Science.gov

Sample records for beam loss localization

  1. Collimation system design for beam loss localization with slipstacking injection in the Fermilab Main Injector

    SciTech Connect

    Drozhdin, A.I.; Brown, B.C.; Johnson, D.E.; Koba, K.; Kourbanis, I.; Mokhov, N.V.; Rakhno, I.L.; Sidorov, V.I.; /Fermilab

    2007-06-01

    Results of modeling with the 3-D STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a scraping rate of 5% of 5.5E+13 ppp, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.

  2. Collimation system for beam loss localization with slip stacking injection in the Fermilab Main Injector

    SciTech Connect

    Brown, Bruce C.; /Fermilab

    2008-09-01

    Slip stacking injection for high intensity operation of the Fermilab Main Injector produces a small fraction of beam which is not captured in buckets and accelerated. A collimation system has been implemented with a thin primary collimator to define the momentum aperture at which this beam is lost and four massive secondary collimators to capture the scattered beam. The secondary collimators define tight apertures and thereby capture a fraction of other lost beam. The system was installed in 2007 with commissioning continuing in 2008. The collimation system will be described including simulation, design, installation, and commissioning. Successful operation and operational limitations will be described.

  3. Local compensation-rematch for major element failures in superconducting linacs with very high reliability and low beam loss

    NASA Astrophysics Data System (ADS)

    Sun, Biao; Tang, Jingyu; Yan, Fang; Li, Zhihui; Meng, Cai; Pei, Shilun

    2015-06-01

    In order to achieve the extremely high reliability and availability in superconducting linacs required by some applications such as in accelerator-driven systems (ADS), a fault tolerance design is usually pursued. With the example of the China-ADS main linac, the failure effects of key elements such as RF cavities and focusing elements in different locations along the linac have been studied and the schemes of compensation by means of the local compensation-rematch method have been proposed. For cavity failures, by adjusting the settings of the neighboring cavities and focusing elements one can make sure that the Twiss parameters and beam energy are recovered to the nominal ones at the matching point. For solenoid failures in the low energy section, a novel method by using a neighbor cavity with reverse phase is used to maintain simultaneous acceleration and focusing in both the transverse and longitudinal phase planes. For quadrupole failures in the warm transitions in the high energy section, triplet focusing structure is adopted which can be converted locally into a doublet focusing in case of one quadrupole failure and the rematch method is proven very effective. With macro-particle simulations by TraceWin, it is found that the normalized rms emittance has no obvious growth and the halo emittance has modest growth after applying the local compensation-rematch in the cases mentioned above. In addition, a self-made code based on MATLAB has been developed to double check the simulations by TraceWin for the local compensation and rematch method.

  4. Preliminary comments about beam loss

    SciTech Connect

    Groom, D.

    1985-10-01

    A variety of beam loss questions are being investigated. They affect several design issues, ranging from machine-associated background in the detectors to the radiation lifetime of the main-ring magnets: (1) Muons. Oppositely directed muon beams from prompt muon production, primary meson decay, and a variety of other processes radiate from each IR. If they were not fanned by the insertion dipoles, the beams would be sufficiently intense and energetic that they would present a radiation hazard even after penetrating 2 km of soil or rock. (2) Machine-associated background in the IR`s. About 30 mb of the total cross section is elastic or quasi-elastic, and most of the protons are in a Gaussian spot with sigma = 9 mr. These particles are well within the machine acceptance, but there is a grey area in the tail of the distributions in which the scattered particles `almost` remain in orbit - they continue for some distance but eventually hit a wall. (3) Cryogenic load. This problem has been addressed to some degree in the RDS, but considerably more detail is needed. It appears that a very large fraction of the inelastic particle energy will be deposited here. (4) Radiation damage in the ring. The lifetime of both magnets and electronics in the tunnel might be limited by radiation due to particle loss. Early results are not reassuring. Tevatron measurements, reported to the authors by John Elias, indicate that most of the tunnel background comes from particle loss due to beam-gas collisions.

  5. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  6. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  7. Beam Loss Control for the NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Choi, J.

    2011-03-28

    The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for {le} 10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.

  8. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  9. RHIC BEAM LOSS MONITOR SYSTEM INITIAL OPERATION.

    SciTech Connect

    WITKOVER,R.L.; MICHNOFF,R.J.; GELLER,J.M.

    1999-03-29

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre- integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system.

  10. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  11. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  12. RHIC beam loss monitor system design

    SciTech Connect

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-07-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented.

  13. RHIC low energy beam loss projections

    SciTech Connect

    Satogata,T.

