Sample records for beam line facility

  1. Recent Upgrades at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Rominsky, Mandy

    2016-03-01

    The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.

  2. The Fundamental Neutron Physics Facilities at NIST.

    PubMed

    Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.

  3. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  4. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  5. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  6. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  7. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  8. Operating experience with existing light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, M.Q.

    It is instructive to consider what an explosive growth there has been in the development of light sources using synchrotron radiation. This is well illustrated by the list of facilities given in Table I. In many cases, synchrotron light facilities have been obtained by tacking on parasitic beam lines to rings that were built for high energy physics. Of the twenty-three facilities in this table, however, eleven were built explicitely for this synchrotron radiation. Another seven have by now been converted for use as dedicated facilities leaving only five that share time with high energy physics. These five parasitically operatedmore » facilities are still among our best sources of hard x-rays, however, and their importance to the fields of science where these x-rays are needed must be emphasized. While the number of facilities in this table is impressive, it is even more impressive to add up the total number of user beam lines. Most of these rings are absolutely surrounded by beam lines and finding real estate on the experimental floor of one of these facilities for adding a new experiment looks about as practical as adding a farm in the middle of Manhattan. Nonetheless, the managers of these rings seem to have an attitude of ''always room for one more'' and new experimental beam lines do appear. This situation is necessary because the demand for beam time has exploded at an even faster rate than the development of the facilities. The field is not only growing, it can be expected to continue to grow for some time. Some of the explicit plans for future development will be discussed in the companion paper by Lee Teng.« less

  9. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  10. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  11. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  12. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  13. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  14. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  15. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  16. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  17. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  18. Beam line BL11 for LIGA process at the NewSUBARU

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2001-07-01

    A beam line BL11 is constructed for exposure Hard X-ray Lithography (HXL) in the LIGA (German acronym for Lithographite Galvanoformung and Abformung) process at the synchrotron radiation (SR) facility NewSUBARU of the Laboratory of Advanced Science and Technology for Industry (LASTI) in Himeji Institute of Technology (HIT). This beam line was designed by the criteria; photon energy range 4-6 keV, a beam spot size on the exposure stage ⩾60×5 mm 2, a density of total irradiated photons ⩾10 11 photons/cm 2. The PMMA sheet etching was successfully demonstrated by using the output beam. We conclude that this beam line performs sufficiently well to study the exposure of HXL in the LIGA process.

  19. The TRIUMF nuclear structure program and TIGRESS

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.

    2007-08-01

    The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.

  20. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  1. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  2. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  3. An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.

    1998-03-01

    External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.

  4. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  5. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  6. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  7. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  8. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  9. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  10. A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.

    2004-06-01

    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.

  11. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    NASA Astrophysics Data System (ADS)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  12. A proton irradiation test facility for space research in Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  13. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  14. Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.

    2018-04-01

    The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.

  15. The Imaging and Medical Beam Line at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less

  16. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  17. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  18. Synchrotron radiation calibration of the EUVE variable line-spaced diffraction gratings at the NBS SURF II facility

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.

    1988-01-01

    The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.

  19. The SPES surface ionization source

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; D'Agostini, F.; Monetti, A.; Andrighetto, A.

    2017-09-01

    Ion sources and target systems play a crucial role in isotope separation on line facilities, determining the main characteristics of the radioactive ion beams available for experiments. In the context of the selective production of exotic species (SPES) facility, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced by the 238U fissions are delivered to the 1+ ion source by means of a tubular transfer line. Here they can be ionized and subsequently accelerated toward the experimental areas. In this work, the characterization of the surface ionization source currently adopted for the SPES facility is presented, taking as a reference ionization efficiency and transversal emittance measurements. The effects of long term operation at high temperature are also illustrated and discussed.

  20. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  1. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  2. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introducedmore » briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.« less

  3. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  4. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  5. Conceptual design of BNCT facility based on the TRR medical room

    NASA Astrophysics Data System (ADS)

    Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.

    2017-10-01

    This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.

  6. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  7. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  8. A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.

    2018-03-01

    We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.

  9. Development of a collinear laser spectrometer facility at VECC: First test result

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  10. On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Rappoldi, A.

    2013-06-01

    On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.

  11. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less

  12. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  13. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  14. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  15. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  16. Status of the Proton Therapy Project at IUCF and the Midwest Proton Radiotherapy Institute

    NASA Astrophysics Data System (ADS)

    Klein, Susan B.

    2003-08-01

    The first proton therapy patient was successfully treated for astrocytoma using a modified nuclear experimentation beam line and in-house treatment planning in 1993. In 1998, IUCF constructed an eye treatment clinic, and conducted a phase III clinical trial investigating proton radiation treatment of AMD. Treatment was planned using Eyeplan modified to match the IUCF beam characteristics. MPRI was conceptualized in 1996 by a consortium of physicians and physicists. Reconfiguration began in 2000; construction of the achromatic trunk line began in 2001, followed by manufacture of 4 energy selection lines and two fixed horizontal beam treatment lines. Two isocentric, rotational gantries will be installed following completion of the horizontal beam lines. A fifth line will supply the full-time radiation effects research station. Standard proton delivery out of the main stage is specified at 500 nA of 205 MeV. Clinic construction began in April, 2002 and will be completed by mid-December. Design, construction and operation of these proton facilities have been accomplished by the proton therapy group at IUCF.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, T.M.

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildingsmore » and equipment) and the environment. 33 refs., 18 figs., 2 tabs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to crossmore » section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.« less

  19. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  20. Acquisition and Initial Analysis of H+- and H--Beam Centroid Jitter at LANSCE

    NASA Astrophysics Data System (ADS)

    Gilpatrick, J. D.; Bitteker, L.; Gulley, M. S.; Kerstiens, D.; Oothoudt, M.; Pillai, C.; Power, J.; Shelley, F.

    2006-11-01

    During the 2005 Los Alamos Neutron Science Center (LANSCE) beam runs, beam current and centroid-jitter data were observed, acquired, analyzed, and documented for both the LANSCE H+ and H- beams. These data were acquired using three beam position monitors (BPMs) from the 100-MeV Isotope Production Facility (IPF) beam line and three BPMs from the Switchyard transport line at the end of the LANSCE 800-MeV linac. The two types of data acquired, intermacropulse and intramacropulse, were analyzed for statistical and frequency characteristics as well as various other correlations including comparing their phase-space like characteristics in a coordinate system of transverse angle versus transverse position. This paper will briefly describe the measurements required to acquire these data, the initial analysis of these jitter data, and some interesting dilemmas these data presented.

  1. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  2. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  3. WE-H-BRA-06: Experimental Investigation of RBE for Lung Cancer Cell Lines as a Function of Dose and LET in Proton, Helium and Carbon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, D; Titt, U; Bronk, L

    2016-06-15

    Purpose: Investigate and quantify the effect of dose and LET on the RBE of protons, helium and carbon ions. Methods: High throughput, high accuracy experimental setups were custom designed to investigate the Relative Biological Effectiveness (RBE) dependence on the dose and Linear Energy Transfer (LET) values for proton, helium and carbon ion beams. The experiment was conducted at the HIT facility in collaboration with the DKFZ in Heidelberg/Germany. Clonogenic assays of two human lung cancer cell lines, H460 and H1437, were investigated in this study. γH2AX foci staining on the H460 cell line was also undertaken to facilitate the studymore » of differential DNA double-strand break induction and repair between low-design available at the HIT facility. Specific points along the Bragg curve corresponding to well-defined doses and LET values were chosen by appropriate selection of the pre-absorber thicknesses. With a setup design for horizontal beam lines we were able to minimize ion scattering in the cell plate, resulting in narrower energy spectra and hence LET distributions in the Bragg peak and in the distal falloff regions, compared to the earlier experiments. Results: Approximately 16,000 samples of cancer cells were irradiated during 23 hours of beam time. The preliminary results of the survival curves for both cell lines show a distinct dependence on LET for a given dose with decreased survival fractions at increasing LET values, encountered at the Bragg peak and in the distal falloff. Conclusion: Our preliminary findings are indicative of the importance of novel variable-RBE models for proton therapy and provide insight into the RBE of heavy ions for possible future heavy ion therapy facilities in the US. Funding support: SINF 2015/16.« less

  4. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  5. Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew

    2016-06-01

    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.

  6. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  7. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  8. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, B R; Harris, J R

    2011-03-07

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam linemore » operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.« less

  9. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    NASA Astrophysics Data System (ADS)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  10. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-07-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  11. J-PARC Muon Facility, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Koda, Akihiro; Strasser, Patrick; Kojima, Kenji M.; Fujimori, Hiroshi; Makimura, Shunsuke; Ikedo, Yutaka; Kobayashi, Yasushi; Nakamura, Jumpei; Oishi, Yu; Takeshita, Soshi; Adachi, Taihei; Datt Pant, Amba; Okabe, Hirotaka; Matoba, Shiro; Tampo, Motobobu; Hiraishi, Masatoshi; Hamada, Koji; Doiuchi, Shougo; Higemoto, Wataru; Ito, Takashi U.; Kadono, Ryosuke

    At J-PARC MUSE (Muon Science Establishment), one graphite target was installed in the proton beam line on the way to the neutron source, from which four sets of the secondary lines were designed to be extracted and extended into two experimental halls (toward the west wing, one decay-surface muon channel (D-Line) and the axial focusing muon channel (U-Line), and towards the east wing one surface muon channel (S-Line) and one fundamental muon channel (H-Line). MUSE has been suffering from many troubles such as the giant earthquake, fire, twice water leakage from the neutron target. Although the proton beam intensity was restricted lower than 200 kW, we have been having a rather stable operation at the MUSE since February, 2016. In this paper, the latest situation on the MUSE is reported.

  12. Status of the Beam Thermalization Area at the NSCL

    NASA Astrophysics Data System (ADS)

    Cooper, Kortney; Barquest, Bradley; Morrissey, David; Rodriguez, Jose Alberto; Schwarz, Stefan; Sumithrarachchi, Chandana; Kwarsick, Jeff; Savard, Guy

    2013-10-01

    Beam thermalization is a necessary process for the production of low-energy ion beams at projectile fragmentation facilities. Present beam thermalization techniques rely on passing high-energy ion beams through solid degraders followed by a gas cell where the remaining kinetic energy is dissipated through collisions with buffer gas atoms. Recently, the National Superconducting Cyclotron Laboratory (NSCL) upgraded its thermalization area with the implementation of new large acceptance beam lines and a large RF-gas catcher constructed by Argonne National Lab (ANL). Two high-energy beam lines were commissioned along with the installation and commissioning of this new device in late 2012. Low-energy radioactive ion beams have been successfully delivered to the Electron Beam Ion Trap (EBIT) charge breeder for the ReA3 reaccelerator, the SuN detector, the Low Energy Beam Ion Trap (LEBIT) penning trap, and the Beam Cooler and Laser Spectroscopy (BeCoLa) collinear laser beamline. Construction of a gas-filled reverse cyclotron dubbed the CycStopper is also underway. The status of the beam thermalization area will be presented and the overall efficiency of the system will be discussed.

  13. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  14. Residual Field Correction of Pulsed Bending Magnet

    NASA Astrophysics Data System (ADS)

    Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei

    The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.

  15. Development of Thomson scattering system on Shenguang-III prototype laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  16. Transmission calculation and intensity suppression for a proton therapy system

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Yang, Jun; Qin, Bin; Liang, ZhiKai; Chen, Qushan; Liu, Kaifeng; Li, Dong; Fan, Mingwu

    2018-02-01

    A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250 MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). In this paper we report the main design features of the beam line in HUST-PTF project. The energy selection system (ESS) for energy modulation is discussed in detail, including the collimators, momentum slit and transmission calculation. Due to significant difference among the transmissions of ESS for different energies, the intensity suppression scheme by defocusing beam at high energies on collimators in the beam line is proposed and discussed. Finally, the ratios of beam intensities between low and high energies are expected to be controlled within 10 to meet the clinical requirement, and the beam optics of each energy step after intensity suppression is studied respectively.

  17. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  18. Status of the New Surface Muon Beamline at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Strasser, P.; Koda, A.; Kojima, K. M.; Ito, T. U.; Fujimori, H.; Irie, Y.; Aoki, M.; Nakatsugawa, Y.; Higemoto, W.; Hiraishi, M.; Li, H.; Okabe, H.; Takeshita, S.; Shimomura, K.; Kawamura, N.; Kadono, R.; Miyake, Y.

    A new surface muon beamline (S-line) dedicated to condensed matter physics experiments is being constructed at the Muon Science Facility (MUSE) located in the Materials and Life Science Facility (MLF) building at J-PARC. This beamline designed to provide high-intensity surface muons with a momentum of 28 MeV/c will comprise four beam legs and four experimental areas that will share the double-pulsed muon beam. The key feature is a new kicker system comprising two electric kickers to deliver the muon beam to the four experimental areas ensuring an optimum and seamless sharing of the double-pulsed muon beam. At present, only one experimental area (S1) has been completed and is now open to the user program since February 2017. An overview of the different aspects of this new surface muon beamline and the present status of the beam commissioning are presented.

  19. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE PAGES

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.; ...

    2018-02-23

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  20. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  1. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  2. SLAC Phone Directory: Search Form

    Science.gov Websites

    Facilities LCLS Hard X-Ray LCLS IT & Networking LCLS IT Photon Systems LCLS Instrumentation Dev LCLS Delivery Dept LCLS Science Research & DevDiv LCLS Soft X-Ray LCLS Technical Support LCLS User Beam Line Ops Sup SSRL MSD Hard X-rays SSRL MSD Soft X-rays SSRL MSDBeam Line Elec SSRL MSDBeam Line

  3. Proton Therapy Facility Planning From a Clinical and Operational Model.

    PubMed

    Das, Indra J; Moskvin, Vadim P; Zhao, Qingya; Cheng, Chee-Wai; Johnstone, Peter A

    2015-10-01

    This paper provides a model for planning a new proton therapy center based on clinical data, referral pattern, beam utilization and technical considerations. The patient-specific data for the depth of targets from skin in each beam angle were reviewed at our center providing megavoltage photon external beam and proton beam therapy respectively. Further, data on insurance providers, disease sites, treatment depths, snout size and the beam angle utilization from the patients treated at our proton facility were collected and analyzed for their utilization and their impact on the facility cost. The most common disease sites treated at our center are head and neck, brain, sarcoma and pediatric malignancies. From this analysis, it is shown that the tumor depth from skin surface has a bimodal distribution (peak at 12 and 26 cm) that has significant impact on the maximum proton energy, requiring the energy in the range of 130-230 MeV. The choice of beam angles also showed a distinct pattern: mainly at 90° and 270°; this indicates that the number of gantries may be minimized. Snout usage data showed that 70% of the patients are treated with 10 cm snouts. The cost of proton beam therapy depends largely on the type of machine, maximum beam energy and the choice of gantry versus fixed beam line. Our study indicates that for a 4-room center, only two gantry rooms could be needed at the present pattern of the patient cohorts, thus significantly reducing the initial capital cost. In the USA, 95% and 100% of patients can be treated with 200 and 230 MeV proton beam respectively. Use of multi-leaf collimators and pencil beam scanning may further reduce the operational cost of the facility. © The Author(s) 2014.

