first lens to focus the waist of the beam on the target. A rotatable optical device, disposed upstream of the first lens, adjusts the angular orientation of the beam waist. The transverse position of the first lens relative to the axis of the beam is varied to control the transverse position of the beam waist relative to the target (a fiber optic as shown) while the relative axial positions of the lenses are varied to control the diameter of the beam waist and to control the axial position of the beam waist. Mechanical controllers C sub 1, C sub 2, C sub 3, C sub 4, and C sub 5 control the elements of the optical system. How seven adjustments can be made to correctly couple a laser beam into an optical fiber is illustrated. Prior art systems employing optical techniques to couple a laser beam into an optical fiber or other target simply do not provide the seven necessary adjustments. The closest known prior art, a Newport coupler, provides only two of the seven required adjustments.

  1. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  2. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target.

    PubMed

    Faddegon, Bruce A; Wu, Vincent; Pouliot, Jean; Gangadharan, Bijumon; Bani-Hashemi, Ali

    2008-12-01

    Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the development of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.

  3. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  4. Vapor Shielding of Solid Targets Exposed to High Heat Flux

    NASA Astrophysics Data System (ADS)

    Pshenov, A. A.; Eksaeva, A. A.; Krasheninnikov, S. I.; Marenkov, E. D.

    The thickness of Tungsten monoblocks composing the future ITER divertor is supposed to be 8 mm only. Therefore, severe erosion caused by high heat fluxes during transients, such as Type I ELMs and disruptions, is a limiting factor to PFCs lifespan. Under the influence of extreme heat fluxes expected during ITER transients serious surface modification of the Tungsten monoblocks is anticipated. Moreover, melting of a thin surface layer is likely to happen. Melt motion contributes seriously to the material erosion. The other sources of erosion are melt splashing, in the form of droplet ejection, and evaporation. These mechanics lead to a cold dense secondary plasma region formation near the irradiated surface. Intense re-radiation of the incoming plasma flow energy in the secondary plasma layer results in a significant reduction of the heat flux reaching the target surface. Accounting for this vapor shielding effect is essential to estimate the surface erosion under influence of intense plasma flow properly. In this paper a simple model capable of reproducing one of the key features of vapor shielding, namely the saturation of the energy absorbed by the target, is proposed. This model allows for an approximate analytical solution that indicates parameters the saturation energy depends on. The model is validated against the experimental data obtained at MK-200 pulse plasma accelerator.

  5. The new JENSA gas-jet target for astrophysical radioactive beam experiments

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.; Chipps, K. A.; Ahn, S.; Blackmon, J. C.; Browne, J.; Greife, U.; Jones, K. L.; Kontos, A.; Kozub, R. L.; Linhardt, L.; Manning, B.; Matoš, M.; O'Malley, P. D.; Montes, F.; Ota, S.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Sachs, A.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Thompson, P.

    2016-06-01

    To take full advantage of advanced exotic beam facilities, target technology must also be advanced. Particularly important to the study of astrophysical reaction rates is the creation of localized and dense targets of hydrogen and helium. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas-jet target has been constructed for this purpose. JENSA was constructed at Oak Ridge National Laboratory (ORNL) where it was tested and characterized, and has now moved to the ReA3 reaccelerated beam hall at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University for use with radioactive beams.

  6. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    SciTech Connect

    Laine, Vivien E.

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  7. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Interaction of a smoothed laser beam with supercritical-density porous targets on the ABC facility

    NASA Astrophysics Data System (ADS)

    Strangio, C.; Caruso, A.; Gus'kov, Sergei Yu; Rozanov, Vladislav B.; Rupasov, A. A.

    2006-05-01

    We present the results of experiments on the interaction of laser radiation with low-density porous targets performed on the ABC facility at the ENEA Research Centre (Frascati, Italy). Porous plastic targets with densities of 5 and 20 mg cm-3 were irradiated by a focused neodymium-laser beam at the fundamental frequency (λ = 1.054 μm) at a radiation intensity of 1013 W cm-2 at the target. The beam was preliminarily allowed to pass through an optical system intended to spatially smooth the radiation intensity over the beam cross section. The use a smoothed beam was important to discover in the plasma and in the accelerated dense material the features related to the porous structure of the target under conditions which rule out the effect of the inhomogeneities of the heating beam itself. The spatial plasma structure in the laser beam—target interaction region and at the rear side of the target were investigated by using optical schlieren plasma photography. The time dependent transmission of the laser radiation through the target was also investigated by imaging the target in transmitted radiation to a properly masked photodiode.

  9. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    NASA Astrophysics Data System (ADS)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  10. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGES

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; ...

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  11. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  12. Development of fast heating electron beam annealing setup for ultra high vacuum chamber.

    PubMed

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T; Hippler, R

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10(-6) mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  13. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect

    Das, Sadhan Chandra; Majumdar, Abhijit E-mail: majumdar@uni-greifswald.de; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  14. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    NASA Astrophysics Data System (ADS)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  15. Heating and cooling gas-gun targets: nuts and bolts

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Gehr, Russell J; Bucholtz, Scott M

    2009-01-01

    The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

  16. Calculation of in-target production rates for radioactive isotope beam production at TRIUMF

    NASA Astrophysics Data System (ADS)

    Garcia, Fatima; Andreoiu, Corina; Kunz, Peter; Laxdal, Aurelia

    2016-09-01

    Rare Isotope Beam (RIB) facilities around the world, such as TRIUMF, work towards development of new target materials to generate exotic species. Access to these rare radioactive isotopes is key for applications in nuclear medicine, astrophysics and fundamental nuclear science. To better understand production from these and other materials, we have built a computer simulation of the RIB targets used at the TRIUMF Isotope Separation and ACceleration (ISAC) facility, to support new target material development. Built at Simon Fraser University, the simulation runs in the GEANT4 nuclear transport toolkit, and can simulate the production rate of isotopes from a given set of beam and target characteristics. The simulation models the bombardment of a production target by an incident high-energy proton beam and calculates isotope in-target production rates different nuclear reactions. Results from the simulation will be presented, along with an evaluation of various nuclear reaction models and a experimentally determined RIB yields at the ISAC Yield Station.

  17. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  18. Symmetric compression of 'laser greenhouse' targets by a few laser beams

    SciTech Connect

    Gus'kov, Sergei Yu; Demchenko, N N; Rozanov, Vladislav B; Stepanov, R V; Zmitrenko, N V; Caruso, A; Strangio, C

    2003-02-28

    The possibility of efficient and symmetric compression of a target with a low-density structured absorber by a few laser beams is considered. An equation of state is proposed for a porous medium, which takes into account the special features of the absorption of high-power nanosecond laser pulses. The open version of this target is shown to allow the use of ordinary Gaussian beams, requiring no special profiling of the absorber surface. The conditions are defined under which such targets can be compressed efficiently by only two laser beams (or beam clusters). Simulations show that for a 2.1-MJ laser pulse, a seven-fold gain for the target under study is achieved. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  19. Numerical modeling for energy transport and isochoric heating in ultra-fast heated high Z target

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Sentoku, Yasuhiko; Hakel, Peter; Mancini, Roberto C.

    2010-11-01

    Collisional Particle-in-Cell (PIC) code is an effective tool to study extreme energy density conditions achieved in intense laser-solid interactions. In the continuous process of developing PIC code, we have recently implemented models to incorporate dynamic ionizations, namely Saha and Thomas Fermi, and radiation cooling (due to Bremsstrahlung and line emissions). We have also revised the existing collision model to take into account bounded electrons in dynamically ionizing target (partially ionized target). One-dimensional PIC simulation of a gold target with new collision model shows strong local heating in a micron distance due to shorter stopping range of fast electrons, which reflects the increased collision frequency due to bound electrons. The peak temperature in the heated region drops significantly due to the radiation cooling to a level of a few hundred eV from keV. We also discuss the target Z dependence on radiation loss and two-dimensional effects such as the resistive magnetic fields in the hot electron transport in metal targets.

  20. Beam-target interactions in single-and multi-pulse radiography

    SciTech Connect

    Chen, Y.J.; Hughes, T.P.; Oliver, B.V.; Welch, D.R.

    1999-04-01

    This report describes calculations concerning the interaction of intense electron beam pulses with a solid target. In Section 2, we treat the propagation of a beam pulse through a dense plasma plume in front of the target, resulting from material blown off from the target by prior pulses. Because of the short magnetic decay-time, the primary effect of the plasma is to shift the focal spot of the beam longitudinally by an amount which is constant over most of the beam pulse. It may be possible to compensate for this effect by changing the upstream focusing elements from one beam pulse to the next. Section 3 describes a mechanism by which lighter ion species can diffuse to the surface of a plasma plume, thereby potentially increasing the concentration of bulk contaminant species such as hydrogen at the leading edge of the plume. These ions could then become a light-ion source for subsequent beam pulses. Based on the calculations, we tentatively recommend bulk contaminant fractions be limited to 10{sup -5}10{sup 4}. In Section 4, we estimate the number of adsorbed monolayers needed to provide a space-charge-limited (SCL) ion source at the target for the initial beam pulse. We find that {approx} 10 monolayers are required for SCL emission of H{sub 2}{sup +} ions. This may explain why there was little evidence of focus disruption in ETA-II target experiments.

  1. Critical heat flux investigations for fusion-relevant conditions with the use of a rastered electron beam apparatus

    SciTech Connect

    Koski, J.A.; Croessmann, C.D.

    1988-01-01

    With the use of a rastered electron beam apparatus, investigations of critical heat flux (CH) and associated noise, pressure and flow spectra have been completed for water-cooled test targets under conditions relevant to the design of high-heat-flux components for fusion energy applications. Targets tested were copper tubes with attached graphite armor tiles. Water flows with velocities ranging from 3 to 10 m/s were used, with axially uniform heat fluxes ranging from 10 to 60 MW/m/sup 2/ applied along only one side of the tube to simulate the heating pattern often encountered by plasma facing components in fusion applications. Targets included stainless steel twisted tapes mechanically locked into the tube bore to increase CH levels. Exit conditions typical of highly subcooled flow boiling were considered, e.g., exit qualities of about /minus/0.3, with exit pressures near 1 MPa, and exit temperatures in the 30 to 40 C range. Besides observation of CHF and the comparison to CHF correlations, the studies also examined possible means for predicting and preventing tube burnout. Diagnostics tried included acoustic amplitude and spectra in both the audible and above audible frequency ranges, exit pressure amplitude and spectra, and flow variations and spectra. During testing, signals from the diagnostics showed a large increase in amplitude before CHF occurred. 13 refs., 9 figs.

  2. Qualification of high heat flux components: application to target elements of W7-X divertor

    NASA Astrophysics Data System (ADS)

    Missirlian, M.; Durocher, A.; Grosman, A.; Schlosser, J.; Boscary, J.; Escourbiac, F.; Cismondi, F.

    2007-03-01

    The development of actively cooled plasma-facing components (PFC) represents one of fusion's most challenging engineering efforts. In this frame, a high-quality bonding between the refractory armour and the heat sink is essential to ensure the heat removal capability and the thermal performances of PFC. Experience gained during manufacturing of Tore Supra actively cooled PFC led to the establishment of a qualification methodology and provided a large experience of acceptance criteria using an active infrared thermography (système d'acquisition de traitement infra-rouge, SATIR). This paper presents the application of this qualification process to the W7-X pre-series components, with the objective of assessing and defining workable acceptance criteria that enable reliable predictions of performance at the nominal heat flux requirements in W7-X. Finally, to check the reliability of the non-destructive examination (NDE) method by transient infrared thermography, the newly defined acceptance criteria were applied to W7-X pre-series target elements (batch #3). The SATIR results, benchmarked with HHF tests performed on the GLADIS ion beam facility were discussed to assess the ability to detect critical defects at the interface between tiles and heat sink.

  3. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    NASA Astrophysics Data System (ADS)

    Youchison, Dennis L.; Marshall, Theron D.; McDonald, Jimmie M.; Lutz, Thomas J.; Watson, Robert D.; Driemeyer, Daniel E.; Kubik, David L.; Slattery, Kevin T.; Hellwig, Theodore H.

    1997-12-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermal-hydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium-scale, bare copper alloy, hypervapotron mock-ups were designed by Sandia National Laboratories and McDonnell Douglas Aerospace (MDA), fabricated at MDA and tested at Sandia' Plasma Materials Test Facility using the EB-1200 electron beam system. The objectives of our effort were to develop the design and manufacturing procedures required for construction of robust HHF components, verify thermal-hydraulic, thermomechanical and CHF performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines, failure criteria and possibly modify any applicable CHF correlations. This paper describes the design, fabrication and finite elements modeling of two types of hypervapotrons, a common version already in use at JET and a new attached- fin design. HHF test data on the attached-fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths to that of localized, highly peaked, off-nominal profiles.

  4. Beam heating studies on an early model is a superconducting cosine theta magnet

    SciTech Connect

    Bozoki, G; Bunce, G; Danby, G; Foelsche, H; Jackson, J; Prodell, A; Soukas, A; Stevens, A; Stoehr, R; Weisenbloom, J

    1980-01-01

    Superconducting magnets for accelerators can be accidentally quenched by heat resulting from beam losses in the magnet. The threshold for such quenches is determined by the time structure of the beam loss and by details of the magnet application, construction and cooling. A 4.25 m long superconducting cosine theta dipole magnet, MARK VI, constructed during the research and development phase of the ISABELLE Project at BNL was installed in the 28.5 GeV/c primary proton beam line from the AGS. By energizing the magnet, the proton beam could be deflected into the magnet. The beam intensity required to quench the magnet was observed for different beam sizes and at several values of magnet current up to 2400 A or approximately 70% of the highest magnet operating current. The maximum current was limited by the gas-cooled power lead flow available using pool-boiling helium rather than single phase forced-flow helium at 5 atm for which the magnet system was designed. Details of the experimental setup including the magnet and cryogenic system, the beam-monitoring equipment and instrumentation are described. The measurements are discussed and compared with beam heating measurements made on another superconducting magnet and interpreted using the Cascade Simulation Program, CASIM.

  5. Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin; Fan, Tieshuan; Zhang, Xing; Zhang, Cheng; Ren, Qilong; Hu, Chundong

    2010-12-01

    A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.

  6. Modeling of neutral beam injection heating and current drive during the ramp-up phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Terzolo, L.

    2014-06-01

    For flexible control of the plasma pressure and the current profiles, which are essential for a high performance plasma with long pulse operation, KSTAR is going to implement several heating and current systems, which include Neutral Beam Injection (NBI), Ion Cyclotron Resonant Heting (ICRH)/Fast Wave Current Drive (FWCD), Lower Hybrid Current Drive (LHCD), and Eclectron Cyclotron Heating (ECH)/Electron Cyclotron Current Drive (ECCD). Here, the NBI system is typically used for the central heating and current drive. For the time being, only one NBI device (composed of 3 sources) is available in KSTAR. The first two sources were successfully commissioned in 2010 and 2013. The last source will be installed in 2014. In this work, we present a simulation study of the heating and current drive of the first NBI system (3 sources) during the ramp-up phase. We consider two different NBI configurations (low and high beam energy). The simulation is performed with NUBEAM, a well-recognized Monte-Carlo code. Several different types of KSTAR target equilibria (scan from lower to higher plasma density) are used for the calculation of the current drive, the heating and the different NB losses (shinethrough, charge exchange and bad orbit). The study shows the dependency of those quantities on the plasma density, the position of the NB source and the beam energy. It also shows that because of the shinethrough loss is too high, each NB source cannot be used when the plasma density is under a certain threshold. This study can be used to determine the starting time of the different NB sources during the KSTAR ramp-up phase.

  7. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Albright, B. J.; Yin, L.; Wu, H.-C.; Bowers, K. J.; Hegelich, B. M.; Fernández, J. C.

    2011-03-01

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of hundreds of MeV energy and <10% energy spread. The break-out afterburner (BOA) is one mechanism proposed to generate such beams; however, the late stages of the BOA tend to produce too large of an energy spread. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the comoving electrons and improve the ion beam energy spread, leading to ion beams of energy hundreds of MeV and 6% energy spread.

  8. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  9. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  10. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  11. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  12. Visualization experiment of 30 MeV proton beam irradiated water target

    NASA Astrophysics Data System (ADS)

    Hwan Hong, Bong; Gun Yang, Tea; Su Jung, In; Soo Park, Yeun; Hee Cho, Hyung

    2011-11-01

    The nucleate boiling phenomena in a water target irradiated by 30 MeV proton beam were visualized experimentally. The beam size was 10 mm in diameter and beam current of 10, 15 and 20 μA were used, respectively. A target cavity of 4.5 cc in volume was filled with distilled water without atmosphere. A CMOS camera is used to record the phenomena through a side window. The temperature and pressure were measured during experiments. The depth of the Bragg peak was indicated by the blue light emission of the proton beam in the water target. In the case of 10 μA beam intensity, there was no visible phase change but fluxes by convection was observed at the Bragg peak and near the foil surface region. At 15 μA beam intensity, steam bubbles were generated by homogenous nuclear boiling at the Bragg peak and corrupted by cavitation at the upper region. The steam bubble generation point can be indicated by the blue light emission, which can show us the position of the Bragg peak. At 20 μΑ beam intensity, the steam bubbles were generated at Bragg peak and near the foil surface. The homogenous nucleate boiling at the Bragg peak was dominant and the heterogeneous nucleate boiling near the foil surface took place, occasionally. The cavitation of the steam bubble was also observed in the upper region within the target. The penetration depth of the proton beam was change along with the steam bubble formation. The blue light emission of the proton beam in water shows that the penetration depth of the proton beam becomes deeper when vapor bubbles are generated.

  13. Malaria heat shock proteins: drug targets that chaperone other drug targets.

    PubMed

    Pesce, E-R; Cockburn, I L; Goble, J L; Stephens, L L; Blatch, G L

    2010-06-01

    Ongoing research into the chaperone systems of malaria parasites, and particularly of Plasmodium falciparum, suggests that heat shock proteins (Hsps) could potentially be an excellent class of drug targets. The P. falciparum genome encodes a vast range and large number of chaperones, including 43 Hsp40, six Hsp70, and three Hsp90 proteins (PfHsp40s, PfHsp70s and PfHsp90s), which are involved in a number of fundamental cellular processes including protein folding and assembly, protein translocation, signal transduction and the cellular stress response. Despite the fact that Hsps are relatively conserved across different species, PfHsps do exhibit a considerable number of unique structural and functional features. One PfHsp90 is thought to be sufficiently different to human Hsp90 to allow for selective targeting. PfHsp70s could potentially be used as drug targets in two ways: either by the specific inhibition of Hsp70s by small molecule modulators, as well as disruption of the interactions between Hsp70s and co-chaperones such as the Hsp70/Hsp90 organising protein (Hop) and Hsp40s. Of the many PfHsp40s present on the parasite, there are certain unique or essential members which are considered to have good potential as drug targets. This review critically evaluates the potential of Hsps as malaria drug targets, as well as the use of chaperones as aids in the heterologous expression of other potential malarial drug targets.

  14. Ion-beam inertial fusion: the requirements posed by target and deposition physics

    SciTech Connect

    Mark, J.W.K.

    1981-10-19

    The demonstration of ICF scientific feasibility requires success in target design, driver development and target fabrication. Since these are interrelated, we present here some results of ion beam target studies and relate them to parameters of interest to ion accelerators. Ion deposition physics have long been a well known subject apart from high beam currents. Recent NRL experiments at up to 250 kA/cm/sup 2/ ions confirm the classical deposition physics now at current densities which are comparable to most ion targets. On the other hand, GSI data at low current density but 1 to 10 MeV/nucleon are continually being accumulated. They have yet to find anomalous results. Relying on target concepts outlined briefly, we report on the energy gain of ion-driven fusion targets as a function of input energy, ion ranges and focal spot radius. We also comment on some consequences of target gain versus driver and reactor requirements.

  15. Small tritium filling and monitoring apparatus for particle beam inertial confinement fusion targets.

    PubMed

    Chang, J; Leeper, R J; Martinez, C; McMurtry, W M

    1980-03-01

    A small gas filling apparatus has been developed to fill a particle beam ICF target with D-T gas mixture seconds before the target is irradiated. Included in the filling apparatus is a novel miniature pressure monitor which determines quantitatively the fill pressure by counting the rate of Beta particles emitted by the decaying tritium atoms.

  16. Computational and experimental investigation of supersonic convection over a laser heated target

    NASA Astrophysics Data System (ADS)

    Marineau, Eric C.

    This research concerns the development and validation of simulation of the beam-target interaction to determine the target temperature distribution as a function of time for a given target geometry, surface radiation intensity and free stream flow condition. The effect of a turbulent supersonic flow was investigated both numerically and experimentally. Experiments were in the Virginia Tech supersonic wind tunnel with a Mach 4 nozzle, ambient total temperature, total pressure of 160 psi and Reynolds number of 5x107/m. The target consisted of a 6.35 mm stainless steel plate painted at black. The target was irradiated with a 300 Watt continuous beam Ytterbium fiber laser generating a 4 mm Gaussian beam at 1.08 micron 10 cm from the leading edge where a 4 mm turbulent boundary layer prevailed. An absorbed laser power of 65, 81, 101, 120 Watts was used leading to a maximum heat flux between 1035 to 1910 W/cm 2. The target surface and backside temperature was measured using a mid-wave infrared camera. The backside temperature was also measured using eight type-K thermocouples. Two tests are made, one with the flow-on and the other with the flow-off. For the flow-on case, the laser is turned on after the tunnel starts and the flow reaches a steady state. For the flow-off case, the plate is heated at the same power but without the supersonic flow. The cooling effect is seen by subtracting the flow-off temperature from the flow-on temperature. This temperature subtraction is useful in cancelling the bias errors such that the overall uncertainty is significantly reduced. A new conjugate heat transfer algorithm was implemented in the GASP solver and validated by predicting the temperature distribution inside a cooled nozzle wall. The conjugate heat transfer algorithm was used to simulate the experiments at 81 and 65 Watts. Most computations were performed using the Spalart-Allmaras turbulence model on a 280; 320 cell grid. A grid convergence study was performed. At 65 Watts

  17. Radiation losses in PLT during neutral beam and ICRF heating experiments

    SciTech Connect

    Suckewer, S.; Hinnov, E.; Hwang, D.

    1981-02-01

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed.

  18. Large-angle production of charged pions with incident pion beams on nuclear targets

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  19. Conceptual design for an electron-beam heated hypersonic wind tunnel

    SciTech Connect

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  20. Electro- and photonuclear physics with polarized beams and targets

    SciTech Connect

    Holt, R.J.

    1987-01-01

    Two long-standing issues in photonuclear physics, the giant M1 resonance in Pb and deuteron photodisintegration, have been studied recently with polarized photons at Urbana and Frascati, respectively. The implications that this work has for settling these key issues will be discussed. In addition, the advantages of the internal polarized target method for electron scattering studies will be discussed and the technology of internal polarized target development will be reviewed. The first results from a spin-exchange, optically-pumped polarized H and D source will be presented.

  1. Application of Laser-Generated Ion Beams for Isochoric Heating to Study Plasma Mix at Interfaces

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Fernández, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.; Hegelich, B. M.; Dyer, G.; Roycroft, R.