    2009-08-01

    For RHIC low-energy operations, we plan to collide Au beams with energies of E = 2:5-10 GeV/u in RHIC. Beams are injected into collision optics, and RHIC runs as a storage ring with no acceleration. At these low energies, observed beam lifetimes are minutes, with measured beam lifetimes of 3.5 min (fast) and 50 min (slow) at E=4.6 GeV/u in the March 2008 test run. With these lifetimes we can operate RHIC as a storage ring to produce reasonable integrated luminosity. This note estimates beam losses and collimator/dump energy deposition in normal injection modes of low energy operation. The main question is whether a normal injection run is feasible for an FY10 10-15 week operations run from a radiation safety perspective. A peripheral question is whether continuous injection operations is feasible from a radiation safety perspective. In continuous injection mode, we fill both rings, then continuously extract and reinject the oldest bunches that have suffered the most beam loss to increase the overall integrated luminosity. We expect to gain a factor of 2-3 in integrated luminosity from continuous injection at lowest energies if implemented[1]. Continuous injection is feasible by FY11 from an engineering perspective given enough effort, but the required extra safety controls and hardware dose risk make it unappealing for the projected luminosity improvement. Low-energy electron cooling will reduce beam losses by at least an order of magnitude vs normal low-energy operations, but low energy cooling is only feasible in the FY13 timescale and therefore beyond the scope of this note. For normal injection low energy estimates we assume the following: (1) RHIC beam total energies are E=2.5-10 GeV/u. (Continuous injection mode is probably unnecessary above total energies of E=7-8 GeV/u.); (2) RHIC operates only as a storage ring, with no acceleration; (3) 110 bunches of about 0.5-1.0 x 10{sup 9} initial bunch intensities (50-100% injection efficiency, likely conservative

  14. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  15. Analysis of beam loss induced abort kicker instability

    SciTech Connect

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  16. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong

    2017-02-01

    Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  17. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    DOE PAGES

    Wu, Bin; Hao, Baolong; White, Roscoe; ...

    2016-12-09

    Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  18. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    SciTech Connect

    Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong

    2016-12-09

    Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  19. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  20. Mode localization in multi-span beams

    NASA Technical Reports Server (NTRS)

    Lust, S. D.; Friedmann, P. P.; Bendiksen, O. O.

    1990-01-01

    The influence of numerous effects on mode localization in multi-span beams is investigated. Finite-element methods are used to study localization as a function of: Timoshenko beam effects; beam end conditions; span length, mass, and stiffness imperfection; viscous damping; axial force; transverse support and rotational coupling stiffness; and modeling resolution. Three configurations are studied, commencing with two different two-span models, and culminating in a ten-span configuration resembling lattice-type large space structures. Results indicate that, in addition to the ratio of imperfection to coupling stiffness being an important localization parameter, transverse support stiffness and Timoshenko beam effects greatly affect the tendency of a structure to exhibit localized modes.

  1. Anomaly Detection for Beam Loss Maps in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja

    2017-07-01

    In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy.

  2. Analysis of beam loss mechanism in the Project X linac

    SciTech Connect

    Carneiro, J.-P.; Lebedev, V.; Nagaitsev, S.; Ostiguy, J.-F.; Solyak, N.; /Fermilab

    2011-03-01

    Minimization of the beam losses in a multi-MW H{sup -} linac such as ProjectX to a level below 1 W/m is a challenging task. The impact of different mechanism of beam stripping, including stripping in electric and magnetic fields, residual gas, blackbody radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignements of beamline elements and errors in RF fields and phases. We present in this paper requirements for dynamic errors and correction schemes to keep beam losses under control.

  3. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  4. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  5. Measurements of Beam Ion Loss from the Compact Helical System

    SciTech Connect

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  6. Cavity loss factors for non-ultrarelativistic beams

    SciTech Connect

    Kurennoy, S.S.

    1998-12-31

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. The authors calculate the loss factors of a non-relativistic bunch and compare results with the relativistic case.

  7. A Flexible, Low Cost, Beam Loss Monitor Evaluation System

    SciTech Connect

    Hoyes, George Garnet; Pimol, Piti; Juthong, Nawin; Attaphibal, Malee

    2007-01-19

    A flexible, low cost, Beam Loss Monitor (BLM) Evaluation System based on Bergoz BLMs has been developed. Monitors can easily be moved to any location for beam loss investigations and/or monitor usefulness evaluations. Different PC pulse counting cards are compared and tested for this application using the display software developed based on LabVIEW. Beam problems uncovered with this system are presented.

  8. BEAM LOSS ESTIMATES AND CONTROL FOR THE BNL NEUTRINO FACILITY.

    SciTech Connect

    WENG, W.-T.; LEE, Y.Y.; RAPARIA, D.; TSOUPAS, N.; BEEBE-WANG, J.; WEI, J.; ZHANG, S.Y.

    2005-05-16

    The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations to achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realizing the required goals. The process considered in this paper include the emittance growth in the linac, the H{sup -} injection, the transition crossing, the coherent instabilities and the extraction losses.

  9. Beam Loss Monitors for NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  10. H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Galambos, John D; Plum, Michael A; Shishlo, Andrei P

    2012-01-01

    A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

  11. Maximum Beam Power and Nominal Beam Losses at S-20

    SciTech Connect

    Clendenin, J.

    2005-01-31

    The maximum credible beam power values for electrons shown in Table 1 for e{sup -} beams are based on a beam power of 1.8 MW (1.875 x 10{sup 12} e{sup -} at 120 Hz) for an energy of 50 GeV at S-30. Positrons are limited by the positron source damage threshold to an average current of {approx}2 {mu}A, i.e., {approx}10{sup 11} e{sup -} per pulse at 120 Hz on the target [1]. The ratio of e{sup +} at S-1 per e{sup -} on the conversion target is {ge}2. At S-20 the maximum linac energy is 33 GeV, while the HER and LER Bypass beams are limited to 12 and 4 GeV respectively by the BCS.

  12. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    SciTech Connect

    Sartori, E. Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Sonato, P.

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  13. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  14. Comparative study of beam losses and heat loads reduction methods in MITICA beam source.