  4. The design of the new IR beamline at ASTRID2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheshen, E-mail: zsli@phys.au.dk; Hoffmann, Søren Vrønning; Rieger, Peter

    2016-07-27

    We report on the successful design, installation and commission of the new AU-IR beam line at ASTRID2. ASTRID2 is the new synchrotron facility running at top-up mode and at 580 MeV, which is optimized for low energies at Aarhus University, Denmark. The highlight of the beam line is that it is simple, low cost and reliable. The optics system consists of two gold-coated mirrors only and is as close as 1.367 m away from an entrance edge of a bending magnet. This allows a horizontal acceptance angle of 35 mrad and a vertical acceptance of 28 mrad. The source pointmore » is chosen to be near the leading edge of the bending magnet where the electron beam enters the dipole field. This allows us to use the strong edge radiation from the bending magnet together with the bending radiation. The beam line is equipped with a Vertex{sup TM} 70v FTIR spectrometer from Bruker{sup TM}. The beam line design and choice of the “rock-solid” optical design version of spectrometer ensure a good reliability to beam drift and vibrations. Currently, the system is running at mid-range IR. Further upgrades have been planned.« less

  5. The FERMIatElettra FEL Photon Transport System

    NASA Astrophysics Data System (ADS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-06-01

    The FERMI@Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI@Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  6. VLTI-PRIMA fringe tracking testbed

    NASA Astrophysics Data System (ADS)

    Abuter, Roberto; Rabien, Sebastian; Eisenhauer, Frank; Sahlmann, Johannes; Di Lieto, Nicola; Haug, Marcus; Wallander, Anders; Lévêque, Samuel; Ménardi, Serge; Delplancke, Françoise; Schuhler, Nicolas; Kellner, Stefan; Frahm, Robert

    2006-06-01

    One of the key components of the planned VLTI dual feed facility PRIMA is the Fringe Sensor Unit (FSU). Its basic function is the instantaneous measurement of the Optical Path Difference (OPD) between two beams. The FSU acts as the sensor for a complex control system involving optical delay lines and laser metrology with the aim of removing any OPD introduced by the atmosphere and the beam relay. We have initiated a cooperation between ESO and MPE with the purpose of systematically testing this Fringe Tracking Control System in a laboratory environment. This testbed facility is being built at MPE laboratories with the aim to simulate the VLTI and includes FSUs, OPD controller, metrology and in-house built delay lines. In this article we describe this testbed in detail, including the environmental conditions in the laboratory, and present the results of the testbed subsystem characterisation.

  7. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  8. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  9. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  10. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  11. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; ...

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  13. Definition of Capabilities Needed for a Single Event Effects Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X.

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options formore » SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 10 6 are applicable for component testing, whereas for systems testing acceleration factors of 10 4 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 10 2 - 10 4 n/cm²/s for systems testing and from 10 4 - 10 7 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively doubling overall test capacity per HETS operating hour. Using about 1 kilowatt (kW) of proton power extracted from the accelerator before injection in the accumulator ring, its operation would be unnoticeable by neutron scattering users at the SNS target station. The H beam laser stripping technique would allow for control of beam power on the HETS target independent from power delivered to the SNS. Large systems with frontal areas of up to 1 x 2 m² could be accommodated with integral high-energy flux values (above 10 megaelectron-volt, or MeV) to at most 10 4 n/cm²/s; components could also be tested with flux levels to at most 10 7 n/cm²/s on beam sizes of up to 0.2 x 0.2 m². Selectable moderating material and neutron filters would allow tailoring of the neutron spectrum to user demands; charged particle deflectors could be switched to allow or deflect protons, pions, and muons. It is estimated that HETS would take 5 years to complete after award of contract, including engineering design and construction. Commissioning would take at least another 6 months. Interference with SNS principal operations was not considered in the construction time estimate; connection of the proton transport line and tunnel from the accelerator high energy beam transport (HEBT) and construction around existing site utilities would require careful planning and coordination with beam operations at the SNS. A high-energy (HE) neutron test facility using an available beam line on the SNS target station is a technically and financially attractive option. Inspired by the new ChipIR instrument on the ISIS TS 2 spallation source in the UK, a similar facility could be placed on an unused beam line in the SNS instrument hall [e.g., on beam line 8 (both A and B channels would be needed) or on beam line 10]. The performance would approach that of an HETS (~80%), but it would be operationally more limited, with only a single user at a time. Space is more limited, so the maximum system size would be about half of that in an HETS. Flexibility to tailor the spectrum would be somewhat more limited. While this concept was not as fully developed and characterized, preliminary work indicates very high HE flux levels should be possible, with ample thermal neutrons as well. Flux control would be more difficult than at HETS because proton power on target be whatever the SNS was operating at for neutron scattering. Neutron attenuation devices would have to be employed with as-yet undetermined control resolution. However, no new buildings would be needed, and the necessary utilities are already present in the SNS Experiment Hall. The estimated cost for a beam line option is around $15 million; the time to complete would be 3 years after award of contract, plus at least 6 months for commissioning. Interference of construction activities with SNS operations should be negligible. This option would require negotiation with the Department of Energy Basic Energy Sciences (BES) office -- the primary stakeholder of SNS -- for an application outside the usual scope of neutron scattering sciences. Furthermore, these presently open beam lines are highly desirable locations for proposed neutron scattering instruments and obtaining one of them for an SEE test facility will come only with persuasive and timely arguments to SNS leadership and the DOE BES. The third option is a tunnel extension/target cave facility providing the most basic system-level irradiation capability with minimal flexibility. Again not as well developed a concept as HETS, it would use a laser-stripping technique like an HETS, redirecting protons to a tunnel similar to the initial HETS proton transport tunnel. Indeed, this concept is intended to be upgradable to a full HETS facility. Only a small fraction of a watt of proton power would be used in this basic configuration, though. An uncooled target and primitive shielding arrangement would provide beam on modestly sized systems that must be placed in close proximity to the target. The neutron fluence would be less uniform over the system than with the HETS or the beam line option. A data acquisition room and support area would be located on the ground level; access to the target cave would be via elevator and/or stairway. As a result of the required excavation, new tunnel construction, shielding, data acquisition building, utilities, and other items, the estimated cost is $30 million. The time to complete is expected be more than 3 years; here again construction interference with SNS operations has not been accounted for, but it could have a significant impact.« less

  14. Design study of beam transport lines for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; Roy, G.; Schuh, S.

    2017-09-01

    The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.

  15. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  16. X-ray Spectroscopy of E2 and M3 Transitions in Ni-like W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, J; Beiersdorfer, P; Gu, M F

    2009-11-09

    The electric quadrupole (E2) and magnetic octupole (M3) ground state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the Livermore electron beam ion trap facility. The lines fall in the soft x-ray region near 7.93 {angstrom} and were originally observed as an unresolved feature in tokamak plasmas. Using flat ADP and quartz crystals the wavelengths, intensities, and polarizations of the two lines have been measured for various electron beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  17. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  19. Overview of the ISOL facility for the RISP

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.

    2015-02-01

    The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.

  20. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  1. Quantitative Single-Ion Irradiation by ASIPP Microbeam

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Fei; Chen, Lian-Yun; Hu, Zhi-Wen; Wang, Xiao-Hua; Zhang, Jun; Li, Jun; Chen, Bin; Hu, Su-Hua; Shi, Zhong-Tao; Wu, Yu; Xu, Ming-Liang; Wu, Li-Jun; Wang, Shao-Hu; Yu, Zeng-Liang

    2004-05-01

    A single-ion microbeam facility has been constructed by the microbeam research group in ASIPP (Institute of Plasma Physics, Chinese Academy of Science). The system was designed to deliver defined numbers of hydrogen ions produced by a van de Graaff accelerator, covering an energy range from 200 keV to 3 MeV, into living cells (5 mum-20 mum diameter) growing in culture on thin plastic films. The beam is collimated by a 1- mum inner diameter HPLC (high performance liquid chromatography) capillary, which forms the micron-dimensional beam-line exit. A microbeam collimator, a scintillation ion counting system and a fast beam shutter, which constitute a precise dosage measuring and controlling system, jointly perform quantitative single-ion irradiation. With this facility, we can presently acquire ion-hitting efficiency close to 95%.

  2. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  3. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    PubMed

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  4. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    NASA Astrophysics Data System (ADS)

    Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A. P.; Cuttone, G.; Hadizadeh, M. H.; Mowlavi, A. A.; Raffaele, L.

    2016-01-01

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  5. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  6. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  7. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  8. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  9. X-ray spectroscopy of E2 and M3 transitions in Ni-like W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, J.; Beiersdorfer, P.; Gu, M. F.

    2010-01-15

    The electric quadrupole (E2) and magnetic octupole (M3) ground-state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the LLNL electron-beam ion trap facility. The lines fall in the soft x-ray region near 7.93 A and were originally observed as an unresolved feature in tokamak plasmas. Using flat ammonium dihydrogen phosphate and quartz crystals, the wavelengths, intensities, and polarizations of the two lines have been measured for various electron-beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).

  10. A new mask exposure and analysis facility

    NASA Astrophysics Data System (ADS)

    te Sligte, Edwin; Koster, Norbert; Deutz, Alex; Staring, Wilbert

    2014-10-01

    The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at high EUV powers and intensities, and capable of exposing and analyzing EUV masks. The proposed system architecture is similar to the EBL system which has been operated jointly by TNO and Carl Zeiss SMT since 2005. EBL2 contains an EUV Beam Line, in which samples can be exposed to EUV irradiation in a controlled environment. Attached to this Beam Line is an XPS system, which can be reached from the Beam Line via an in-vacuum transfer system. This enables surface analysis of exposed masks without breaking vacuum. Automated handling with dual pods is foreseen so that exposed EUV masks will still be usable in EUV lithography tools to assess the imaging impact of the exposure. Compared to the existing system, large improvements in EUV power, intensity, reliability, and flexibility are proposed. Also, in-situ measurements by e.g. ellipsometry is foreseen for real time monitoring of the sample condition. The system shall be equipped with additional ports for EUVR or other analysis tools. This unique facility will be open for external customers and other research groups.

  11. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  12. HFBR handbook. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, S.; Rorer, D.C.; Kuper, H.

    1983-08-01

    This manual is intended primarily to acquaint outside users and new Brookhaven staff members with the research facilities available at the HFBR. In addition to describing the beam lines and major instruments, general information is also provided on the reactor and on services available at the Laboratory.

  13. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDONIAN,G.BABZIEN,MLBEN-ZVI,I.YAKIMENKO,Y.ET AL.

    VISA II is the follow-up project to the successful Visible to Infrared SASE Amplifier (VISA) experiment at the Accelerator Test Facility (ATF) in Brookhaven National Lab (BNL). This paper will report the motivation for and status of the two main experiments associated with the VISA II program. One goal of VISA II is to perform an experimental study of the physics of a chirped beam SASE FEL at the upgraded facilities of the ATF. This requires a linearization of the transport line to preserve energy chirping of the electron beam at injection. The other planned project is a strong bunchmore » compression experiment, where the electron bunch is compressed in the chicane, and the dispersive beamline transport, allowing studies of deep saturation.« less

  15. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  16. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  17. Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaniol, B.; Pasqualotto, R.; Barbisan, M.

    2012-04-15

    A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, accordingmore » to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.« less

  18. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P.more » Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.« less

  19. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  20. Future carbon beams at SPIRAL1 facility: which method is the most efficient?

    PubMed

    Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  1. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE PAGES

    Liu, Y.; Rakhman, A.; Menshov, A.; ...

    2016-12-01

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  2. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rakhman, A.; Menshov, A.

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sairam, T., E-mail: sairamtvv@gmail.com; Bhatt, Pragya; Safvan, C. P.

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  4. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  5. Performance of a superconducting magnet system operated in the Super Omega Muon beam line at J-PARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makida, Yasuhiro; Ikedo, Yutaka; Ogitsu, Toru

    A superconducting magnet system, which is composed of an 8 m long solenoid for transportation and 12 short solenoids for focusing, has been developed for Muon Science Establishment facility of J-PARC. The transport solenoid is composed of a 6 m straight section connected to a 45 degree curved section at each end. Muons of various momenta and of both electric charges are transported through the solenoid inner bore with an effective diameter of 0.3 m, where 2 T magnetic field is induced. There are 12 focusing solenoids with an effective bore diameter of 0.6 m and a length of 0.35more » m arranged on a straight line at suitable intervals. The maximum central field of each focusing solenoid is 0.66 T. All solenoid coils are cooled by GM cryocoolers through their own conductions. The magnet system has been installed into the beam line in the summer of 2012, and its performance has been checked. Beam commissioning has been carried out since October 2012. During beam operation, temperature rise over 6 K in the transport solenoid due to a nuclear heating from the muon production target is observed at beam intensity of about 300 kW.« less

  6. Improvement Plans of Fermilab’s Proton Accelerator Complex

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-09-01

    The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  7. The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility

    NASA Astrophysics Data System (ADS)

    Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; McMaken, Bruce; Styles, John; Cox, James

    2003-08-01

    The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.

  8. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  9. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.; D'Agostini, F.

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  10. Applications of micro-SAXS/WAXS to study polymer fibers

    NASA Astrophysics Data System (ADS)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  11. Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, J; Beiersdorfer, P; Brown, G V

    2009-07-08

    The M-shell x-ray emission of highly charged tungsten ions has been investigated at the Livermore electron beam ion trap facility. Using the SuperEBIT electron beam ion trap and a NASA x-ray calorimeter array, transitions connecting the ground configurations in the 1500-3600 eV spectral range of zinc-like W{sup 44+} through cobalt-like W{sup 47+} have been measured. The measured spectra are compared with theoretical line positions and emissivities calculated using the FAC code.

  12. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning themmore » to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b 1 π → ω π +1 π -1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.« less

  13. Simulations of High Current NuMI Magnetic Horn Striplines at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipahi, Taylan; Biedron, Sandra; Hylen, James

    2016-06-01

    Both the NuMI (Neutrinos and the Main Injector) beam line, that has been providing intense neutrino beams for several Fermilab experiments (MINOS, MINERVA, NOVA), and the newly proposed LBNF (Long Baseline Neutrino Facility) beam line which plans to produce the highest power neutrino beam in the world for DUNE (the Deep Underground Neutrino Experiment) need pulsed magnetic horns to focus the mesons which decay to produce the neutrinos. The high-current horn and stripline design has been evolving as NuMI reconfigures for higher beam power and to meet the needs of the LBNF design. The CSU particle accelerator group has aidedmore » the neutrino physics experiments at Fermilab by producing EM simulations of magnetic horns and the required high-current striplines. In this paper, we present calculations, using the Poisson and ANSYS Maxwell 3D codes, of the EM interaction of the stripline plates of the NuMI horns at critical stress points. In addition, we give the electrical simulation results using the ANSYS Electric code. These results are being used to support the development of evolving horn stripline designs to handle increased electrical current and higher beam power for NuMI upgrades and for LBNF« less

  14. Status and Perspectives of Neutron Imaging Facilities

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Trtik, P.; Ridikas, D.

    The methodology and the application range of neutron imaging techniques have been significantly improved at numerous facilities worldwide in the last decades. This progress has been achieved by new detector systems, the setup of dedicated, optimized and flexible beam lines and the much better understanding of the complete imaging process thanks to complementary simulations. Furthermore, new applications and research topics were found and implemented. However, since the quality and the number of neutron imaging facilities depend much on the access to suitable beam ports, there is still an enormous potential to implement state-of-the-art neutron imaging techniques at many more facilities. On the one hand, there are prominent and powerful sources which do not intend/accept the implementation of neutron imaging techniques due to the priorities set for neutron scattering and irradiation techniques exclusively. On the other hand, there are modern and useful devices which remain under-utilized and have either not the capacity or not the know-how to develop attractive user programs and/or industrial partnerships. In this overview of the international status of neutron imaging facilities, we will specify details about the current situation.