    2015-11-01

    The evolution and mixing of high-Z/low-Z interfaces in plasma media is of profound importance to high energy density physics and inertial fusion experiments. Recent experiments performed at the LANL Trident laser facility as part of the Plasma Interfacial Mix project have applied novel, laser-generated ion beams created under conditions of relativistic induced transparency to the heating of solid-density, multi-material targets isochorically and uniformly (over a few tens of ps), attaining plasma temperatures of several eV. Measurements have been made of the evolving plasma, including location of the material interface and the time-history of the temperature of the medium. Recent data and associated radiation hydrodynamic modeling from our Trident campaigns will be reported. Complementary kinetic simulations of interface evolution, showing anomalously rapid atomic mixing under conditions relevant to ICF experiments, will also be discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  2. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  3. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  4. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  5. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  6. Characterization of uranium carbide target materials to produce neutron-rich radioactive beams

    NASA Astrophysics Data System (ADS)

    Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole; Gottberg, Alexander; Corradetti, Stefano; Andrighetto, Alberto; Cheikh Mhamed, Maher; Essabaa, Saïd; Franberg-Delahaye, Hanna; Grinyer, Joanna; Joanny, Loïc; Lau, Christophe; Le Lannic, Joseph; Raynaud, Marc; Saïd, Abdelhakim; Stora, Thierry; Tougait, Olivier

    2016-03-01

    In the framework of a R&D program aiming to develop uranium carbide (UCx) targets for radioactive nuclear beams, the Institut de Physique Nucléaire d'Orsay (IPNO) has developed an experimental setup to characterize the release of various fission fragments from UCx samples at high temperature. The results obtained in a previous study have demonstrated the feasibility of the method and started to correlate the structural properties of the samples and their behavior in terms of nuclear reaction product release. In the present study, seven UCx samples have been systematically characterized in order to better understand the correlation between their physicochemical characteristics and release properties. Two very different samples, the first one composed of dense UC and the second one of highly porous UCx made of multi-wall carbon nanotubes, were provided by the ActILab (ENSAR) collaboration. The others were synthesized at IPNO. The systems for irradiation and heating necessary for the release studies have been improved with respect to those used in previous studies. The results show that the open porosity is hardly the limiting factor for the fission product release. The homogeneity of the microstructure and the pore size distribution contributes significantly to the increase of the release. The use of carbon nanotubes in place of traditional micrometric graphite particles appears to be promising, even if the homogeneity of the microstructure can still be enhanced.

  7. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  8. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating

    NASA Astrophysics Data System (ADS)

    Lysenko, Elena N.; Surzhikov, Anatoliy P.; Vlasov, Vitaliy A.; Nikolaev, Evgeniy V.; Malyshev, Andrey V.; Bryazgin, Alexandr A.; Korobeynikov, Mikhail V.; Mikhailenko, Mikhail A.

    2017-02-01

    Synthesis of substituted lithium ferrites with chemical formulas Li0.6Fe2.2Ti0.2O4 and Li0.649Fe1.598Ti0.5Zn0.2Mn0.051O4 under the pulsed and continuous electron beam heating was investigated by X-ray diffraction and thermomagnetometric analysis. The electron beams heating of Li2CO3-Fe2O3-TiO2 or Li2CO3-ZnO-Fe2O3-TiO2-MnO mixtures was carried out at a temperature of 750 °C during 60 min using two types of electron accelerators: ELV accelerator generating continuous electron beam or ILU-6 accelerator generating pulse electron beam. It was established that a high energy electron beam heating of initial reagents mixtures allows obtaining the substituted lithium ferrites with final composition at significantly lower temperatures (at least 200 °C lower than in the case of using traditional thermal synthesis) and times of synthesis. That statement is in agreement with results obtained by XRD analysis, showing single phase formation; by magnetic measurements, showing high values of specific magnetization; by DTG measurements showing the certain Curie temperatures of the synthesized samples.

  9. Interaction of a converging laser beam with a Ag colloidal solution during the ablation of a Ag target in water

    NASA Astrophysics Data System (ADS)

    Resano-Garcia, Amandine; Battie, Yann; Naciri, Aotmane En; Chaoui, Nouari

    2016-05-01

    We studied the nanosecond laser-induced shape modifications of Ag colloids exposed to a converging laser beam during the ablation of a Ag target in water. To this end, we performed a series of laser ablation experiments in which the laser energy was varied while all other parameters were kept constant. In addition to transmission electron microscopy (TEM), the shape distribution of the Ag nanoparticles was determined by modelling the extinction spectra of the final colloidal solutions using theoretical calculations based on shape distributed effective medium theory (SDEMT). From these calculations, two physical parameters named sphericity and dispersity were introduced and used to gauge the evolution of the shape distribution of the particles. As the laser energy on the target was increased from 5 to 20 mJ/pulse, an apparently abrupt modification of the shape distribution of the particles was evidenced by both TEM and SDEMT calculations. This change is explained in terms of competitive fragmentation, growth and reshaping processes. On the basis the heating-melting-vaporization model, we demonstrate how the competition between these processes, occurring at different locations of the converging beam, determines the shape distribution of the final product. We highlight the relevance of the fluence gradient along the beam path and the laser interaction volume on the laser-induced modifications of the suspended particles during the ablation process.

  10. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  11. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  12. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    SciTech Connect

    Behrens, Christopher; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  13. Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Henry, J.; Auger, T.; Vogt, J.-B.; Almazouzi, A.; Glasbrenner, H.; Groeschel, F.

    2006-09-01

    The lifetime of the beam window of the T91 liquid Pb-Bi container in the MEGAPIE target is discussed based on the present knowledge of lead bismuth eutectic (LBE) corrosion, embrittlement and radiation effects in relevant conditions. In the MEGAPIE target, since the high hydrogen production will likely reduce the oxygen content to a low level, LBE corrosion may reduce the wall thickness up to 2%. In addition, the corrosion induced grain boundary dissolution will promote LBE embrittlement on the T91 steel in the beam window. The DBTT data and fracture toughness values of T91 specimens tested in contact with LBE suggest a lower bound of the lifetime of the T91 beam window to be limited to a dose of 6 dpa, corresponding to 2.4 Ah proton charge to be received by the target in about 20 weeks in the normal operation condition.

  14. Recent developments of target and ion sources to produce ISOL beams

    NASA Astrophysics Data System (ADS)

    Stora, T.

    2013-12-01

    In this review on target and ion sources for ISOL (Isotope Separation OnLine) beams, important developments from the past five years are highlighted. While at precedent EMIS conferences, a particular focus was given to a single topics, for instance specifically on ion sources or on chemical purification techniques, here each of the important elements present in an ISOL production unit is discussed. Fast diffusing nanomaterials, uranium-based targets, high power targets for next generation facilities, purification by selective adsorption, new ion sources are all part of this review. For each of these selected topics, the reported results lead to significant gains in intensity, purity, or quality of the delivered beam, or in the production of new isotope beams. Often the outcome resulted from the combination of original ideas with state-of-the-art investigations; this was carried out using very different scientific disciplines, leading to understanding of the underlying chemical or physical mechanisms at the origin of the improvements.

  15. Statistic of a Gaussian beam from an arbitrary rough target in the single passage atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, NingJing; Wu, ZhenSen; Wang, MingJun

    2014-10-01

    The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function (MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulence. According to the MCF, expressions of the mean irradiance and average speckle size at the receiver were obtained. The analysis indicated that the mean intensity is closely related to the ratio of root mean square (rms) height to the lateral correlation length. In addition, the speckle size at the receiver is associated with turbulence strength, propagation distance and roughness of the target. The results can be reduced to the result of a Gaussian beam illuminating rough target and scattering from a target in free space.

  16. Heating of the phantom of a biological tissue by a phase conjugate ultrasonic beam

    NASA Astrophysics Data System (ADS)

    Brysev, A. P.; Bunkin, F. V.; Klopotov, R. V.; Krutyansky, L. M.

    2012-12-01

    The local heating of an absorbing medium by an ultrasonic beam with a conjugate wave front has been experimentally demonstrated. Plastisol, which is a polymeric material close in acoustic properties to biological tissue, is used as the medium. An ultrasonic heating of 7.2°C has been obtained in a time of about 100 s when the sample equipped with a thermocouple is placed between a focused piezoelectric transducer emitting a "probe wave" with a frequency of 5.0 MHz and a system that reverses the ultrasonic wave front with amplification. The characteristic features of heating by ultrasonic beams with the conjugate front, as well as the prospects of applications of this effect in medicine and other fields, have been discussed.

  17. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  18. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  19. Characteristics of Movement-Induced Dose Reduction in Target Volume: A Comparison Between Photon and Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Shin, Dongho; Kwak, Jungwon; Park, Soah; Lim, Young Kyung; Kim, Dongwook; Park, Sung Yong Lee, Se Byeong; Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Kwan Ho

    2009-10-01

    We compared the main characteristics of movement-induced dose reduction during photon and proton beam treatment, based on an analysis of dose-volume histograms. To simulate target movement, a target contour was delineated in a scanned phantom and displaced by 3 to 20 mm. Although the dose reductions to the target in the 2 treatment systems were similar for transverse (perpendicular to beam direction) target motion, they were completely different for longitudinal (parallel to beam direction) target motion. While both modalities showed a relationship between the degree of target shift and the reduction in dose coverage, dose reduction showed a strong directional dependence in proton beam treatment. Clinical simulation of target movement for a prostate cancer patient showed that, although coverage and conformity indices for a 6-mm lateral movement of the prostate were reduced by 9% and 16%, respectively, for proton beam treatment, they were reduced by only 1% and 7%, respectively, for photon treatment. This difference was greater for a 15-mm target movement in the lateral direction, which lowered the coverage and conformity indices by 34% and 54%, respectively, for proton beam treatment, but changed little during photon treatment. In addition, we found that the equivalent uniform dose (EUD) and homogeneity index show similar characteristics during target movement. These results suggest that movement-induced dose reduction differs significantly between photon and proton beam treatment. Attention should be paid to the target margin in proton beam treatment due to the distinct characteristics of heavy ion beams.

  20. Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease

    PubMed Central

    Shrestha, Liza; Bolaender, Alexander; Patel, Hardik J.; Taldone, Tony

    2016-01-01

    Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors. PMID:27072696

  1. Two-beam technique for tracking a target at low elevation angles

    NASA Astrophysics Data System (ADS)

    Nakatsuka, K.

    1990-12-01

    A new radar technique for tracking a target at low elevation angles is presented. The key technique is to use two antenna beams in elevation to receive the signals, which consist of returns from both the target and its image, and to compute the target height based on a phase difference between the two beam outputs. Error analyses as well as the derivation of the algorithm of this technique are presented. Computer simulations have been made to determine the target height above flat earth surfaces with reflection coefficients of 1.0 and 0.6. The results show the validity of the algorithm of this technique. A technical comparison with other techniques is also presented.

  2. THERMAL SHOCK ANALYSIS OF WINDOWS INTERACTING WITH ENERGETIC, FOCUSED BEAM OF THE BNL MUON TARGET EXPERIMENT.

    SciTech Connect

    SIMOS, N.; KIRK, H.; PRIGL, R.; BROWN, K.; MCDONALD, K.

    2001-06-18

    In this paper, issues associated with the interaction of a proton beam with windows designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 TP per pulse and a pulse length of 100 ns is tightly focused (to 0.5 mm rms radius) on an experimental target. The need to maintain an enclosed environment around the target implies the use of beam windows that will survive the passage of the proton beam. The required beam parameters in such a setting will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed analysis of the thermal/shock response of beam windows is attempted through a transient thermal and stress wave propagation formulation that incorporates energy deposition rates calculated the by hadron interaction code MARS. The thermal response of the window structure and the subsequent stress wave generation and propagation are computed using the finite element analysis procedures of the ANSYS code. This analysis attempts to address issues pertaining to an optimal combination of material, window thickness and pulse structure that will allow for a window to safely survive the extreme demands of the experiment.

  3. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  4. Simulation of two-dimensional target motion based on a liquid crystal beam steering method

    NASA Astrophysics Data System (ADS)

    Lin, Yixiang; Ai, Yong; Shan, Xin; Liu, Min

    2015-05-01

    A simulation platform is established for target motion using a liquid crystal (LC) spatial light modulator as a nonmechanical beam steering control device. By controlling the period and orientation of the phase grating generated by the spatial light modulator, the platform realizes two-dimensional (2-D) beam steering using a single LC device. The zenith and azimuth angle range from 0 deg to 2.89 deg and from 0 deg to 360 deg, respectively, with control resolution of 0.0226 deg and 0.0300 deg, respectively. The response time of the beam steering is always less than 0.04 s, irrespective of steering angle. Three typical aircraft tracks are imitated to evaluate the performance of the simulation platform. The correlation coefficients between the theoretical and simulated motions are larger than 0.9822. Results show that it is highly feasible to realize 2-D target motion simulation using the LC spatial light modulator.

  5. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  6. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  7. Nano and micro structured targets to modulate the spatial profile of laser driven proton beams

    NASA Astrophysics Data System (ADS)

    Giuffrida, L.; Svensson, K.; Psikal, J.; Margarone, D.; Lutoslawski, P.; Scuderi, V.; Milluzzo, G.; Kaufman, J.; Wiste, T.; Dalui, M.; Ekerfelt, H.; Gallardo Gonzalez, I.; Lundh, O.; Persson, A.; Picciotto, A.; Crivellari, M.; Bagolini, A.; Bellutti, P.; Magnusson, J.; Gonoskov, A.; Klimsa, L.; Kopecek, J.; Lastovicka, T.; Cirrone, G. A. P.; Wahlström, C.-G.; Korn, G.

    2017-03-01

    Nano and micro structured thin (μ m-scale) foils were designed, fabricated and irradiated with the high intensity laser system operating at LLC (Lund Laser Centre, Sweden) in order to systematically study and improve the main proton beam parameters. Nano-spheres deposited on the front (laser irradiated) surface of a flat Mylar foil enabled a small enhancement of the maximum energy and number of the accelerated protons. Nano-spheres on the rear side allowed to modify the proton beam spatial profile. In particular, with nanospheres deposited on the rear of the target, the proton beam spatial homogeneity was clearly enhanced. Silicon nitride thin foils having micro grating structures (with different step dimensions) on the rear surface were also used as targets to influence the divergence of the proton beam and drastically change its shape through a sort of stretching effect. The target fabrication process used for the different target types is described, and representative experimental results are shown and discussed along with supporting 3D particle-in-cell simulations.

  8. Proton G{sub E}/G{sub M} from beam-target asymmetry

    SciTech Connect

    Jones, M. K.; Bosted, P.; Carlini, R.; Chen, J. P.; Ent, R.; Fenker, H.; Gaskell, D.; Gomez, J.; Keith, C.; Mack, D.; Meekins, D.; Niculescu, I.; Roche, J.; Seely, M.; Smith, G.; Vulcan, W.; Wood, S.; Yan, C.; Aghalaryan, A.; Asaturyan, R.

    2006-09-15

    The ratio of the proton's electric to magnetic form factor, G{sub E}/G{sub M}, can be extracted in elastic electron-proton scattering by measuring cross sections, beam-target asymmetry, or recoil polarization. Separate determinations of G{sub E}/G{sub M} by cross sections and recoil polarization observables disagree for Q{sup 2}>1 (GeV/c){sup 2}. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q{sup 2} = 1.51 (GeV/c){sup 2} for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q{sup 2} at which G{sub E}/G{sub M} has been determined by a beam-target asymmetry experiment. The result, {mu}G{sub E}/G{sub M}=0.884{+-}0.027{+-}0.029, is compared to previous world data.

  9. Proton G_E/G_M from beam-target asymmetry

    SciTech Connect

    Mark Jones; Aram Aghalaryan; Abdellah Ahmidouch; Razmik Asaturyan; Frederic Bloch; Werner Boeglin; Peter Bosted; Cedric Carasco; Roger Carlini; Jinseok Cha; Jian-Ping Chen; Michael Christy; Leon Cole; Luminita Coman; Donald Crabb; Samuel Danagoulian; Donal Day; James Dunne; Mostafa Elaasar; Rolf Ent; Howard Fenker; Emil Frlez; David Gaskell; Liping Gan; Javier Gomez; Bitao Hu; Juerg Jourdan; Christopher Keith; Cynthia Keppel; Mahbubul Khandaker; Andreas Klein; Laird Kramer; Yongguang Liang; Jechiel Lichtenstadt; Richard Lindgren; David Mack; Paul McKee; Dustin McNulty; David Meekins; Hamlet Mkrtchyan; Rakhsha Nasseripour; Maria-Ioana Niculescu; Kristoff Normand; Blaine Norum; Dinko Pocanic; Yelena Prok; Brian Raue; Joerg Reinhold; Julie Roche; Daniela Rohe; Oscar Rondon-Aramayo; Nikolai Savvinov; Bradley Sawatzky; Mikell Seely; Ingo Sick; Karl Slifer; C. Smith; Gregory Smith; S. Stepanyan; Liguang Tang; Shigeyuki Tajima; Giuseppe Testa; William Vulcan; Kebin Wang; Glen Warren; Frank Wesselmann; Stephen Wood; Chen Yan; Lulin Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-07-06

    The ratio of the proton's electric to magnetic form factor, G{sub E}/G{sub M}, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G{sub E}/G{sub M} by cross sections and recoil polarization observables disagree for Q{sup 2} > 1 (GeV/c){sup 2}. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q{sup 2} = 1.51 (GeV/c){sup 2} for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q{sup 2} at which G{sub E}/G{sub M} has been determined by a beam-target asymmetry experiment. The result, {mu}G{sub E}/G{sub M} = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.

  10. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  11. Increasing the Brightness of Cold Ion Beams by Suppressing Disorder-Induced Heating with Rydberg Blockade.

    PubMed

    Murphy, D; Scholten, R E; Sparkes, B M

    2015-11-20

    A model for the equilibrium coupling of an ion system with varying initial hard-sphere Rydberg blockade correlations is used to quantify the suppression of disorder-induced heating in Coulomb-expanding cold ion bunches. We show that bunches with experimentally achievable blockade parameters have an emittance reduced by a factor of 2.6 and increased focusability and brightness compared to a disordered bunch. Demonstrating suppression of disorder-induced heating is an important step in the development of techniques for the creation of beam sources with sufficient phase-space density for ultrafast, single-shot coherent diffractive imaging.

  12. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    SciTech Connect

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  13. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene octene copolymer

    NASA Astrophysics Data System (ADS)

    Mishra, Joy K.; Chang, Young-Wook; Lee, Byung Chul; Ryu, Sung Hun

    2008-05-01

    The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby-Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.

  14. Efficacy of Traditional Almond Decontamination Treatments and Electron Beam Irradiation against Heat-Resistant Salmonella Strains.

    PubMed

    Cuervo, Mary P; Lucia, Lisa M; Castillo, Alejandro

    2016-03-01

    Two outbreaks of salmonellosis were linked to the consumption of raw almonds from California in 2001 and 2004. As a result, federal regulations were developed, which mandate that all almonds grown in California must be treated with a process that results in a 4-log reduction of Salmonella. Because most of the technologies approved to treat almonds rely on the application of heat to control Salmonella, an evaluation of alternative technologies for inactivating heat-resistant Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W was needed. In this study, almonds were inoculated with Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W and then treated with an electron beam (e-beam) or by blanching or oil roasting. The irradiation D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W treated with e-beam were 0.90 and 0.72 kGy, respectively. For heat treatments, thermal D10-values for Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W strains were 15.6 and 12.4 s, respectively, when subjected to blanching at 88°C and 13.2 and 10.9 s, respectively, when roasted in oil at 127 ± 2°C. No significant differences in irradiation and thermal treatment results were observed between Salmonella Enteritidis PT30 and Salmonella Senftenberg 775W (P > 0.05), indicating that e-beam irradiation may be a feasible technology for reducing Salmonella in almonds. However, the sensory changes resulting from irradiating at the doses used in this study must be evaluated before e-beam irradiation can be used as a nonthermal alternative for decontamination of almonds.

  15. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  16. HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Golkowski, M.; Lehtinen, N. G.; Inan, U. S.; McCarrick, M. J.

    2012-05-01

    ELF/VLF (0.3-30 kHz) wave generation is achievable via modulated HF (3-30 MHz) heating of the lower ionosphere in the presence of natural currents such as the auroral electrojet. Using the 3.6 MW High Frequency Active Auroral Research Program (HAARP) facility near Gakona, AK, we investigate the effect of HF frequency and beam size on the generated ELF/VLF amplitudes, as a function of modulation frequency, and find that generation in the Earth-ionosphere waveguide generally decreases with increasing HF frequency between 2.75-9.50 MHz. HAARP is also capable of spreading the HF power over a wider area, and we find that a larger beam area yields larger generated amplitudes on the ground. Measurements are shown to generally agree with a theoretical model, which is then applied to also predict the effect of HF beam parameters on magnetospheric injection with HAARP.

  17. Laser heating of a cavity versus a plane surface for metal targets utilizing photothermal deflection measurements

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1996-08-01

    The effects of a cylindrical cavity in a metal surface on the energy coupling of a laser beam with the solid were investigated by using a photothermal deflection technique. The photothermal deflection of a probe beam over the cavity was measured while the bottom of the cavity was heated with a Nd-YAG laser with a wavelength of 1064 nm. Cavities in three different materials and with two different aspect ratios were used for the experiment. Temperature distributions in the solid and the surrounding air were computed numerically and used to calculate photothermal deflections for cavity heating and for plane surface heating. Reflection of the heating laser beam inside the cavity increased the photothermal deflection amplitude significantly with larger increases for materials with larger thermal diffusivity. The computed photothermal deflections agreed more closely with the experimental results when reflection of the heating laser beam inside the cavity was included in the numerical model. The overall energy coupling between a heating laser and a solid is enhanced by a cavity.

  18. Non-Maxwellian effects in underdense plasmas heated by non-uniform laser beams

    NASA Astrophysics Data System (ADS)

    Matte, Jean-Pierre

    2005-10-01

    The collisionl heating of plasmas by intense laser beams is known to drive the electron distribution function into a super-Gaussian [1] or ``DLM'' [2] shape. This reduces the absorption [1], and the reduction is stronger if the beam is very non-uniform, for a given average intensity, as there is a depletion of slow electrons, compared to a Maxwellian of the same density and average energy. If the beam irradiates most or a good fraction of the plasma volume, these non-Maxwellian effects also imply a depletion of high energy electrons, with the resulting strong reduction of Landau damping of Langmuir waves [2], contrary to the results of Brunner and Valeo [3] which were obtained in the limit of a narrow beam heating a wide plasma. The depletion of fast electrons depends essentially on the average laser intensity. We will show how these two aspects vary with the laser and plasma parameters.[1] A.B. Langdon, Phys. Rev. Lett. 44, 575 (1980) [2] B.B. Afeyan, A.E. Chou, J.P. Matte et al., Phys. Rev. Lett. 80, 2322 (1998). [3] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002).

  19. Method for shaping and aiming narrow beams. [sonar mapping and target identification

    NASA Technical Reports Server (NTRS)

    Heyser, R. C. (Inventor)

    1981-01-01

    A sonar method and apparatus is discribed which utilizes a linear frequency chirp in a transmitter/receiver having a correlator to synthesize a narrow beamwidth pattern from otherwise broadbeam transducers when there is relative velocity between the transmitter/receiver and the target. The chirp is so produced in a generator in bandwidth, B, and time, T, as to produce a time bandwidth product, TB, that is increased for a narrower angle. A replica of the chirp produced in a generator is time delayed and Doppler shifted for use as a reference in the receiver for correlation of received chirps from targets. This reference is Doppler shifted to select targets preferentially, thereby to not only synthesize a narrow beam but also aim the beam in azimuth and elevation.

  20. Symmetry issues in a class of ion beam targets using sufficiently short direct drive pulses

    SciTech Connect

    Mark, J.W.K.; Lindl, J.D.

    1986-10-23

    Controlling asymmetries in direct drive ion beam targets depends upon the ability to control the effects of residual target asymmetries after an appropriate illumination scheme has already been utilized. A class of modified ion beam targets where residual asymmetries are ameliorated is considered. The illumination scheme used is an axially symmetric one convenient for reactor designs. Residual asymmetries are controlled by limiting the radial motion of the radius R/sub dep/ of peak ion energy deposition. Limiting the motion of R/sub dep/ is achieved by lengthening the time scale t/sub s/ where changes in R/sub dep/ adversely affect asymmetries. In our example, t/sub s/ becomes longer than the duration ..delta..t/sub D/ of the entire direct drive pulse train (t/sub s/ > ..delta..t/sub D/).

  1. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target.