    PubMed

    Sartori, E; Agostinetti, P; Dal Bello, S; Marcuzzi, D; Serianni, G; Sonato, P; Veltri, P

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  15. Modeling process of the neutral beam re-ionization loss

    NASA Astrophysics Data System (ADS)

    Liang, Li-Zhen; Hu, Chun-Dong; Xie, Yuan-Lai; Xie, Ya-Hong; Nbi-team

    2010-07-01

    The basic process of re-ionization loss was studied. In the drift duct there are three processes leading to re-ionization loss: the collision of neutral beam particles with the molecules of background gas, similar collisions with released molecules from the inner wall of the drift duct and the ferret-collisions among particles with different energy of the neutral beam. Mathematical models have been developed and taking EAST-NBI parameters as an example, the re-ionization loss was obtained within these models. The result indicated that in the early stage of the neutral beam injector operation the released gas was quite abundant. The amount of re-ionization loss owing to the released gas can be as high as 60%. In the case of a long-time operation of the neutral beam injector, the total re-ionization loss decreases from 13.7% to 5.7%. Then the reionization loss originating mainly from the collisions between particles of the neutral beam and the background molecules is dominant, covering about 92% of the total re-ionization loss. The drift duct pressure was the decisive factor for neutral beam re-ionization loss.

  16. Tolerable Beam Loss at High-Intensity Machines

    SciTech Connect

    Oleg E. Krivosheev, Nikolai V. Mokhov

    2000-08-28

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields.

  17. Dependence of bunch energy loss in cavities on beam velocity

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  18. Beam Loss Monitors in the NSLS Storage Rings

    SciTech Connect

    Kramer,S.L.; Fedurin, M.

    2009-05-04

    Beam loss monitors (BLM) have been used for more than two decades in the VUV ring at the NSLS. These have proved useful for optimizing injection and operation of the ring. Recently similar monitors have been installed in the X-ray ring and are being used to better understand injection, as well as operation of the ring. These units have been compared with the Bergoz BLMs, which have been mostly useful for understanding operating beam losses.

  19. Beam Losses in the NLC Extraction Line for High Luminosity Beam Parameters (LCC-0049)

    SciTech Connect

    Nosochkov, Y

    2004-03-19

    In this note we present results of beam tracking in the NLC extraction line for the NLC option with high luminosity beam parameters (option H). Particle losses for 0.5 TeV and 1 TeV cms energy beams have been computed and examined as a function of beam offset at the interaction point (IP). Updated tracking results for the NLC option A are presented as well.

  20. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  1. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  2. Beam loss and collimation in the Fermilab 16 GeV proton driver

    SciTech Connect

    Alexandr I. Drozhdin, Oleg E. Krivosheev and Nikolai V. Mokhov

    2001-07-20

    A high beam power of 1.15 MW in the proposed 16-GeV Proton Driver [1] implies serious constraints on beam losses in the machine. The main concerns are the hands-on maintenance and ground-water activation. Only with a very efficient beam collimation system can one reduce uncontrolled beam losses to an allowable level. The results on tolerable beam loss and on a proposed beam collimation system are summarized in this paper. A multi-turn particle tracking in the accelerator defined by all lattice components with their realistic strengths and aperture restrictions, and halo interactions with the collimators is done with the STRUCT code [2]. Full-scale Monte Carlo hadronic and electromagnetic shower simulations in the lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic field are done with the MARS14 code [3]. It is shown that the proposed 3-stage collimation system, allows localization of more than 99% of beamloss in a special straight section. Beam loss in the rest of the accelerator is 0.2 W/m on average.

  3. Implementation of Beam-Loss Monitor systems for the SSC

    SciTech Connect

    Johnson, R.G.

    1994-07-01

    Beam-Loss Monitors (BLM) are used with each accelerator in the Superconducting Super Collider complex. The primary purpose of these detectors is to protect the accelerators from damage due to the loss of protons. Although the range of primary beam energies to be covered is very large, 20 MeV to 20 TeV, we plan to maintain commonality of detectors and electronics as much as possible. In this report the plans for developing and implementing BLM systems for each of the accelerators will be discussed. Possible solutions to problems that have been identified are presented.

  4. RHIC Beam Loss Monitor System Design and Test

    NASA Astrophysics Data System (ADS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-05-01

    The Beam Loss Monitor System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. To satisfy fast (single turn) and slow (100 msec) loss beam abort criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. The system uses 400 ion chambers of a modified Tevatron design. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized by a standard RHIC VME MADC preceded by a switchable gain amplifier. The output also goes to an analog multiplier used to reduce energy dependence, extending the range of the abort comparators. Fast and slow filters separate the signal to dual comparators with independent trip levels. The gains, fast and slow abort levels, and abort bit masks are set for each channel on receipt of specific RHIC Event Codes. Up to 64 channels, on 8 VME boards, are controlled by a BNL designed micro-controller based VME module, decoupling it from the front-end computer for real-time operation.