  15. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui

    2015-05-01

    The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  16. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  17. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  18. Materials science education: ion beam modification and analysis of materials

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert; Muntele, Claudiu; Ila, Daryush

    2012-08-01

    The Center for Irradiation of Materials (CIM) at Alabama A&M University (http://cim.aamu.edu) was established in 1990 to serve the University in its research, education and services to the need of the local community and industry. CIM irradiation capabilities are oriented around two tandem-type ion accelerators with seven beam lines providing high-resolution Rutherford backscattering spectrometry, MeV focus ion beam, high-energy ion implantation and irradiation damage studies, particle-induced X-ray emission, particle-induced gamma emission and ion-induced nuclear reaction analysis in addition to fully automated ion channeling. One of the two tandem ion accelerators is designed to produce high-flux ion beam for MeV ion implantation and ion irradiation damage studies. The facility is well equipped with a variety of surface analysis systems, such as SEM, ESCA, as well as scanning micro-Raman analysis, UV-VIS Spectrometry, luminescence spectroscopy, thermal conductivity, electrical conductivity, IV/CV systems, mechanical test systems, AFM, FTIR, voltammetry analysis as well as low-energy implanters, ion beam-assisted deposition and MBE systems. In this presentation, we will demonstrate how the facility is used in material science education, as well as providing services to university, government and industry researches.

  19. X-Ray Crystallographic Studies on Acetylcholinesterase and on Its Interaction with Anticholinesterase Agents.

    DTIC Science & Technology

    1994-11-24

    complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo

  20. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  1. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Mustapha, B; Perry, A; Sharamentov, S I; Vondrasek, R C; Zinkann, G

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  2. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  3. Development of an EBIS charge breeder for the Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Son, Hyock-Jun; Park, Young-Ho; Kondrashev, Sergey; Kim, Jongwon; Lee, Bong Ju; Chung, Moses

    2017-10-01

    In Korea, a heavy ion accelerator facility called RAON is being designed to produce various rare isotopes for the Rare Isotope Science Project (RISP) (Jeong, 2016) [1], (Moon, 2014) [2]. This facility is designed to use both In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) techniques in order to produce a wide variety of RI beams for nuclear physics experiments. An Electron Beam Ion Source (EBIS) will be used for charge breeding of Rare Isotope (RI) beams in the ISOL system. The charge-to-mass ratio (q/A) of the RI beams after charge breeding is ≥1/4. The highly charged RI beams will be accelerated by a linac post-accelerator and delivered to a low energy (∼18 MeV/u) experimental hall or the IF system. The RAON EBIS will use a 3 A electron gun and a 6 T superconducting solenoid for high capacity, high efficiency, and short breeding time. In front of the charge breeder, an RFQ cooler-buncher will be used to deliver a bunched beam with small emittance to the EBIS charge breeder. The main design of the RAON EBIS has been carried out on the basis of several beam analyses and technical reviews. In this paper, current progress of the development of the RAON EBIS charge breeder will be presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Hansheng

    The ICF Program in China has made significant progress with multilabs' efforts in the past years. The eight-beam SG-II laser facility, upgraded from the two-beam SG-I facility, is nearly completed for 1.05 {mu}m light output and is about to be operated for experiments. Some benchmark experiments have been conducted for disk targets. Advanced diagnostic techniques, such as an x-ray microscope with a 7-{mu}m spatial resolution and x-ray framing cameras with a temporal resolution better than 65ps, have been developed. Lower energy pumping with prepulse technique for Ne-like Ti laser at 32.6nm has succeeded and shadowgraphy of a fine mesh hasmore » been demonstrated with the Ti laser beam. A national project, SG-III laser facility, has been proposed to produce 60 kJ blue light for target physics experiments and is being conceptually designed. New laser technology, including maltipass amplification, large aperture plasma electrode switches and laser glass with fewer platinum grains have been developed to meet the requirements of the SG-III Project. The Technical Integration Line (TIL) as a scientific prototype beamlet of SG-III will be first built in the next few years.« less

  5. Beam dynamics simulation of HEBT for the SSC-linac injector

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ni; Yuan, You-Jin; Xiao, Chen; He, Yuan; Wang, Zhi-Jun; Sheng, Li-Na

    2012-11-01

    The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u. As a part of the SSC-linac injector, the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code. The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system. The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration. The dispersion is eliminated absolutely in the HEBT. The space-charge effect calculated by the Track code is inconspicuous. According to the simulation, more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.

  6. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  7. Studies for aluminum photoionization in hot cavity for the selective production of exotic species projecta)

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Vasquez, J.; Tomaselli, A.; Grassi, D.; Biasetto, L.; Cavazza, A.; Corradetti, S.; Manzolaro, M.; Montano, J.; Andrighetto, A.; Prete, G.

    2012-02-01

    Selective production of exotic species (SPES) is an ISOL-based accelerator facility that will be built in the Legnaro INFN Laboratory (Italy), intended to provide an intense neutron-rich radioactive ion beams obtained by proton induced fission of an uranium carbide target. Beside this main target, a silicon carbide (SiC) target will the first to be used to deliver some p-rich beams. This target will validate also the functionality of the SPES facility with aluminum beam as result of hitting SiC target with protons. In the past off-line studies on laser photoionization of aluminum have performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro where, recently, a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. Results are promising to justify further studies with this technique, aiming a better characterization of the SPES ion extraction capability under laser photoionization.

  8. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  9. Instrument Design Optimization With Computational Methods

    NASA Astrophysics Data System (ADS)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5.5° to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.

  10. Instrument design optimization with computational methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Q weak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentummore » Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.« less

  11. Characterization of the NEPOMUC primary and remoderated positron beams at different energies

    NASA Astrophysics Data System (ADS)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.

    2016-08-01

    We report on the characterization of the positron beam provided at the open beam port of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ) Garching. The absolute positron flux of the primary beam at 400 eV and 1 keV kinetic energy and of the remoderated beam at 5, 12 and 22 eV were determined. Energy-dependent intensities in the range of (1 - 5) ·108e+ / s and (2 - 6) ·107e+ / s have been observed for the primary and remoderated beam, respectively. We attribute the significant losses for the primary beam, in comparison with the expected value, to the non-adiabatic positron guiding in the beam line. We also measured the longitudinal energy distribution of the remoderated beam, yielding an energy spread below 3.3 eV. The mean transverse energy of the remoderated beam, determined from measurements in different final magnetic fields, was found to be below 1.3 eV. These results are likely to apply to the NEPOMUC beam delivered to other user stations.

  12. Harmonic lasing in x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2012-08-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the parameter space, corresponding to the operating range of soft x-ray beam lines of x-ray FEL facilities (like SASE3 beam line of the European XFEL), harmonics can grow faster than the fundamental wavelength. This feature can be used in some experiments, but might also be an unwanted phenomenon, and we discuss possible measures to diminish it.

  13. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  14. Status of the ATF Damping Ring BPM Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briegel, C.; /Fermilab; Eddy, N.

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it'smore » finalization are presented.« less

  15. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  16. Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Shao, L.; Cline, D.; Ding, X.; Ho, Y. K.; Kong, Q.; Xu, J. J.; Pogorelsky, I.; Yakimenko, V.; Kusche, K.

    2013-02-01

    This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.

  17. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  18. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  19. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  20. A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF.

    PubMed

    Jayamanna, K; Wight, G; Gallop, D; Dube, R; Jovicic, V; Laforge, C; Marchetto, M; Leross, M; Louie, D; Laplante, R; Laxdal, R; McDonald, M; Wiebe, G J; Wang, V; Yan, F

    2010-02-01

    The Off-Line Ion Source (OLIS) [K. Jayamanna, D. Yuan, T. Kuo, M. MacDonald, P. Schmor, and G. Dutto, Rev. Sci. Instrum. 67, 1061 (1996); K. Jayamanna, Rev. Sci. Instrum. 79, 02711 (2008)] facility consists of a high voltage terminal containing a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source [K. Jayamanna and C. Vockenhuber, Rev. Sci. Instrum. 79, 02C712 (2008)], and an electrostatic switch that allows the selection of any one of the sources without mechanical intervention. These sources provide a variety of +1 beams up to mass 30 for Isotope Separator and ACcelerator (ISAC) [R. E. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003)] experiments, commissioning the accelerators, setting up the radioactive experiments, and for tuning the beam lines. The radio frequency quadrupole (RFQ) [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] injector accelerator is a constant velocity machine designed to accept only 2 keV/u and the source extraction energy is limited to 60 kV. Further stripping is then needed downstream of the RFQ to inject the beam into the drift tube linac [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] accelerator that requires A/q up to 6. Base on this constraints a multicharge ion source capable to deliver beams above mass 30 with A/q up to 6 was needed in order to reach full capability of the ISAC facility. A Supernanogan [C. Bieth et al., Nucleonika 48, S93 (2003)] multicharge ion source was then purchased from Pantechnik and was installed in the OLIS terminal. Commissioning and performance of the Supernanogan with some results such as emittance dependence of the charge states as well as charge state efficiencies are presented.

  1. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  2. The National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W.J.; Moses, E.; Warner, B.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  3. A cooler Penning trap for the TITAN mass measurement facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, U.; Kootte, B.; Good, M.

    The TITAN facility at TRIUMF makes use of highly charged ions, charge-bred in an electron beam ion trap, to carry out accurate mass measurements on radioactive isotopes. We report on our progress to develop a cooler Penning trap, CPET, which aims at reducing the energy spread of the ions to ≈ 1 eV/charge prior to injection into the mass measurement trap. In off-line mode, we can now trap electron plasmas for minutes, and we observe the damping of the m = 1 diocotron plasma mode within ≈ 2 s.

  4. Cancellation of coherent synchrotron radiation kicks with optics balance.

    PubMed

    Di Mitri, S; Cornacchia, M; Spampinati, S

    2013-01-04

    Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.

  5. SPS Beam Steering for LHC Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towardsmore » a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.« less

  6. Status of the ion sources developments for the Spiral2 project at GANILa)

    NASA Astrophysics Data System (ADS)

    Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.

    2012-02-01

    The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.

  7. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  8. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE PAGES

    Spielman, R. B.; Froula, D. H.; Brent, G.; ...

    2017-06-21

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  9. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, R. B.; Froula, D. H.; Brent, G.

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  10. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  11. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficienciesmore » of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.« less

  12. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies ofmore » both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.« less

  13. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    NASA Astrophysics Data System (ADS)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  14. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  15. Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1999-01-01

    We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.

  16. Accelerator performance analysis of the Fermilab Muon Campus

    DOE PAGES

    Stratakis, Diktys; Convery, Mary E.; Johnstone, Carol; ...

    2017-11-21

    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstreammore » beam line optics, as well as transport of muon polarization. Lastly, we finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.« less

  17. The external scanning proton microprobe of Firenze: A comprehensive description

    NASA Astrophysics Data System (ADS)

    Giuntini, L.; Massi, M.; Calusi, S.

    2007-06-01

    An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.

  18. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  19. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    PubMed Central

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly. PMID:28140790

  20. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  1. Diagnostic X-Multi-Axis Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C

    Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by aboutmore » 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.« less

  2. How to organize a neutron imaging user lab? 13 years of experience at PSI, CH

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Vontobel, P.; Frei, G.; Kuehne, G.; Kaestner, A.

    2011-09-01

    PSI has a relatively long tradition in neutron imaging since the first trials were done at its formerly existing research reactor SAPHIR with film methods. This reactor source was replaced after its shutdown in 1994 by the spallation neutron source SINQ in 1996, driven by the 590 MeV cyclotron for protons with presently up to 2.3 mA beam current. One of the first experimental devices at SINQ was the thermal neutron imaging facility NEUTRA, which was designed from scratch and has been the first device of its kind at a spallation source. Until now, NEUTRA has been successfully in use for many investigations in a wide range of studies covering fuel cell research, environmental behavior of plants, nuclear fuel inspection and the research on cultural heritage objects. It has been the host of PhD projects for students from all over Europe for years. In a previous meeting it has been offered as a European reference facility. Some of its features were really adapted to the layout of new installations. In 2004, it was possible to initiate the project of a second beam line at SINQ for imaging with cold neutrons. Previous studies have shown the potential of this option in order to broaden the user profile and to extend the scientific basis for neutron imaging. It was inaugurated with a workshop at PSI in 2005. The user service was started at the facility ICON in 2006. Beside the setup, installation and optimization of the facilities, the organization of the user program plays an important role. The two neutron imaging beam lines are equal installations at SINQ among the 14 scientific devices. Therefore, the user approach is organized via "calls for proposals", which are sent out each half year via the "Digital User Office (DUO)" (see http://duo.web.psi.ch). The evaluation of the proposals is done by the "Advisory Committee for Neutron Imaging (ACNI)" consisting of 6 external and PSI internal members. Further requests are given by industrial collaborations. This beam time allocation is handled more directly and in time in order to fulfill the companies' demands. Here, the confidentiality plays a more important role than in scientific studies that are done with the aim of a free publication. It has been possible to earn money regularly from the industrial projects in order to cover the salary cost of some positions within the NIAG group. The permanent improvement of the methodology and performance in neutron imaging is a third major activity of the NIAG team. Running projects in this direction are the permanent insert of a grating interferometry device, improved energy selection with the help of single graphite crystals and utilization of the beam line BOA at SINQ for the energy range between 4 and 15 Å.

  3. Deuteron injector for Peking University Neutron Imaging Facility projecta)

    NASA Astrophysics Data System (ADS)

    Ren, H. T.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y.; Chen, J. E.

    2012-02-01

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D+ ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A ϕ5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D+ beam that passed through the ϕ5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16π mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  4. View east northeast at Test Stand 'A' complex from road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  5. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  6. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  7. Development of fast-release solid catchers for rare isotopes

    NASA Astrophysics Data System (ADS)

    Nolen, Jerry; Greene, John; Elam, Jeffrey; Mane, Anil; Sampathkumaran, Uma; Winter, Raymond; Hess, David; Mushfiq, Mohammad; Stracener, Daniel; Wiendenhoever, Ingo

    2015-04-01

    Porous solid catchers of rare isotopes are being developed for use at high power heavy ion accelerator facilities such as RIKEN, FRIB, and RISP. Compact solid catchers are complementary to helium gas catchers for parasitic harvesting of rare isotopes in the in-flight separators. They are useful for short lived isotopes for basic nuclear physics research and longer-lived isotopes for off-line applications. Solid catchers can operate effectively with high intensity secondary beams, e.g. >> 1E10 atoms/s with release times as short as 10-100 milliseconds. A new method using a very sensitive and efficient RGA has been commissioned off-line at Argonne and is currently being shipped to Florida State University for in-beam measurements of the release curves using stable beams. The same porous solid catcher technology is also being evaluated for use in targets for the production of medical isotopes such as 211-At. Research supported by the U.S. DOE Office of Nuclear Physics under the SBIR Program and Contract # DE-AC02-06CH11357 and a University of Chicago Comprehensive Cancer Center/ANL Pilot Project.

  8. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  9. Design of a proton microbeam of the PEFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kye Ryung; Kim, Yong Hwan; Chang, Ji Ho

    2008-02-15

    The PEFP has been developing a 100 MeV proton linear accelerator and user facilities for 20 and 100 MeV proton beams. At one end of the five 20 MeV proton beam lines, a proton microbeam construction was considered for an application in the fields of material, biological, and medical sciences. To develop the proton microbeam, realization of a few MeV proton beam with a few tens of microamperes in diameter of a beam spot was essentially required. In this report, the basic descriptions of the proton microbeam which is composed of an energy degrader, slits, magnetic lens, a target chamber,more » and detectors are presented including a consideration of unfavorable aspects concerning some specific characteristics of a linear accelerator, such as pulse mode operation and fixed energy. Some calculation results from a Monte Carlo simulation by using the SRIM2006 and the TURTLE codes are also included.« less

  10. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  11. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  12. Nuclear spectroscopy of r-process nuclei around N = 126 using KISS

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.