    PubMed

    Gauthier, M; Kim, J B; Curry, C B; Aurand, B; Gamboa, E J; Göde, S; Goyon, C; Hazi, A; Kerr, S; Pak, A; Propp, A; Ramakrishna, B; Ruby, J; Willi, O; Williams, G J; Rödel, C; Glenzer, S H

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  2. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  3. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  4. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  5. Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Da-Peng; Li, Yu-Xiao

    2017-03-01

    Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional particle-in-cell simulations. The electron cloud shape is controlled well and the electron density is improved significantly. The electrons accelerated by the three lasers induce an enhanced target normal sheath acceleration (TNSA) which suppresses the proton beam divergence and improves the maximum proton energy. The maximum proton energy is 22.9 MeV, which increased significantly than that of a single-laser target interaction. Meanwhile, the average divergence angle (22.3°) is reduced. The dependence of the proton beam on the length of sidewall is investigated in detail and the optimal length is obtained.

  6. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  7. Laser-driven shock acceleration of ion beams from spherical mass-limited targets.

    PubMed

    Henig, A; Kiefer, D; Geissler, M; Rykovanov, S G; Ramis, R; Hörlein, R; Osterhoff, J; Major, Zs; Veisz, L; Karsch, S; Krausz, F; Habs, D; Schreiber, J

    2009-03-06

    We report on experimental studies of ion acceleration from spherical targets of diameter 15 microm irradiated by ultraintense (1x10(20) W/cm2) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from acceleration in a converging shock launched by the laser, which is confirmed by 3-dimensional particle-in-cell simulations. The temporal evolution of the shock-front curvature shows excellent agreement with a two-dimensional radiation pressure model.

  8. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    NASA Astrophysics Data System (ADS)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  9. Monochromators for small cross-section x-ray beams from high heat flux synchrotron sources

    SciTech Connect

    Ice, G.; Riemer, B.; Khounsary, A.

    1996-10-01

    For some x-ray experiments, only a fraction of the intense central cone of x-rays generated by high-power undulator sources can be used; the x-ray source emittance is larger than the useful emittance for the experiment. For example with microfocusing optics, or for coherence experiments, x-ray beams with cross sections less than 0.1 mm{sup 2} are desirable. With such small beams, the total thermal load is small even though the heat flux density is high. Analyses indicate that under these conditions, rather simple crystal cooling techniques can be used. We illustrate the advantages of a small beam monochromator, with a simple x-ray monochromator optimized for x-ray microdiffraction. This monochromator is designed to achieve negligible distortion when subjected to a narrow (0.1 mm wide) beam from an APS undulator operating at 100 mA. It also allows for rapid and repeatable energy scans and rapid cycling between monochromatic and white beam conditions.

  10. A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator

    SciTech Connect

    McCarthy, Kieran J.; Carmona, J. M.; Balbin, R.

    2008-10-22

    We summarize the TJ-II stellarator device give an outline of a vacuum ultraviolet spectrometer used for performing spectral surveys specialized plasma studies. Next, we report the main impurities observed in hot plasmas created maintained by electron cyclotron resonance neutral beam injection heating with lithium coated wall conditioning. Finally, we report broad emission structures that have been observed close to strong oxygen emission lines during neutral beam injection heating phases we elucidate their possible origin.

  11. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  12. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  13. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  15. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    NASA Astrophysics Data System (ADS)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; Chen, Yu; Xu, Yongjian; Yu, Ling; Li, Xiang; Zhang, Weitang

    2016-11-01

    Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001) and the International Science & Technology Cooperation Program of China (No. 2014DFG61950)

  17. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  18. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams.

    PubMed

    Esirkepov, T Zh; Bulanov, S V; Nishihara, K; Tajima, T; Pegoraro, F; Khoroshkov, V S; Mima, K; Daido, H; Kato, Y; Kitagawa, Y; Nagai, K; Sakabe, S

    2002-10-21

    In order to achieve a high-quality, i.e., monoenergetic, intense ion beam, we propose the use of a double-layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The generation of high-quality proton beams from the double-layer target, irradiated by an ultraintense laser pulse, is demonstrated with three-dimensional particle-in-cell simulations.

  19. Thermal Imaging Applied to Cryocrystallography: Cryocooling and Beam Heating (Part I)

    NASA Technical Reports Server (NTRS)

    Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark; Kazmierczak, Michael

    2006-01-01

    Thermal imaging provides a non-invasive method to study both the cryocooling process and the heating due to the X-ray beam interaction with a sample. The method has been used successfully to image cryocooling in a number of experimental situations, i.e. cooling as a function of sample volume and as a function of cryostream orientation. Although there are experimental limitations to the method, it has proved a powerful technique to aid cryocrystallography development. Due to the rapid spatial temperature information provided about the sample it is also a powerful tool in the testing of mathematical models. Recently thermal imaging has been used to measure the temperature distribution on both a model and typical crystal samples illuminated with an X-ray beam produced by an undulator. A brief overview of thermal imaging and previous results will be presented. In addition, a detailed description of the calibration and experimental aspects of the beam heating measurements will be described. This will complement the following talk on the mathematical modeling and analysis of the results.

  20. Soft X-ray emission from electron-beam-heated solar flares

    NASA Technical Reports Server (NTRS)

    Mariska, John T.; Zarro, Dominic M.

    1991-01-01

    Using time-dependent numerical simulations and Solar Maximum Mission observations of a solar flare on 1985 January 23, a study is conducted of the ability of an electron-beam-heating model to reproduce the rise phase of a flare as observed in soft X-ray lines of Ca XIX. The electron beam is parameterized by a peak flux, a low-energy cutoff, and a spectral index, and has a time dependence similar to the observed hard X-ray burst. For a spectral index of 6, only models with a low-energy cutoff of 20 keV reproduce the observed peak emission in the Ca XIX line complex. All models with a low-energy cutoff of 15 keV produce too much emission, while all models with a 25-keV cutoff too little emission. None of the models reproduces the temporal behavior of the soft X-ray emission. The electron-beam-heated component is theorized to only represent a small fraction of the energy released in the impulsive phase of this flare.

  1. Motion correction for improved target localization with on-board cone-beam computed tomography.

    PubMed

    Li, T; Schreibmann, E; Yang, Y; Xing, L

    2006-01-21

    On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360 degrees scan) in acquiring the CBCT projection data, the patient's respiratory motion causes serious problems such as blurring, doubling, streaking and distortion in the reconstructed images, which heavily degrade the image quality and the target localization. In this work, we present a motion compensation method for slow-rotating CBCT scans by incorporating into image reconstruction a patient-specific motion model, which is derived from previously obtained four-dimensional (4D) treatment planning CT images of the same patient via deformable registration. The registration of the 4D CT phases results in transformations representing a temporal sequence of three-dimensional (3D) deformation fields, or in other words, a 4D model of organ motion. The algorithm was developed heuristically in two-dimensional (2D) parallel-beam geometry and extended to 3D cone-beam geometry. By simulations with digital phantoms capable of translational motion and other complex motion, we demonstrated that the algorithm can reduce the motion artefacts locally, and restore the tumour size and shape, which may thereby improve the accuracy of target localization and patient positioning when CBCT is used as the treatment guidance.

  2. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    NASA Astrophysics Data System (ADS)

    Martin, Claudio Torregrosa; Perillo-Marcone, Antonio; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-07-01

    Antiprotons are produced at CERN by colliding a 26 GeV /c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-of-pulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  3. Los Alamos Neutron Science Center Area-A beam window heat transfer alalysis

    SciTech Connect

    Poston, D.

    1997-07-01

    Several analyses that investigate heat transfer in the Area-A beam window were conducted. It was found that the Area-A window should be able to withstand the 1-mA, 3-cm beam of the accelerator production of tritium materials test, but that the margins to failure are small. It was also determined that when the window is subjected to the 1-mA, 3-cm beam, the inner window thermocouples should read higher than the current temperature limit of 900{degrees}C, although it is possible that the thermocouples may fail before they reach these temperatures. Another finding of this study was that the actual beam width before April 1997 was 20 to 25% greater than the harp-wire printout indicated. Finally, the effect of a copper-oxide layer on the window coolant passage was studied. The results did not indicate the presence of a large copper-oxide layer; however, the results were not conclusive.

  4. Correction of resist heating effect on variable shaped beam mask writer

    NASA Astrophysics Data System (ADS)

    Nakayamada, Noriaki; Suganuma, Mizuna; Nomura, Haruyuki; Kato, Yasuo; Kamikubo, Takashi; Ogasawara, Munehiro; Zable, Harold; Masuda, Yukihiro; Fujimura, Aki

    2016-04-01

    The specifications for critical dimension (CD) accuracy and line edge roughness are getting tighter to promote every photomask manufacturer to choose electron beam resists of lower sensitivity. When the resist is exposed by too many electrons, it is excessively heated up to have higher sensitivity at a higher temperature, which results in degraded CD uniformity. This effect is called "resist heating effect" and is now the most critical error source in CD control on a variable shaped beam (VSB) mask writer. We have developed an on-tool, real-time correction system for the resist heating effect. The system is composed of correction software based on a simple thermal diffusion model and computational hardware equipped with more than 100 graphical processing unit chips. We have demonstrated that the designed correction accuracy was obtained and the runtime of correction was sufficiently shorter than the writing time. The system is ready to be deployed for our VSB mask writers to retain the writing time as short as possible for lower sensitivity resists by removing the need for increased pass count.

  5. Long range heliostat target using array of normal incidence pyranometers to evaluate a beam of solar radiation

    SciTech Connect

    Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J

    2014-03-04

    Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.

  6. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  7. BEAM ON TARGET MODEL Produces All Gamma Ray Burst Phenomena Including Afterglow

    NASA Astrophysics Data System (ADS)

    Greyber, H.

    2000-12-01

    While one must applaud the splendid research by L. Piro et al and L. Amati et al reported in SCIENCE recently, one must question, as M. Rees and S. Woolsey have done, their conclusion that a ``supranova model" is the only explanation for these new X-ray observations. In fact L. Piro was quoted as saying, ``Our data helps rule out the scenario where two neutron stars or black holes collide. We think GRBs result from something similar to a supernova explosion, but much more powerful." A relatively unknown physical model for GRBs, Greyber's Beam On Target model (BOT), dating back to the first CGRO observations, can plausibly explain the iron emission lines observed for GRB991216, and also the mass of the dense medium within a light-day of the GRB being roughly equivalent to at least one-tenth solar mass, as well as the initial shedding of material followed by the GRB event. When a galaxy forms under gravitational collapse in the presence of a primordial magnetic field, Mestel and Strittmatter demonstrated that, for finite Ohmic diffusion, a growing equatorial current loop is formed. Even if this stable ``Storage Ring" has only 10exp-9 of the total energy released during a typical galaxy's formation, the relativistic beam can possess 10exp58 ergs. The GRB ``fireball" occurs when a target star races across the powerful beam, blowing off target material as a hot, rapidly expanding plasma cloud, simulating an explosion. Since currents in space are known to be sometimes filamentary, sharp millisecond spikes can be expected in some GRBs. Proton and alpha particle nuclear reactions produce a gamma ray beam. Beam particles impinging on denser cloud material create an electromagnetic shower, producing X-ray, optical and radio radiation. Since the Storage Ring has an intense magnetic field around it, synchrotron radiation is expected. The beam, striking a highly evolved massive target star, produces the iron emission lines. H. D. Greyber, in ``After the Dark Ages:When Galaxies

  8. Analysis of Beam-Induced Damage to the SLC Positron Production Target

    SciTech Connect

    Bharadwaj, Vinod

    2002-08-20

    The nominal Next Linear Collider (NLC) positron production design is based on extrapolation of the existing SLAC Linear Collider (SLC) positron production system. Given that the SLC positron production target failed during a run, it is necessary to analyze the beam-induced damage to the target in order to validate the extrapolations on which the NLC target is based. The failed SLC target and its associated housing were sent to existing ''hot-cell'' facilities at LANL for analysis. The target material, a tungsten-rhenium ''puck'', was removed from the housing and photographed and x-rayed. Leak-checking on the cooling system was performed. Sections were then removed from the target to determine the extent of internal damage to the material. High resolution photographs were taken and extensive hardness tests were performed on the irradiated and non-irradiated areas of the target material. The results of these analyses and conclusions applicable to the NLC target design are presented in this paper.

  9. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer

    PubMed Central

    Liu, H; Lu, J; Hua, Y; Zhang, P; Liang, Z; Ruan, L; Lian, C; Shi, H; Chen, K; Tu, Z

    2015-01-01

    Gastric cancer (GC) remains the fifth most common cancer worldwide. Heat-shock protein 90 (HSP90) has become an attractive therapeutic target in treating cancers, because of its abnormally high expression in cancers. Several successful cases of HSP90 inhibitors capable of inhibiting GC inspired us to try ganetespib, a clinically promising and actively investigated second-generation HSP90 inhibitor in GC treatment. In our study, we show that ganetespib markedly reduced the growth of MGC-803 and also significantly inhibited the growth of SGC-7901 and MKN-28 in a dose-dependent manner. It induced G2/M cell-cycle arrest and apoptosis in all three cell lines, together with the related markers affected significantly. Mechanistically, ganetespib caused pronounced decrease of expression of classic HSP90 client proteins. Specifically, it greatly affected epidermal growth factor receptor (EGFR) signaling cascades by markedly decreasing the levels of total EGFR and EGFR on cell membranes. EGFR knockdown also induced cell-cycle arrest and apoptosis accompanied with a decrease of several EGFR downstream proteins. These results strongly support that EGFR signaling greatly contributes to the ganetespib inhibitory effects. Besides, we found that the responses of GC cell lines to ganetespib correlated well with their EGFR expression levels: MGC-803, as well as AGS and BGC-803, with higher EGFR expression responded to ganetespib better, whereas SGC-7901 and MKN-28 with lower EGFR levels were much less sensitive to ganetespib. Although SGC-7901 and MKN-28 were not very sensitive to ganetespib, ganetespib worked synergistically with radiation and cisplatin in killing them. Importantly, ganetespib significantly inhibited the growth of xenograft tumors in vivo as a single agent or in combination with cisplatin. Results of hematoxylin/eosin staining, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assays, and immunohistochemistry staining of phosphorylated cyclin

  10. Ion beam transport: modelling and experimental measurements on a large negative ion source in view of the ITER heating neutral beam

    NASA Astrophysics Data System (ADS)

    Veltri, P.; Sartori, E.; Agostinetti, P.; Aprile, D.; Brombin, M.; Chitarin, G.; Fonnesu, N.; Ikeda, K.; Kisaki, M.; Nakano, H.; Pimazzoni, A.; Tsumori, K.; Serianni, G.

    2017-01-01

    Neutral beam injectors are among the most important methods of plasma heating in magnetic confinement fusion devices. The propagation of the negative ions, prior to their conversion into neutrals, is of fundamental importance in determining the properties of the beam, such as its aiming and focusing at long-distances, so as to deposit the beam power in the proper position inside the confined plasma, as well as to avoid interaction with the material surfaces along the beam path. The final design of the ITER Heating Neutral Beam prototype has been completed at Consorzio RFX (Padova, Italy), in the framework of a close collaboration with European, Japanese and Indian fusion research institutes. The physical and technical rationales on which the design is based were essentially driven by numerical modelling of the relevant physical processes, and the same models and codes will be useful to design the DEMO neutral beam injector in the near future. This contribution presents a benchmark study of the codes used for this purpose, by comparing their results against the measures performed in an existing large-power device, hosted at the National Institute for Fusion Science, Japan. In particular, the negative ion formation and acceleration are investigated. A satisfactory agreement was found between codes and experiments, leading to an improved understanding of beam transport dynamics. The interpretation of the discrepancies identified in previous works, possibly related to the non-uniformity of the extracted negative ion current, is also presented.

  11. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning.

    PubMed

    Zeng, C; Plastaras, J P; Tochner, Z A; White, B M; Hill-Kayser, C E; Hahn, S M; Both, S

    2015-04-07

    The purpose of this study was to assess the feasibility of proton pencil beam scanning (PBS) for the treatment of mediastinal lymphoma. A group of 7 patients of varying tumor size (100-800 cc) were planned using a PBS anterior field. We investigated 17 fractions of 1.8 Gy(RBE) to deliver 30.6 Gy(RBE) to the internal target volume (ITV). Spots with σ ranging from 4 mm to 8 mm were used for all patients, while larger spots (σ = 6-16 mm) were employed for patients with motion perpendicular to the beam (⩾5 mm), based on initial 4-dimensional computed tomography (4D CT) motion evaluation. We considered volumetric repainting such that the same field would be delivered twice in each fraction. The ratio of extreme inhalation amplitude and regular tidal inhalation amplitude (free-breathing variability) was quantified as an indicator of potential irregular breathing during the scanning. Four-dimensional dose was calculated on the 4D CT scans based on the respiratory trace and beam delivery sequence, implemented by partitioning the spots into separate plans on each 4D CT phase. Four starting phases (end of inhalation, end of exhalation, middle of inhalation and middle of exhalation) were sampled for each painting and 4 energy switching times (0.5 s, 1 s, 3 s and 5 s) were tested, which resulted in 896 dose distributions for the analyzed cohort. Plan robustness was measured for the target and critical structures in terms of the percent difference between 'delivered' dose (4D-evaluated) and planned dose (calculated on average CT). It was found that none of the patients exhibited highly variable or chaotic breathing patterns. For all patients, the ITV D98% was degraded by <2% (standard deviations ∼ 0.1%) when averaged over the whole treatment course. For six out of seven patients, the average degradation of ITV D98% per fraction was within 5% . For one patient with motion perpendicular to the beam (⩾5 mm), the degradation of ITV D98% per fraction was up

  12. Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

    SciTech Connect

    Brodsky, S.J.; Fleuret, F.; Hadjidakis, C.; Lansberg, J.P.; /Orsay, IPN

    2012-03-16

    We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze pp, pd and pA collisions at center-of-mass energy {radical}s{sub NN} {approx_equal} 115 GeV and even higher using the Fermi motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, {radical}s{sub NN} is as high as 72 GeV. Bent crystals can be used to extract about 5 x 10{sup 8} protons/sec; the integrated luminosity over a year reaches 0.5 fb{sup -1} on a typical 1 cm-long target without nuclear species limitation. We emphasize that such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark distributions of the proton and the neutron can be accessed at large x and even at x larger than unity in the nuclear case. Single diffractive physics and, for the first time, the large negative-xF domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter versus the features of the hot and dense matter formed in heavy-ion collisions, including the formation of the quark-gluon plasma, which can be studied in PbA collisions over the full range of target-rapidity domain with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlie the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized parton distributions. We also emphasize the potential offered by pA ultra-peripheral collisions where the nucleus target A is used as a coherent photon source, mimicking photoproduction processes in ep collisions. Finally, we note that W and Z bosons can be produced and detected in a fixed-target experiment and in their

  13. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  14. Beam controlled arc therapy-a delivery concept for stationary targets

    NASA Astrophysics Data System (ADS)

    Zhang, H. H.; Betzel, G. T.; Yi, B. Y.; D'Souza, W. D.

    2013-10-01

    Volumetric modulated arc therapy (VMAT) presupposes that it is beneficial to deliver radiation from all beam angles as the gantry rotates, requiring the multi-leaf collimator to maintain continuity in shape from one angle to another. In turn, radiation from undesirable beam angles could compromise the dose distribution. In this work, we challenge the notion that the radiation beam must be held on as the gantry rotates around the patient. We propose a new approach for delivering intensity-modulated arc therapy, beam-controlled arc therapy (BCAT), during which the radiation beam is controlled on or off and the dose rate is modulated while the gantry rotates around the patient. We employ linear-programming-based dose optimization to each aperture weight, resulting in some zero weight apertures. During delivery, the radiation beam is held off at control points with zero weights as the MLC shape transits to the next non-zero weight shape. This was tested on ten head and neck cases. Plan quality and delivery efficiency were compared with VMAT. Improvements of up to 17% (p-value 0.001) and 57% (p-value 0.018) in organ-at-risk sparing and target dose uniformity, respectively, were achieved. Compared to the fixed number of apertures used in single-arc and double-arc VMAT, the BCAT used 109 and 175 apertures on average, respectively. The difference in total MUs for VMAT and BCAT plans was less than 4%. Plan quality improvement was confirmed after delivery with γ analysis resulting in over 99% agreement, or 4 in 1099 points that failed.

  15. Exploring electron beam induced heat and mass transport at the atomic scale

    NASA Astrophysics Data System (ADS)

    Kisielowski, Christian

    2011-03-01

    In recent years the performance of mid-voltage electron microscopes was significantly boosted to reach deep sub-Ångstrom resolution around 0.5 Å at 300 kV in broad beam (TEM) and focused probe (STEM) modes. Atomic resolution microscopy at voltages as low as 50 kV (and possibly below) was fostered. As a result the detection of single atoms across the Periodic Table of Elements is now possible even if light atoms are considered. After decades of striving for resolution enhancement, electron microscopy has now reached a limit that is given at a fundamental level by the Coulomb scattering process itself and by beam-sample interactions, which set a maximum dose limit that can be easily reached for soft and hard materials with the developed high-brightness electron guns. Consequently, new frontiers for electron microscopy emerge and this contribution addresses dynamic processes at the single atom level that can now be captured in time series of images at frequencies below 1 Hz reaching towards kHz. In this frequency range much of the observed atom dynamics is electron beam induced and the control of beam-sample interaction imposes constraints as well as opportunities. In this contribution it is shown that it seems feasible to exploit beam sample interactions to gain better insight into heat and mass transport in soft and hard matter at atomic resolution. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  16. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    SciTech Connect

    Wang Zhiheng Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-12-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors.

  17. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    NASA Astrophysics Data System (ADS)

    Budaev, V. P.

    2016-12-01

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach 10MW m-2 in the steady state of DT discharges, increasing to 0.6-3.5 GW m-2 under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma-wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  18. Optimizing ELF/VLF generation via HF heating utilizing beam motion

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Inan, U. S.; Lehtinen, N. G.; Golkowski, M. A.

    2008-12-01

    ELF/VLF (300 Hz - 30 kHz) waves are difficult to generate with conventional antennae due to their extraordinary long wavelengths, and the good conductance of the Earth at these frequencies. Recently, ELF and VLF waves have been generated using HF (3-10 MHz) heating of the lower ionosphere, in the presence of natural currents such as the auroral electrojet, which modulates the ionospheric conductivity and therefore turns the lower ionosphere into a large radiating element. The recently upgraded HAARP facility, near Gakona Alaska, utilizes 3.6 MW of HF power, along with an unprecedented ability to steer the HF heating beam over a large area extremely rapidly. Since the completion of the upgrade in 2007, the first successful implementation of techniques such as geometric modulation [Cohen et al. 2008, Borisov et al. 1998], and beam painting [Papadopoulos et al. 1989] have occurred. These results have shown as much as 7-11 dB improvement in the signal strengths, as well as the first ability to direct ELF/VLF signals via an unprecedented ELF/VLF phased array. Here, we use a combination of experimental and theoretical investigations to discuss the optimization of ELF/VLF generation via HF heating, including the effect of HF and ELF frequency on the amplitude and the directional pattern for various generation techniques. The experimental observations occur over an array of receivers across Alaska. The theoretical formulation utilizes a 3D model of the HF heating and subsequent electron cooling processes, leading to spatial structure of modulated ionospheric conductivities, the results of which are input into a model of ELF/VLF propagation in the Earth-ionosphere waveguide.

  19. Cyclic heat load testing of improved CFC/Cu bonding for the W 7-X divertor targets

    NASA Astrophysics Data System (ADS)

    Greuner, H.; Böswirth, B.; Boscary, J.; Chaudhuri, P.; Schlosser, J.; Friedrich, T.; Plankensteiner, A.; Tivey, R.

    2009-04-01

    Extensive high heat flux cycling testing of pre-series targets was performed in the neutral beam facility GLADIS to establish the industrial process for the manufacturing of 890 targets, which will be needed for the installation of the WENDELSTEIN 7-X divertor. The targets are manufactured of flat tiles of CFC NB31 as plasma facing material bonded by an Active Metal Casting copper interlayer onto a water-cooled CuCrZr structure. Based on the results of the 3D thermo-mechanical FEM analysis of the CFC/Cu interface, an additional set of 17 full-scale pre-series elements including three design variations was manufactured by PLANSEE SE. The insertion of an additional plastically compliant copper interlayer between the cooling structure and the Active Metal Casting interlayer showed the best results. No critical tile detachment was observed during >5000 cycles at 10 MW/m 2. These results demonstrated the sufficient life time of the component for the expected heat load in operation.