  5. beam loss scenarios for MuCool Test Area

    SciTech Connect

    Rakhno, Igor; Johnstone, Carol; /Fermilab

    2010-08-01

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets, gas-filled RF cavities, and other apparatus being developed to cool intense, large-emittance muon beams. In this study the results of Monte Carlo modeling of several beam loss scenarios are presented. The MTA facility was designed to test targets and other muon cooling apparatus using the intense Fermilab Linac beam. The requested intensity of the proton beam for the MTA is essentially full Linac capability, or 1.6 x 10{sup 13} protons per pulse and an energy of 400 MeV. Two modes of operation will be supported in the MuCOOL beamline: one mode for emittance measurements (and beamline studies) and a second mode for MTA experiments. Maximum beam intensity for these two modes is: 9.6 x 10{sup 15} protons/hr - 600 beam pulses/hour of full Linac beam pulse intensity (1.6 x 10{sup 13} protons/pulse) to the emittance beam absorber and 9.6 x 10{sup 14} protons/hour - 60 beam pulses/hour of full Linac beam pulse intensity to experiments in the MTA experimental hall. This extremely high intensity implies careful investigation into and application of proper shielding materials and configuration in order to satisfy the following two requirements: (i) to reduce the instantaneous dose rate outside of the experimental enclosure to prescribed levels appropriate for the area considered; (ii) to ensure the civil construction of the hall is capable of additional shielding and, further, that the weight of the shielding is commensurate with the loading specifications of the enclosure, notably the ceiling. A number of scenarios for beam loss at different locations were studied in order to determine the maximum beam intensity which is in compliance with the existing shielding. The modeling was performed with the MARS15 code.

  6. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect

    Jianxun Yan, Kelly Mahoney

    2009-10-01

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  7. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental

  8. Beam Loss and Longitudinal Emittance Growth in SIS

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Hofmann, I.; Boine-Frankenheim, O.; Spiller, P.; Hülsmann, P.; Franchetti, G.; Damerau, H.; König, H. Günter; Klingbeil, H.; Kumm, M.; Moritz, P.; Schütt, P.; Redelbach, A.

    2005-06-01

    Beam losses of several percent occur regularly in SIS. The onset occurs during the RF capture of the beam. Previous studies have revealed that the losses can come from the RF bucket at the start of acceleration being over filled due to the longitudinal bucket acceptance being too small, or due to the mismatch between the mean energy from the UNILAC and synchronous energy of the SIS. The beam losses as measured by a DC beam transformer however show in addition to the sharp initial drop, for the above reasons, a much slower decay in the beam intensity. The speculated cause comes from the incoherent transverse tune shift of the bunched beam, which forces particles into transverse resonant conditions. The longitudinal emittance growth is also another important issue for SIS. Past measurements from Schottky-noise pick-ups have shown a factor of 3-5 increase in the longitudinal emittance depending on the extraction energy; a large factor when compared against expectations from theory. These factors were calculated from the ratio between the normalized relative momentum spread of the DC beam before RF capture and after debunching. In this present work, tomographical techniques have been used to reconstruct the phasespace from a series of bunch profile measurements from a Beam Position Monitor (BPM). Therefore one can find the rate of growth in the longitudinal emittance from a series of high resolution BPM measurements along the RF ramp. Furthermore the initial phasespace density matrix from these reconstructions has been used to generate the initial population of macroparticles for the ESME longitudinal dynamics Particle-In-Cell code, thereby enabling a comparison between the longitudinal emittance growth of the beam under ideal conditions and that of the experiment. The longitudinal emittance growth (rms) during the acceleration (˜540ms) was approximately 20%, and that during the RF capture was estimated to have an upper limit of about 40%. Later measurements have also

  9. RFQ Designs and Beam-Loss Distributions for IFMIF

    SciTech Connect

    Jameson, Robert A

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  10. Beam losses and beam halos in accelerators for new energy sources

    SciTech Connect

    Jameson, R.A.

    1995-12-31

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs.

  11. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    SciTech Connect

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A; Lebedev, Valerie; Laface, Emanuele; Galambos, John D

    2013-01-01

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  12. Beam loss ion chamber system upgrade for experimental halls

    SciTech Connect

    D. Dotson; D. Seidman

    2005-08-01

    The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic ''burn through''. Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an ''off the shelf'' Programmable Logic Controller located in a single control box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage ''Brick'' at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

  13. Beam Loss Ion Chamber System Upgrade for Experimental Halls

    SciTech Connect

    D.W. Dotson; D.J. Seidman

    2005-05-16

    The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic ''burn through''. Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an ''off the shelf'' Programmable Logic Controller located in a single control box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage ''Brick'' at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

  14. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  15. Prompt loss of beam ions in KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Rhee, T.; Kim, Junghee; Yoon, S. W.; Park, B. H.; Isobe, M.; Ogawa, K.; Ko, W.-H.

    2016-10-01

    For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI) heating in Korea Superconducting Tokamak Advanced Research (KSTAR) device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD) position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  16. Three-dimensional particle trajectories and waste beam losses in injection dump beam line of SNS accumulator ring

    SciTech Connect

    Wang, Jian-Guang; Plum, Michael A

    2008-01-01

    The SNS ring injection dump beam line has been suffering high beam losses since its commissioning. In order to understand the mechanisms of the beam losses, we have performed 3D simulation studies of the beam line. The 3D models consist of three injection chicane dipoles and one injection dump septum magnet. 3D particle trajectories in the models are computed. We then extend particle optics calculations to the injection dump. Our studies have clearly shown some design and operation problems, that cause beam losses in the injection dump beam line. These include incorrect chicane dipole settings, incorrect position of a chicane dipole, too small aperture of injection dump septum, and inadequate focusing downstream. This paper reports our findings and the remedies to the injection beam loss problems.