    2017-09-01

    The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.

  13. Lineshape measurements of He- β spectra on the ORION laser facility

    DOE PAGES

    Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; ...

    2016-10-25

    Here, we have utilized a newly developed high-resolution X-ray spectrometer to measure the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility in the United Kingdom. We present measurements of the He-β spectra of chlorine and chromium from targets irradiated by either a long-pulse or a short-pulse laser beam. The experimental conditions provide a spread in plasma density ranging from about 10 19 to about 10 24 cm –3. We present spectral calculations that show that the relative intensities of the Li-like satellite lines can be used to infer the density in the lower range, especiallymore » if the lithiumlike satellite lines are well resolved. In addition, we use the Stark-broadened width of the He-β line to infer densities above about 10 22 cm –3. In the case of a short-pulse irradiated chromium foil, we find that the He-like chromium is produced at a density of almost 8 g/cm 3, i.e., solid density. In addition, we can infer the electron temperature from the observation of dielectronic recombination satellite lines.« less

  14. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    NASA Astrophysics Data System (ADS)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  15. Beamlet diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theys, M.

    1994-05-06

    Beamlet is a high power laser currently being built at Lawrence Livermore National Lab as a proof of concept for the National Ignition Facility (NIF). Beamlet is testing several areas of laser advancements, such as a 37cm Pockels cell, square amplifier, and propagation of a square beam. The diagnostics on beamlet tell the operators how much energy the beam has in different locations, the pulse shape, the energy distribution, and other important information regarding the beam. This information is being used to evaluate new amplifier designs, and extrapolate performance to the NIF laser. In my term at Lawrence Livermore Nationalmore » Laboratory I have designed and built a diagnostic, calibrated instruments used on diagnostics, setup instruments, hooked up communication lines to the instruments, and setup computers to control specific diagnostics.« less

  16. Design study of 10 kW direct fission target for RISP project

    NASA Astrophysics Data System (ADS)

    Tshoo, K.; Jang, D. Y.; Woo, H. J.; Kang, B. H.; Kim, G. D.; Hwang, W.; Kim, Y. K.

    2014-03-01

    We are developing Isotope Separation On-Line (ISOL) target system, which consists of 1.3 mm-thick uranium-carbide multi-disks and cylindrical tantalum heater, to be installed in new facility for Rare Isotope Science Project in Korea. The intense neutron-rich nuclei are produced via the fission process using the uranium carbide targets with a 70 MeV proton beam. The fission rate was estimated to be ˜1.5 × 1013/sec for 10 kW proton beam. The target system has been designed to be operated at a temperature of ˜2000 °C so as to improve the release effciency.

  17. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  18. Design and optimization of an energy degrader with a multi-wedge scheme based on Geant4

    NASA Astrophysics Data System (ADS)

    Liang, Zhikai; Liu, Kaifeng; Qin, Bin; Chen, Wei; Liu, Xu; Li, Dong; Xiong, Yongqian

    2018-05-01

    A proton therapy facility based on an isochronous superconducting cyclotron is under construction in Huazhong University of Science and Technology (HUST). To meet the clinical requirements, an energy degrader is essential in the beamline to modulate the fixed beam energy extracted from the cyclotron. Because of the multiple Coulomb scattering in the degrader, the beam emittance and the energy spread will be considerably increased during the energy degradation process. Therefore, a set of collimators is designed to restrict the increase in beam emittance after the energy degradation. The energy spread will be reduced in the following beam line which is not discussed in this paper. In this paper, the design considerations of an energy degrader and collimators are introduced, and the properties of the degrader material, degrader structure and the initial beam parameters are discussed using the Geant4 Monte-Carlo toolkit, with the main purpose of improving the overall performance of the degrader by multiple parameter optimization.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald Martin

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less

  20. Metrology laboratory requirements for third-generation synchrotron radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  1. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  2. Automatic target alignment of the Helios laser system

    NASA Astrophysics Data System (ADS)

    Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.

    1980-05-01

    An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.

  3. Improvements for extending the time between maintenance periods for the Heidelberg ion beam therapy center (HIT) ion sources.

    PubMed

    Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen

    2014-02-01

    The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.

  4. The effects of simulated low Earth orbit environments on spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.; Stidham, Curtis R.; Stueber, Thomas J.; Booth, Roy E.

    1993-01-01

    Candidate Space Station Freedom radiator coatings including Z-93, YB-71, anodized aluminum and SiO(x) coated silvered Teflon have been characterized for optical properties degradation upon exposure to environments containing atomic oxygen, vacuum ultraviolet (VUV) radiation, and/or silicone contamination. YB-71 coating showed a blue-gray discoloration, which has not been observed in space, upon exposure in atomic oxygen facilities which also provide exaggerated VUV radiation. This is evidence that damage mechanisms occur in these ground laboratory facilities which are different from those which occur in space. Radiator coatings exposed to an electron cyclotron resonance (ECR) atomic oxygen source in the presence of silicone-containing samples showed severe darkening from the intense VUV radiation provided by the ECR and from silicone contamination. Samples exposed to atomic oxygen from the ECR source and to VUV lamps, simultaneously, with in situ reflectance measurement, showed that significantly greater degradation occurred when samples received line-of-site ECR beam exposure than when samples were exposed to atomic oxygen scattered off of quartz surfaces without line-of-site view of the ECR beam. For white paints, exposure to air following atomic oxygen/VUV exposure reversed the darkening due to VUV damage. This illustrates the importance of in situ reflectance measurement.

  5. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  6. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  7. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less

  8. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  9. The Heavy Photon Search beamline and its performance

    DOE PAGES

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  10. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project.

    PubMed

    Dechoudhury, S; Naik, V; Mondal, M; Chatterjee, A; Pandey, H K; Mandi, T K; Bandyopadhyay, A; Karmakar, P; Bhattacharjee, S; Chouhan, P S; Ali, S; Srivastava, S C L; Chakrabarti, A

    2010-02-01

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q < or = 14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O(5+) beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  11. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  12. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  13. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  14. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  15. Analytical possibilities of highly focused ion beams in biomedical field

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  16. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  17. What is LAMPF II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiessen, H.A.

    1982-08-01

    The present conception of LAMPF II is a high-intensity 16-GeV synchrotron injected by the LAMPF 800-MeV H/sup -/ beam. The proton beam will be used to make secondary beams of neutrinos, muons, pions, kaons, antiprotons, and hyperons more intense than those of any existing or proposed accelerator. For example, by taking maximum advantage of a thick target, modern beam optics, and the LAMPF II proton beam, it will be possible to make a negative muon beam with nearly 100% duty factor and nearly 100 times the flux of the existing Stopped Muon Channel (SMC). Because the unique features of themore » proposed machine are most applicable to beams of the same momentum as LAMPF (that is, < 2 GeV/c), it may be possible to use most of the experimental areas and some of the auxiliary equipment, including spectrometers, with the new accelerator. The complete facility will provide improved technology for many areas of physics already available at LAMPF and will allow expansion of medium-energy physics to include kaons, antiprotons, and hyperons. When LAMPF II comes on line in 1990 LAMPF will have been operational for 18 years and a major upgrade such as this proposal will be reasonable and prudent.« less

  18. Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpetti, R. D., LLNL

    1997-06-30

    The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less

  19. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less

  20. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  1. Development of the PEFP's beam line BPM

    NASA Astrophysics Data System (ADS)

    Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub

    2013-01-01

    The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.

  2. Light-ion therapy in the U.S.: From the Bevalac to ??

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jose R.; Castro, Joseph R.

    2002-09-24

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joinedmore » by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.« less

  3. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less

  5. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  6. Simple method for generating adjustable trains of picosecond electron bunches

    NASA Astrophysics Data System (ADS)

    Muggli, P.; Allen, B.; Yakimenko, V. E.; Park, J.; Babzien, M.; Kusche, K. P.; Kimura, W. D.

    2010-05-01

    A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.

  7. Status of prototype of SG-III high-power solid-state laser

    NASA Astrophysics Data System (ADS)

    Yu, Haiwu; Jing, Feng; Wei, Xiaofeng; Zheng, Wanguo; Zhang, Xiaomin; Sui, Zhan; Li, Mingzhong; Hu, Dongxia; He, Shaobo; Peng, Zhitao; Feng, Bin; Zhou, Hai; Guo, Liangfu; Li, Xiaoqun; Su, Jingqin; Zhao, Runchang; Yang, Dong; Zheng, Kuixing; Yuan, Xiaodong

    2008-10-01

    We are currently developing a large aperture neodymium-glass based high-power solid state laser, Shenguang-III (SG-III), which will be used to provide extreme conditions for high-energy-density physical experiments in China. As a baseline design, SG-III will be composed of 48 beams arranged in 6 bundles with each beam aperture of 40cm×40cm. A prototype of SG-III (TIL-Technical Integration experimental Line) was developed from 2000, and completed in 2007. TIL is composed of 8 beams (four in vertical and two in horizontal), with each square aperture of 30cm×30cm. After frequency tripling, TIL has delivered about 10kJ in 0.351 μm at 1 ns pulsewidth. As an operational laser facility, TIL has a beam divergence of 70 μrad (focus length of 2.2m, i.e., 30DL) and pointing accuracy of 30 μm (RMS), and meets the requirements of physical experiments.

  8. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  9. Development of the TFTR neutral beam injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Jr., B. A.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed formore » separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982.« less

  10. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harker, Y.D.

    On August 3-4, 1994, an INEL team made measurements related to a real-time monitoring system for use on the epithermal beam facility at the BMRR. BNL has installed two fission chambers in front of the beam collimator, which are to monitor the beam coming from the reactor. These two monitors are located with one just above the 16-cm dia. front aperture and the other is just below. The fission chambers contain depleted uranium, but because of the small amount of U-235 present, they respond to thermal and near thermal neutrons rather than fast neutrons. This feature combined with their relativelymore » small size (0.6 cm dia x 4 cm long) makes them very good monitors in the BMRR epithermal neutron beam. The INEL team worked with H.B. Lui (BNL) in performing initial tests of these monitors and established the settings to achieve stable operation. The main purpose of the measurement studies was to establish a basis for a monitoring method that tracks the dose the patient is receiving rather than the neutron fluence being delivered down the beam line.« less

  12. Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClay, W A; Awwal, A; Wilhelmsen, K

    2004-09-30

    The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we showmore » the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.« less

  13. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Leitner, D.; Lemut, A.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less

  14. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  15. Java Tool Framework for Automation of Hardware Commissioning and Maintenance Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, J C; Fisher, J M; Gordon, J B

    2007-10-02

    The National Ignition Facility (NIF) is a 192-beam laser system designed to study high energy density physics. Each beam line contains a variety of line replaceable units (LRUs) that contain optics, stepping motors, sensors and other devices to control and diagnose the laser. During commissioning and subsequent maintenance of the laser, LRUs undergo a qualification process using the Integrated Computer Control System (ICCS) to verify and calibrate the equipment. The commissioning processes are both repetitive and tedious when we use remote manual computer controls, making them ideal candidates for software automation. Maintenance and Commissioning Tool (MCT) software was developed tomore » improve the efficiency of the qualification process. The tools are implemented in Java, leveraging ICCS services and CORBA to communicate with the control devices. The framework provides easy-to-use mechanisms for handling configuration data, task execution, task progress reporting, and generation of commissioning test reports. The tool framework design and application examples will be discussed.« less

  16. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Bliss, E.S.; Byrd, J.L.

    1995-09-17

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 {micro}m from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 {micro}m within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correctmore » accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system.« less

  17. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  18. Shielding and Activation Analyses for BTF Facility at SNS

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.

    2017-09-01

    The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.

  19. Ion Diode Experiments on PBFA-X

    NASA Astrophysics Data System (ADS)

    Lockner, Thomas

    1996-05-01

    The PBFA-II pulsed power accelerator at Sandia National Laboratories has been modified to replace the radially focusing ion diode with an extraction ion diode. In the extraction diode mode (PBFA X) the ion beam is generated on the surface of an annular disk and extracted along the cylindrical axis. An additional magnetically insulated transmission line (MITL) has been installed to transmit power from the center to the bottom of the accelerator, where it drives a magnetically insulated extraction ion diode. The modification increases access to the diode and the diagnostics, permitting a higher shot rate, and allows us to study extraction diode technology at a power level near what is required for a high yield facility. The modification also includes reversing the polarity of the top half of the accelerator to permit operation at twice the previous source voltage. In the new configuration the diode could operate at 15 MV and 0.8 MA. This operating point is near the 30 MV, 1.0 MA operating point envisioned for one module of a high yield facility, and will allow the study of intense extraction ion diodes at power levels relevant to such a facility. Experimental results will be presented including MITL coupling studies, beam current density control, discharge cleaning of diode surfaces to reduce the presence of contaminant ions in the source beam, and the effect of anode substrate materials on the purity of the lithium beam. A comparison between predicted and measured radial beam profiles will also be presented, with the predicted profiles obtained from the ATHETA code that solves magnetostatics problems in two dimensions. This work was supported by the US/DOE under contract No. DE-AC04-94AL85000. +In collaboration with R. S. Coats, M. E. Cuneo, M. P. Desjarlias, D. J. Johnson, T. A. Mehlhorn, C. W. Mendel, Jr., P. Menge#, and W. J. Poukey,

  20. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  1. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  2. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  3. Studying Nuclear Structure at the extremes with S3

    NASA Astrophysics Data System (ADS)

    Piot, Julien

    2018-05-01

    The in-depth study of the regions of Superheavy elements and the proton drip line around 100Sn are two major challenges of today's Nuclear Physics. Performing detailed spectroscopic studies on these nuclei requires a significant improvement of our detection capabilities. The Super-Separator-Spectrometer S3 is part of the SPIRAL2 facility at GANIL. Its aim is to use the high stable beam currents provided by the new LINAC to reach rare isotopes by fusion-evaporation.

  4. A high-resolution x-ray spectrometer for a kaon mass measurement

    NASA Astrophysics Data System (ADS)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  5. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  6. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S.; Chung, C.; Fitsos, P.

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less

  7. High Resolution X-ray Measurements Following Charge Exchange with Atomic H: Data for a New Observational Window on Diffuse Astrophysical Sources

    NASA Astrophysics Data System (ADS)

    Havener, Charles

    It is rapidly being realized that many X-ray astronomical investigations are being affected in one way or another by charge exchange emission. Metal abundance measurements in supernova remnants and in outflows from star-forming galaxies need to be corrected for this additional process, and all X-ray observations of low surface brightness objects, such as the outskirts of clusters, galactic halos, the intergalactic medium, and plasma emission from hot interstellar gas are seriously compromised by a highly variable and largely unpredictable foreground from the exchange of solar wind ions on interstellar neutrals within the Solar system. At the same time, charge exchange provides a new sensitivity to mixing at interfaces between hot and cold gas, including direct measurements of relative velocities. The new generation of facilities with microcalorimeter detectors, starting with Astro-H in 2015, will provide the energy resolution and throughput for extended sources required to take advantage of this process. But analysis requires accurate partial cross sections for the production of individual lines, and even the most sophisticated of current charge exchange models do not do this with adequate precision. We propose an inexpensive modification of the Wisconsin high-throughput XQC microcalorimeter instrument so that it can be used on the merged beam facility at Oak Ridge to make direct measurement of lines of interest from collisions between an assortment of heavy ions with neutral atomic hydrogen. In this beam-beam system, the entire range of astrophysically interesting relative velocities can be investigated. We will work closely with modelers to use these results to tune their models to give accurate results for additional ions.