  20. Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence.

    PubMed

    Wu, Zhen-Sen; Li, Ya-Qing

    2011-07-01

    On the basis of the extended Huygens-Fresnel principle, the scattering of partially coherent Gaussian-Schell-model (GSM) beams from a diffuse target in slant double-passage atmospheric turbulence is studied and compared with that of fully coherent Gaussian beams. Using the cross-spectral density function of the GSM beams, we derive the expressions of the mutual coherence function, angle-of-arrival fluctuation, and covariance and variance of the intensity of the scattered field, taking into account the fluctuations of both the log-amplitude and phase. The numerical results are presented, and the influences of the wavelength, propagation distance, and waist radius on scattering properties are discussed. The perturbation region of the normalized intensity variance of the partially coherent GSM beam is smaller than that of the fully coherent Gaussian beam at the middle turbulence level. The normalized intensity variance of long-distance beam propagation is smaller than that of beam propagation along a short distance.

  1. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors.

    PubMed

    Lin, Liyong; Kang, Minglei; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-11-08

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ± 3% uncertainty in stopping power and ± 3 mm uncertainty in patient setup in each direction, were used to create 8 × 12 × 10 = 960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p = 0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential.

  2. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors.

    PubMed

    Lin, Liyong; Kang, Minglei; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-11-01

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ±3% uncertainty in stopping power and ±3 mm uncertainty in patient setup in each direction, were used to create 8×12×10=960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p=0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential. PACS number: 87.55.D.

  3. Feel the heat: activation, orientation and feeding responses of bed bugs to targets at different temperatures.

    PubMed

    DeVries, Zachary C; Mick, Russell; Schal, Coby

    2016-12-01

    Host location in bed bugs is poorly understood. Of the primary host-associated cues known to attract bed bugs - CO2, odors, heat - heat has received little attention as an independent stimulus. We evaluated the effects of target temperatures ranging from 23 to 48°C on bed bug activation, orientation and feeding. Activation and orientation responses were assessed using a heated target in a circular arena. All targets heated above ambient temperature activated bed bugs (initiated movement) and elicited oriented movement toward the target, with higher temperatures generally resulting in faster activation and orientation. The distance over which bed bugs could orient toward a heat source was measured using a 2-choice T-maze assay. Positive thermotaxis was limited to distances <3 cm. Bed bug feeding responses on an artificial feeding system increased with feeder temperature up to 38 and 43°C, and declined precipitously at 48°C. In addition, bed bugs responded to the relative difference between ambient and feeder temperatures. These results highlight the wide range of temperatures that elicit activation, orientation and feeding responses in bed bugs. In contrast, the ability of bed bugs to correctly orient towards a heated target, independently of other cues, is limited to very short distances (<3 cm). Finally, bed bug feeding is shown to be relative to ambient temperature, not an absolute response to feeder blood temperature.

  4. Soft x-ray spectra from laser heated lithium targets

    SciTech Connect

    Nica, Petru-Edward; Miyamoto, Shuji; Amano, Sho; Inoue, Takahiro; Shimoura, Atsusi; Kaku, Kakyo; Mochizuki, Takayasu

    2006-07-24

    The extreme ultraviolet emission characteristics of laser-produced lithium plasma are experimentally and theoretically investigated. Taking into account the target oxidation, the ion fractional populations are analyzed and the averaged plasma parameters are obtained. Theoretical results show an insignificant influence of oxygen on the temperature dependence of the lithium ion fractional number. A comparison between the theoretical spectrum for stationary and homogenous plasma and experiments shows a reasonable agreement.

  5. Toroidal rotation and ion heating during neutral beam injection in PBX-M

    NASA Astrophysics Data System (ADS)

    Asakura, N.; Fonck, R. J.; Jaehnig, K. P.; Kaye, S. M.; LeBlanc, B.; Okabayashi, M.

    1993-08-01

    Determination of the profiles of the ion temperature and the plasma toroidal rotation has been accomplished by charge exchange recombination spectroscopy in PBX-M. The angular momentum and the thermal ion energy transport have been studied mainly during the H mode phase of a high βp discharge (Ip approx 330 kA, 3.5 × 1019 <= ne <= 6.5 × 1019 m-3) having different heating beam configurations (combination of two perpendicular and two tangential neutral beam injections, abbreviated as 2 perp. NBI and 2 parall. NBI). The toroidal rotation velocity Vphi rises substantially in the region of r/a >= 0.5 after the L-H transition, and the Vphi profile (peakedness) is more highly dependent on the beam configuration than the Ti profile. The angular momentum confinement time varies from 147 ms (rigid rotation for 2 perp. NBI) to 39 ms (viscous rotation for 2 parall. NBI). In contrast, the thermal energy confinement time is 44-48 ms and is almost independent of the configuration. The transport analysis shows that the radial angular momentum diffusion is caused mainly by the viscous losses and that the angular momentum diffusivity χphi is reduced substantially in the outer minor radius region during the 2 perp. NBI H mode. The neoclassical friction effect between the bulk ions and the impurities may influence the χphi profiles locally, where the ion temperature gradient is steep

  6. X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating

    NASA Astrophysics Data System (ADS)

    Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; Rosmej, F.; Silvert, V.; Soullié, G.; Villette, B.

    2015-12-01

    X-ray transmission spectra of copper, nickel and aluminum laser produced plasmas were measured at the LULI2000 laser facility with an improved target design of indirect heating. Measurements were performed in plasmas close to local thermodynamic equilibrium at temperatures around 25 eV and densities between 10-3g/cm3 and 10-2 g/cm3. This improved design provides several advantages, which are discussed in this paper. The sample is a thin foil of mid-Z material inserted between two gold cavities heated by two 300J, 2ω, nanosecond laser beams. A third laser beam irradiates a gold foil to create a spectrally continuous X-ray source (backlight) used to probe the sample. We investigate 2p-3d absorption structures in Ni and Cu plasmas as well as 1s-2p transitions in an additional Al plasma layer to infer the in-situ plasma temperature. Geometric and hydrodynamic calculations indicate that the improved geometry reduces spatial gradients during the transmission measurements. Experimental absorption spectra are in good agreement with calculations from the hybrid atomic physics code SCO-RCG.

  7. Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows

    NASA Astrophysics Data System (ADS)

    Greyber, H. D.

    1997-12-01

    Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).

  8. Time- and space- resolved pyrometry of dense plasmas heated by laser accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Roycroft, Rebecca; McCary, Eddie; Wagner, Craig; Jiao, Xuejing; Kupfer, Rotem; Gauthier, D. Cort; Bang, Woosuk; Palaniyappan, Sasikumar; Bradley, Paul A.; Hamilton, Christopher; Santiago Cordoba, Miguel A.; Vold, Erik L.; Yin, Lin; Fernandez, Juan C.; Alibright, Brian J.; Ditmire, Todd; Hegelich, Bjorn Manuel

    2016-10-01

    Laser driven ion sources have a variety of possible applications, including the rapid heating of matter to dense plasma states of several eV. Recent experiments at LANL and The University of Texas have explored ion heating in the context of mixing at high-Z / low-Z plasma interfaces, using different laser-based ion acceleration schemes. Quasi-monoenergetic and highly directed Al ions from ultra-thin foils were used in one set of experiments, while TNSA accelerated protons from an F/40 focused petawatt laser were used in the other. Using spatially and temporally resolved streaked optical pyrometry we have gained insight into the degree and uniformity of heating from various configurations of ion source and sample target. Here we present data and analysis from three experimental runs along with hydrodynamic modeling of the heated targets and geometric considerations. This work was supported by NNSA cooperative agreement DE- NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-0.

  9. Targeted heat shock protein 72 for pulmonary cytoprotection.

    PubMed

    Parseghian, Missag H; Hobson, Stephen T; Richieri, Richard A

    2016-06-01

    Heat shock protein 72 (HSP72) is perhaps the most important member of the HSP70 family of proteins, given that it is induced in a wide variety of tissues and cells to combat stress, particularly oxidative stress. Here, we review independent observations of the critical role this protein plays as a pulmonary cytoprotectant and discuss the merits of developing HSP72 as a therapeutic for rapid delivery to cells and tissues after a traumatic event. We also discuss the fusion of HSP72 to a cell-penetrating single-chain Fv antibody fragment derived from mAb 3E10, referred to as Fv-HSP70. This fusion construct has been validated in vivo in a cerebral infarction model and is currently in testing as a clinical therapeutic to treat ischemic events and as a fieldable medical countermeasure to treat inhalation of toxicants caused by terrorist actions or industrial accidents.

  10. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    SciTech Connect

    Ma, T; MacPhee, A; Key, M; Akli, K; Mackinnon, A; Chen, C; Barbee, T; Freeman, R; King, J; Link, A; Offermann, D; Ovchinnikov, V; Patel, P; Stephens, R; VanWoerkom, L; Zhang, B; Beg, F

    2007-11-29

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented.

  11. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  12. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    SciTech Connect

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J.; Dlougach, E.; Krylov, A.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  13. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition

    SciTech Connect

    Wang, Yuhan; Comes, Ryan B.; Kittiwatanakul, Salinporn; Wolf, Stuart A.; Lu, Jiwei

    2015-03-01

    Epitaxial NbO2 thin films were synthesized on Al2O3 (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO2. Through XPS, it was found that there was a ~ 1.3 nm thick Nb2O5 layer on the surface and the bulk of the thin film was NbO2. The epitaxial relationship between NbO2 film and substrate was determined. Electrical transport measurement as a function of temperature showed that the conduction mechanism could be described by variable range hopping mechanism.

  14. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Smoothing of ablation pressure nonuniformities in the laser-plasma corona during heating of laser fusion targets

    NASA Astrophysics Data System (ADS)

    Zhurovich, M. A.; Zhitkova, O. A.; Lebo, I. G.; Mikhailov, Yu A.; Sklizkov, G. V.; Starodub, Aleksandr N.; Tishkin, V. F.

    2009-06-01

    A method for smoothing ablation pressure nonuniformities during heating of laser fusion targets is described which utilises an extra laser pulse preceding the main pulse. Theoretical and experimental data are presented on heating of thin (3-10 μm) foils (simulating the target shell) by a spatially nonuniform laser beam. In the experiments, the laser pulse width at half maximum was 2 ns and the pulse energy was 2-30 J, which ensured a power density on the target surface from 1013 to 1014 W cm-2. The experimental data are analysed using two-dimensional numerical simulations. The experimental and simulation results demonstrate that this approach is sufficiently effective. The optimal laser prepulse parameters are determined.

  15. Window decompression in laser-heated MagLIF targets

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Peterson, Kyle; Sefkow, Adam

    2015-11-01

    The Magnetized Liner Inertial Fusion (MagLIF) concept requires pre-magnetized fuel to be pre-heated with a laser before undergoing compression by a thick solid liner. Recent experiments and simulations suggest that yield has been limited to date by poor laser preheat and laser-induced mix in the fuel region. In order to assess laser energy transmission through the pressure-holding window, as well as resultant mix, we modeled window disassembly under different conditions using 1D and 2D simulations in both Helios and HYDRA. We present results tracking energy absorption, time needed for decompression, risk of laser-plasma interaction (LPI) that may scatter laser light, and potential for mix from various window thicknesses, laser spot sizes and gas fill densities. These results indicate that using thinner windows (0.5-1 μm windows) and relatively large laser spot radii (600 μm and above) can avoid deleterious effects and improve coupling with the fuel. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04- 94AL85000.

  16. Cryogenic target with very thin “gold finger” heat pipe

    NASA Astrophysics Data System (ADS)

    Abdel-Samad, S.; Abdel-Bary, M.; Kilian, K.; Ritman, J.

    2006-01-01

    An extremely light stainless steel heat pipe of 0.1 mm wall thickness and 5 mm diameter has been developed to transport heat from the liquid hydrogen/deuterium target to the cooling machine. As a further improvement an important reduction of the heat load to the cold parts of the system is achieved by coating the heat pipe and the target finger with a thin polished gold layer. This brings the radiation heat load from 1400 mW on the non-isolated stainless steel surface system down to 70 mW on the gold-coated system. A further reduction to 0.05 mW is achieved by using an aluminum heat shield at 50 K around the cold parts at 15 K. Finally, the heat load was further reduced by a factor 11, without changing the geometry, by coating both sides of the aluminum shield with a thin gold mirror layer. This new, very slim "gold finger" target system shows safe and stable performance even with a low power-cooling machine.

  17. Copper-coated laser-fusion targets using molecular-beam levitation

    SciTech Connect

    Rocke, M.J.

    1981-09-08

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 ..mu..m of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 ..mu..m thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications.

  18. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  19. Plasma dynamics of the interaction of intense ion beams with ''sub'' and ''super'' range plane targets

    SciTech Connect

    Long, K.A.; Tahir, N.A.

    1986-01-01

    Analytic and numerical solutions for the problem of the interaction of intense ion beams with matter in the form of plane targets are considered in this paper. The theory of the interaction of protons with matter at low energies is discussed and calculations are presented for the energy loss of protons in aluminum and gold. Zero- and one-dimensional models are developed and the results are compared to numerical simulations carried out with the one-dimensional Lagrangian hydrodynamic code Medusa (Comp. Phys. Comm. 1, 271 (1974)), which has been extended to include the various physical effects needed to carry out realistic simulations of the interaction of ion beams with matter. The theory and simulation of the acceleration of foils by intense ion beams is also considered and representative results are given. The theoretical results are used to investigate the optimum conditions in which to carry out stopping power experiments for ions in hot, dense plasmas, so that the theory can be tested. These results are needed in order to perform more realistic pellet calculations for inertial fusion.

  20. Development of a non-ideal plasma target for non-linear beam plasma interaction experiments

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Nishinomiya, S.; Niinou, T.; Kaneko, J.; Hasegawa, J.; Ogawa, M.; Oguri, Y.

    2007-07-01

    A shock-driven plasma target was developed to examine non-linear interactions between low-energy heavy ions and cold-dense plasmas. MD calculations predicted that beam-plasma coupling constant γ˜0.1 must be achieved to observe the non-linearity, which corresponds to the plasma coupling constant Γ≈0.2 for projectiles of vproj≈10 keV/u and q≈2. One-dimensional numerical estimations using SESAME equation of state showed that a shock wave propagating in 5-Torr H2 gas with 47 km/s must be produced to satisfy Γ≈0.2. Utilizing an electromagnetic shock tube with a peak current of 50 kA and a current rise time of 800 ns, we achieved a shock speed of 45 km/s. The electron density distribution of the shock-produced plasma along the beam axis was measured by a Mach-Zehnder interferometer. From this measurement we confirmed that the electron density was over 1017 cm-3 and the homogeneity was acceptable during several hundred nanoseconds. The electron temperature was also determined by optical spectroscopic measurements. The Coulomb coupling constant was evaluated using these experimental data to investigate feasibility of the beam-plasma interaction experiments.

  1. Targeted irradiation of biological cells using an ion microprobe - Why a small beam spot is not sufficient for success

    NASA Astrophysics Data System (ADS)

    Fischer, B. E.; Voss, K.-O.; Du, G.

    2009-06-01

    When people plan to adapt their ion microprobe for the targeted irradiation of biological cells, they often claim that they expect a targeting accuracy in the range of their beam spot diameter, because they assume that reaching a sub-μm beam spot is the most difficult part of the job. Although many microprobes have now a beam spot diameter of some hundred nano-meters or less, nobody reached a targeting accuracy below 1 μm. Besides obvious reasons, like mechanical or thermal instabilities, there is a more difficult problem to overcome: one still needs a light microscope to locate both the microbeam and the cells to be irradiated, and there are various light-optical effects, which can give misleading information about the position of the beam and the cells.

  2. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    NASA Astrophysics Data System (ADS)

    Yabuuchi, T.; Sawada, H.; Regan, S. P.; Anderson, K.; Wei, M. S.; Betti, R.; Hund, J.; Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Paguio, R. R.; Patel, P. K.; Saito, K. M.; Stephens, R. B.; Wilks, S. C.; Beg, F. N.

    2012-09-01

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm3 foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  3. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    NASA Astrophysics Data System (ADS)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  4. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  5. Robust broadband beam-forming based on the feature of underwater target radiated noise

    NASA Astrophysics Data System (ADS)

    Chen, Xin-hua; Liu, Chao; Yu, Hua-bing; Zheng, En-ming; Sun, Chang-yu

    2016-12-01

    To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.

  6. Nuclear Structure Observable with Polarized Target and Polarized Real Photon Beam at Mainz Microtron

    NASA Astrophysics Data System (ADS)

    Paudyal, Dilli

    2016-09-01

    The nucleon polarizabilities are fundamental structure observables, like the nucleon mass or charge. While the electric (αE 1) and magnetic (βM 1) scalar polarizabilities of the nucleon have been measured, little effort has been made to extract the spin dependent polarizabilities. These nucleon polarizabilities, γE1E1 ,γM1M1 ,γM1E2 and γE1M2 describe the spin response of a proton to electric and magnetic dipole and quadrupole interactions. We plan to extract them using polarized photon beam and polarized target at the MAMI tagged photon facility in Mainz, Germany. This requires precise measurement of the double polarization observable ∑2 z which is sensitive to these polarizabilities. The ∑2 z is measured via a circularly polarized photon beam on a longitudinally polarized butanol target in the resonance region (E = 250 - 310 MeV). Together with constraints from αE 1 and βM 1, the forward spin polarizability (γ0) , and QCD based models, should allow us to extract all four spin polarizabilities. This presentation will be focused on the preliminary experimental results for the measurement of ∑2 z at different energies and angles. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  7. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  8. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  9. Formation of Sunquakes in Hydrodynamic Flaring Atmospheres Heated by Mixed Particle Beams

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Zharkov, S.

    2015-12-01

    We present hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams and investigate their effects on the solar interior beneath the photosphere for production of acoustic waves, or sunquakes. The temperature, density and macro-velocity variations are calculated as functions of both column and linear depths for different mixed beams revealing strong sweeping of a flaring atmosphere under the quiet photosphere level (QFL). This results in subsequent plasma evaporation into the upper atmosphere and formation of supersonic shocks moving into the solar interior and terminating at depths of 300-5000 km beneath the QFL. The shocks deposited at different depths below the photosphere are found to define the parameters of seismic responses in the interior and their observation as sunquakes, according to the hydrodynamic model of wave propagation (Zharkov, 2013). In addition, we compare temporal and spatial distributions of HXR and optical emission in a few acoustically active flares with those produced by the complex simulations above, in attempt to resolve the puzzle of co-spatial formation of HXR and WL emission reported by Martinez-Oliveros et al. (2012).

  10. Heat shock proteins as key biological targets of the marine natural cyclopeptide perthamide C.

    PubMed

    Margarucci, Luigi; Monti, Maria Chiara; Mencarelli, Andrea; Cassiano, Chiara; Fiorucci, Stefano; Riccio, Raffaele; Zampella, Angela; Casapullo, Agostino

    2012-04-01

    Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Herein we report the mode of action of perthamide C, a natural cyclopeptide isolated from the marine sponge Theonella swinhoei. Through an emerging mass spectrometry-based chemical proteomics approach, Heat Shock Protein 90 and Glucose Regulated Protein 94 were identified as key targets of perthamide C and this evidence has been validated using surface plasmon resonance. The ability of perthamide C to influence heat shock protein-mediated cell apoptosis revealed that this marine metabolite could be a good candidate for the development of a lead compound with therapeutic applications based on apoptosis modulation.

  11. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A; Barnard, J J; More, R M

    2010-03-19

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  12. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A. B.; Barnard, J. J.; More, R. M.

    2009-12-23

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  13. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    SciTech Connect

    O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  14. Solar Hard X-Ray Source Sizes in a Beam-heated and Ionized Chromosphere

    NASA Astrophysics Data System (ADS)

    O'Flannagain, Aidan M.; Brown, John C.; Gallagher, Peter T.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ~3 Mm and ~0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  15. Self-overcoming of the boiling condition by pressure increment in a water target irradiated by proton beam

    NASA Astrophysics Data System (ADS)

    Hong, Bong Hwan; Kang, Joonsun; Jung, In Su; Ram, Han Ga; Park, Yeun Soo; Cho, Hyung Hee

    2013-11-01

    An experiment was conducted to examine and visualize the boiling phenomena inside a water target by irradiating it with a proton beam from MC-50 cyclotron. The boiling phenomena were recorded with a CMOS camera. While an increase of the fraction of the water vapor volume is generally considered to be normal when water is boiled by a proton beam, our experiment showed the opposite result. The volume expansion of the liquid water exceeded the compressibility of the initial air volume. A grid structure in front of the entrance window foil held the target volume constant. Therefore, the phenomena inside the target underwent an isochoric process, and the pressure inside the target was increased rapidly beyond the pressure at the boiling point. Consequently, there was no more bulk boiling in the Bragg-peak region in the target water. Our results show that the boiling of the water can be controlled by controlling the equilibrium pressure of the water target.

  16. A method to achieve rapid localised deep heating in a laser irradiated solid density target

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Robinson, A. P. L.

    2016-09-01

    Rapid heating of small buried regions by laser generated fast electrons may be useful for applications such as extreme ultraviolet (XUV) radiation sources or as drivers for shock experiments. In non-structured targets, the heating profile possesses a global maximum near the front surface. This paper presents a new target design that uses resistive guiding to concentrate the fast electron current density at a finite depth inside the target. The choice of geometry uses principles of non-imaging optics. A global temperature maximum at depths up to 50 μ m into the target is achieved. Although theoretical calculations suggest that small source sizes should perform better than large ones, simulations show that a large angular spread at high intensities results in significant losses of the fast electrons to the sides. A systematic parameter scan suggests an optimal laser intensity. A ratio of 1.6 is demonstrated between the maximum ion temperature and the ion temperature at the front surface.

  17. Optimization of Direct Ionization of CO2 by Controlling the Gas Flow Inside of a Beam-Target

    SciTech Connect

    Salazar Quintero, G A; Ognibene, T

    2011-03-07

    We designed and optimized a target that directs a CO{sub 2} pulse onto a Ti surface where a Cs{sup +} sputtering beam ionizes the CO{sub 2} to generate C{sup -}. These targets will be used for the direct ionization of CO{sub 2} pulses to enable the measurement of carbon isotope ratios in real time. The design was based on the results of Comsol{trademark} simulations of the target configurations.

  18. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  19. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging.

    PubMed

    Malka, G; Nicolaï, Ph; Brambrink, E; Santos, J J; Aléonard, M M; Amthor, K; Audebert, P; Breil, J; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V

    2008-02-01

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  20. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging

    SciTech Connect

    Malka, G.; Aleonard, M. M.; Claverie, G.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Scheurer, J. N.; Tarisien, M.; Brambrink, E.; Audebert, P.; Amthor, K.; Meot, V.; Morel, P.

    2008-02-15

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  1. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  2. Overview of the design of the ITER heating neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.

    2017-02-01

    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H‑ and D‑ remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be

  3. Quarkonium Physics at a Fixed-Target Experiment Using the LHC Beams

    SciTech Connect

    Lansberg, J.P.; Brodsky, S.J.; Fleuret, F.; Hadjidakis, C.; /Orsay, IPN

    2012-04-09

    We outline the many quarkonium-physics opportunities offered by a multi-purpose fixed-target experiment using the p and Pb LHC beams extracted by a bent crystal. This provides an integrated luminosity of 0.5 fb{sup -1} per year on a typical 1cm-long target. Such an extraction mode does not alter the performance of the collider experiments at the LHC. With such a high luminosity, one can analyse quarkonium production in great details in pp, pd and pA collisions at {radical}s{sub NN} {approx_equal} 115 GeV and at {radical}s{sub NN} {approx_equal} 72 GeV in PbA collisions. In a typical pp (pA) run, the obtained quarkonium yields per unit of rapidity are 2-3 orders of magnitude larger than those expected at RHIC and about respectively 10 (70) times larger than for ALICE. In PbA, they are comparable. By instrumenting the target-rapidity region, the large negative-x{sub F} domain can be accessed for the first time, greatly extending previous measurements by Hera-B and E866. Such analyses should help resolving the quarkonium-production controversies and clear the way for gluon PDF extraction via quarkonium studies. The nuclear target-species versatility provides a unique opportunity to study nuclear matter and the features of the hot and dense matter formed in PbA collisions. A polarised proton target allows the study of transverse-spin asymmetries in J/{Psi} and {Upsilon} production, providing access to the gluon and charm Sivers functions.