  17. Moyer model approximations for point and extended beam losses

    NASA Astrophysics Data System (ADS)

    McCaslin, Joseph B.; Swanson, William P.; Thomas, Ralph H.

    1987-05-01

    The use of the empirical Moyer model for the determination of transverse neutron shielding for high-energy proton accelerators is described and discussed. It is shown that an important advantage of the Moyer Model is the physical insight it offers towards understanding the complex interactions that comprise the shielding processes. Calculations for pointlike and extended uniform beam loss distributions are discussed and their relationship to practical shielding conditions developed. The calculations required by the model are readily performed on small programmable calculators and thus are widely accessible. Program listings for practical calculations using a Hewlett-Packard HP-97 calculator are available on request.

  18. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles

  20. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The

  1. The use of photographic film to pinpoint accelerator beam losses.

    PubMed

    Marceau-Day, Marie Lorraine; Teague, Richard E; Wang, Wei-Hsung

    2011-08-01

    Following removal of a superconducting wiggler that has a maximum magnetic-field of 7 T in a high-energy synchrotron facility, sufficient lead shielding was placed upstream of the removal point in the normal-conducting electron storage ring to account for any radiation sources from the upstream components. As is customary in such cases, when vacuum has been breached, there is a period of time required for vacuum re-conditioning of the ring. During this re-conditioning phase, poor vacuum contributes to gas bremsstrahlung formation that typically is visualized as an increase in overall radiation exposure from standard operating conditions. However, in this case, new radiation patterns emerged and persisted throughout the re-commissioning phase. Subsequently, additional shielding was then placed upstream but still failed to resolve the source of radiation. The radiation source point consisted of two distinct components: a point parallel to the position originally covered by the wiggler and a strong forward-directed peak (i.e., bremsstrahlung). The only feedback mechanism to track the beam position is the beam position monitors (BPM's). BPM's were located forward and aft of the parallel source point. The BPM's suggested that the beam was in the correct position. To investigate the elevated radiation level, commercial photographic film was used as a monitoring ruler and the focal point of the radiation source was clearly identified using this novel approach. The silver halide grain contained within the film emulsion possessed sufficient cross section and was activated from Ag to Ag, which has a half-life of 2.39 min and emits easily detectable radiation. Further, the exposed film is ready for reuse after 25 min due to the short half-life of Ag. The proposed method proved to be an easy, economic, and effective approach to rapidly and qualitatively identify the location of the beam losses.

  2. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  3. Loss of accuracy using smeared properties in composite beam modeling

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  4. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    SciTech Connect

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.; Sajaev, V.; Xiao, A.; Vella, Andrea K.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.

  5. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    NASA Astrophysics Data System (ADS)

    Garrione, Maurizio; Gazzola, Filippo

    2017-05-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  6. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  7. Large-aperture interferometer using local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1982-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed.

  8. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  9. Local tissue displacements induced by a focused ultrasound beam

    NASA Astrophysics Data System (ADS)

    Deng, Cheri

    2002-11-01

    The acoustic radiation force generated by an ultrasound beam in a medium where energy density gradient exists as the result of absorption or reflection can induce local tissue movement. Through energy absorption, an ultrasound beam can also cause local temperature rise in tissue, which can induce thermoelastic displacement because of thermal expansion. The radiation-force deformation is related to tissue elasticity and has been investigated for tumor detection in ultrasonic imaging and for monitoring therapeutic lesion size and location in high intensity focused ultrasound (HIFU) applications. In our study, theoretical and numerical models are developed to simulate the displacements induced by a focused ultrasound beam such as a HIFU beam and an imaging pulse, including both the radiation force deformation and thermoelastic displacement. Temperature rise resulted from the beam is computed using a 3D finite-difference algorithm that evaluates the bioheat equation. Thermoelastic displacements are obtained from the temperature rise. Radiation-force displacements are computed using finite-difference algorithm that solves the equations of motion subjected to such internal body force. The mechanical and thermal effects are compared and studied to elucidate how tissue displacements are related to factors including exposure characteristics and tissue properties such as absorption coefficients and Young's modulus.

  10. Ribbon Ion Beam with Controlled Directionality and Local Reactive Chemistry

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Gilchrist, Glen; Kontos, Alex; Basame, Solomon; Rockwell, Tyler; Campbell, Chris; Daniels, Kevin; Allen, Ernest; Wallace, Jay; Ballou, Jon; Hertel, Richard; Chen, Tsung-Liang; Liang, Shurong; Singh, Vikram

    2016-09-01

    A plasma processing technology designed for etch of 3D semiconductor structures is presented. The technology is characterized by controllable ion directionality and local reactive chemistry and it is based on proprietary Applied Materials - Varian Semiconductor Equipment ribbon ion beam architecture. It uses a combination of inert gas ion beam and injection of reactive chemical species at the Point-of-Use (PoU), i.e., at the wafer surface. The ion source uses an inductively coupled plasma source and a diode-type extraction optics. A beam shaping electrode allows extraction of two symmetrical ribbon-like beamlets. The ion beam has in situ controllable ion angular distribution in both mean angle and angular spread. The beam has a uniform distribution of beam current and angles over a waist exceeding 300 mm, allowing full wafer processing in one pass. Chemical compounds are delivered at PoU through linear shower heads. The reactive chemical compound delivered in this fashion maintains its molecular integrity. This result in protection of the trench side walls from deposition of etch residue and facilitates formation of volatile byproducts. The technology was used successfully for mitigation of Magnetic Tunel Junction etch residue. Other applications were this technology differentiate from present technologies are contact liner etch, Co recess, and 1D hole elongation.