  8. Astrophysics at the future Rare Isotope Accelerator

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    PoS(NIC-IX)179 Significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical phenomena require intense beams of a wide range of unsta- ble nuclei. While some such beams are currently available and being used for important studies in nuclear astrophysics, the beams are often insufficient in intensity, purity, or available isotopes. It is anticipated that a next-generation radioactive beam facility will be built in the U.S. in the next decade to address these shortcomings, and a Working Group has been established to develop and promote nuclear astrophysics research at this new facility. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities around the world.

  9. Production of negatively charged radioactive ion beams

    DOE PAGES

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-02-15

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less

  10. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  11. Characterization of the Goubau line for testing beam diagnostic instruments

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  12. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  13. Design of the ILC RTML Extraction Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Tenenbaum, P.; Walz, D.

    2011-10-17

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distancemore » required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.« less

  14. Measuring the ionization balance of gold in a low-density plasma of importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M; Beiersdorfer, P; Schneider, M

    Charge state distributions (CSDs) have been determined in low density ({approx}10 {sup 12} cm{sup -3}) gold plasmas having either a monoenergetic beam (E{sub Beam} = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (T{sub e} = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3dmore » and 5f{yields}3d lines with synthetic spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EBIT-II.« less

  15. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  16. BEAM TRANSPORT LINES FOR THE BSNS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at themore » target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.« less

  17. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  18. nuSTORM Costing document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, Alan D.

    2013-10-01

    Detailed costing of the nuSTORM conventional facilities has been done by the Fermilab Facilities Engineering Services Section (FESS) and is reported on in the nuSTORM Project Definition Report (PDR) 6-13-1. Estimates for outfitting the primary proton beam line, the target station, the pion capture/transport line and decay ring are based on either experience from existing Fermilab infrastructure (NuMI) or is based on the detailed costing exercises for DOE CD-1 approval for future experiments (mu2e and LBNE). The detector costing utilized the Euronu costing for the Neutrino Factory Magnetized Iron Neutrino Detector (MIND), extrapolations from MINOS as-built costs and from recentmore » vendor quotes. Costs included all manpower and are fully burdened (FY2013 dollars). The costs are not escalated, however, beyond the 5-year project timeline, since a project start for nuSTORM is unknown. Escalation can be estimated from various models (see Figure 1). LBNE has used the Jacob’s model to determine their cost escalation.« less

  19. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  20. PBF Reactor Building (PER620). Camera on main floor faces south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera on main floor faces south (open) doorway. In foreground is canal gate, lined with stainless steel and painted with protective coatings. Reactor pit is round with protective coatings. Reactor put is round form discernible beyond. Lifting beams and rigging are in place for a load test before reactor vessel arrives. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-347 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  2. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less

  3. 14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION OF BUILDING 4. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  4. Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire.

    PubMed

    Weber, Damien C; Abrunhosa-Branquinho, André; Bolsi, Alessandra; Kacperek, Andrzej; Dendale, Rémi; Geismar, Dirk; Bachtiary, Barbara; Hall, Annika; Heufelder, Jens; Herfarth, Klaus; Debus, Jürgen; Amichetti, Maurizio; Krause, Mechthild; Orecchia, Roberto; Vondracek, Vladimir; Thariat, Juliette; Kajdrowicz, Tomasz; Nilsson, Kristina; Grau, Cai

    2017-08-01

    We performed a survey using the modified EORTC Facility questionnaire (pFQ) to evaluate the human, technical and organizational resources of particle centers in Europe. The modified pFQ consisted of 235 questions distributed in 11 sections accessible on line on an EORTC server. Fifteen centers from 8 countries completed the pFQ between May 2015 and December 2015. The average number of patients treated per year and per particle center was 221 (range, 40-557). The majority (66.7%) of centers had pencil beam or raster scanning capability. Four (27%) centers were dedicated to eye treatment only. An increase in the patients-health professional FTE ratio was observed for eye tumor only centers when compared to other centers. All centers treated routinely chordomas/chondrosarcomas, brain tumors and sarcomas but rarely breast cancer. The majority of centers treated pediatric cases with particles. Only a minority of the queried institutions treated non-static targets. As the number of particle centers coming online will increase, the experience with this treatment modality will rise in Europe. Children can currently be treated in these facilities in a majority of cases. The majority of these centers provide state of the art particle beam therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A true real-time, on-line security system for waterborne pathogen surveillance

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David L.

    2008-04-01

    Over the past several years many advances have been made to monitor potable water systems for toxic threats. However, the need for real-time, on-line systems to detect the malicious introduction of deadly pathogens still exists. Municipal water distribution systems, government facilities and buildings, and high profile public events remain vulnerable to terrorist-related biological contamination. After years of research and development, an instrument using multi-angle light scattering (MALS) technology has been introduced to achieve on-line, real-time detection and classification of a waterborne pathogen event. The MALS system utilizes a continuous slip stream of water passing through a flow cell in the instrument. A laser beam, focused perpendicular to the water flow, strikes particles as they pass through the beam generating unique light scattering patterns that are captured by photodetectors. Microorganisms produce patterns termed 'bio-optical signatures' which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database of microorganism patterns, detection and classification occurs within minutes. If a pattern is not recognized, it is classified as an 'unknown' and the unidentified contaminant is registered as a potential threat. In either case, if the contaminant exceeds a customer's threshold, the system will immediately alert personnel to the contamination event while extracting a sample for confirmation. The system, BioSentry TM, developed by JMAR Technologies is now field-tested and commercially available. BioSentry is cost effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in many water treatment environments. Examples of HLS installations will be presented along with data from the US EPA NHSRC Testing and Evaluation Facility.

  6. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE PAGES

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; ...

    2016-06-06

    Here, we have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improvedmore » spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  7. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  8. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-06-15

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectralmore » resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  9. A high-speed two-frame, 1-2 ns gated X-ray CMOS imager used as a hohlraum diagnostic on the National Ignition Facility (invited).

    PubMed

    Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L

    2016-11-01

    A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.

  10. Beam Position and Phase Monitor - Wire Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less

  11. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  12. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  13. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  14. A magnetic field cloak for charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  15. A magnetic field cloak for charged particle beams

    NASA Astrophysics Data System (ADS)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  16. A magnetic field cloak for charged particle beams

    DOE PAGES

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; ...

    2017-10-02

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  17. Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2016-09-01

    The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.

  18. Development of a beam line for radio-isotope production at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2016-09-01

    A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.

  19. Shielding Analyses for VISION Beam Line at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  20. Airglow at 630 and 557.7 nm during HF pumping of the Ionosphere near the 4th Gyroharmonic at the ``Sura'' Facility in September 2012

    NASA Astrophysics Data System (ADS)

    Shindin, Alexey; Nasyrov, Igor; Grach, Savely; Sergeev, Evgeny; Klimenko, Vladimir; Beletsky, Alexandr

    We present results of artificial optical emission observations in the red (630 nm) and green (557.7 nm) lines of the atomic oxygen during ionosphere HF pumping at the Sura facility (56.1°N, 46.1°E, magnetic field dip angle 71.5°) in Sep. 2012. Pump wave (PW) of O-polarization at frequencies f0 = 4.74 - 5.64 MHz was used in the experiment according to ionospheric conditions after sunset. Two CCD cameras (S1C/079-FP(FU) and KEO Sentinel with fields of view 20° and 145°, respectively, and 3 photometers were used for the emission registration. For estimation of a relation between the PW frequency f0 and 4th electron gyroharmonic 4fce Stimulated Electromagnetic Emission (SEE) registration was applied (for details see [1]). On September 11 the pump beam was inclined by 12° to the South, the PW frequencies f0 = 5.40 and 5.42 MHz were slightly above 4fce. On September 13, for vertical pumping, f0 was 5.64 MHz (well above 4fce), 5.32 - 5.42 MHz (around 4fce) and 4.74 MHz (well below 4fce). On September 14 the vertical pumping at f0 = 5.30 - 5.36 MHz and 4.74 MHz was used. In the latter day due to natural motion of the ionosphere and concurrent SEE measurements we were able to obtain a fine dependence of the optical brightness on the proximity f0 and 4fce. For the red line no essential dependence, as well of the shape and position of the airglow spot on the proximity was obtained with one exception: on Sep. 14 when, according to the SEE spectra, f0 was just below 4fce (by 15-20 kHz), the brightness essentially increased, by 1.25-1.5 times. For the green line, the brightest emission occurred when f0 was passing through 4fce (Sep. 14) and when f0 = 5.64 MHz (Sep. 13, well above 4fce). Also, on Sep. 14 the airglow enhancement in the red line during the pumping was replaced by the suppression of the background emission when the ionosphere critical frequency approached to f0 by less than 500 kHz. Similar effect was obtained on Sep. 11 and in [2] for south-inclined pump beam, but never observed at the Sura facility for vertical pumping. The data of KEO Sentinel camera obtained on Sep. 11 have shown the suppression of the background existed even for vertical direction while the pump beam was South-inclined by 12° and the spot of enhanced airglow was observed, similar to [2], in the magnetic zenith. Note that earlier experiments near 4fce performed at EISCAT facility during previous Solar maximum did not show any clear dependence of the red and green line brightness of the relation between f0 and 4fce [3]. 1. Layser T.B. // Space Sci. Rev., V. 98, 223 (2001). 2. Grach S.M., et al. // Radiophys. Quantum Electron. V. 55, P. 33-50 (2012). 3. Gustavsson B., et al. // Phys. Rev. Lett., 97, 195002 (2006).

  1. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.

    2013-12-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  2. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less

  3. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  4. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  5. Radionuclide production and dose rate estimation during the commissioning of the W-Ta spallation target

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Liang, T. J.

    2018-06-01

    China Spallation Neutron Source (CSNS) is intended to begin operation in 2018. CSNS is an accelerator-base multidisciplinary user facility. The pulsed neutrons are produced by a 1.6GeV short-pulsed proton beam impinging on a W-Ta spallation target, at a beam power of100 kW and a repetition rate of 25 Hz. 20 neutron beam lines are extracted for the neutron scattering and neutron irradiation research. During the commissioning and maintenance scenarios, the gamma rays induced from the W-Ta target can cause the dose threat to the personal and the environment. In this paper, the gamma dose rate distributions for the W-Ta spallation are calculated, based on the engineering model of the target-moderator-reflector system. The shipping cask is analyzed to satisfy the dose rate limit that less than 2 mSv/h at the surface of the shipping cask. All calculations are performed by the Monte carlo code MCNPX2.5 and the activation code CINDER’90.

  6. Recent advances in β-decay spectroscopy at CARIBU

    NASA Astrophysics Data System (ADS)

    Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.

    2016-09-01

    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.

  7. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    NASA Astrophysics Data System (ADS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  8. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  9. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  10. Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi

    2009-02-01

    As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.

  11. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  12. Laser photodetachment of radioactive 128 I -

    DOE PAGES

    Rothe, Sebastian; Sundberg, Julia; Welander, Jakob; ...

    2017-08-31

    The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope 128I ($t$ 1/2 = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. 128I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachmentmore » of the fast ion beam was performed in a collinear geometry inside the GANDALPH chamber. Neutral atoms produced in the photodetachment process were detected by allowing them to impinge on a glass surface, creating secondary electrons which were then detected using a channel electron multiplier. The photon energy of the laser was tuned across the threshold of the photodetachment process and the detachment threshold data were fitted to a Wigner law function in order to extract the EA. In conclusion, this first successful demonstration of photodetachment at an isotope separator on line facility opens up the opportunity for future studies of the fundamental properties of negatively charged radioactive isotopes such as the EA of astatine and polonium.« less

  13. Novel artificial optical annular structures in the high latitude ionosphere over EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Rietveld, M. T.; Senior, A.; McCrea, I. W.; Kavanagh, A. J.; Isham, B.; Honary, F.

    2004-06-01

    The EISCAT low-gain HF facility has been used repeatedly to produce artificially stimulated optical emissions in the F-layer ionosphere over northern Scandinavia. On 12 November 2001, the high-gain HF facility was used for the first time. The pump beam zenith angle was moved in 3° steps along the north-south meridian from 3°N to 15°S, with one pump cycle per position. Only when pumping in the 9°S position were annular optical structures produced quite unexpectedly. The annuli were approximately centred on the pump beam but outside the -3 dB locus. The optical signature appears to form a cylinder, which was magnetic field-aligned, rising above the pump wave reflection altitude. The annulus always collapsed into the well-known optical blobs after ~60 s, whilst descending many km in altitude. All other pump beam directions produced optical blobs only. The EISCAT UHF radar, which was scanning from 3° to 15°S zenith angle, shows that enhanced ion-line backscatter persisted throughout the pump on period and followed the morphology of the optical signature. These observations provide the first experimental evidence that Langmuir turbulence can accelerate electrons sufficiently to produce the optical emissions at high latitudes. Why the optical annulus forms, and for only one zenith angle, remains unexplained.

  14. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  15. Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Bricault, P.

    2011-09-01

    In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper

  16. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths resultsmore » in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER operation. The gas profile and the magnetic field distribution for each scenario has been considered in these evaluations. The worst case power loads and power densities for each surface have been used to study their thermo-mechanical behaviour and manufacturing feasibility. The details of these calculations and results obtained are presented and discussed.« less

  17. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  18. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Hyun, J.; Mihalcea, D.

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  20. ELECTRON BEAM SHAPING AND ITS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei

    Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less

  1. High angular resolution mm- and submm-observations of dense molecular gas in M82

    NASA Technical Reports Server (NTRS)

    Wild, W.; Eckart, Andreas; Genzel, Reinhard; Harris, Andrew I.; Jackson, James M.; Jaffe, D. T.; Lugten, J. B.; Stutzki, J.

    1990-01-01

    Researchers observed CO(7-6), CO(3-2), HCN(3-2) and HCO+(3-2) line emission toward the starburst nucleus of M82 and have obtained an upper limit to H13CN(3-2). These are the first observations of the CO(7-6), HCN(3-2) and HCO+(3-2) lines in any extragalactic source. Researchers took the CO(7-6) spectrum in January 1988 at the Infrared Telescope Facility (IRTF) with the Max Planck Institute for Extraterrestrial Physics/Univ. of California, Berkeley 800 GHz Heterodyne Receiver. In March 1989 researchers used the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope to observe the CO(3-2) line with the new MPE 350 GHz Superconductor Insulator Superconductor (SIS) receiver and the HCN(3-2) and HCO+(3-2) lines with the (IRAM) 230 GHz SIS receiver (beam 12" FWHM, Blundell et al. 1988). The observational parameters are summarized.

  2. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and anmore » associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.« less

  3. Wire Chambers and Cherenkov Detectors at Fermilab Test Beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tame Narvaez, Karla

    2017-01-01

    Fermilab Test Beam Facility (FTBF) is dedicated to helping scientists test their prototypes. For this, FTBF has instrumentation that is very useful for the users. However, before a user can test a detector, it is necessary to ensure the facility has the characteristics they need. During this summer, we studied beam properties by collecting Cherenkov and wire chamber data. Analyzed data will be used for updating the general information that FTBF posts on a web page.

  4. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  5. Future Opportunities at the Facility for Rare Isotope Beams

    NASA Astrophysics Data System (ADS)

    Sherrill, Bradley M.