  4. Simulation studies of the beam cooling process in presence of heating effects in the Extra Low ENergy Antiproton ring (ELENA)

    NASA Astrophysics Data System (ADS)

    Resta-López, J.; Hunt, J. R.; Karamyshev, O.; Welsch, C. P.

    2015-05-01

    The Extra Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which is currently being constructed at CERN to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to energies as low as 100 keV. At such low energies it is very important to carefully take contributions from electron cooling and beam heating mechanisms (e.g. on the residual gas and intrabeam scattering) into account. Detailed investigations into the ion kinetics under consideration of effects from electron cooling and heating sources have been carried out, and the equilibrium phase space dimensions of the beam have been computed, based on numerical simulations using the code BETACOOL. The goal is to provide a consistent explanation of the different physical effects acting on the beam in ELENA.

  5. REFLEX: An energy deposition code that models the effects of electron reflection during electron beam heating tests

    SciTech Connect

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-01-01

    This report describes an energy coupling model that considers electron reflection losses during electron beam heating experiments. This model is embodied on the REFLEX computer code, written in standard FORTRAN 77. REFLEX currently models energy deposition phenomena in three different sample geometries. These configurations include flat, cylindrical shell, and hemispherical shell surfaces. Given the electron beam operating parameters, REFLEX calculates the heat flux profile over a sample's surface, the total amount of energy deposited into a sample, and the percentage of the electron beam energy that is transferred to a sample. This document describes the energy deposition equations used in the REFLEX code; the program is described and detailed instructions are given regarding the input. Results are given for each geometry and possible experimental applications are presented. 3 refs., 20 figs., 11 tabs.

  6. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  7. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition

    SciTech Connect

    Wang, Yuhan Kittiwatanakul, Salinporn; Lu, Jiwei; Comes, Ryan B.; Wolf, Stuart A.

    2015-03-15

    Epitaxial NbO{sub 2} thin films were synthesized on Al{sub 2}O{sub 3} (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO{sub 2}. Through XPS, it was found that there was a ∼1.3 nm thick Nb{sub 2}O{sub 5} layer on the surface and the bulk of the thin film was NbO{sub 2}. The epitaxial relationship between the NbO{sub 2} film and the substrate was determined. Electrical transport measurement was measured up to 400 K, and the conduction mechanism was discussed.

  8. A beam based method for target localization: inspiration from bats' directivity and binaural reception for ultrasonic sonar.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony

    2013-06-01

    The process of echolocation is accomplished by bats partly using the beam profiles associated with their ear shapes that allow for discrimination between different echo directions. Indeed, knowledge of the emitted signal characteristic and measurement of the echo travel time from a target make it possible to compensate for attenuation due to distance, and to focus on filtering through the receivers' beam profiles by comparing received echoes to the original signal at all frequencies in the spectrum of interest. From this basis, a beam profile method to localize a target in three-dimensional space for an ultrasonic sensor system equipped with an emitter and two receivers is presented. Simulations were conducted with different noise levels, and only the contribution of the receivers' beam profiles was considered to estimate the orientation of the target with respect to the receivers. The beam pattern of the Phyllostomus discolor's ear was adopted as that of a receiver. Analyses of beam resolution and frequency ranges were conducted to enhance the accuracy of orientation estimates. The choice of appropriate resolution and frequency ranges guarantee that error mean values for most of the orientations are within [0.5°, 1.5°], even in noisy situations: Signal-to-noise ratio values considered in this work are 35 and 50 dB.

  9. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    SciTech Connect

    Tabak, M.; Callahan-Miller, D.

    1997-11-10

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies.

  10. Heat transfer to a heavy liquid metal in curved geometry: Code validation and CFD simulation for the MEGAPIE lower target

    NASA Astrophysics Data System (ADS)

    Dury, Trevor V.

    2006-06-01

    The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.

  11. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  12. 150 μA 18F- target and beam port upgrade for the IBA 18/9 cyclotron

    NASA Astrophysics Data System (ADS)

    Stokely, M. H.; Peeples, J. L.; Poorman, M. C.; Magerl, M.; Siemer, T.; Brisard, P.; Wieland, B. W.

    2012-12-01

    A high power (˜3 kW) target platform has been developed for the IBA 18/9 cyclotron. New designs for the airlock, collimator and target subsystems have been fabricated and deployed. The primary project goal is reliable commercial production of 18F- at 150 μA or greater, while secondary goals include improving serviceability and extending service intervals relative to OEM systems. Reliable operation in a production environment has been observed at beam currents up to 140 μA. Challenges include ion source lifetime and localized peaking in the beam intensity distribution.

  13. 150 {mu}A 18F{sup -} target and beam port upgrade for the IBA 18/9 cyclotron

    SciTech Connect

    Stokely, M. H.; Peeples, J. L.; Poorman, M. C.; Magerl, M.; Siemer, T.; Brisard, P.; Wieland, B. W.

    2012-12-19

    A high power ({approx}3 kW) target platform has been developed for the IBA 18/9 cyclotron. New designs for the airlock, collimator and target subsystems have been fabricated and deployed. The primary project goal is reliable commercial production of 18F{sup -} at 150 {mu}A or greater, while secondary goals include improving serviceability and extending service intervals relative to OEM systems. Reliable operation in a production environment has been observed at beam currents up to 140 {mu}A. Challenges include ion source lifetime and localized peaking in the beam intensity distribution.

  14. Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS

    DOE PAGES

    Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; ...

    2017-02-24

    The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground statemore » (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Furthermore, we measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6–1.7, 2.5, 4.2, and 5.6–5.8GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2 (0.13–3.17(GeV/c)2), missing momentum (pm=0.0–0.5GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θnq). We compare our results with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to

  15. Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-02-01

    Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI

  16. Projection of Heat Waves over China under Different Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Luo, Yong; Huang, Jianbin; Zhao, Zongci

    2015-04-01

    Global warming targets, which are determined in terms of global mean temperature increases relative to pre-industrial temperature levels, have been one of the heated issues recently. And the climate change (especially climate extremes) and its impacts under different targets have been paid extensive concerns. In this study, evaluation and projection of heat waves in China were carried out by five CMIP5 global climate models (GCMs) with a 0.5°×0.5° horizontal resolution which were derived from EU WATCH project. A new daily observed gridded dataset CN05.1 (0.5°×0.5°) was also used to evaluate the GCMs. And four indices (heat waves frequency, longest heat waves duration, heat waves days and high temperature days) were adopted to analyze the heat waves. Compared with the observations, the five GCMs and its Multi-Model Ensemble (MME) have a remarkable capacity of reproducing the spatial and temporal characteristic of heat waves. The time correlation coefficients between MME and the observation results can all reach 0.05 significant levels. Based on the projection data of five GCMs, both the median year of crossing 1.5°C, 2°C, 2.5°, 3°C, 3.5°C, 4°C, 4.5°C and 5°C global warming targets and the corresponding climate change over China were analyzed under RCP 4.5 and RCP 8.5 scenarios, respectively. The results show that when the global mean surface air temperature rise to different targets with respect to the pre-industrial times (1861-1880), the frequency and intensity of heat waves will increase dramatically. To take the high emission scenario RCP8.5 as an example, under the RCP8.5 scenario, the warming rate over China is stronger than that over the globe, the temperature rise(median year) over China projected by MME are 1.77°C(2025), 2.63°C(2039), 3.39°C(2050), 3.97°C(2060), 4.82°C(2070), 5.47°C(2079) and 6.2°C(2089) under 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C and 4.5°C global warming targets, respectively. With the increase of the global

  17. Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons

    NASA Technical Reports Server (NTRS)

    Nagai, F.; Emslie, A. G.

    1984-01-01

    A numerical investigation is carried out of the gas dynamical response of the solar atmosphere to a flare energy input in the form of precipitating nonthermal electrons. Rather than discussing the origin of these electrons, the spectral and temporal characteristics of the injected flux are inferred through a thick-target model of hard X-ray bremsstrahlung production. It is assumed that the electrons spiral about preexisting magnetic field lines, making it possible for a one-dimensional spatial treatment to be performed. It is also assumed that all electron energy losses are due to Coulomb collisions with ambient particles; that is, return-current ohmic effects and collective plasma processes are neglected. The results are contrasted with earlier work on conductive heating of the flare atmosphere. A local temperature peak is seen at a height of approximately 1500 km above the photosphere. This derives from a spatial maximum in the energy deposition rate from an electron beam. It is noted that such a feature is not present in conductively heated models. The associated localized region of high pressure drives material both upward and downward.

  18. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  19. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  20. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trapa)

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  1. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  2. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    DOE PAGES

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; ...

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure ofmore » tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.« less

  3. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    SciTech Connect

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; Kirka, Michael M.; Medina, Frank; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure of tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.

  4. A very light and thin liquid hydrogen/deuterium heat pipe target for COSY experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Bary, M.; Abdel-Samad, S.; Kilian, K.

    2005-07-01

    A liquid hydrogen/deuterium heat pipe (HP) target is used at the COSY external experiments TOF, GEM and MOMO. The target liquid is produced at a cooled condenser and guided through a central tube assisted by gravitation into the target cell. An aluminum condenser is used instead of copper, which requires less material, improves conductivities and provides shorter cooling down time. Residual condenser temperature fluctuations in the order of ≈0.4 K are reduced by using thermal resistances between the cooling machine and the condenser of the heat pipe combined with a controlled heating power. A new design with only a 7-mm-diameter HP has been developed. The diameter of the condenser part remains at 16 mm to provide enough condensation area. The small amount of material ensures short cooling down times. A cold gas deuterium HP target has been designed and developed which allows protons with energy ⩽1 MeV to be measured. A 7-mm-diameter HP is used to fill a cooling jacket around the D 2 gas cell with LH 2. The D 2 gas is stabilized at 200 mbar to allow for thin windows. Its density is increased by factor 15 compared to room temperature.

  5. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C

    SciTech Connect

    Lachowicz, Maciej Dudzinski, Wlodzimierz; Podrez-Radziszewska, Marzena

    2008-05-15

    The paper presents results of microstructural observations and phase analysis of electron-beam-welded fusion zones in superalloy Inconel 713C using transmission electron microscopy. In the fusion zone, a 90% fraction of fine-grained {gamma}' precipitates was found, with sizes up to 30 nm. No dislocations were observed in the precipitates or at the {gamma}-{gamma}' interface. Primary, undissolved inclusions of {gamma}' were found in the heat-affected zone (HAZ). In the HAZ, a very high concentration of dislocations was found at the {gamma}-{gamma}' boundaries, as well as inside the {gamma}' particles and in the {gamma} solid solution. The increased dislocation density indicates loss of coherence of that phase and the creation of a semi-coherent boundary, and is related to dissolution of the particles and intensified diffusion through the interphase {gamma}-{gamma}' boundary. The lattice misfit coefficient {delta}a/a between the {gamma}' particles and {gamma} solution in the HAZ indicates negative values from - 0.20% to - 0.06%. The presence of semi-coherent boundaries and the negative lattice misfit coefficient leads to dislocation locking and can result in cracking in the HAZ.

  6. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  7. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    SciTech Connect

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  8. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.

    PubMed

    Savukov, Igor; Boshier, Malcolm G

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz(1/2) sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz(1/2) and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  9. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    PubMed Central

    Savukov, Igor; Boshier, Malcolm G.

    2016-01-01

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications. PMID:27754358

  10. SPECIAL TOPIC: Survey of target plate heat flux in diverted DIII-D tokamak discharges

    NASA Astrophysics Data System (ADS)

    Lasnier, C. J.; Hill, D. N.; Petrie, T. W.; Leonard, A. W.; Evans, T. E.; Maingi, R.

    1998-08-01

    A series of observations is presented concerning divertor heat flux, qdiv, in the DIII-D tokamak, and it is shown that many features can be accounted for by assuming that the heat flux flows preferentially along field lines because τ|| < τ⊥ in the scrape-off layer (SOL). Exceptions to this agreement are pointed out and the discrepancies explained by means of two dimensional (2-D) effects. About 80% of the discharge input power can be accounted for. The power deposited on the target plate due to enhanced losses during edge localized modes (ELMs) is less than 10% of the total target power in most cases. X point height scans for lower single null (LSN) diverted discharges show that the peak heat flux variation is primarily due to flux expansion and secondarily due to transport of energy across the magnetic field in the divertor. At the outer strike point qdiv,peak propto Pin(Ip - Ip,0)G(gin)(1/Bt)4/9(Bdiv/Bmp)f(Ldivχ⊥), where G is a linear function of the inner gap, gin, over a specified range and f describes cross-field energy transport in the divertor. Evidence of radial in-out asymmetries (comparing the outer strike point with the inner strike point or centre-post) and toroidal asymmetries in qdiv is presented and the heat flux peaking due to tile gaps and misalignment of tiles is examined. For magnetically balanced double null (DN) discharges with downward ∇B ion drift, it is found that qdiv is inherently higher in the lower divertor than in the upper divertor, having a 3:1 downward bias. Examples of heat flux reduction by gas puffing deuterium or neon in LSN and DN discharges are given. At least a threefold reduction of the peak heat flux in both the upper and lower divertors of a DN discharge, using D2 puffing, is reported.

  11. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing

  12. Monte Carlo and Analytical Calculation of Lateral Deflection of Proton Beams in Homogeneous Targets

    SciTech Connect

    Pazianotto, Mauricio T.; Inocente, Guilherme F.; Silva, Danilo Anacleto A. d; Hormaza, Joel M.

    2010-05-21

    Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Moliere's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes.

  13. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons.

  14. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    NASA Astrophysics Data System (ADS)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  15. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    NASA Astrophysics Data System (ADS)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  16. Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer and polyethylene

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Chaki, T. K.; Bhowmick, Anil K.

    2000-11-01

    The heat shrinkability of electron-beam-irradiated thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer (EVA) and low-density polyethylene (LDPE) has been investigated in this paper. The effects of temperature, time and extent of stretching and shrinkage temperature and time have been reported. Based on the above data, the optimized conditions in terms of high heat shrinkage and low amnesia rating have been evaluated. Influence of radiation doses (0-500 kGy), multifunctional sensitizer levels (ditrimethylol propane tetraacrylate, DTMPTA), and blend proportions on heat shrinkability has been explained with the help of gel fraction and X-ray data. With the increase in radiation dose, gel fraction increases, which in turn gives rise to low values of heat shrinkage and amnesia rating. At a constant radiation dose and blend ratio, percent heat shrinkage is found to decrease with increase in DTMPTA level. Gel content increases with the increase in EVA content of the blend at a constant radiation dose and monomer level, giving rise to decrease in heat shrinkability. Heat shrinkage increases with the increase in percent crystallinity, although the amnesia rating follows the reverse trend.

  17. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-09-30

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  18. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  19. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  20. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    SciTech Connect

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2015-10-15

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.

  1. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  2. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Stefanini, C.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Keeley, N.; Lay, J. A.; Marquinez-Duran, G.; Martel, I.; Mazzocchi, C.; Molini, P.; Nicoletto, M.; Pakou, A.; Parkar, V. V.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sava, T.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Toniolo, N.; Zerva, K.

    2015-10-01

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  3. Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets.

    PubMed

    Albright, B J; Yin, L; Hegelich, B M; Bowers, Kevin J; Kwan, T J T; Fernández, J C

    2006-09-15

    Experiments at the LANL Trident facility demonstrated the production of monoenergetic ion beams from the interaction of an ultraintense laser with a target comprising a heavy ion substrate and thin layer of light ions. An analytic model is obtained that predicts how the mean energy and quality of monoenergetic ion beams and the energy of substrate ions vary with substrate material and light-ion layer composition and thickness. Dimensionless parameters controlling the dynamics are derived and the model is validated with particle-in-cell simulations and experimental data.

  4. Thorium silicate compound as a solid-state target for production of isomeric thorium-229 nuclei by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasilyev, O. S.; Lebedinskii, Y. Y.; Krasavin, A. V.; Tkalya, E. V.; Troyan, V. I.; Habibulina, R. F.; Chubunova, E. V.; Yakovlev, V. P.

    2016-09-01

    In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.

  5. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy.

    PubMed

    Moore, C J; Marchant, T E; Amer, A M

    2006-05-07

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergytrade mark linear accelerator produced an unattenuated beam for a central "target zone" and a partially attenuated beam for an outer "set-up zone". Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error.

  6. Targeted Intraoperative Radiotherapy for Breast Cancer in Patients in Whom External Beam Radiation Is Not Possible

    SciTech Connect

    Keshtgar, Mohammed R.S.; Joseph, David; Stacey, Chris; Metaxas, Marinos G.; Corica, Tammy; Williams, Norman R.; Baum, Michael

    2011-05-01

    Purpose: External beam radiation therapy (EBRT) following wide local excision of the primary tumor is the standard treatment in early breast cancer. In some circumstances this procedure is not possible or is contraindicated or difficult. The purpose of this study was to determine the safety and efficacy of targeted intraoperative radiotherapy (TARGIT) when EBRT is not feasible. Methods and Materials: We report our experience with TARGIT in three centers (Australia, Germany, and the United Kingdom) between 1999 and 2008. Patients at these centers received a single radiation dose of 20 Gy to the breast tissue in contact with the applicator (or 6 Gy at 1-cm distance), as they could not be given EBRT and were keen to avoid mastectomy. Results: Eighty patients were treated with TARGIT. Reasons for using TARGIT were 21 patients had previously received EBRT, and 31 patients had clinical reasons such as systemic lupus erythematosus, motor neuron disease, Parkinson's disease, ankylosing spondylitis, morbid obesity, and cardiovascular or severe respiratory disease. Three of these patients received percutaneous radiotherapy without surgery; 28 patients were included for compelling personal reasons, usually on compassionate grounds. After a median follow-up of 38 months, only two local recurrences were observed, an annual local recurrence rate of 0.75% (95% confidence interval, 0.09%-2.70%). Conclusions: While we await the results of the randomized trial (over 2,000 patients have already been recruited), TARGIT is an acceptable option but only in highly selected cases that cannot be recruited in the trial and in whom EBRT is not feasible/possible.

  7. Anomalous electron heating and energy balance in an ion beam generated plasma

    SciTech Connect

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  8. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    SciTech Connect

    Serov, A. V.; Mamonov, I. A.; Kol’tsov, A. V.

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the plane of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.

  9. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  10. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan; Milner, Richard

    2013-11-01

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  11. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  12. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    PubMed

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment.

  13. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2013-04-20

    Two exact inverse solutions of Risley prisms have been given by previous authors, based on which we calculate the gradients of the scan field that open a way to investigate the nonlinear relationship between the slewing rate of the beam and the required angular velocities of the two wedge prisms in the Risley-prism-based beam steering system for target tracking. The limited regions and singularity point at the center and the edge of the field of regard are discussed. It is found that the maximum required rotational velocities of the two prisms for target tracking are nearly the same and are dependent on the altitude angle. The central limited region is almost independent of the prism parameters. The control singularity at the crossing center path can be avoided by switching the two solutions.

  14. The interaction of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1994-11-01

    A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.

  15. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Paramatti, R.; Pinci, D.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Mattei, I.; Muraro, S.; Piersanti, L.; Rovituso, M.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.

    2017-02-01

    Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments—protons, deuterons, and tritons—produced by 4He ion beams of 102, 125 and 145 MeV u‑1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.

  16. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by (4)He ion beams in a PMMA target.

    PubMed

    Marafini, M; Paramatti, R; Pinci, D; Battistoni, G; Collamati, F; De Lucia, E; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Mattei, I; Muraro, S; Piersanti, L; Rovituso, M; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Patera, V

    2017-02-21

    Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of (4)He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments-protons, deuterons, and tritons-produced by (4)He ion beams of 102, 125 and 145 MeV u(-1) energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of (4)He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.

  17. Exercise Narwhal: Visibility of Deployed Radar Targets and Change Detection with RADARSAT-1 Fine Beam Mode SAR Imagery

    DTIC Science & Technology

    2005-12-01

    Defence Research and Recherche et developpemenr Development Canada pour la defense Canada DEFENCE DEFENSE Exercise Narwhal : Visibility of deployed...December 2005 CanadaY Exercise Narwhal : Visibility of deployed Radar Targets and Change Detection with RADARSAT-1 fine beam mode SAR imagery Karim E...2005 Abstract In August 2004 the Canadian Forces undertook Exercise Narwhal near Pangnirtung on Baffin Island. DRDC Ottawa participated in a

  18. Calculation of the response of cylindrical targets to collimated beams of particles using one-dimensional adjoint transport techniques. [LMFBR

    SciTech Connect

    Dupree, S. A.

    1980-06-01

    The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.

  19. Structure and interfacial analysis of nanoscale TiNi thin film prepared by biased target ion beam deposition

    SciTech Connect

    Hou, Huilong; Hamilton, Reginald F. Horn, Mark W.

    2015-07-15

    Ultrathin, 65 nm thick, TiNi alloy films were fabricated by cosputtering Ti and Ni targets using the recently developed biased target ion beam deposition technique. Preheating the substrate by exposure to a low energy ion source resulted in as-deposited films with a pure B2 atomic crystal structure containing no secondary crystal structures or precipitates. Continuous films were produced with a smooth surface and minimal substrate/film interfacial diffusion. The diffusion layer was a small ratio of film thickness, which is a prerequisite for the B2 phase to undergo the martensitic transformation in ultrathin films.

  20. Control of chemical composition of PZT thin films produced by ion-beam deposition from a multicomponent target

    NASA Astrophysics Data System (ADS)

    Hlubucek, Jiri; Vapenka, David; Horodyska, Petra; Vaclavik, Jan

    2016-11-01

    Lead zirconate titanate (PZT) is widely used for its ferroelectric and piezoelectric properties, which are conditioned by perovskite structure. Crystallization into this desired phase is determined also by a proper stoichiometry, where the lead concentration is a crucial parameter. The crystallization process takes place during annealing under high temperatures, which is linked to heavy lead losses, so the lead has to be in excess. Therefore, this paper is devoted to the control of chemical composition of PZT thin films deposited via ion beam sputtering (IBS). A commonly used approach for IBS relies on employing a multicomponent target to obtain films with the same composition as that of the target. However, in the case of PZT it is favorable to have the ability to controllably change the chemical composition of thin films in order to acquire high perovskite content. Our study revealed that the determinative lead content in PZT layers prepared by simple and dual ion-beam deposition from a multicomponent target can be easily controlled by the power of primary ion source. At the same time, the composition is also dependent on the substrate temperature and the power of assistant ion source. Thin PZT films with more than 30 % lead excess were acquired from a stoichiometric multicomponent target (i.e. a target without any lead excess). We can therefore propose several possible sets of deposition parameters suitable for the PZT deposition via IBS to obtain high perovskite content.

  1. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  2. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  3. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; McCarrick, James F.; Guethlein, Gary; Caporaso, George J.; Chambers, Frank; Falabella, Steven; Lauer, Eugene; Richardson, Roger; Sampayan, Steve; Weir, John

    2002-12-01

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  4. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    SciTech Connect

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  5. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    SciTech Connect

    Ma, L; Dong, P; Larson, D; Keeling, V; Hossain, S; Ahmad, S; Sahgal, A

    2015-06-15

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanar and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal has

  6. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    NASA Astrophysics Data System (ADS)

    Gemmel, A.; Rietzel, E.; Kraft, G.; Durante, M.; Bert, C.

    2011-12-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of -1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  7. Optimization of ultrafast laser generated low-energy ion beams from silicon targets

    SciTech Connect

    Stoian, R.; Mermillod-Blondin, A.; Bulgakova, N.M.; Rosenfeld, A.; Hertel, I.V.; Spyridaki, M.; Koudoumas, E.; Tzanetakis, P.; Fotakis, C.