  11. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    SciTech Connect

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  12. Modeling Extraction of VLF Energy from Localized Ion Ring Beams for Space Based Active Experiments

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid; Mithaiwala, Manish

    2012-07-01

    Waves in the VLF range are of considerable interest in the magnetosphere since they are responsible for transporting energy and momentum and therefore impacting space weather. Ion ring beams can efficiently generate waves in the VLF frequency range between the electron and ion gyro-frequency (Mithaiwala et al., 2010). Generation of VLF waves by infinite extent ion ring beams have been extensively treated for a broad range of space plasma applications. However, ion ring distributions created by chemical release experiments in the ionosphere (Koons and Pongratz, 1981) and those that occur naturally during storms/substorms or solar-wind comet interactions are localized over a spatial extent. This presentation will consider a new computational model for the nonlinear evolution of VLF waves generated by a spatially localized ion ring beam. The model, though quite general, will have application to generation of VLF waves in the radiation belts by localized creation of an ion ring beam. The model includes the convective loss of energy through phenomenological electron-ion collisions, which models nonlinear scattering of electrostatic lower hybrid waves into large group velocity electromagnetic whistler/magnetosonic waves (Ganguli et al., 2010). Therefore the model, though electrostatic, includes critical electromagnetic effects in a computationally efficient fashion. An emphasis is placed on the determining the efficiency of extraction of VLF energy from the ion ring beam due to the spatial localization of the ion ring beam. It is shown that due to the convection of the VLF waves out of the source region, the efficiency of wave energy extraction is greatly enhanced. This is accompanied by a reduction in background and ion ring beam heating. The results will be used to highlight the importance of non-linear scattering to future active experiments in space. Mithaiwala et al. Phys. Plasma, doi.org/10.1063/1.3372842, 2010 Koons and Pongratz, JGR, 1981. Ganguli et al., Phys

  13. Size modulated transition in the fluid–structure interaction losses in nano mechanical beam resonators

    SciTech Connect

    Vishwakarma, S. D.; Pratap, R.; Pandey, A. K.; Parpia, J. M.; Craighead, H. G.; Verbridge, S. S.

    2016-05-21

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  14. Size modulated transition in the fluid-structure interaction losses in nano mechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vishwakarma, S. D.; Pandey, A. K.; Parpia, J. M.; Verbridge, S. S.; Craighead, H. G.; Pratap, R.

    2016-05-01

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  15. Large-aperture interferometer with local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1984-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed. Previously announced in STAR as N83-13979

  16. Issues and experience with controlling beam loss at the Tevatron collider

    SciTech Connect

    Annala, Gerald; /Fermilab

    2007-07-01

    Controlling beam loss in the Tevatron collider is of great importance because of the delicate nature of the cryogenic magnet system and the collider detectors. Maximizing the physics potential requires optimized performance as well as protection of all equipment. The operating history of the Tevatron has significantly influenced the way losses are managed. The development of beam loss management in the Tevatron will be presented.

  17. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    SciTech Connect

    Dobbs, Adam James

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  18. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  19. Damage localization in beam-like structures using changes in modal strain energy

    NASA Astrophysics Data System (ADS)

    Ouali, M.; Mellel, N.; Dougdag, M.

    2017-02-01

    This paper investigates the application and reliability of using modal strain energy in damage localization estimation of beam-like structures. This is based on the fact that damage often cause a loss of stiffness that increase the modal displacement of two ends of beam element containing the damage, So the modal strain energy after damage will be increased and Modal Strain Energy Change Ratio (MSECR) in this element is larger than other elements and the location of damage is detected by finding the element with higher MSECR. To conduct this investigation, an experimental modal analysis program was carried out on a cantilever beam subjected to a controlled crack levels and the first seven mode shapes were extracted and used to calculate the modal strain energy change. The experimental MSECR was computed and the location of the damage was accurately identified especially for crack sizing as small as 10% of the beam height. Finally, finite elements models were built and validated, MSE change method was applied and the results demonstrate that the method is capable of localizing the damage for beam structure.

  20. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  1. Acoustic emission localization in beams based on time reversed dispersion.

    PubMed

    Ernst, R; Dual, J

    2014-08-01

    The common approach for the localization of acoustic emission sources in beams requires at least two measurements at different positions on the structure. The acoustic emission event is then located by evaluating the difference of the arrival times of the elastic waves. Here a new method is introduced, which allows the detection and localization of multiple acoustic emission sources with only a single, one point, unidirectional measurement. The method makes use of the time reversal principle and the dispersive behavior of the flexural wave mode. Whereas time-of-arrival (TOA) methods struggle with the distortion of elastic waves due to phase dispersion, the method presented uses the dispersive behavior of guided waves to locate the origin of the acoustic emission event. Therefore, the localization algorithm depends solely on the measured wave form and not on arrival time estimation. The method combines an acoustic emission experiment with a numerical simulation, in which the measured and time reversed displacement history is set as the boundary condition. In this paper, the method is described in detail and the feasibility is experimentally demonstrated by breaking pencil leads on aluminum beams and pultruded carbon fiber reinforced plastic beams according to ASTM E976 (Hsu-Nielsen source). It will be shown, that acoustic emissions are successfully localized even on anisotropic structures and in the case of geometrical complexities such as notches, which lead to reflections, and cross sectional changes, which affect the wave speed. The overall relative error in localizing the acoustic emission sources was found to be below 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Local wave particle resonant interaction causing energetic particle prompt loss in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, R. B.; Fu, G. Y.; White, R. B.; Wang, X. G.