    2018-05-01

    This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.

  6. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoupas,N.; Ahrens, L.; Pile, P.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along themore » drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.« less

  7. An X-ray beam position monitor based on the photoluminescence of helium gas

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  8. Sidelooking laser altimeter for a flight simulator

    NASA Technical Reports Server (NTRS)

    Webster, L. D. (Inventor)

    1983-01-01

    An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.

  9. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  10. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    PubMed Central

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-01-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987

  11. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  12. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  13. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  14. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, J.; Schneider, R.J.; Reden, K.F. von

    2005-03-15

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 {mu}A from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source formore » use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design.« less

  15. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less

  16. Efficient injection of an intense positron beam into a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.

    2015-10-01

    We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.

  17. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, V; Hayano, H; Honda, Y

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less

  18. Time of Flight based diagnostics for high energy laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  19. Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

    NASA Astrophysics Data System (ADS)

    Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.

    2017-08-01

    We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.

  20. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  1. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  2. E-beam column monitoring for improved CD SEM stability and tool matching

    NASA Astrophysics Data System (ADS)

    Hayes, Timothy S.; Henninger, Randall S.

    2000-06-01

    Tool matching is an important metric for in-line semiconductor metrology systems. The ability to obtain the same measurement results on two or more systems allows a semiconductor fabrication facility (fab) to deploy product in an efficient manner improving overall equipment efficiency (OEE). Many parameters on the critical dimension scanning electron microscopes (CDSEMs) can affect the long-term precision component to the tool-matching metric. One such class of parameters is related to the electron beam column stability. The alignment and condition of the gun and apertures, as well as astigmatism correction, have all been found to affect the overall measurements of the CDSEM. These effects are now becoming dominant factors in sub-3nm tool-matching criteria. This paper discusses the methodologies of column parameter monitoring and actions and controls for improving overall stability. Results have shown that column instabilities caused by contamination, gun fluctuations, component failures, detector efficiency, and external issues can be identified through parameter monitoring. The Applied Materials (AMAT) 7830 Series CDSEMs evaluated at IBM's Burlington, Vermont manufacturing facility have demonstrated 5 nm tool matching across 11 systems, which has resulted in non-dedicated product deployment and has significantly reduced cost of ownership.

  3. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  4. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

  5. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.

  6. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navin, A.; Tripathi, V.; Chatterjee, A.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He atmore » 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.« less

  7. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoy, Blake W

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had beenmore » addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.« less

  9. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  10. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  11. A 3 MV Pelletron at Fudan University

    NASA Astrophysics Data System (ADS)

    Sun, Chuan-Chen; Lu, Cheng-Rong; Fe, Zhi-Yu; Yuan, Dao-Sheng; Yang, Fujia

    1989-04-01

    A 3 MV Pelletron tandem, model 9SDH-2, the fourth machine manufactured by NEC was installed and has been operating at Fudan University since 1987. The operating experiences obtained during the past year are described. Three beam lines have been established: one is for Auger-ESCA and RBS in an ultrahigh-vacuum chamber in which Al(100) clean surfaces have been studied; the second beam line is used as a mubeam analysis system using a 2 μ proton beam for resonant prefitting studies. The third is a general purpose beam line, for studies of the effect of nuclear resonance on K X-ray yield. At present, the third beam line is also used for ion beam analysis studies of 8.8 MeV He 2+ non-Rutherford scattering on high Tc superconductors.

  12. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  13. Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes

    NASA Astrophysics Data System (ADS)

    Vormawah, L. J.; Vilén, M.; Beerwerth, R.; Campbell, P.; Cheal, B.; Dicker, A.; Eronen, T.; Fritzsche, S.; Geldhof, S.; Jokinen, A.; Kelly, S.; Moore, I. D.; Reponen, M.; Rinta-Antila, S.; Stock, S. O.; Voss, A.

    2018-04-01

    Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm 5 s 1/2 2S →5 p 1/2 2P line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyväskylä, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-produced short-lived isotopes using collinear laser spectroscopy and application of the technique to doubly charged ions.

  14. Measurements on the gas desorption yield of the oxygen-free copper irradiated with low-energy Xe10+ and O+

    NASA Astrophysics Data System (ADS)

    Dong, Z. Q.; Li, P.; Yang, J. C.; Yuan, Y. J.; Xie, W. J.; Zheng, W. H.; Liu, X. J.; Chang, J. J.; Luo, C.; Meng, J.; Wang, J. C.; Wang, Y. M.; Yin, Y.; Chai, Z.

    2017-10-01

    Heavy ion beam lost on the accelerator vacuum wall will release quantity of gas molecules and make the vacuum system deteriorate seriously. This phenomenon is called dynamic vacuum effect, observed at CERN, GSI and BNL, leading to the decrease of beam lifetime when increasing beam intensity. Heavy ion-induced gas desorption, which results in dynamic vacuum effect, becomes one of the most important problems for future accelerators proposed to operate with intermediate charge state beams. In order to investigate the mechanism of this effect and find the solution method for the IMP future project High Intensity heavy-ion Accelerator Facility (HIAF), which is designed to extract 1 × 1011 uranium particles with intermediate charge state per cycle, two dedicated experiment setups have been installed at the beam line of the CSR and the 320 kV HV platform respectively. Recently, experiment was performed at the 320 kV HV platform to study effective gas desorption with oxygen-free copper target irradiated with continuous Xe10+ beam and O+ beam in low energy regime. Gas desorption yield in this energy regime was calculated and the link between gas desorption and electronic energy loss in Cu target was proved. These results will be used to support simulations about dynamic vacuum effect and optimizations about efficiency of collimators to be installed in the HIAF main synchrotron BRing, and will also provide guidance for future gas desorption measurements in high energy regime.

  15. Accelerator Physics Working Group Summary

    NASA Astrophysics Data System (ADS)

    Li, D.; Uesugi, T.; Wildnerc, E.

    2010-03-01

    The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.

  16. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  17. Interleaving lattice for the Argonne Advanced Photon Source linac

    NASA Astrophysics Data System (ADS)

    Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.

    2018-06-01

    To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.

  18. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  19. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  20. Measuring the Ionization Balance of Gold in a Low-Density Plasma of Importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Beiersdorfer, P.; Schneider, M.

    Charge state distributions (CSDs) have been determined in low density ({approx_equal}1012 cm-3) gold plasmas having either a monoenergetic beam (EBeam = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (Te = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3d and 5f{yields}3d lines with syntheticmore » spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EB0011IT-.« less

  1. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    NASA Astrophysics Data System (ADS)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  2. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  3. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew; Syphers, Michael

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  4. Plastic scintillation detectors for precision Time-of-Flight measurements of relativistic heavy ions

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Jian; Zhao, Jian-Wei; Sun, Bao-Hua; He, Liu-Chun; Lin, Wei-Ping; Liu, Chuan-Ye; Tanihata, Isao; Terashima, Satoru; Tian, Yi; Wang, Feng; Wang, Meng; Zhang, Guang-Xin; Zhang, Xue-Heng; Zhu, Li-Hua; Duan, Li-Min; Hu, Rong-Jiang; Liu, Zhong; Lu, Chen-Gui; Ren, Pei-Pei; Sheng, Li-Na; Sun, Zhi-Yu; Wang, Shi-Tao; Wang, Tao-Feng; Xu, Zhi-Guo; Zheng, Yong

    2017-06-01

    Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of dimensions 50 × 50 × 3t mm3 and 80 × 100 × 3t mm3 have been set up at the External Target Facility (ETF), Institute of Modern Physics (IMP). Their time, energy and position responses are measured with the 18O primary beam at 400 MeV/nucleon. After off-line corrections for walk effect and position, the time resolutions of the two detectors are determined to be 27 ps (σ) and 36 ps (σ), respectively. Both detectors have nearly the same energy resolution of 3.1% (σ) and position resolution of about 3.4 mm (σ). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading the RIBLL2 beam line at IMP as well as for the high energy branch at HIAF. Supported by National Natural Science Foundation of China (11475014,11235002) and National Key Research and Development Program (2016YFA0400500)

  5. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% ofmore » the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.« less

  6. COBRA accelerator for Sandia ICF diode research at Cornell University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse formingmore » lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.« less

  7. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beammore » plasma model as well as simulations.« less

  8. Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam

    2017-07-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.

  9. National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W J; Moses, E; Warner, B

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  10. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  11. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.

    PubMed

    Tinschert, K; Iannucci, R; Lang, R

    2008-02-01

    The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.

  12. The Neutrons for Science Facility at SPIRAL-2

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  13. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  14. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  15. The MedAustron project

    NASA Astrophysics Data System (ADS)

    Griesmayer, E.; Schreiner, T.; Pavlovič, M.

    2007-05-01

    The Austrian government has approved its financial contribution to the MedAustron project in October 2004. MedAustron, the Austrian ion therapy and cancer research centre, should be set into operation in 2010. MedAustron combines medical cancer treatment and cancer research and non-clinical research. For medical treatment and cancer research active scanning of a proton and a carbon-ion beam is provided. The beam energy must correspond to the desirable penetration range of the beam in the patient body, which translates into the energy interval of 60-220 MeV protons and 120-400 MeV per nucleon carbon ions. The intensity of extracted beam is 1010 protons per spill and four times 108 carbon ions per spill. Spill duration can be varied from 1 s to 10 s. For a spill lasting 1 s the beam intensity is equivalent to an electrical beam current of 1.6 nA for protons and 0.38 nA for carbon ions. Although the machine parameters must be optimised for therapy needs, additional beam features can be offered by a modern medical accelerator for non-clinical research. Various ions with energies up to 400 MeV per nucleon can be used for irradiation purposes. For synchrotrons such as proposed in the Design Study the magnetic rigidity would allow to accelerate protons up to 1.18 GeV when using an appropriate RF-system. Two beam lines are proposed for non-clinical research, such as biomedicine, medical physics, physics or industrial technological research. The experimental facility of MedAustron will be offered to research institutes and to industry on an international level.

  16. Neutron skyshine calculations with the integral line-beam method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gui, A.A.; Shultis, J.K.; Faw, R.E.

    1997-10-01

    Recently developed line- and conical-beam response functions are used to calculate neutron skyshine doses for four idealized source geometries. These calculations, which can serve as benchmarks, are compared with MCNP calculations, and the excellent agreement indicates that the integral conical- and line-beam method is an effective alternative to more computationally expensive transport calculations.

  17. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Lu, H; Flanz, J

    2015-06-15

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/downmore » for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as gantries.« less

  18. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  20. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  1. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    PubMed Central

    Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.

    2012-01-01

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553

  2. Laser-Directed Hierarchical Assembly of Liquid Crystal Defects and Control of Optical Phase Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.

    2012-06-07

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less

  3. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  4. Application of a three-lens slit spatial filter in high power lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Han

    2018-07-01

    Combined with partial parameters in National Ignition Facility, the conceptual design of off-axial four-pass main laser optical system with a three-lens slit spatial filter has been discussed. Since the three-lens slit spatial filter can decline the focal intensity by about 3 orders of magnitudes than that in NIF system, the cutoff frequency in main amplifier cavity can be reduced from 51 × DL to 39 × DL for better beam quality. The main laser system for single beam line can be shortened from 174.7 m to 155.7 m and the spatial filter in high vacuum becomes 60 m instead of the original 83.5 m. Additionally, the pinhole closure could be avoided since the declining of focal intensity in slit spatial filter and the absence of pinhole aperture in the other (pinhole) spatial filter, which provides new ideas for the future high-power lasers.

  5. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  6. Polarization analysis for magnetic field imaging at RADEN in J-PARC/MLF

    NASA Astrophysics Data System (ADS)

    Shinohara, Takenao; Hiroi, Kosuke; Su, Yuhua; Kai, Tetsuya; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Hayashida, Hirotoshi; Parker, Joseph D.; Matsumoto, Yoshihiro; Zhang, Shuoyuan; Kiyanagi, Yoshiaki

    2017-06-01

    Polarized neutron imaging is an attractive method for visualizing magnetic fields in a bulk object or in free space. In this technique polarization of neutrons transmitted through a sample is analyzed position by position to produce an image of the polarization distribution. In particular, the combination of three-dimensional spin analysis and the use of a pulsed neutron beam is very effective for the quantitative evaluation of both field strength and direction by means of the analysis of the wavelength dependent polarization vector. Recently a new imaging instrument “RADEN” has been constructed at the beam line of BL22 of the Materials and Life Science Experimental Facility (MLF) at J-PARC, which is dedicated to energy-resolved neutron imaging experiments. We have designed a polarization analysis apparatus for magnetic field imaging at the RADEN instrument and have evaluated its performance.

  7. The IsoDAR high intensity H2+ transport and injection tests

    NASA Astrophysics Data System (ADS)

    Alonso, J.; Axani, S.; Calabretta, L.; Campo, D.; Celona, L.; Conrad, J. M.; Day, A.; Castro, G.; Labrecque, F.; Winklehner, D.

    2015-10-01

    This technical report reviews the tests performed at the Best Cyclotron Systems, Inc. facility in regards to developing a cost effective ion source, beam line transport system, and acceleration system capable of high H2+ current output for the IsoDAR (Isotope Decay At Rest) experiment. We begin by outlining the requirements for the IsoDAR experiment then provide overviews of the Versatile Ion Source (VIS), Low Energy Beam Transport (LEBT) system, spiral inflector, and cyclotron. The experimental measurements are then discussed and the results are compared with a thorough set of simulation studies. Of particular importance we note that the VIS proved to be a reliable ion source capable of generating a large amount of H2+ current. The results suggest that with further upgrades, the VIS could potentially be a suitable candidate for IsoDAR. The conclusion outlines the key results from our tests and introduces the forthcoming work this technical report has motivated.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A; Kwan, J

    Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less

  9. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  10. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  11. HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.

    2015-07-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less

  12. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  13. Status of the nuSTORM Facility and a Possible Extension for Long-Baseline $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, Alan D.; Liu, Ao; Lagrange, Jean-Baptiste

    2015-11-03

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called “Neo-conventional" muon neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. In this paper we describe the facility and give a detailed description of the neutrino beammore » fluxes that are available and the precision to which these fluxes can be determined. We then present sensitivity plots that indicated how well the facility can perform for short-baseline oscillation searches and show its potential for a neutrino interaction physics program. Finally, we comment on the performance potential of the "Neo-conventional" muon neutrino beam optimized for long- baseline neutrino-oscillation physics.« less

  14. Overview of the Neutrinos from Stored Muons Facility - nuSTORM

    DOE PAGES

    Adey, D.; Appleby, R. B.; Bayes, R.; ...

    2017-07-19

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less

  15. Skyshine line-beam response functions for 20- to 100-MeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockhoff, R.C.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    The line-beam response function, needed for skyshine analyses based on the integral line-beam method, was evaluated with the MCNP Monte Carlo code for photon energies from 20 to 100 MeV and for source-to-detector distances out to 1,000 m. These results are compared with point-kernel results, and the effects of bremsstrahlung and positron transport in the air are found to be important in this energy range. The three-parameter empirical formula used in the integral line-beam skyshine method was fit to the MCNP results, and values of these parameters are reported for various source energies and angles.

  16. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, M.; Capista, D.; Adams, P.

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summermore » Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.« less

  17. Drive beam stabilisation in the CLIC Test Facility 3

    NASA Astrophysics Data System (ADS)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  18. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  19. Microdosimetric investigation at the therapeutic proton beam facility of CATANA.

    PubMed

    De Nardo, L; Moro, D; Colautti, P; Conte, V; Tornielli, G; Cuttone, G

    2004-01-01

    Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Institute of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam.