    2005-09-19

    We demonstrate the possibility to manipulate the kinetic properties of ion beams generated by ultrafast laser ablation of silicon. The versatility in regulating the sub-keV ion flux is achieved by implementing adaptive control of the temporal shape of incident laser pulses. Tunable characteristics for the charged beams are obtained using excitation synchronized with the phase-transformation dynamics, exploiting transitions to volatile fluid states with minimal energetic expenses.

  8. e-PLAS calculation of short pulse heating in wire targets

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Beg, F. N.; Stephens, R.; van Woerkom, L.; Freeman, R. R.

    2008-11-01

    The 2-D implicit hybrid simulation code e-PLAS has been used to model energy deposition and hot electron transport in a variety of wire targets (e.g. Cu wires with nail or cone heads) [1]. Implicit E&B-fields [2] permit the use of large cells and time steps while avoiding finite grid heating. Van Leer background plasma fluids allow for ps-long simulations of ˜700 μm wires on a PC with economy. For ˜1.7x10^20 W/cm^2 pulse intensities we compare results from the use of Cartesian and cylindrical modeling geometry. We probe the effects of cold background electron-ion scatter [3], resistive E-fields and hot electron drag on the background heating. Temperature limitation from target ionization is explored. B-field trapping of hot electrons generated near critical density is examined as a function of the emission isotropy, energy spectrum, and plasma gradient scale length. Integrated simulations of the absorption and hot electron generation will be discussed. [1] J. Pasley et al., Phys. Plas. 14, 120701 (2007). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] R. J. Mason, Phys. Rev. Lett. 96, 035001 (2006).

  9. Heating in short-pulse laser-driven cone-capped wire targets

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Wei, M.; King, J.; Beg, F.; Stephens, R. B.

    2007-11-01

    The 2-D implicit hybrid simulation code e-PLAS has been used to study heating in cone-capped copper wire targets. The code e-PLAS tracks collisional particle-in-cell (PIC) electrons traversing background plasma of collisional Eulerian cold electron and ion fluids. It computes E- and B-fields by the Implicit Moment Method [1,2]. In recent experiments [3] at the Vulcan laser facility, sub- picosecond laser pulses at 1.06 μm, and 4.0 x 10^20 W/cm^2 intensity were focused into thin-walled (˜10 μm) cones attached to copper wires. The wire diameter was varied from 10-40 μm with a typical length of 1 mm. We characterize heating of the wires as a function of their diameters and length, and relate modifications of this heating to changes in the assumed laser-generated hot electron spectrum and directivity. As in recent nail experiments [4], the cones can serve as reservoirs for hot electrons, diverting them from passage down the wires. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] J. King et al., to be submitted to Phys. Rev. Lett.. [4] R. J. Mason, M. Wei, F. Beg, R. Stephens, and C. Snell, in Proc. of ICOPS07, Albuquerque, NM, June 17-22, 2007, Talk 7D4.

  10. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    DOE PAGES

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; ...

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less

  11. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    SciTech Connect

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as well as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.

  12. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    NASA Astrophysics Data System (ADS)

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan

    2016-03-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as well as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.

  13. Intense laser-driven energetic proton beams from solid density targets.

    PubMed

    Zhou, C T; He, X T

    2007-08-15

    The effects of target density on proton acceleration driven by an intense sub-ps laser pulse are investigated using two-dimensional hybrid particle-in-cell simulations. Results show that at higher density the target-normal-sheath acceleration (TNSA) is more effective than shock acceleration for protons from a plastic target. Furthermore a lower-density target is favorable to higher energy of the TNSA protons. Moreover, the longitudinal electric fields at the target surfaces may reveal typical inhomogeneous structures for a long acceleration time. The conversion efficiency of laser energy into particle (electron, proton, and C(+) ion) energy is found to increase with decreasing target density.

  14. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    NASA Astrophysics Data System (ADS)

    Barna, I. F.; Imre, A. R.; Rosta, L.; Mezei, F.

    2008-12-01

    Two-phase flow calculations are presented to investigate the thermo-hydraulical effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis show that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury.

  15. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  16. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  17. Summary of recent experiments on focusing of target-normal-sheath-accelerated proton beam with a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Alexander, N.; Barnard, J. J.; Lund, S. M.

    2014-05-15

    We present a summary of recent experiments on focusing of laser target-normal-sheath-accelerated (TNSA) proton beam with a stack of thin conducting foils. The experiments were performed using the Phelix laser (GSI-Darmstadt) and the Titan laser, Lawrence Livermore National Laboratory. The phenomena consistent with self-collimation (or weak self-focusing) of TNSA protons were experimentally observed for the first time at the Phelix laser user facility, in a specially engineered structure ('lens') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. Follow up experiments using the Titan laser obtained results consistent with the collimation/focusing observed in the initial experiments using the Phelix. The Titan experiments employed improved, 25 μm- and 50 μm-gap targets and the new fine mesh diagnostic. All the experiments were carried out in a “passive environment,” i.e., no external fields were applied, and no neutralization plasma or injection of secondary charged particles was imposed. A plausible interpretation of the observed phenomena is that the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the conducting foils inhibits radial expansion of the beam.

  18. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    SciTech Connect

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  19. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  20. A target design for irradiation of NaI at high beam current

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a target design. A target based on this design was used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  1. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    SciTech Connect

    Huang, Chengkun; Albright, Brian J

    2010-07-16

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  2. High intensity polarized atomic beam source for polarized internal storage ring targets

    NASA Astrophysics Data System (ADS)

    Schiemenz, P.

    1989-05-01

    In collaboration with the Max-Planck-Institut (MPI) für Kernphysik in Heidelberg and the University of Marburg we presently design and construct a high intensity polarized atomic beam source. It is intended to deliver 1*1017 atoms/sec in one hyperfine state into a storage cell for FILTEX. FILTEX is an abbreviation for FILTer EXperiment aiming to polarize storage ring beams. The structure and the vacuum chambers of this source are completed and installed at the Heidelberg Test Storage Ring (TSR). Vacuum pumps, gauges etc. are mounted and partly connected to a logical operation system. When atomic beam nozzle and skimmer geometries and distances as well as the nozzle temperature are optimized, the final geometrical arrangement or our new hybrid sixpole magnets will be decided and the whole source should be completed by the end of 1989.

  3. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  4. Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics

    PubMed Central

    Piper, Peter W.; Millson, Stefan H.

    2012-01-01

    Heat shock protein 90 (Hsp90) is a promising cancer drug target as a molecular chaperone critical for stabilization and activation of several of the oncoproteins that drive cancer progression. Its actions depend upon its essential ATPase, an activity fortuitously inhibited with a very high degree of selectivity by natural antibiotics: notably the actinomycete-derived benzoquinone ansamycins (e.g. geldanamycin) and certain fungal-derived resorcyclic acid lactones (e.g. radicicol). The molecular interactions made by these antibiotics when bound within the ADP/ATP-binding site of Hsp90 have served as templates for the development of several synthetic Hsp90 inhibitor drugs. Much attention now focuses on the clinical trials of these drugs. However, because microbes have evolved antibiotics to target Hsp90, it is probable that they often exploit Hsp90 inhibition when interacting with each other and with plants. Fungi known to produce Hsp90 inhibitors include mycoparasitic, as well as plant-pathogenic, endophytic and mycorrhizal species. The Hsp90 chaperone may, therefore, be a prominent target in establishing a number of mycoparasitic (interfungal), fungal pathogen–plant and symbiotic fungus–plant relationships. Furthermore the Hsp90 family proteins of the microbes that produce Hsp90 inhibitor antibiotics are able to reveal how drug resistance can arise by amino acid changes in the highly conserved ADP/ATP-binding site of Hsp90. PMID:23271830

  5. Heat shock protein 90 as a drug target: some like it hot.

    PubMed

    Banerji, Udai

    2009-01-01

    Heat shock protein 90 (HSP90) is a ubiquitously expressed chaperone that is involved in the posttranslational folding and stability of proteins. Inhibition at the NH(2)-terminal ATP-binding site leads to the degradation of client proteins by the ubiquitin proteasome pathway. Inhibition of HSP90 leads to the degradation of known oncogenes, such as ERB-B2, BRAF, and BCR-ABL, leading to the combinatorial blockade of multiple signal transduction pathways, such as the RAS-RAF-mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Multiple structurally diverse HSP90 inhibitors are undergoing early clinical evaluation. The clinical focus of these drugs should be solid tumors, such as breast, prostate, and lung cancers, along with malignant melanoma, in addition to hematologic malignancies, such as chronic myeloid leukemia and multiple myeloma. HSP90 inhibitors can be used as single agents or in combination with other targeted treatments or conventional forms of treatment such as chemotherapy and radiotherapy. Clinical trials evaluating efficacy of these agents should include innovative designs to capture cytostasis evidenced by clinical nonprogression and enrichment of patient populations by molecular characterization. The results of clinical trials evaluating the efficacy of drugs targeting this exciting target are awaited.

  6. Application of convection heat transfer in near-wall jets to electron-beam-pumped gas lasers

    NASA Astrophysics Data System (ADS)

    Lu, Bo

    Heating of the transmission foil separating the vacuum diodes from the laser gas in electron-beam-pumped gas lasers due to high-energy electron beam attenuation necessitates an external cooling scheme to prevent its failure under repetitively pulsed operating conditions. Attenuation of the electron beam (typically 500 kV, 100 kA and 100 ns pulse duration) produces a strong and pulsed volumetric heat source in the relatively thin stainless-steel foil (thickness of ˜25 mum) causing it to fail. An experimental and numerical investigation has been conducted to study the cooling effectiveness of near-wall high-speed jets for a single stainless-steel foil strip that simulates the actual foil geometry between two neighboring support ribs in the Electra KrF gas laser developed by the Naval Research Laboratory. The foil is placed inside a rectangular channel with continuous gas flow to simulate the circulating laser gas. The foil is electrically heated with the heating power input adjusted to achieve the same foil temperatures observed in Electra when no active cooling is applied. Detailed studies include two jet geometries (planar and circular) and two injection methods (tangential/parallel or obliquely impinging jets) for two hibachi foil structure designs (flat and scalloped). The planar jet of ˜1mm thickness flows parallel to the circulating laser gas across the entire foil span. The other configuration uses circular jets of small diameters (0.8 mm, 1.2 mm and 1.6 mm) positioned in two staggered rows located on the foil's two vertical edges with a pitch of 1.25 cm over the entire height of the foil. For both configurations, experiments have been conducted at various jet velocities (or jet Reynolds numbers), impingement angles and jet-foil spacing with an aim to identify the optimal operating parameters for the actual hibachi foil cooling. Numerous investigations have been performed that covered a wide range of operating parameters. Local and average heat transfer

  7. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    SciTech Connect

    King, J.

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  8. SU-E-T-319: Dosimetric Evaluation of IMRT with Mix-Energy Beam for Deep Seated Targets

    SciTech Connect

    Sharma, S; Manigandan, D; Gandhi, A; Sharma, D; Subramani, V; Chander, S; Julkha, P; Rath, G

    2015-06-15

    Purpose: IMRT is preferred in the range of 6–10MV X-rays. Partially adding high energy (>10MV) treatment fields, may provide advantage of both higher and lower energies. To study IMRT dose distribution obtained from treatment plans with single (6MV) and mixed-energy (6MV and 15MV) for deep seated targets (separation more than 30cm). Methods: Five patients of carcinoma of cervix were studied using eclipse planning system. Two different dynamic IMRT plans were generated for Varian CL2300C/D linear accelerator; one is by using 6MV X-ray with seven equally spaced coplanar beams. In second plan, 2 lateral oblique fields (gantry angle 102°, 255°) beam energy was modified to 15MV by keeping all other parameters and dose volume constraints constant. Dose prescription for the planning target volume (PTV) was (5040cGy/28f). For plan comparison, dose volume histogram (DVH) was used and PTV coverage index (CI=Target volume covered by prescription dose/Target volume), heterogeneity index (D5/D95), mean dose to organ at risk (OAR) and normal tissue integral dose (NTID, liter-Gray) was also noted. Total monitor unit (MU) required to deliver a plan was also noted. Results: Mixed-energy plan showed a better conformity and CI values were 0.942±0.032 and 0.960±0.040 for single-energy and mixed-energy plan, respectively. In addition, HI value of mixed energy beam is comparable to that of single energy and the values were within 1.084±0.034 and 1.082±0.032 for single energy and mixed-energy plan, respectively. Variation in mean dose to bladder, rectum and bowel were within 1.05%, 0.87% and 0.90%. NTID was lesser for mixed-energy beam due to use of two high-energy fields. NTID were 1573.40±214.60 and 1510.20±249.80 litre-Gray for single energy and mixed-energy plan. MU needed to deliver a plan was similar in both plans and MUs were 238±45 and 237±47. Conclusion: Partial use of 15MV treatment fields in IMRT plan for deep seated targets showed dosimetric advantage over 6MV

  9. Reaction dynamics induced by the radioactive ion beam {sup 7}Be on medium-mass and heavy targets

    SciTech Connect

    Mazzocco, M. Stefanini, C.; Strano, E.; Torresi, D.; Lay, J. A.; Molini, P.; Soramel, F.; Boiano, A.; Parascandolo, C.; Pierroutsakou, D.; Di Meo, P.; Boiano, C.; La Commara, M.; Sandoli, M.; Silvestri, R.; Manea, C.; Nicoletto, M.; Acosta, L.; Fernandez-Garcia, J. P.; Glodariu, T.; and others

    2015-10-15

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam {sup 7}Be (S{sub α} = 1.586 MeV) on medium-mass ({sup 58}Ni) and heavy ({sup 208}Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×10{sup 5} pps {sup 7}Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  10. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D. E-mail: stephen.bradshaw@rice.edu

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  11. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    SciTech Connect

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick ()similarreverse arrowto)1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target ()similarreverse arrowto)1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs.

  12. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    SciTech Connect

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  13. An Electron Target/cooler for Extremely Low-Energy Ion Beams at the Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Tanabe, Tetsumi; Noda, Koji; Watanabe, Ikuo

    2002-12-01

    An electrostatic storage ring for studying atomic and molecular science has been operational at KEK since May, 2000. The ring has a circumference of 8 m and can store light-to-heavy ions with an E/q of up to 30 keV. Light ions are produced with an electron cyclotron resonance ion source, while bio-molecular ions are produced with an electrospray ion source The measured 1/e-lifetimes of stored single-charge ions injected from the electron cyclotron resonance ion source are from 10 to 50 s. On the other hand, ions from the electrospray ion source have lifetimes from 12 to 20 s. These lifetimes are long enough to cool vibrationally excited molecular ions, and their intensities are tolerable for practical use, like atomic collision experiments. In order to study electron-ion collisions, an electron beam target has been designed, which will be installed in a straight section of the ring. The structure of the target is almost the same as an electron cooler consisting of an adiabatically expanded electron beam; the target can also function as an electron cooler for light-mass ions.

  14. Design of a secondary ionization target for direct production of a C(-) beam from CO2 pulses for online AMS.

    PubMed

    Salazar, Gary; Ognibene, Ted

    2013-01-01

    We designed and optimized a novel device "target" that directs a CO2 gas pulse onto a Ti surface where a Cs(+) beam generates C(-) from the CO2. This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO2 in the negative mode to measure (14)C/(12)C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of (12)C(-) produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs(+) beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

  15. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    DTIC Science & Technology

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  16. Inter- and Intrafractional Movement-Induced Dose Reduction of Prostate Target Volume in Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Kim, Dongwook; Shin, Dong Ho; Park, Sung Yong Lee, Se Byeong; Kim, Dae Yong; Kim, Joo Young; Pyo, Hong Ryull; Cho, Kwan Ho

    2008-07-15

    Purpose: To quantify proton radiotherapy dose reduction in the prostate target volume because of the three-dimensional movement of the prostate based on an analysis of dose-volume histograms (DVHs). Methods and Materials: Twelve prostate cancer patients underwent scanning in supine position, and a target contour was delineated for each using a proton treatment planning system. To simulate target movement, the contour was displaced from 3 to 15 mm in 3-mm intervals in the superior-to-inferior (SI), inferior-to-superior (IS), anterior-to-posterior (AP), posterior-to-anterior (PA), and left-to-right (LR) directions. Results: For both intra- and interfractional movements, the average coverage index and conformity index of the target were reduced in all directions. For interfractional movements, the magnitude of dose reduction was greater in the LR direction than in the AP, PA, SI. and IS directions. Although the reduction of target dose was proportional to the magnitude of intrafractional movement in all directions, a proportionality between dose reduction and the magnitude of interfractional target movement was clear only in the LR direction. Like the coverage index and conformity index, the equivalent uniform dose and homogeneity index showed similar reductions for both types of target movements. Conclusions: Small target movements can significantly reduce target proton radiotherapy dose during treatment of prostate cancer patients. Attention should be given to interfractional target movement along the longitudinal direction, as image-guided radiotherapy may be ineffective if margins are not sufficient.

  17. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  18. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury.

    PubMed Central

    Polla, B S; Kantengwa, S; François, D; Salvioli, S; Franceschi, C; Marsac, C; Cossarizza, A

    1996-01-01

    Heat shock (HS) proteins (HSPs) induce protection against a number of stresses distinct from HS, including reactive oxygen species. In the human premonocytic line U937, we investigated in whole cells the effects of preexposure to HS and exposure to hydrogen peroxide (H2O2) on mitochondrial membrane potential, mass, and ultrastructure. HS prevented H2O2-induced alterations in mitochondrial membrane potential and cristae formation while increasing expression of HSPs and the protein product of bcl-2. Protection correlated best with the expression of the 70-kDa HSP, hsp70. We propose that mitochondria represent a selective target for HS-mediated protection against oxidative injury. Images Fig. 3 PMID:8692837

  19. A target design for irradiation of NaI at high beam current.

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a new target design. A target based on this design has been used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129, an isotope useful in nuclear medicine. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  20. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    SciTech Connect

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M.; Gay, Hiram A.; Hou, Wei-Hsien; Parikh, Parag J.

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  1. Experience with deuterium-tritium plasmas heated by high power neutral beams

    SciTech Connect

    Grisham, L.R.; Kamperschroer, J.H.; O`Connor, T.; Oldaker, M.; Stevenson, T.; Von Halle, A.

    1996-12-31

    The Tokamak Fusion Test Reactor has operated since November of 1993 with a deuterium-tritium fuel mixture for selected discharges. The majority of the tritium has been introduced as energetic neutral atoms of up to 120 keV injected by the neutral beam systems, with some of the twelve ion sources run on pure tritium and some on deuterium to optimize the fuel mixture in the core plasma. A maximum beam power of 39.6 megawatts has been injected, and deuterium-tritium fusion power production has reached 10.7 megawatts, achieving central fusion power densities comparable to or greater than those expected for the International Thermonuclear Reactor, and allowing the first studies of fusion-produced alpha particle behavior in reactor grade plasmas. Energy confinement in deuterium-tritium plasmas is better than in similar deuterium plasmas for most plasma regimes. Innovative techniques to manipulate the plasma current and pressure profiles are permitting studies of enhanced confinement regimes.

  2. Extreme ultraviolet diagnosis of a neutral-beam-heated mirror machine

    SciTech Connect

    Drake, R.P.

    1980-07-01

    Extreme ultraviolet emissions from the LLL 2XIIB fusion research experiment have been studied. (2XIIB was a magnetic-mirror-plasma-confinement device; beams of high-energy (20 keV) neutral deuterium created a high-density, high-temperature plasma.) A normal-incidence concave-grating monochromator, equipped with a windowless photomultiplier tube, was used to measure emissions in the spectral region from 400 Angstrom to 1600 A. Emissions of oxygen, titanium, carbon, nitrogen, and deuterium were identified; the oxygen brightnesses at times exceeded 10/sup 18/ ph-s/sup -1/-cm/sup -2/-sr/sup -1/. A survey of the emission characteristics found the oxygen concentration was 3%, the other impurities had concentrations near 0.4%. The radiated power loss was about 5% of the deposited neutral beam power.

  3. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  4. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; ...

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  5. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  6. Target and orbit feedback simulations of a muSR beam line at BNL

    SciTech Connect

    MacKay, W.; Blaskiewicz, M.; Fischer, W.; Pile, P.

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  7. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  8. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  9. Interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme

    NASA Astrophysics Data System (ADS)

    Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.

    2016-06-01

    In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.

  10. Heat shock protein 90 as a potential drug target against surra.

    PubMed

    Rochani, Ankit K; Mithra, Chandan; Singh, Meetali; Tatu, Utpal

    2014-08-01

    Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.

  11. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    SciTech Connect

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-21

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  12. Enhancement of laser to X-ray conversion by counter-propagating laser beams irradiating thin gold targets

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ge, Z. Y.; Ma, Y. Y.; Yang, X. H.; Xu, B. B.; Ramis, R.

    2017-03-01

    X-ray emission from laser irradiating solid target is an important X-ray source for various potential applications. Counter-propagating (C-P) laser beams configuration is proposed to enhance the laser to X-ray conversion efficiency (CE) from laser irradiating solid targets. One-dimensional radiation hydrodynamics simulations show that the total X-ray CE for the C-P lasers case is as high as 65%, which has a 13% improvement compared with the single laser case. The improvement is mainly caused by the enlarged radiation region, and the enhancement of X-ray emission is from soft X-ray. Detailed energy term distributions and influences of the foil thickness on the X-ray CEs for both cases are presented. It is found that the enhancement of radiation is attributed to lower thermal and kinetic energy of the C-P lasers scheme.

  13. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 1.5 GeV. Very large target-spin asymmetries are observed for W >1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.

  14. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    DOE PAGES

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; ...

    2017-03-20

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p→nπ+. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q2 < 6GeV2. Results were obtained for about 6000 bins in W, Q2, cos(θ*), and Φ*. Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV,more » but very large differences are seen at higher values of W. A generalized parton distributions (GPD)-based model is in poor agreement with the data. As a result, when combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.« less

  15. Target and beam-target spin asymmetries in exclusive π+ and π– electroproduction with 1.6- to 5.7-GeV electrons

    DOE PAGES

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; ...

    2016-11-01

    Here, beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π– electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π–) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q2 < 5GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π– production from bound nucleons in the deuteron.more » The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q2 < 0.5GeV2, with discrepancies increasing at higher values of Q2, especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.« less

  16. Design of a dual chamber heat conduction calorimeter for ultrasonic beam measurement

    NASA Astrophysics Data System (ADS)

    Ong, Hang See

    1997-12-01

    The recent emergence of medical ultrasound dosimetry in terms of Thermal and Mechanical Indices gives rise to the need for a device that is capable of measuring ultrasonic output power quickly and accurately. In the research project described in this dissertation, a dual chamber heat conduction calorimeter (HCC) is designed, built, and tested for the purpose of measuring ultrasonic output power of clinical diagnostic ultrasound devices. The HCC is composed of two identical water filled Aluminum wells housed in two separated compartments of an insulated box. The two compartments form the measuring and reference chambers of the calorimeter. The wells are sealed with plastic membranes that constitute the entrance window for the ultrasound. The bottom of each well is stuffed with a 4cm layer of 0.5cm thick rubber pads. These pads serve as a sonic-to-heat energy exchanger. A small resistive heater is embedded in both rubber pads for calibration purposes. Heat is measured with a series of Seebeck effect thermoelectric devices (thermopiles) sandwiched between the well and the heat sink surrounding the wells. The output voltage signal from the thermopiles is amplified, digitized, then analyzed and displayed in term of Thermal Index with a PC-based system. An optimum measurement technique is derived from an electric circuit model that is representative of the HCC. The performance and sensitivity of the HCC is tested and measured, initially with the embedded resistive heaters, then with an experimental transducer, and lastly with transducers from clinical ultrasound scanners.

  17. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters

  18. Heating and ionization of stellar chromospheres by nonthermal proton beams: Implications for impulsive phase, redshifted Lyman-alpha radiation in stellar flares

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Robinson, Richard D.; Maran, Stephen P.