    2015-11-01

    A new wave particle resonance mechanism is found explaining the first-orbit prompt neutral beam-ion losses induced by shear Alfvén Eigenmodes (AEs) in the DIII-D tokamak. Because of the large banana width, a typical trapped beam ion can only interact locally with a core localised Alfvén Eigenmode for a fraction of its orbit, i.e. part of its inner leg of the banana orbit. These trapped beam ions can experience substantial radial kick within one bounce as long as the phases of the wave seen by the particles are nearly constant during this local interaction. A wave particle resonant condition is found based on the locally averaged particle orbit frequencies over the interaction part of the particle orbit. It is further found that the frequency width of the local resonance is quite large because the interaction time is short. This implies that particles over a considerable region of phase space can interact effectively with the localised AEs and experience large radial kicks within one bounce orbit. The radial kick size is found numerically and analytically to scale linearly in AE amplitude and is about 5 cm for typical experimental parameters. These results are consistent with experimental measurement.

  3. Beam loss and backgrounds in the CDF and D0 detectors due to nuclear elastic beam-gas scattering

    SciTech Connect

    Alexandr I. Drozhdin; Valery A. Lebedev; Nikolai V. Mokhov

    2003-05-27

    Detailed simulations were performed on beam loss rates in the vicinity of the Tevatron Collider detectors due to beam-gas nuclear elastic interactions. It turns out that this component can drive the accelerator-related background rates in the CDF and D0 detectors, exceeding those due to outscattering from collimation system, inelastic beam-gas interactions and other processes [1, 2]. Results of realistic simulations with the STRUCT and MARS codes are presented for the interaction region components and the CDF and D0 detectors. It is shown that a steel mask placed upstream of the detectors can reduce the background rates by almost an order of magnitude.

  4. Development of wide dynamic range beam loss monitor system for J-PARC main ring

    NASA Astrophysics Data System (ADS)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yamada, S.; Yoshida, S.

    2017-07-01

    The new beam loss monitor (BLM) system now in operation at the main ring of J- PARC consists of an isolated front-end current to voltage converter, a VME-based 24 bit ADC system. A dual detector system employs a proportional-type gas chamber (PBLM) and an air- filled ionization chamber (AIC). The system shows a wide dynamic range of 160 dB. It can detect the low level signal that would arise in the case of the detection of residual dose in the ring itself after the beam has been turned off as well as an event such as high level beam loss at the collimators. The signal rise time of the waveform obtained is 17 µs which is fast enough to meet the speed requirement of the Machine Protection System (MPS); which is that the MPS should dump the beam within 100 µs when the beam loss signal exceeds the reference levels set in the ADC system.

  5. Recording PEP2 Ring Beam Losses at SLAC

    SciTech Connect

    Zelazny, M.; Gromme, T.; Himel, T.; Hendrickson, L.; Krauter, K.; /SLAC

    2005-09-30

    The PEP2 (e+)(e-) storage rings contain many complex interrelated systems. When the beam aborts, examining a record of the orbit from the time just before the abort can help identify the root cause. At the Stanford Linear Accelerator Center (SLAC) a system has been developed to continuously record beam orbits from Beam Position Monitors (BPMS) into a circular buffer. When the beam is aborted the buffers are frozen and their contents are stored for later analysis. BPM orbits are saved on a turn by turn basis for 2800 turns in both the high energy ring (HER) and the low energy ring (LER). Each BPM Processor (BPMP) can either monitor the HER or the LER, but not both as the readout of the two rings is multiplexed into a single readout channel. Tools exist as part of the SLAC Control Program (SCP) to collect, display, and save the data. A physicist or operator can choose a few BPMS in which to view all 2800 turns to identify the turn in which the beam went awry; then ask for that specific orbit from all of the BPMS in the storage ring to determine the root cause of the abort.

  6. Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources

    NASA Astrophysics Data System (ADS)

    Madéo, Julien; Pérez-Urquizo, Joel; Todorov, Yanko; Sirtori, Carlo; Dani, Keshav M.

    2017-07-01

    We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM <10°) and photon extraction efficiencies >50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.

  7. On the validity of localized approximation for an on-axis zeroth-order Bessel beam

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, J. A.; Ambrosio, L. A.; Wang, J. J.

    2017-07-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.

  8. Convective contributions to local power loss in a Bumpy Torus

    SciTech Connect

    Hiroe, S.; Haste, G.R. Jr.; Tolliver, J.S.; Quon, B.H.; Goyer, J.R.; Solensten, L.; Conner, K.A.

    1986-12-01

    Power flow in the ELMO Bumpy Torus (Plasma Physics and Controlled Nuclear Fusion Research (Tokyo, 1974) (IAEA, Vienna, 1975) Vol. 2, p. 141; Plasma Phys. 25, 597 (1983)) was investigated by measuring the power received by a limiter. Selective removal of heating power from various cavities, including the cavity with the limiter, has demonstrated that the majority of the power is lost locally. Observations of the potential structure demonstrate that asymmetric potential contours are present which can lead to enhanced plasma loss.