  20. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  1. First results from the commissioning of the FERMI@Elettra free electron laser by means of the Photon Analysis Delivery and Reduction System (PADReS)

    NASA Astrophysics Data System (ADS)

    Zangrando, M.; Cudin, I.; Fava, C.; Gerusina, S.; Gobessi, R.; Godnig, R.; Rumiz, L.; Svetina, C.; Parmigiani, F.; Cocco, D.

    2011-06-01

    The Italian Free Electron Laser (FEL) facility FERMI@Elettra has started to produce photon radiation at the end of 2010. The photon beam is presently delivered by the first undulator chain (FEL1) that is supposed to produce photons in the 100-20 nm wavelength range. A second undulator chain (FEL2) will be commissioned at the end of 2011, and it will produce radiation in the 20-4nm range. The Photon Analysis Delivery and Reduction System (PADReS) was designed to collect the radiation coming from both the undulator chains (FEL1 and FEL2), to characterize and control it, and to redirect it towards the following beamlines. The first parameters that are checked are the pulse-resolved intensity and beam position. For each of these parameters two dedicated monitors are installed along PADReS on each FEL line. In this way it possible to determine the intensity reduction that is realized by the gas reduction system, which is capable of cutting the intensity by up to four orders of magnitude. The energy distribution of each single pulse is characterized by an online spectrometer installed in the experimental hall. Taking advantage of a variable line-spacing grating it can direct the almost-full beam to the beamlines, while it uses a small fraction of the beam itself to determine the spectral distribution of each pulse delivered by the FEL. The first light of FERMI@Elettra, delivered to the PADReS section in late 2010, is used for the first commissioning runs and some preliminary experiments whose results are reported and discussed in detail.

  2. Beam transport program for FEL project

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masayoshi; Takao, Masaru

    1992-07-01

    A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.

  3. A new possibility of low-Z gas stripper for high power uranium beam acceleration alternative to C-foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuno, H.; Hershcovitch, A.; Fukunishi, N.

    2010-09-27

    The RIKEN accelerator complex started feeding the next-generation exotic beam facility RIBF (RadioIsotope Beam Factory) with heavy ion beams from 2007 after the successful commissioning at the end of 2006. Many elaborating improvements increased the intensity of the various heavy ion beams from 2007 to 2010. However, the available beam intensity especially of uranium beam is far below our goal of 1 p{micro}A (6 x 10{sup 12} particle/s). In order to achieve it, upgrade programs are well in progress, including constructions of a new 28 GHz superconducting ECR ion source and a new injector linac. However, the most serious problemmore » of the charge stripper for uranium beam is still open although many elaborating R&D works for the problems. Equilibrium charge state in gas generally is much lower than that in carbon foil due to its density-effect. But gas stripper is free from the problems originated from its lifetime and uniformity in thickness. Such merits pushed us think about low-Z gas stripper to get higher equilibrium charge state even in gas. Electron loss and capture cross section of U ion beams in He gas were measured as a function of their charge state at 11, 14 and 15 MeV/u. The extracted equilibrium charge states from the cross point of the two lines of the cross sections were promisingly higher than those in N{sub 2} gas by more than 10. The plasma window is expected to be a key technology to solve the difficulty in accumulation of such thick as about 1 mg/cm{sup 2} of low-Z gas.« less

  4. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle

    2016-10-01

    In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.

  5. Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir

    1999-05-04

    An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less

  6. Design update and recent results of the Apollon 10 PW facility

    NASA Astrophysics Data System (ADS)

    Le Garrec, B.; Papadopoulos, D. N.; Le Blanc, C.; Zou, J. P.; Chériaux, G.; Georges, P.; Druon, F.; Martin, L.; Fréneaux, L.; Beluze, A.; Lebas, N.; Mathieu, F.; Audebert, P.

    2017-05-01

    In this paper we are giving a summary of the Apollon 10 PW facility laser design together with updated laser performance. The Apollon facility is currently under construction in France. The APOLLON laser system is a laser designed for delivering pulses as short as 15 fs (10-15 s) with an energy exceeding 150 Joules on target. The peak power delivered by this laser system will be 10 Petawatts (1016W). The Apollon laser system will be delivering 4 beams: one 10 PW beam (F1 beam 400 mm diameter), one 1 PW beam (F2 beam 140 mm diameter) and two additional probe beams (F3 and F4) at a repetition rate of 1 shot per minute. The laser system is based on Ti-sapphire amplifiers pumped by frequency doubled solid-state lasers. The repetition rate of the high energy part will be 1 shot per minute. The main beam at the output of the last amplifier will be split and dispatched to two experimental areas. The main laser beam is delivering 30 J before compression at a repetition rate of 1 shot per minute and we are currently increasing to get 100J.

  7. Indian Test Facility (INTF) and its updates

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Chakraborty, A.; Rotti, C.; Joshi, J.; Patel, H.; Yadav, A.; Shah, S.; Tyagi, H.; Parmar, D.; Sudhir, Dass; Gahlaut, A.; Bansal, G.; Soni, J.; Pandya, K.; Pandey, R.; Yadav, R.; Nagaraju, M. V.; Mahesh, V.; Pillai, S.; Sharma, D.; Singh, D.; Bhuyan, M.; Mistry, H.; Parmar, K.; Patel, M.; Patel, K.; Prajapati, B.; Shishangiya, H.; Vishnudev, M.; Bhagora, J.

    2017-04-01

    To characterize ITER Diagnostic Neutral Beam (DNB) system with full specification and to support IPR’s negative ion beam based neutral beam injector (NBI) system development program, a R&D facility, named INTF is under commissioning phase. Implementation of a successful DNB at ITER requires several challenges need to be overcome. These issues are related to the negative ion production, its neutralization and corresponding neutral beam transport over the path lengths of ∼ 20.67 m to reach ITER plasma. DNB is a procurement package for INDIA, as an in-kind contribution to ITER. Since ITER is considered as a nuclear facility, minimum diagnostic systems, linked with safe operation of the machine are planned to be incorporated in it and so there is difficulty to characterize DNB after onsite commissioning. Therefore, the delivery of DNB to ITER will be benefited if DNB is operated and characterized prior to onsite commissioning. INTF has been envisaged to be operational with the large size ion source activities in the similar timeline, as with the SPIDER (RFX, Padova) facility. This paper describes some of the development updates of the facility.

  8. Method for verification of constituents of a process stream just as they go through an inlet of a reaction vessel

    DOEpatents

    Baylor, Lewis C.; Buchanan, Bruce R.; O'Rourke, Patrick E.

    1995-01-01

    A method for validating a process stream for the presence or absence of a substance of interest such as a chemical warfare agent; that is, for verifying that a chemical warfare agent is present in an input line for feeding the agent into a reaction vessel for destruction, or, in a facility for producing commercial chemical products, that a constituent of the chemical warfare agent has not been substituted for the proper chemical compound. The method includes the steps of transmitting light through a sensor positioned in the feed line just before the chemical constituent in the input line enters the reaction vessel, measuring an optical spectrum of the chemical constituent from the light beam transmitted through it, and comparing the measured spectrum to a reference spectrum of the chemical agent and preferably also reference spectra of surrogates. A signal is given if the chemical agent is not entering a reaction vessel for destruction, or if a constituent of a chemical agent is added to a feed line in substitution of the proper chemical compound.

  9. Method for verification of constituents of a process stream

    DOEpatents

    Baylor, L.C.; Buchanan, B.R.; O`Rourke, P.E.

    1993-01-01

    This invention is comprised of a method for validating a process stream for the presence or absence of a substance of interest such as a chemical warfare agent; that is, for verifying that a chemical warfare agent is present in an input line for feeding the agent into a reaction vessel for destruction, or, in a facility for producing commercial chemical products, that a constituent of the chemical warfare agent has not been substituted for the proper chemical compound. The method includes the steps of transmitting light through a sensor positioned in the feed line just before the chemical constituent in the input line enters the reaction vessel, measuring an optical spectrum of the chemical constituent from the light beam transmitted through it, and comparing the measured spectrum to a reference spectrum of the chemical agent and preferable also reference spectra of surrogates. A signal is given if the chemical agent is not entering a reaction vessel for destruction, or if a constituent of a chemical agent is added to a feed line in substitution of the proper chemical compound.

  10. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Kazakov, S.; Morris, D.; Larter, T.; Plastun, A. S.; Popielarski, J.; Wei, J.; Xu, T.

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  11. PIP-II Transfer Line Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivoli, A.

    The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present themore » recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.« less

  12. Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime

    DOE PAGES

    Panchenko, D.; Beiersdorfer, P.; Hell, N.; ...

    2017-06-05

    We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less

  13. Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchenko, D.; Beiersdorfer, P.; Hell, N.

    We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less

  14. Extended Analysis of the Spectrum and Term System of Be III

    NASA Astrophysics Data System (ADS)

    Jupén, C.; Meigs, A.; von Hellermann, M.; Morsi, H. W.; Beringer, M.; Mannervik, S.; Martinson, I.

    We report an extended and partly revised analysis of doubly ionized beryllium, Be III. Spectra of Be were recorded at the JET fusion facility where beryllium was used as surface material in the divertor. Observations of the divertor plasma have revealed many previously unknown Be lines, of which 28 (in the range 2100-5300 Å) have been classified as Be III transitions. We have also reanalyzed beam-foil spectra of Be (1900-5500 Å), recorded during a study of inner-shell excited levels in Be II. This yielded 7 additional Be III lines. These data, together with 32 previously known lines now represent an observed term system comprising 46 levels, with relative energy value uncertainties of around 1 cm-1. The ionization energy of 1s2 1S has been determined to 1,241,243.5 ± 14 cm-1 with an estimated Lamb shift of -43 ± 14 cm-1. A complete description of the term scheme deduced from polarization and Ritz formulae is presented.

  15. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    NASA Astrophysics Data System (ADS)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  16. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  17. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Vivien E.

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab inmore » 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.« less

  18. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  19. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less

  20. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2015-08-01

    Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  1. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performedmore » during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.« less

  2. Mjollnir Rotational Line Scan Diagnostics.

    DTIC Science & Technology

    1981-05-19

    using long cavity. M8 Removable Pellicle Beam Splitter for He-Ne Lineup Beam. Removed before HF or DF laser is turned on. 27 A 27 * A r of the chopper...three probe laser lines, however three lines were sequentially measured to verify the diagnostic equipment. Two of the three lines have been monitored

  3. Accelerator Vacuum Protection System

    NASA Astrophysics Data System (ADS)

    Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan

    2012-11-01

    A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.

  4. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE PAGES

    Capatina, D.; D’Amico, K.; Nudell, J.; ...

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm 2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm 2. Finally, a new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  5. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  6. DCS - A High Flux Beamline for Time Resolved Dynamic Compression Science – Design Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D.; D'Amico, Kevin L.; Nudell, J.

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm2. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  7. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  8. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  9. An after-market, five-port vertical beam line extension for the PETtrace

    NASA Astrophysics Data System (ADS)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  10. JASMIN: Japanese-American study of muon interactions and neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi; /JAEA, Ibaraki; Mokhov, N.V.

    Experimental studies of shielding and radiation effects at Fermi National Accelerator Laboratory (FNAL) have been carried out under collaboration between FNAL and Japan, aiming at benchmarking of simulation codes and study of irradiation effects for upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (1) acquisition of shielding data in a proton beam energy domain above 100GeV; (2) further evaluation of predictive accuracy of the PHITS and MARS codes; (3) modification of physics models and data in these codes if needed; (4) establishment of irradiation field for radiation effect tests; and (5) development of amore » code module for improved description of radiation effects. A series of experiments has been performed at the Pbar target station and NuMI facility, using irradiation of targets with 120 GeV protons for antiproton and neutrino production, as well as the M-test beam line (M-test) for measuring nuclear data and detector responses. Various nuclear and shielding data have been measured by activation methods with chemical separation techniques as well as by other detectors such as a Bonner ball counter. Analyses with the experimental data are in progress for benchmarking the PHITS and MARS15 codes. In this presentation recent activities and results are reviewed.« less

  11. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE PAGES

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki; ...

    2018-01-01

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  12. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  13. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  14. Detection of errant laser beams

    NASA Astrophysics Data System (ADS)

    Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.

    1990-10-01

    The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.

  15. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  16. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  17. Improved alternating gradient transport and focusing of neutral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnins, Juris; Lambertson, Glen; Gould, Harvey

    2001-12-02

    Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describemore » a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.« less

  18. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  19. Recent progress of laser spectroscopy experiments on antiprotonic helium

    NASA Astrophysics Data System (ADS)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  20. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  1. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  2. Addendum to NuMI shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaziri, Kamran; /Fermilab

    2007-10-01

    The original safety assessment and the Safety Envelope for the NuMI beam line corresponds to 400 kW of beam power. The Main Injector is currently capable of and approved for producing 500 kW of beam power2. However, operation of the NuMI beam line at 400 kW of power brings up the possibility of an occasional excursion above 400 kW due to better than usual tuning in one of the machines upstream of the NuMI beam line. An excursion above the DOE approved Safety Envelope will constitute a safety violation. The purpose of this addendum is to evaluate the radiological issuesmore » and modifications required to operate the NuMI beam line at 500 kW. This upgrade will allow 400 kW operations with a reasonable safety margin. Configuration of the NuMI beam line, boundaries, safety system and the methodologies used for the calculations are as described in the original NuMI SAD. While most of the calculations presented in the original shielding assessment were based on Monte Carlo simulations, which were based on the design geometries, most of the results presented in this addendum are based on the measurements conducted by the AD ES&H radiation safety group.« less

  3. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S. J.

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less

  4. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  5. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  6. Scientific Opportunities and Plans for FRIB

    NASA Astrophysics Data System (ADS)

    Bollen, Georg

    2014-09-01

    FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.

  7. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  8. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  9. The Upgrade Programme for the Structural Biology beamlines at the European Synchrotron Radiation Facility - High throughput sample evaluation and automation

    NASA Astrophysics Data System (ADS)

    Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.

    2013-03-01

    Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.

  10. An after-market, five-port vertical beam line extension for the PETtrace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  11. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  12. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  13. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  14. Patient handling system for carbon ion beam scanning therapy

    PubMed Central

    Shirai, Toshiyuki; Takei, Yuka; Furukawa, Takuji; Inaniwa, Taku; Matsuzaki, Yuka; Kumagai, Motoki; Murakami, Takeshi; Noda, Koji

    2012-01-01

    Our institution established a new treatment facility for carbon ion beam scanning therapy in 2010. The major advantages of scanning beam treatment compared to the passive beam treatment are the following: high dose conformation with less excessive dose to the normal tissues, no bolus compensator and patient collimator/ multi‐leaf collimator, better dose efficiency by reducing the number of scatters. The new facility was designed to solve several problems encountered in the existing facility, at which several thousand patients were treated over more than 15 years. Here, we introduce the patient handling system in the new treatment facility. The new facility incorporates three main systems, a scanning irradiation system (S‐IR), treatment planning system (TPS), and patient handling system (PTH). The PTH covers a wide range of functions including imaging, geometrical/position accuracy including motion management (immobilization, robotic arm treatment bed), layout of the treatment room, treatment workflow, software, and others. The first clinical trials without respiratory gating have been successfully started. The PTH allows a reduction in patient stay in the treatment room to as few as 7 min. The PTH plays an important role in carbon ion beam scanning therapy at the new institution, particularly in the management of patient handling, application of image‐guided therapy, and improvement of treatment workflow, and thereby allows substantially better treatment at minimum cost. PACS numbers: 87.56.‐v; 87.57.‐s; 87.55.‐x PMID:23149784

  15. Performance of the full size nGEM detector for the SPIDER experiment

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2016-03-01

    The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).