    1995-01-01

    We investigate the physical basis for the timescale of impulsive-phase, redshifted Lyman-alpha emission in stellar flares on the assumption that it is determined by energy losses in a nonthermal proton beam that is penetrating the chromosphere from above. The temporal evolution of ionization and heating in representative model chromospheres subjected to such beams is calculated. The treatment of 'stopping' of beam protons takes into account their interactions with (1) electrons bound in neutral hydrogen, (2) nuclei of neutral hydrogen, (3) free electrons, and (4) ambient thermal protons. We find that, for constant incident beam flux, the system attains an equilibrium with the beam energy input to the chromosphere balanced by radiative losses. In equilibrium, the beam penetration depth is constant, and erosion of the chromosphere ceases. If the redshifted, impulsive-phase stellar flare Lyman-alpha emission is produced by downstreaming hydrogen formed through charge exchange between beam protons and ambient hydrogen, then the emission should end when the beam no longer reaches neutral hydrogen. The durations of representative emission events calculated on this assumption range from 0.1 to 14 s. The stronger the beam, the shorter the timescale over which the redshifted Lyman-alpha emission can be observed.

  19. On the sensitivity of the goes flare classification to properties of the electron beam in the thick-target model

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; McAteer, R. T. J. E-mail: stephen.bradshaw@rice.edu

    2013-11-20

    The collisional thick-target model, wherein a large number of electrons are accelerated down a flaring loop, can be used to explain many observed properties of solar flares. In this study, we focus on the sensitivity of (GOES) flare classification to the properties of the thick-target model. Using a hydrodynamic model with RHESSI-derived electron beam parameters, we explore the effects of the beam energy flux (or total non-thermal energy), the cut-off energy, and the spectral index of the electron distribution on the soft X-rays observed by GOES. We conclude that (1) the GOES class is proportional to the non-thermal energy E {sup α} for α ≈ 1.7 in the low-energy passband (1-8 Å) and ≈1.6 in the high-energy passband (0.5-4 Å); (2) the GOES class is only weakly dependent on the spectral index in both passbands; (3) increases in the cut-off will increase the flux in the 0.5-4 Å passband but decrease the flux in the 1-8 Å passband, while decreases in the cut-off will cause a decrease in the 0.5-4 Å passband and a slight increase in the 1-8 Å passband.

  20. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  1. Code OK2—A simulation code of ion-beam illumination on an arbitrary shape and structure target

    NASA Astrophysics Data System (ADS)

    Ogoyski, A. I.; Kawata, S.; Someya, T.

    2004-08-01

    For computer simulations on heavy ion beam (HIB) irradiation on a spherical fuel pellet in heavy ion fusion (HIF) the code OK1 was developed and presented in [Comput. Phys. Commun. 157 (2004) 160-172]. The new code OK2 is a modified upgraded computer program for more common purposes in research fields of medical treatment, material processing as well as HIF. OK2 provides computational capabilities of a three-dimensional ion beam energy deposition on a target with an arbitrary shape and structure. Program summaryTitle of program: OK2 Catalogue identifier: ADTZ Other versions of this program [1] : Title of the program: OK1 Catalogue identifier: ADST Program summary URL:http://cpc.cs.qub.as.uk/summaries/ADTZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC (Pentium 4, ˜1 GHz or more recommended) Operating system: Windows or UNIX Program language used: C++ Memory required to execute with typical data: 2048 MB No. of bits in a word: 32 No. of processors used: 1CPU Has the code been vectorized or parallelized: No No. of bytes in distributed program, including test data: 17 334 No of lines in distributed program, including test date: 1487 Distribution format: tar gzip file Nature of physical problem: In research areas of HIF (Heavy Ion Beam Inertial Fusion) energy [1-4] and medical material sciences [5], ion energy deposition profiles need to be evaluated and calculated precisely. Due to a favorable energy deposition behavior of ions in matter [1-4] it is expected that ion beams would be one of preferable candidates in various fields including HIF and material processing. Especially in HIF for a successful fuel ignition and a sufficient fusion energy release, a stringent requirement is imposed on the HIB irradiation non-uniformity, which should be less than a few percent [4,6,7]. In order to meet this requirement we need to evaluate the uniformity of a realistic HIB irradiation and energy deposition pattern. The HIB

  2. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology.

    PubMed

    Pigott, Jeffrey S; Reaman, Daniel M; Panero, Wendy R

    2011-11-01

    The pioneering of x-ray diffraction with in situ laser heating in the diamond-anvil cell has revolutionized the field of high-pressure mineral physics, expanding the ability to determine high-pressure, high-temperature phase boundaries and equations of state. Accurate determination of high-pressure, high-temperature phases and densities in the diamond-anvil cell rely upon collinearity of the x-ray beam with the center of the laser-heated spot. We present the development of microfabricated samples that, by nature of their design, will have the sample of interest in the hottest portion of the sample. We report initial successes with a simplified design using a Pt sample with dimensions smaller than the synchrotron-based x-ray spot such that it is the only part of the sample that absorbs the heating laser ensuring that the x-rayed volume is at the peak hotspot temperature. Microfabricated samples, synthesized using methods developed at The Ohio State University's Mineral Physics Laboratory and Campus Electron Optics Facility, were tested at high P-T conditions in the laser-heated diamond-anvil cell at beamline 16 ID-B of the Advanced Photon Source. Pt layer thicknesses of ≤0.8 μm absorb the laser and produce accurate measurements on the relative equations of state of Pt and PtC. These methods combined with high-purity nanofabrication techniques will allow for extension by the diamond-anvil cell community to multiple materials for high-precision high-pressure, high-temperature phase relations, equations of state, melting curves, and transport properties.

  3. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  4. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  5. SU-E-T-147: Beam Specific Planning Target Volumes Incorporating 4DCT for Pencil Beam Scanning Proton Therapy of Thoracic Tumors

    SciTech Connect

    Lin, L; Kang, M; Huang, S; McDonough, J; Solberg, T; Simone, C; Mayer, R; Thomas, A

    2015-06-15

    Purpose: The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties and patient setup variations. Methods: Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4DCT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4DCT phases, using ±3% uncertainty in stopping power, and ±3 mm uncertainty in patient setup in each direction were used to create 8*12*10=960 PBS plans for the evaluation of ten patients. Plans were normalized to provide identical coverage between DS and PBS. Results: The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus and heart dose were decreased from 37.1 Gy, 71.7 Gy and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04 and 72.1 Gy with PBS. All differences are statistically significant, with p values <0.05, with the exception of the heart V45 (p= 0.146). Conclusion: PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-07-2-0121 and W81XWH-09-2-0174.

  6. Progress of beam diagnosis system for EAST neutral beam injector

    SciTech Connect

    Xu, Y. J. Hu, C. D.; Yu, L.; Liang, L. Z.; Zhang, W. T.; Chen, Y.; Li, X.

    2016-02-15

    Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (NBI) were built and operational in 2014. The paper presents the development of beam diagnosis system for EAST NBI and the latest experiment results obtained on the test-stand and EAST-NBI-1 and 2. The results show that the optimal divergence angle is (0.62°, 1.57°) and the full energy particle is up to 77%. They indicate that EAST NBI work properly and all targets reach or almost reach the design targets. All these lay a solid foundation for the achievement of high quality plasma heating for EAST.

  7. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  8. Proton Core Heating and Beam Formation via Parametrically Unstable Alfven-Cyclotron Waves

    SciTech Connect

    Araneda, Jaime A.; Marsch, Eckart F.; Vinas, Adolfo

    2008-03-28

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfven-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfven speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  9. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  10. A simple optical system delivering a tunable micrometer pink beam that can compensate for heat-induced deformations.

    PubMed

    Reininger, Ruben; Liu, Zunping; Doumy, Gilles; Young, Linda

    2015-07-01

    The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) reveals that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick-Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.

  11. Impact of beam smoothing method on direct drive target performance for the NIF

    SciTech Connect

    Rothenberg, J.E.; Weber, S.V.

    1997-01-01

    The impact of smoothing method on the performance of a direct drive target is modeled and examined in terms of its 1-mode spectrum. In particular, two classes of smoothing methods are compared, smoothing by spectral dispersion (SSD) and the induced spatial incoherence (ISI) method. It is found that SSD using sinusoidal phase modulation (FM) results in poor smoothing at low 1-modes and therefore inferior target performance at both peak velocity and ignition. This disparity is most notable if the effective imprinting integration time of the target is small. However, using SSD with more generalized phase modulation can result in smoothing at low l-modes which is identical to that obtained with ISI. For either smoothing method, the calculations indicate that at peak velocity the surface perturbations are about 100 times larger than that which leads to nonlinear hydrodynamics. Modeling of the hydrodynamic nonlinearity shows that saturation can reduce the amplified nonuniformities to the level required to achieve ignition for either smoothing method. The low l- mode behavior at ignition is found to be strongly dependent on the induced divergence of the smoothing method. For the NIF parameters the target performance asymptotes for smoothing divergence larger than {approximately}100 {mu}rad.

  12. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals.

    PubMed

    Garren, Melissa; Son, Kwangmin; Raina, Jean-Baptiste; Rusconi, Roberto; Menolascina, Filippo; Shapiro, Orr H; Tout, Jessica; Bourne, David G; Seymour, Justin R; Stocker, Roman

    2014-05-01

    Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen's chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.

  13. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  14. Effect of Beam Smoothing and Pulse Shape on the Implosion of DD-Filled CH Shell Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Glebov, V. Yu.; Marshall, F. J.; Stoeckl, C.; Yaakobi, B.; Meyerhofer, D. D.

    1999-11-01

    Over the past two years several implosion experiments were carried out on the 60-beam OMEGA laser in which DD-filled CH shells (some with a CHTi layer imbedded) were irradiated with various laser pulse shapes and smoothing conditions. Target CH shell thicknesses varied from 20 μm to 27 μm with DD-fill variations from 3 to 20 atm, sometimes mixed with ^3He. Two pulse shapes---a 1-ns square pulse and a 2.5-ns pulse with a 10%, 1-ns foot, with and without SSD---provide several levels of laser imprint. Diagnostics include measured neutron yields, fuel ion temperatures, fuel ρR, and shell ρR. Simulations for these experimental conditions were carried out with the 2-D hydrocode ORCHID. The results are compared with the experimental results. The degradation of target performance due to laser nonuniformity is analyzed by comparing the 2-D results with those of 1-D simulations. The effects of pulse shape, target thickness, convergence ratio, and smoothing are presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  15. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE PAGES

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  16. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; Bonasera, A.; Natowitz, J. B.; Albright, B. J.; Fernández, J. C.; Ditmire, T.

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

  17. Approximating ambient D-region electron densities using dual-beam HF heating experiments at the high-frequency Active Auroral Research Program (HAARP)

    NASA Astrophysics Data System (ADS)

    Agrawal, Divya

    Dual-beam ELF/VLF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are critically compared with the predictions of a newly developed ionospheric high frequency (HF) heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The dual-beam HF heating experiments presented herein consist of two HF beams transmitting simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere in the extremely low frequency (ELF, 30 Hz to 3 kHz) and/or very low frequency (VLF, 3 kHz to 30 kHz) band while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF/VLF conductivity modulation and thereby the efficiency of ELF/VLF wave generation. Ground-based experimental observations are used together with the predictions of the theoretical model to identify the property of the received ELF/VLF wave that is most sensitive to the effects of multi-beam HF heating, and that property is determined to be the ELF/VLF signal magnitude. The dependence of the generated ELF/VLF wave magnitude on several HF transmission parameters (HF power, HF frequency, and modulation waveform) is then experimentally measured and analyzed within the context of the multi-beam HF heating model. For all cases studied, the received ELF/VLF wave magnitude as a function of transmission parameter is analyzed to identify the dependence on the ambient D-region electron density (Ne) and/or electron temperature ( Te), in turn identifying the HF transmission parameters that provide significant independent information regarding the ambient conditions of the D-region ionosphere. A theoretical analysis is performed to determine the conditions under which the effects of Ne and Te can be decoupled, and the results of this analysis are applied to identify an electron density profile that can reproduce the unusually high level of ELF

  18. Concordance Between BeamF3 and MRI-neuronavigated Target Sites for Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex

    PubMed Central

    Mir-Moghtadaei, Arsalan; Caballero, Ruth; Fried, Peter; Fox, Michael D.; Lee, Katherine; Giacobbe, Peter; Daskalakis, Zafiris J.; Blumberger, Daniel M.; Downar, Jonathan

    2016-01-01

    Background The dorsolateral prefrontal cortex (DLPFC) is a common target for repetitive transcranial magnetic stimulation (rTMS) in major depression, but the conventional “5 cm rule” misses DLPFC in > 1/3 cases. Another heuristic, BeamF3, locates the F3 EEG site from scalp measurements. MRI-guided neuronavigation is more onerous, but can target a specific DLPFC stereotaxic coordinate directly. The concordance between these two approaches has not previously been assessed. Objective To quantify the discrepancy in scalp site between BeamF3 versus MRI-guided neuronavigation for left DLPFC. Methods Using 100 pre-treatment MRIs from subjects undergoing left DLPFC-rTMS, we localized the scalp site at minimum Euclidean distance from a target MNI coordinate (X − 38 Y + 44 Z + 26) derived from our previous work. We performed nasion-inion, tragus–tragus, and head-circumference measurements on the same subjects’ MRIs, and applied the BeamF3 heuristic. We then compared the distance between BeamF3 and MRI-guided scalp sites. Results BeamF3-to-MRI-guided discrepancies were <0.65 cm in 50% of subjects, <0.99 cm in 75% of subjects, and <1.36 cm in 95% of subjects. The angle from midline to the scalp site did not differ significantly using MRI-guided versus BeamF3 methods. However, the length of the radial arc from vertex to target site was slightly but significantly longer (mean 0.35 cm) with MRI-guidance versus BeamF3. Conclusions The BeamF3 heuristic may provide a reasonable approximation to MRI-guided neuronavigation for locating left DLPFC in a majority of subjects. A minor optimization of the heuristic may yield additional concordance. PMID:26115776

  19. Effect of the initial field's phase dislocation on the intensity enhancement factor of the laser beam backscattered off a diffuse target

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Rytchkov, D. S.

    2014-11-01

    The given article presents the results of the investigation of the vortex laser beam reflection off a diffuse target in turbulent medium. Expressions of the mutual coherence function (MCF) and the relative intensity enhancement factor (REF) of a laser beam at the receiver plane are derived. The effect of the initial phase dislocation in the laser field distribution on the MCF and the REF of a backward wave at the receiver plane is investigated.

  20. Secondary radiation measurements for particle therapy applications: prompt photons produced by (4)He, (12)C and (16)O ion beams in a PMMA target.

    PubMed

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from

  1. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature

  2. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  3. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  4. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  5. System for formation of magnetic field to scan a charged particle beam along an arbitrary trajectory on a target

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Kazacha, V. I.; Lebedev, N. I.; Fateev, A. A.

    2015-11-01

    A new scanning system is considered. The system is developed at JINR and has a number of characteristic features. The windings of the bending magnets with a large number of ampere-turns operate at relatively low frequencies (≤20 Hz) to maintain the reactive power within reasonable limits. The winding power supplies use feedback systems to shape currents of the given waveform and amplitude. The main structural features and parameters of the prototype magnet and the results of developing and testing the electronic circuit for supplying the magnet with a current of the given waveform are presented. Density distributions of various ions on the target are calculated for one of the U400-M cyclotron beam lines using the parameters of the new scanners.

  6. High frequency core localized modes in neutral beam heated plasmas on TFTR

    SciTech Connect

    Nazikian, R.; Chang, Z.; Fredrickson, E.D.

    1995-11-01

    A band of high frequency modes in the range 50--150 kHz with intermediate toroidal mode numbers 4 < n < 10 are commonly observed in the core of supershot plasmas on TFTR. Two distinct varieties of MHD modes are identified corresponding to a flute-like mode predominantly appearing around the q = 1 surface and an outward ballooning mode for q > 1. The flute-like modes have nearly equal amplitude on the high field and low field side of the magnetic axis and are mostly observed in moderate performance supershot plasmas with {tau}{sub E} < 2{tau}{sub L} while the ballooning-like modes have enhanced amplitude on the low field side of the magnetic axis and tend to appear in higher performance supershot plasmas with {tau}{sub E} > 2{tau}{sub L}, where {tau}{sub L} is the equivalent L-mode confinement time. The modes propagate in the ion diamagnetic drift direction and are highly localized with radial widths {Delta}r {approximately} 5--10 cm, fluctuation levels {tilde n}/n, {tilde T}{sub e}/T{sub e} < 0.01, and radial displacements {zeta}{sub r} {approximately} 0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR, these modes are typically much weaker, more benign, and may be indicative of kinetic ballooning modes destabilized by resonant circulating neutral beam ions.

  7. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS)

    SciTech Connect

    Godfrey, Devon J.; Ren Lei; Yan Hui; Wu, Q.; Yoo Sua; Oldham, M.; Yin Fangfang

    2007-08-15

    Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 deg. to 40 deg. and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTS{sub approx}), as well as three different DTS scan angles (22 deg., 44 deg., and 65 deg.) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and on-board DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning {+-}5 mm and rotations spanning {+-}5 deg. were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTS{sub approx} method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.5 deg. along each axis, using only a single 44 deg. coronal on-board DTS scan of the chest phantom.

  8. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS).

    PubMed

    Godfrey, Devon J; Ren, Lei; Yan, Hui; Wu, Q; Yoo, Sua; Oldham, M; Yin, Fang Fang

    2007-08-01

    Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 degrees to 40 degrees and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTSapprox), as well as three different DTS scan angles (22 degrees, 44 degrees, and 65 degrees) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and onboard DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning +/-5 mm and rotations spanning +/-5 degrees were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTSapprox method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.50 along each axis, using only a single 44 degrees coronal on-board DTS scan of the chest phantom.

  9. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  10. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  11. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  12. Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy.

    PubMed

    Tsou, Yueh-Liang; Lin, Yi-Wen; Chang, Hsuen-Wen; Lin, Hsiang-Yin; Shao, Hsiao-Yun; Yu, Shu-Ling; Liu, Chia-Chyi; Chitra, Ebenezer; Sia, Charles; Chow, Yen-Hung

    2013-01-01

    Although several factors participating in enterovirus 71 (EV71) entry and replication had been reported, the precise mechanisms associated with these events are far from clear. In the present study, we showed that heat shock protein 90 (HSP90) is a key element associated with EV71 entry and replication in a human rhabdomyosarcoma of RD cells. Inhibition of HSP90 by pretreating host cells with HSP90β siRNA or blocking HSP90 with a HSP90-specific antibody or geldanamycin (GA), a specific inhibitor of HSP90, as well as recombinant HSP90β resulted in inhibiting viral entry and subsequent viral replication. Co-immunprecipitation of EV71 with recombinant HSP90β and colocalization of EV71-HSP90 in the cells demonstrated that HSP90 was physically associated with EV71 particles. HSP90 seems to mediate EV71 replication by preventing proteosomal degradation of the newly synthesized capsid proteins, but does not facilitate viral gene expression at transcriptional level. This was evident by post-treatment of host cells with GA, which did not affect the expression of viral transcripts but accelerated the degradation of viral capsid proteins and interfered with the formation of assembled virions. In vivo studies were carried out using human SCARB2-transgenic mice to evaluate the protection conferred by HSP90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), an analog of geldanamycin, that elicited similar activity but with less toxicity. The results showed that the administration of 17-AAG twice conferred the resistance to hSCARB2 mice challenged with C2, C4, and B4 genotypes of EV71. Our data supports HSP90 plays an important role in EV71 infection. Targeting of HSP90 with clinically available drugs might provide a feasible therapeutic approach to treat EV71 infection.

  13. Heat-induced versus particle-beam-induced chemistry in polyimide

    NASA Astrophysics Data System (ADS)

    Marletta, Giovanni; Iacona, Fabio

    1993-06-01

    In the present paper the relationship between chemical reactions and energy deposition mechanisms is investigated for PMDA-ODA thin films. The chemical reactions at the polymer surface and near-surface are studied by XPS technique. The effects induced by using 5 keV Ar 0 and 3 keV electrons are compared with those produced by heat treatments up to about 1000°C. In particular, we found that Ar 0 bombardment induces some simultaneous chemical mechanisms of decomposition, involving the random destruction of the monomer units. A specific reaction involving recoiling oxygen atoms has been identified. Contrary to this, the deposition of the same amount of total energy by electron irradiation seems to induce only one decomposition mechanism, consisting in the elimination of the whole imidic ring. Finally, thermal pyrolysis promotes several consecutive reactions, mainly involving decarbonylation of the imidic rings, while the phenyl rings and the ether linkages are relatively stable. The experiments show the existence of recognizable "nonconventional" chemical reactivity, whose character, in this case, seems mainly related to the collisional term of the energy loss.

  14. MRI to CT prostate registration for improved targeting in cancer external beam radiotherapy.

    PubMed

    Commandeur, Frederic; Simon, Antoine; Mathieu, Romain; Nassef, Mohamed; Ospina, Juan David; Rolland, Yan; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2016-06-16

    External radiotherapy is a major clinical treatment for localized prostate cancer. Currently, computed tomography (CT) is used to delineate the prostate and to plan the radiotherapy treatment. However, CT images suffer from a poor soft tissue contrast and do not allow an accurate organ delineation. On the contrary, Magnetic resonance imaging (MRI) provides rich details and high soft tissue contrast, allowing tumor detection. Thus, the intra-individual propagation of MRI delineations towards the planning CT may improve tumor targeting. In this paper we introduce a new method to propagate MRI prostate delineations to the planning CT. In a first step, a random forest (RF) classification is performed to coarsely detect the prostate in the CT images, yielding a prostate probability membership for each voxel and a prostate hard segmentation. Then the registration is performed using a new similarity metric which maximizes the probability and the collinearity between the normals of the MR existing contour and the contour resulting from the CT classification. A first study on synthetic data was performed to analyze the influence of the metric parameters with different levels of noise. Then, the method was also evaluated on real MR-CT data using manual alignments and intraprostatic fiducial markers and compared to a classically used mutual information (MI) approach. The proposed metric outperformed MI by 7% in terms of Dice score coefficient (DSC), by 3.14 mm the Hausdorff Distance (HD) and 2.13 mm the markers position errors (MPE). Finally, the impact of registration uncertainties on the treatment planning was evaluated, demonstrating the potential advantage of the proposed approach in a clinical setup to define a precise target.

  15. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system.

    PubMed

    Tong, Xu; Chen, Xiaoming; Li, Jinsheng; Xu, Qianqian; Lin, Mu-Han; Chen, Lili; Price, Robert A; Ma, Chang-Ming

    2015-03-08

    This paper investigates the clinical significance of real-time monitoring of intrafractional prostate motion during external beam radiotherapy using a commercial 4D localization system. Intrafractional prostate motion was tracked during 8,660 treatment fractions for 236 patients. The following statistics were analyzed: 1) the percentage of fractions in which the prostate shifted 2-7 mm for a certain duration; 2) the proportion of the entire tracking time during which the prostate shifted 2-7mm; and 3) the proportion of each minute in which the shift exceeded 2-7 mm. The ten patients exhibiting maximum intrafractional-motion patterns were analyzed separately. Our results showed that the percentage of fractions in which the prostate shifted by > 2, 3, 5, and 7 mm off the baseline in any direction for > 30 s was 56.8%, 27.2%, 4.6%, and 0.7% for intact prostate and 68.7%, 35.6%, 10.1%, and 1.8% for postprostatectomy patients, respectively. For the ten patients, these percentages were 91.3%, 72.4%, 36.3%, and 6%, respectively. The percentage of tracking time during which the prostate shifted > 2, 3, 5, and 7 mm was 27.8%, 10.7%, 1.6%, and 0.3%, respectively, and it was 56.2%, 33.7%, 11.2%, and 2.1%, respectively, for the ten patients. The percentage of tracking time for a > 3 mm posterior motion was four to five times higher than that in other directions. For treatments completed in 5 min (VMAT) and 10 min (IMRT), the proportion for the prostate to shift by > 3mm was 4% and 12%, respectively. Although intrafractional prostate motion was generally small, caution should be taken for patients who exhibit frequent large intrafractional motion. For those patients, adjustment of patient positioning may be necessary or a larger treatment margin may be used. After the initial alignment, the likelihood of prostate motion increases with time. Therefore, it is favorable to use advanced techniques (e.g., VMAT) that require less delivery time in order to reduce the treatment

  16. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  17. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer.

    PubMed

    Oya-Ito, Tomoko; Naito, Yuji; Takagi, Tomohisa; Handa, Osamu; Matsui, Hirofumi; Yamada, Masaki; Shima, Keisuke; Yoshikawa, Toshikazu

    2011-07-01

    The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.

  18. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  19. Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in Stereotactic Lung Radiation Therapy.

    PubMed

    Purdie, Thomas G; Moseley, Douglas J; Bissonnette, Jean-Pierre; Sharpe, Michael B; Franks, Kevin; Bezjak, Andrea; Jaffray, David A

    2006-01-01

    An image-guidance process for using cone-beam computed tomography (CBCT) for stereotactic body radiation therapy (SBRT) of peripheral lung lesions is presented. Respiration correlated CBCT on the treatment unit and four dimensional computed tomography (4DCT) from planning are evaluated for assessing respiration-induced target motion during planning and treatment fractions. Image-guided SBRT was performed for 12 patients (13 lesions) with inoperable early stage non-small cell lung carcinoma. Kilovoltage (kV) projections were acquired over a 360 degree gantry rotation and sorted based on the pixel value of an image-based aperture located at the air-tissue interface of the diaphragm. The sorted projections were reconstructed to provide volumetric respiration correlated CBCT image datasets at different phases of the respiratory cycle. The 4D volumetric datasets were directly compared with 4DCT datasets acquired at the time of planning. For ten of 12 patients treated, the lung tumour motion, as measured by respiration correlated CBCT on the treatment unit, was consistent with the tumour motion measured by 4DCT at the time of planning. However, in two patients, maximum discrepancies observed were 6 and 10 mm in the anterior-posterior and superior-inferior directions, respectively. Respiration correlated CBCT acquired on the treatment unit allows target motion to be assessed for each treatment fraction, allows target localization based on different phases on the breathing cycle, and provides the facility for adaptive margin design in radiation therapy of lung malignancies. The current study has shown that the relative motion and position of the tumour at the time of treatment may not match that of the planning 4DCT scan. Therefore, application of breathing motion data acquired at simulation for tracking or gating radiation therapy may not be suitable for all patients - even those receiving short course treatment techniques such as SBRT.

  20. Nickel oxide and molybdenum oxide thin films for infrared imaging prepared by biased target ion-beam deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yao; Saint John, David; Jackson, Tom N.; Horn, Mark W.

    2014-06-01

    Vanadium oxide (VOx) thin films have been intensively used as sensing materials for microbolometers. VOx thin films have good bolometric properties such as low resistivity, high negative temperature coefficient of resistivity (TCR) and low 1/f noise. However, the processing controllability of VOx fabrication is difficult due to the multiple valence states of vanadium. In this study, metal oxides such as nickel oxide (NiOx) and molybdenum oxide (MoOx) thin films have been investigated as possible new microbolometer sensing materials with improved process controllability. Nickel oxide and molybdenum oxide thin films were prepared by reactive sputtering of nickel and molybdenum metal targets in a biased target ion beam deposition tool. In this deposition system, the Ar+ ion energy (typically lower than 25 eV) and the target bias voltage can be independently controlled since ions are remotely generated. A residual gas analyzer (RGA) is used to precisely control the oxygen partial pressure. A real-time spectroscopic ellipsometry is used to monitor the evolution of microstructure and properties of deposited oxides during growth and post-deposition. The properties of deposited oxide thin films depend on processing parameters. The resistivity of the NiOx thin films is in the range of 0.5 to approximately 100 ohm-cm with a TCR from -2%/K to -3.3%/K, where the resistivity of MoOx is between 3 and 2000 ohm-cm with TCR from -2.1%/K to -3.2%/K. We also report on the thermal stability of these deposited oxide thin films.

  1. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    SciTech Connect

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-15

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68x0.54x0.2 m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  2. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    SciTech Connect

    A, Popescu I; Lobo, J; Sawkey, D; Svatos, M

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulations in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam

  3. Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target

    NASA Astrophysics Data System (ADS)

    Schönlein, A.; Boutoux, G.; Pikuz, S.; Antonelli, L.; Batani, D.; Debayle, A.; Franz, A.; Giuffrida, L.; Honrubia, J. J.; Jacoby, J.; Khaghani, D.; Neumayer, P.; Rosmej, O. N.; Sakaki, T.; Santos, J. J.; Sauteray, A.

    2016-05-01

    We studied the interaction of a high-intensity laser with mass-limited Ti-wires. The laser was focused up to 7× 1020 \\text{W/cm}2 , with contrast of 10-10 to produce relativistic electrons. High-spatial-resolution X-ray spectroscopy was used to measure isochoric heating induced by hot electrons propagating along the wire up to 1 mm depth. For the first time it was possible to distinguish surface target regions heated by mixed plasma mechanisms from those heated only by the hot electrons that generate warm dense matter with temperatures up to 50 eV. Our results are compared to simulations that highlight both the role of electron confinement inside the wire and the importance of resistive stopping powers in warm dense matter.

  4. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  5. Proposal of actively heated, long stem based Cs delivery system for diagnostic neutral beam source in ITER

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Mishra, S.; Pandya, K.; Bandyopadhyay, M.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Shah, S.; Phukan, A.; Roopesh, G.; Ahmed, I.; Chakraborty, A. K.; Singh, M. J.; Schunke, B.; Hemsworth, R.; Svensson, L.; Chareyre, J.; Graceffa, J.

    2013-02-01

    Positioning of Cesium (Cs) oven modules in the complex interface dominated space envelope of a negative ion source such as Diagnostic Neutral Beam (DNB) source for ITER is a challenge not only for the designer of the ion source, but also that of remote handling. A more user friendly design of the Cs delivery could emerge from the consideration of a possibility of injecting the Cs from an oven located outside the vacuum envelope of the ion source, thereby ensuring an ease of Cs refilling and oven maintenance. The design of such a delivery system involves long transmission path of lengths ˜4 m, from ambient to vacuum. System design involves incorporation of a low loss transmission tube enveloped by highly reflective inner surface pipe to reduce the heat losses and therefore heating of the nearby systems. A combination of all metallic valves operated at high temperatures has been incorporated in such a way that the Cs refilling or oven maintenance can be done without breaking the ion source vacuum. Removable joints in the oven heating elements are provided at specific locations to remove the Cs oven for ion source maintenance. Experimental data on Cs transmission over such a long length, required for an effective design of a co-axial transmission, is not presently available. However, an experiment has been carried out in ITER-India making measurements of Cs distribution in coaxial transmission of a length of more than 5 m. These experiments incorporate an additional feature of multiple nozzle distributor based Cs delivery into the ion source which might help in reducing the need of multiple Cs ovens in large ion sources like ITER. The Cs flux from the oven is measured by surface ionization detector (SID). The angular distribution of the Cs flux is measured by a movable SID in linear direction and has been found in good agreement with the calculations. The Cs inventory in the oven reservoir was measured by electrical resistivity measurements methods. The paper

  6. Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis

    PubMed Central

    Yu, Hai-Dong; Yang, Xiao-Fei; Chen, Si-Ting; Wang, Yu-Ting; Li, Ji-Kai; Shen, Qi; Liu, Xun-Liang; Guo, Fang-Qing

    2012-01-01

    Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants. PMID:22570631

  7. Search for Defocusing During a Single Pulse of a 2 kA Relativistic Electron Beam Due to Ions Accelerated from a Target

    SciTech Connect

    Lauer, E J; Caporaso, G J; Chambers, F W; Chen, Y-J; Falabella, S; Guethlein, G; McCarrick, J; Richardson, R; Sampayan, S; Weir, J

    2002-09-05

    The DARHT accelerator will deliver several intense relativistic electron beam pulses to an x-ray conversion target during a few microseconds. Plasma from the target can cause a partial neutralization of the vacuum self-Er field resulting in an unacceptably large beam radius at the target. The Livermore group has been developing barrier foils to block the plasma from moving upstream. Positive ions accelerated upstream from the foil in the self-Ez field during a single pulse could defocus the beam. In May, 2001 LANL used a sensitive ''two foil'' experiment to search for such effects. They measured significant time dependent effects using conducting foils (1). In January, 2002, the Livermore group repeated the experiment using the ETA II accelerator. We expected to see similar effects and planned to collect data that we could model. We saw no significant effect from conducting foils unless the beam radius was small enough to damage the foil. The reason for the different results has not been explained and is still being investigated. Possibilities have to do with the longer pulse length at LANL, (60 ns compared to 40) or with the higher energy at LANL, (20 Mev compared to 5.7) We also did some tests on dielectric targets where there is a strong effect to test our techniques.

  8. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    NASA Astrophysics Data System (ADS)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  9. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.

  10. High power beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  11. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ramsey, A.T.; Synakowski, E.J.; Grek, B.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Taylor, G.; Valanju, P.M. . Plasma Physics Lab.; Texas Univ., Austin, TX . Fusion Research Center)

    1989-09-01

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C{sup +5} n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with I{sub p} = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Z{sub eff} and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of n{sub e}, compard to 0.04 for carbon. Trends with I{sub p} and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of I{sub p} and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs.

  12. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  13. Estimation of the electron beam-induced specimen heating and the emitted X-rays spatial resolution by Kossel microdiffraction in a scanning electron microscope.

    PubMed

    Bouscaud, Denis; Pesci, Raphaël; Berveiller, Sophie; Patoor, Etienne

    2012-04-01

    A Kossel microdiffraction experimental setup has been developed inside a Scanning Electron Microscope for crystallographic orientation, strain and stress determination at a micrometer scale. This paper reports an estimation of copper and germanium specimens heating due to the electron beam bombardment. The temperature rise is calculated from precise lattice parameters measurement considering different currents induced in the specimens. The spatial resolution of the technique is then deduced.

  14. Cone-Beam CT-Based Delineation of Stereotactic Lung Targets: The Influence of Image Modality and Target Size on Interobserver Variability

    SciTech Connect

    Altorjai, Gabriela

    2012-02-01

    Purpose: It is generally agreed that the safe implementation of stereotactic body radiotherapy requires image guidance. The aim of this work was to assess interobserver variability in the delineation of lung lesions on cone-beam CT (CBCT) images compared with CT-based contouring for adaptive stereotactic body radiotherapy. The influence of target size was also evaluated. Methods and Materials: Eight radiation oncologists delineated gross tumor volumes in 12 patient cases (non-small cell lung cancer I-II or solitary metastasis) on planning CTs and on CBCTs. Cases were divided into two groups with tumor diameters of less than (Group A) or more than 2 cm (Group B). Comparison of mean volumes delineated by all observers and range and coefficient of variation were reported for each case and image modality. Interobserver variability was assessed by means of standard error of measurement, conformity index (CI), and its generalized observer-independent approach. The variance between single observers on CT and CBCT images was measured via interobserver reliability coefficient. Results: Interobserver variability on CT images was 17% with 0.79 reliability, compared with 21% variability on CBCT and 0.76 reliability. On both image modalities, values of the intraobserver reliability coefficient (0.99 for CT and 0.97 for CBCT) indicated high reproducibility of results. In general, lower interobserver agreement was observed for small lesions (CI{sub genA} = 0.62 {+-} 0.06 vs. CI{sub genB} = 0.70 {+-} 0.03, p < 0.05). The analysis of single patient cases revealed that presence of spicules, diffuse infiltrations, proximity of the tumors to the vessels and thoracic wall, and respiration motion artifacts presented the main sources of the variability. Conclusion: Interobserver variability for Stage I-II non-small cell lung cancer and lung metastasis was slightly higher on CBCT compared with CT. Absence of significant differences in interobserver variability suggests that CBCT imaging

  15. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  16. Digital beam former based on an electronically steerable antenna for HWIL target simulation for US Army AMRDEC

    NASA Astrophysics Data System (ADS)

    Avakian, Aramais; Aretskin, Mark; Brailovsky, Alexander B.; Jia, Dexin; Felman, Mikhail; Gordion, Irina; Gurin, Ilya; Khodos, Victor; Litvinov, Vladimir; Manasson, Vladimir A.; Sadovnik, Lev; Voronel, Gary

    2006-05-01

    A W-band target glint and background scene generator is developed for compact range hardware-in-the-loop (HWIL) seeker testing and characterization. The device comprises an Electronically Controlled Beamformer (ECB) capable of real time generation of wide variety of wavefronts in the near field of the system under test (SUT). The fine-pixelized ECB aperture with individual control of each pixel allows (in particular) formation of radar returns in a compact range by focusing and steering the (focused) Millimeter Wave (MMW) beam on the SUT aperture. Unlike compact range systems using limited number of radiators and focal plane optics, fine-pixelized ECB allows full glint simulation over SUT's field of view. ECB is compatible with currently used retransmitter and waveform simulator. We present the results of a simulation of the device's operation and compare them with the experiment. Major attention in both the simulations and the measurements was paid to the field distribution in the near-field region of the device. This work has been conducted under US Army Phase II Small Business Innovation Research (SBIR) effort, under the technical management of Mr. James A. Buford Jr., US Army Aviation & Missile Research, Development & Engineering Center (AMRDEC), Redstone Arsenal, Alabama.

  17. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  18. Neutron Generation from Laser-Accelerated Ion Beams: Use of Alternative Deuteron-Rich Targets for Improved Neutron Yield and Control of Neutron Spectra

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Favalli, A.

    2016-10-01

    Laser-ion-beam generation in the break-out afterburner (BOA) acceleration regime has been modeled for several deuteron-rich solid-density targets using the VPIC particle-in-cell code. Monte Carlo modeling of the transport of these beams in a beryllium converter in a pitcher-catcher neutron source configuration shows significant increases in neutron yields may be achievable through judicious choices of laser target material. Additionally, species-separation dynamics in some target materials during the BOA ion acceleration phase can be exploited to control the shapes of the neutron spectra. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  19. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    SciTech Connect

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  20. Erratum: Simulation studies of the beam cooling process in presence of heating effects in the Extra Low ENergy Antiproton ring (ELENA) Erratum: Simulation studies of the beam cooling process in presence of heating effects in the Extra Low ENergy Antiproton ring (ELENA)

    NASA Astrophysics Data System (ADS)

    Resta-López, J.; Hunt, J. R.; Karamyshev, O.; Welsch, C. P.

    2015-08-01

    The Extra Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which is currently being constructed at CERN to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to energies as low as 100 keV . At such low energies it is very important to carefully take contributions from electron cooling and beam heating mechanisms (e.g. on the residual gas and intrabeam scattering) into account. Detailed investigations into the ion kinetics under consideration of effects from electron cooling and heating sources have been carried out, and the equilibrium phase space dimensions of the beam have been computed, based on numerical simulations using the code BETACOOL. The goal is to provide a consistent explanation of the different physical effects acting on the beam in ELENA.

  1. Analysis of the fast electron scaling theory for the heating of a solid target

    NASA Astrophysics Data System (ADS)

    Garland, R. J.; Borghesi, M.; Robinson, A. P. L.

    2016-08-01

    Simple scaling laws for laser-generated fast electron heating of solids that employ a Spitzer-like resistivity are unlikely to be universally adequate as this model does not produce an adequate description of a material's behaviour at low temperatures. This is demonstrated in this paper by using both numerical simulations and by comparing existing analytical scaling laws for low temperature resistivity. Generally, we find that, in the low temperature regime, the scaling for the heating of the background material has a much stronger dependence on the key empirical parameters (laser intensity, pulse duration, etc.).

  2. Heat shock proteins as a target for phylogenetic analysis of Homalodisca vitripennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of genomic data from the glassy-winged sharpshooter has identified a set of heat shock proteins which may be used to further the understanding of leafhopper biology and genetics. The glassy-winged sharpshooter, GWSS, Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae), is the major ...

  3. Transmission grating streaked spectrometer for the diagnosis of soft x-ray emission from ultrahigh intensity laser heated targets

    SciTech Connect

    Eagleton, R.T.; James, S.F.

    2004-10-01

    A free-standing gold transmission grating with a period of 5000 A has been coupled to a soft x-ray sensitive streak camera with a limiting temporal resolution of 10 ps. The streak camera is equipped with a caesium iodide transmission photocathode and observations have been made in the 10-100 A regime. For a small source (200 {mu}m diameter) the spectral resolution is predicted to be around 2.5 A. This has been confirmed by examination of the Lyman-{alpha} line in hydrogen-like laser heated boron. A recorded linewidth of 2.44 A is demonstrated. The instrument has been used to diagnose the soft x-ray emission from a plastic (CH) foil target heated by an ultra-intense (2x10{sup 20} W cm{sup -2}) laser pulse.

  4. Transmission grating streaked spectrometer for the diagnosis of soft x-ray emission from ultrahigh intensity laser heated targets

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; James, S. F.

    2004-10-01

    A free-standing gold transmission grating with a period of 5000 Å has been coupled to a soft x-ray sensitive streak camera with a limiting temporal resolution of 10 ps. The streak camera is equipped with a caesium iodide transmission photocathode and observations have been made in the 10-100 Å regime. For a small source (200 μm diameter) the spectral resolution is predicted to be around 2.5 Å. This has been confirmed by examination of the Lyman-α line in hydrogen-like laser heated boron. A recorded linewidth of 2.44 Å is demonstrated. The instrument has been used to diagnose the soft x-ray emission from a plastic (CH) foil target heated by an ultra-intense (2×1020 W cm-2) laser pulse.

  5. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  6. Experience with a double-compensating beam calorimeter

    SciTech Connect

    Jarmie, N.; Brown, R.E.; Hardekopf, R.A.; Martinez, R.

    1982-01-01

    In an experiment to measure the D(t,..cap alpha..)n cross section at beam energies of 10 to 120 keV, we have developed a double-compensating beam calorimeter, based on a Swiss design to measure the partical beam intensity. A Faraday cup is not useful because of considerable charge exchange in the target gas at such low beam energies. We calibrated the calorimeter both with 10- and 3-MeV protons (comparing with a Faraday-cup measurement of the beam flux) and with the heat generated in a precision resistor. Both methods agree and give a calibration accurate to +- 0.08% over a range of 10 to 800 mW beam power. Beam powers as low as 5 mW may be used, but with less accuracy. The beam energy must be known in order to calculate the particle intensity. Some difficulties with and peculiarities of the device are discussed.

  7. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    NASA Astrophysics Data System (ADS)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  8. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    PubMed

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  9. Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice

    PubMed Central

    Liu, Qing; Yang, Tifeng; Yu, Ting; Zhang, Shaohong; Mao, Xingxue; Zhao, Junliang; Wang, Xiaofei; Dong, Jingfang; Liu, Bin

    2017-01-01

    Although, microRNAs (miRNAs) have been reported to be associated with heat tolerance at the seedling stage in rice, their involvement in heat tolerance at the flowering stage is still unknown. In this study, small RNA profiling was conducted in a heat-tolerant variety Gan-Xiang-Nuo (GXN) and a heat-sensitive variety Hua-Jing-Xian-74 (HJX), respectively. Totally, 102 miRNAs were differentially expressed (DE) under heat stress. Compared to HJX, GXN had more DE miRNAs and its DE miRNAs changed earlier under heat stress. Plant Ontology (PO) analysis of the target genes revealed that many DE miRNAs were involved in flower development. As a parallel experiment, QTL mapping was also conducted and four QTLs for heat tolerance at the flowering stage were identified using chromosome single-segment substitution lines derived from GXN and HJX. Further, through integrating analysis of DE miRNAs with QTLs, we identified 8 target genes corresponding to 26 miRNAs within the four QTL regions. Some meaningful target genes such as LOC_Os12g42400, SGT1, and pectinesterase were within the QTL regions. The negative correlation between miR169r-5p and its target gene LOC_Os12g42400 was confirmed under heat stress, and overexpression of miR169r-5p enhanced heat tolerance at flowering stage in rice. Our results demonstrate that the integrated analysis of genome-wide miRNA profiling with QTL mapping can facilitate identification of miRNAs and their target genes associated with the target traits and the limited candidates identified in this study offer an important source for further functional analysis and molecular breeding for heat tolerance in rice. PMID:28174587

  10. Comparison of measured electron density rise and calculated neutral beam particle deposition in the TFTR tokamak

    SciTech Connect

    Park, H.; Budny, R.; McCune, D.; Taylor, G.; Zarnstorff, M.C. . Plasma Physics Lab.); Barnes, C.W. )

    1991-12-01

    The initial rate of rise of the central electron density during {approximately}100 keV deuterium neutral beam injection is found to agree well with calculations of the beam deposition rate. The best agreement is with beam deposition calculations using older tabulations of the atomic cross-sections; the effects of using new tabulations or including multi-step ionization processes appear to approximately cancel. The neutral-beam deposition profile is a strong function of both the magnitude and the shape of the target plasma density. Peaked heating profiles can be achieved at high target densities only from peaked target density profiles. 15 refs., 4 figs.

  11. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  12. Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response

    PubMed Central

    Truttmann, Matthias C.; Zheng, Xu; Hanke, Leo; Damon, Jadyn R.; Grootveld, Monique; Krakowiak, Joanna; Pincus, David; Ploegh, Hidde L.

    2017-01-01

    Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes—huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively—in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum. PMID:28031489

  13. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  14. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  15. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  16. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  17. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells.

    PubMed

    Morita, Rena; Nishizawa, Satoshi; Torigoe, Toshihiko; Takahashi, Akari; Tamura, Yasuaki; Tsukahara, Tomohide; Kanaseki, Takayuki; Sokolovskaya, Alice; Kochin, Vitaly; Kondo, Toru; Hashino, Satoshi; Asaka, Masahiro; Hara, Isao; Hirohashi, Yoshihiko; Sato, Noriyuki

    2014-04-01

    The aim of the present study was to establish cancer stem-like cell/cancer-initiating cell (CSC/CIC)-targeting immunotherapy. The CSC/CIC are thought to be essential for tumor maintenance, recurrence and distant metastasis. Therefore they are reasonable targets for cancer therapy. In the present study, we found that a heat shock protein (HSP) 40 family member, DnaJ (Hsp40) homolog, subfamily B, member 8 (DNAJB8), is preferentially expressed in CSC/CIC derived from colorectal cancer (CRC) cells rather than in non-CSC/CIC. Overexpression of DNAJB8 enhanced the expression of stem cell markers and tumorigenicity, indicating that DNAJB8 has a role in CRC CSC/CIC. A DNAJB8-specific cytotoxic T lymphocyte (CTL) response could be induced by a DNAJB8-derived antigenic peptide. A CTL clone specific for DNAJB8 peptide showed higher killing activity to CRC CSC/CIC compared with non-CSC/CIC, and CTL adoptive transfer into CRC CSC/CIC showed an antitumor effect in vivo. Taken together, the results indicate that DNAJB8 is expressed and has role in CRC CSC/CIC and that DNAJB8 is a novel target of CRC CSC/CIC-targeting immunotherapy.

  18. Transfer vs. Breakup in the interaction of the 7Be Radioactive Ion Beam with a 58Ni target at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Fierro, N.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2014-03-01

    We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBA)and Continuum Discretized Coupled Channel (CDCC) calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.

  19. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  20. Production of multi-kilovolt x-ray from laser-heated targets

    SciTech Connect

    Back, C.A.; Grum, J.; Decker, C.D.; Davis, J.L.; Landen, O.L.; Suter, L.J.; Wallace, R.

    1997-07-01

    Experiments to develop high photon energy x-ray sources were carried out on the Nova laser. Ten laser beams delivered approximately 39 kJ of energy in 2 ns into a Be cylinder filled with Xe gas. The conversion efficiency into x-ray {lt} 4 keV was measured to be 5-15%, which is the highest measured in this photon regime for laser-produced plasmas. The temporal dependence of the x-ray emission indicates that the bulk of the emission is emitted in the first half of the 2 ns pulse. A set of diagnostics were fielded to image the volume in emission as well as provide spectra to measure conversion efficiency.