  16. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  17. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  18. The integral line-beam method for gamma skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Bassett, M.S.

    1991-03-01

    This paper presents a refinement of a simplified method, based on line-beam response functions, for performing skyshine calculations for shielded and collimated gamma-ray sources. New coefficients for an empirical fit to the line-beam response function are provided and a prescription for making the response function continuous in energy and emission direction is introduced. For a shielded source, exponential attenuation and a buildup factor correction for scattered photons in the shield are used. Results of the new integral line-beam method of calculation are compared to a variety of benchmark experimental data and calculations and are found to give generally excellent agreementmore » at a small fraction of the computational expense required by other skyshine methods.« less

  19. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  20. The SIAM Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pairsuwan, Weerapong

    A short history of the SIAM Photon Source in Thailand is described. The facility is based on the 1 GeV storage ring obtained from the SORTEC consortium in Japan. After a redesign to include insertion straight sections it produced the first light in December 2001 and the first beam line became operational in early 2002. Special difficulties appear when a synchrotron light facility is obtained by donation, which have mostly to do with the absence of human resource development that elsewhere is commonly accomplished during design and construction. Additional problems arise by the distance of a developing country like Thailandmore » from the origin of technical parts of the donation. A donation does not provide time to generate local capabilities or include in the technical design locally obtainable parts. This makes future developments, repairs and maintenance more time consuming, difficult and expensive than it should be. In other cases, parts of components are proprietary or obsolete or both which requires redesign and engineering at a time when the replacement part should be available to prevent stoppage of operation.The build-up of a user community is very difficult, especially when the radiation spectrum is confined to the VUV regime. Most of scientific interest these days is focused on the x-ray regime. Due to its low beam energy, the SIAM storage ring did not produce useful x-ray intensities and we are therefore in the midst of an upgrade to produce harder radiation. The first step has been achieved with a 20% increase of energy to 1.2 GeV. This step shifts the critical photon energy of bending magnet radiation from 800 eV to 1.4 keV providing useful radiation up to 7 keV. A XAS-beam line has been completed in 2005 and experimentation is very active by now. The next step is to install a 6.4 T wavelength shifter by the end of 2006 resulting in a critical photon energy of 6.15 keV. Further upgrades are planed for the comming years.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adey, D.; Appleby, R. B.; Bayes, R.

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less

  2. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  3. No Evidence of Isomerism for the First Excited State of {sup 93}Rb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miernik, K., E-mail: kmiernik@fuw.edu.pl; Gross, C.J.; Grzywacz, R.

    2014-06-15

    The 253.3–keV excited state located in {sup 93}Rb was studied at the Holifield Radioactive Ion Beam Facility in Oak Ridge. This state, described as isomeric in databases, was populated in the decay of {sup 93}Kr produced by proton–induced fission of {sup 238}U and isolated using the isotope separation on–line technique. We report that the 253.3–keV level does not reveal isomerism and the upper limit of the half-life from our measurement is 4 ns. Our findings are supported by previously reported results that were not taken into account in the latest nuclear databases.

  4. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  5. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  6. High Intensity Tests of the NuMI Beam Monitoring Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert

    2002-04-01

    The NuMI facility at Fermilab will generate an intense beam of neutrinos directed toward Soudan, MN, 735 km away. Components of the planned beam monitoring system will be exposed to fluences of up to 8 x 10^9 charge particles / cm^2 and 6 x 10^10 neutrons / cm^2 in an 8.6 us beam spill. These fluences will be measured by an array of Helium ionization chambers. We tested a pair of chambers with 8 GeV protons at the Fermilab Booster accelerator, and with high intensity neutron sources at the Texas Experimental Nuclear Facility.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We summarize activities concerning the Fermilab polarized beams. They include a description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the production at large x, and experiments with polarized beams during the next fixed-target period. 8 refs., 9 figs.

  8. Development of Technology for Image-Guided Proton Therapy

    DTIC Science & Technology

    2011-10-01

    testing proton RBE in the Penn proton beam facility  Assemble equipment and develop data analysis software  Install and test tablet PCs...production  Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011  Measurement of RBE for protons using the...Penn proton beam facility  Measure LET for scattered and scanned beams  Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9

  9. Design of the low energy beam transport line for the China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hai; Ouyang, Hua-Fu; Fu, Shi-Nian; Zhang, Hua-Shun; He, Wei

    2008-03-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper. The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  10. The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Negret, A.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.

  11. FLASH2: Operation, beamlines, and photon diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less

  12. The FFAG return loop for the CBETA Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J. S.

    2017-04-28

    The CBETA energy recovery linac uses a single xed eld alternating gradient (FFAG) beam line to return the beam for electron beams with four energies, ranging from 42 MeV to 150 MeV. To keep the beam line compact, the ends of the return line have a small radius of curvature, but the central part of the return line is straight. These are connected by transition lines that adiabatically change from one to the other. We rst describe the design or the arc cell. We then describe how a straight cell is created to be a good match to this arcmore » cell. We then describe the design of the transition line between them. The design process makes use of eld maps for the desired magnets. Because we switch magnet types as we move from the arc, through the transition, and into the straight, there are discrete jumps in the elds that degrade the adiabaticity of the transition, and we describe corrections to manage that.« less

  13. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  14. Studies on low energy beam transport for high intensity high charged ions at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y., E-mail: yangyao@impcas.ac.cn; Lu, W.; Fang, X.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberrationmore » of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.« less

  15. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.

  16. In situ baking method for degassing of a kicker magnet in accelerator beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less

  17. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  18. The ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  19. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less

  20. The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy.

    PubMed

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  1. The ELENA facility

    NASA Astrophysics Data System (ADS)

    Bartmann, Wolfgang; Belochitskii, Pavel; Breuker, Horst; Butin, Francois; Carli, Christian; Eriksson, Tommy; Oelert, Walter; Ostojic, Ranko; Pasinelli, Sergio; Tranquille, Gerard

    2018-03-01

    The CERN Antiproton Decelerator (AD) provides antiproton beams with a kinetic energy of 5.3 MeV to an active user community. The experiments would profit from a lower beam energy, but this extraction energy is the lowest one possible under good conditions with the given circumference of the AD. The Extra Low Energy Antiproton ring (ELENA) is a small synchrotron with a circumference a factor of 6 smaller than the AD to further decelerate antiprotons from the AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. ELENA ring commissioning is taking place at present and first beams to a new experiment installed in a new experimental area are foreseen in 2017. The transfer lines from ELENA to existing experiments in the old experimental area will be installed during CERN Long Shutdown 2 (LS2) in 2019 and 2020. The status of the project and ring commissioning will be reported. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  2. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new,more » higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.« less

  3. Reactor-pumped laser facility at DOE's Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.

    1994-05-01

    The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the U.S., is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly skilled technical team with extensive engineering and research capabilities from underground testing of our nation's nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of +/- 60 degree(s) from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high- power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a rector pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

  4. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  5. High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    NASA Astrophysics Data System (ADS)

    Sabaté-Gilarte, M.; Barbagallo, M.; Colonna, N.; Gunsing, F.; Žugec, P.; Vlachoudis, V.; Chen, Y. H.; Stamatopoulos, A.; Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Villacorta, A.; Guerrero, C.; Damone, L.; Audouin, L.; Berthoumieux, E.; Cosentino, L.; Diakaki, M.; Finocchiaro, P.; Musumarra, A.; Papaevangelou, T.; Piscopo, M.; Tassan-Got, L.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Baccomi, R.; Balibrea, J.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Cortés, G.; Deo, K.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Frost, R. J. W.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wolf, C.; Woods, P. J.; Weiss, C.; Wright, T.

    2017-10-01

    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.

  6. A new small-footprint external-beam PIXE facility for cultural heritage applications using pulsed proton beams

    NASA Astrophysics Data System (ADS)

    Vadrucci, M.; Bazzano, G.; Borgognoni, F.; Chiari, M.; Mazzinghi, A.; Picardi, L.; Ronsivalle, C.; Ruberto, C.; Taccetti, F.

    2017-09-01

    In the framework of the COBRA project, elemental analyses of cultural heritage objects based on the particle induced X-ray emission (PIXE) are planned in a collaboration between the APAM laboratory of ENEA-Frascati and the LABEC laboratory of INFN in Florence. With this aim a 3-7 MeV pulsed proton beam, driven by the injector of the protontherapy accelerator under construction for the TOP-IMPLART project, will be used to demonstrate the feasibility of the technique with a small-footprint pulsed accelerator to Italian small and medium enterprises interested in the composition analysis of ancient artifacts. The experimental set-up for PIXE analysis on the TOP-IMPLART machine consists of a modified assembly of the vertical beam line usually dedicated to radiobiology experiments: the beam produced by the injector (RFQ + DTL, a PL7 ACCSYSHITACHI model) is bent to 90° by a magnet, is collimated by a 300 μm aperture inserted in the end nozzle and extracted into ambient pressure by an exit window consisting of a Upilex foil 7.5 μm thick. The beam is pulsed with a variable pulse duration of 20-100 μs and a repetition rate variable from 10 to 100 Hz. The X-ray detection system is based on a Ketek Silicon Drift Detector (SDD) with 7 mm2 active area and 450 μm thickness, with a thin Beryllium entrance window (8 μm). The results of the calibration of this new PIXE set-up using thick target standards and of the analysis of the preliminary measurements on pigments are presented.

  7. 47 CFR 36.154 - Exchange Line Cable and Wire Facilities (C&WF)-Category 1-apportionment procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Exchange Line Cable and Wire Facilities (C&WF... COMPANIES 1 Telecommunications Property Cable and Wire Facilities § 36.154 Exchange Line Cable and Wire... apportioning the cost of exchange line cable and wire facilities among the operations is the determination of...

  8. 47 CFR 36.154 - Exchange Line Cable and Wire Facilities (C&WF)-Category 1-apportionment procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Exchange Line Cable and Wire Facilities (C&WF... COMPANIES 1 Telecommunications Property Cable and Wire Facilities § 36.154 Exchange Line Cable and Wire... apportioning the cost of exchange line cable and wire facilities among the operations is the determination of...

  9. Development of slow positron beam lines and applications

    NASA Astrophysics Data System (ADS)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  10. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  11. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  12. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  13. Measurements and analyses of the distribution of the radioactivity induced by the secondary neutrons produced by 17-MeV protons in compact cyclotron facility

    NASA Astrophysics Data System (ADS)

    Matsuda, Norihiro; Izumi, Yuichi; Yamanaka, Yoshiyuki; Gandou, Toshiyuki; Yamada, Masaaki; Oishi, Koji

    2017-09-01

    Measurements of reaction rates by secondary neutrons produced from beam losses by 17-MeV protons are conducted at a compact cyclotron facility with the foil activation method. The experimentally obtained distribution of the reaction rates of 197Au (n, γ) 198Au on the concrete walls suggests that a target and an electrostatic deflector as machine components for beam extraction of the compact cyclotron are principal beam loss points. The measurements are compared with calculations by the Monte Carlo code: PHITS. The calculated results based on the beam losses are good agreements with the measured ones within 21%. In this compact cyclotron facility, exponential attenuations with the distance from the electrostatic deflector in the distributions of the measured reaction rates were observed, which was looser than that by the inverse square of distance.

  14. Physics opportunities with meson beams

    DOE PAGES

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less

  15. Physics opportunities with meson beams

    NASA Astrophysics Data System (ADS)

    Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-01

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  16. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  17. A PET Prototype for “In-Beam” Monitoring of Proton Therapy

    NASA Astrophysics Data System (ADS)

    Vecchio, Sara; Attanasi, Francesca; Belcari, Nicola; Camarda, Manuela; Cirrone, G. A. Pablo; Cuttone, Giacomo; Di Rosa, Francesco; Lanconelli, Nico; Moehrs, Sascha; Rosso, Valeria; Russo, Giorgio; Del Guerra, Alberto

    2009-02-01

    The in-beam PET is a novel PET application to image the beta+ activity induced in biological tissues by hadronic therapeutic beams. Thanks to the correlation existing between beam-delivered dose profiles and beam-induced activity profiles, in vivo information about the effective ion paths can be extracted from the in-beam pet image. in situ measurements, immediately after patient irradiation, are recommended in order to exploit the maximum statistics, by also detecting the contribution provided by the very short lived isotopes, e.g. 15O. A compact, dedicated tomograph should then be developed for such an application, so as to be used in the treatment room. We developed a small PET prototype in order to demonstrate the feasibility of such a technique for the monitoring of proton therapy of ocular tumors at the CATANA facility (Catania, Italy). The prototype consists of two planar heads with an active area of about 5 cm times 5 cm. Each head is made up of a square position sensitive photomultiplier (Hamamatsu H8500) coupled to a matrix of the same size of LYSO scintillating crystals (2 mm times 2 mm times 18 mm pixel dimensions). Dedicated, compact electronic boards are used for the signal multiplexing, amplification and digitization. The distance between the pair can be varied from 10 cm up to a maximum of about 20 cm. The validation of the prototype was performed on plastic phantoms using 62 MeV protons at the CATANA beam line. Different dose distributions were delivered and a good correlation between the distal fall-off of the activity profiles and of the dose profiles was found, i.e., better than 2 mm along the beam direction.

  18. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  19. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    NASA Astrophysics Data System (ADS)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  20. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  1. Research of beam conditioning technologies on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Yuan, Haoyu; Li, Ping; Tian, Xiaocheng; Wang, Jianjun; Dong, Jun; Zhang, Ying; Yuan, Qiang; Wang, Yuancheng; Zhou, Wei; Peng, Zhitao; Wang, Fang; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Zhang, Xiaomin

    2014-12-01

    Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.

  2. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  3. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  4. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  5. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  6. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  7. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  8. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  9. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  10. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  11. JANUS - A setup for low-energy Coulomb excitation at ReA3

    NASA Astrophysics Data System (ADS)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  12. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  13. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  14. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  15. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    PubMed Central

    Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.

    2011-01-01

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019

  16. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    NASA Astrophysics Data System (ADS)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  17. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  18. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  19. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  20. Parasitic production of slow RI-beam from a projectile fragment separator by ion guide Laser Ion Source (PALIS)

    NASA Astrophysics Data System (ADS)

    Sonoda, Tetsu

    2009-10-01

    The projectile fragment separator BigRIPS of RIBF at RIKEN provides a wide variety of short-lived radioactive isotope (RI) ions without restrictions on their lifetime or chemical properties. A universal slow RI-beam facility (SLOWRI) to decelerate the beams from BigRIPS using an RF-carpet ion guide has been proposed as a principal facility of RIBF. However, beam time at such a modern accelerator facility is always limited and operational costs are high. We therefore propose an additional scheme as a complementary option to SLOWRI to drastically enhance the usability of such an expensive facility. In BigRIPS, a single primary beam produces thousands of isotopes but only one isotope is used for an experiment while the other >99.99% of isotopes are simply dumped in the slits or elsewhere in the fragment separator. We plan to locate a compact gas cell with 1 bar Ar at the slits. The thermalized ions in the cell will be quickly neutralized and transported to the exit by gas flow and resonantly re-ionized by lasers. Such low energy RI-beams will always be provided without any restriction to the main experiment. It will allow us to run parasitic experiments for precision atomic or decay spectroscopy, mass measurements. Furthermore, the resonance ionization in the cell itself can be used for high-sensitive laser spectroscopy, which will expand our knowledge of the ground state property of unstable nuclei.

Top