  9. Electron beam guiding by grooved SiO{sub 2} parallel plates without energy loss

    SciTech Connect

    Xue, Yingli; Yu, Deyang Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-21

    Using a pair of grooved SiO{sub 2} parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  10. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  11. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    SciTech Connect

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  12. Beam losses due to abrupt crab cavity failures in the LHC

    SciTech Connect

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-03-28

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  13. Object localization using a biosonar beam: how opening your mouth improves localization

    PubMed Central

    Arditi, G.; Weiss, A. J.; Yovel, Y.

    2015-01-01

    Determining the location of a sound source is crucial for survival. Both predators and prey usually produce sound while moving, revealing valuable information about their presence and location. Animals have thus evolved morphological and neural adaptations allowing precise sound localization. Mammals rely on the temporal and amplitude differences between the sound signals arriving at their two ears, as well as on the spectral cues available in the signal arriving at a single ear to localize a sound source. Most mammals rely on passive hearing and are thus limited by the acoustic characteristics of the emitted sound. Echolocating bats emit sound to perceive their environment. They can, therefore, affect the frequency spectrum of the echoes they must localize. The biosonar sound beam of a bat is directional, spreading different frequencies into different directions. Here, we analyse mathematically the spatial information that is provided by the beam and could be used to improve sound localization. We hypothesize how bats could improve sound localization by altering their echolocation signal design or by increasing their mouth gape (the size of the sound emitter) as they, indeed, do in nature. Finally, we also reveal a trade-off according to which increasing the echolocation signal's frequency improves the accuracy of sound localization but might result in undesired large localization errors under low signal-to-noise ratio conditions. PMID:26361552

  14. Object localization using a biosonar beam: how opening your mouth improves localization.

    PubMed

    Arditi, G; Weiss, A J; Yovel, Y

    2015-08-01

    Determining the location of a sound source is crucial for survival. Both predators and prey usually produce sound while moving, revealing valuable information about their presence and location. Animals have thus evolved morphological and neural adaptations allowing precise sound localization. Mammals rely on the temporal and amplitude differences between the sound signals arriving at their two ears, as well as on the spectral cues available in the signal arriving at a single ear to localize a sound source. Most mammals rely on passive hearing and are thus limited by the acoustic characteristics of the emitted sound. Echolocating bats emit sound to perceive their environment. They can, therefore, affect the frequency spectrum of the echoes they must localize. The biosonar sound beam of a bat is directional, spreading different frequencies into different directions. Here, we analyse mathematically the spatial information that is provided by the beam and could be used to improve sound localization. We hypothesize how bats could improve sound localization by altering their echolocation signal design or by increasing their mouth gape (the size of the sound emitter) as they, indeed, do in nature. Finally, we also reveal a trade-off according to which increasing the echolocation signal's frequency improves the accuracy of sound localization but might result in undesired large localization errors under low signal-to-noise ratio conditions.

  15. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing thismore » dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  16. Injection of beam shaped locally with nonlinear optics.

    SciTech Connect

    Wang, C.-X.; Accelerator Systems Division

    2007-01-01

    We discuss nonlinear beam shaping by octupole and sextupole to fold the tails of a Gaussian beam into its core, for the purpose of improving betatron injection in storage rings by significantly reducing the beam width at the injection septurn and thus reducing beam centroid offset from the stored beam. Necessary conditions as well as challenges for such nonlinear injections are explored.

  17. H- Beam Loss and Evidence for Intrabeam Stripping in the LANSCE Linac

    SciTech Connect

    Rybarcyk, Lawrence J.; Kelsey, Charles T. IV; McCrady, Rodney C.; Pang, Xiaoying

    2012-05-15

    The LANSCE accelerator complex is a multi-beam, multi-user facility that provides high-intensity H{sup +} and H{sup -} particle beams for a variety of user programs. At the heart of the facility is a room temperature linac that is comprised of 100-MeV drift tube and 800-MeV coupled cavity linac (CCL) structures. Although both beams are similar in intensity and emittance at 100 MeV, the beam-loss monitors along the CCL show a trend of increased loss for H{sup -} that is not present for H{sup +}. This difference is attributed to stripping mechanisms that affect H{sup -} and not H{sup +}. We present the results of an analysis of H{sup -} beam loss along the CCL that incorporates beam spill measurements, beam dynamics simulations, analytical models and radiation transport estimates using the MCNPX code. The results indicate a significant fraction of these additional losses result from intrabeam stripping.

  18. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  19. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    SciTech Connect

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-08

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  20. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    SciTech Connect

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  1. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    SciTech Connect

    Pace, D. C.; Van Zeeland, M. A.; Fishler, B.; Murphy, C.

    2016-08-02

    Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments con rm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  2. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    DOE PAGES

    Pace, D. C.; Van Zeeland, M. A.; Fishler, B.; ...

    2016-08-02

    Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracymore » of these calculations. Initial experiments con rm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.« less

  3. Localized Loss of Hypocretin (Orexin) Cells in Narcolepsy Without Cataplexy

    PubMed Central

    Thannickal, Thomas C.; Nienhuis, Robert; Siegel, Jerome M.

    2009-01-01

    Study Objectives: Narcolepsy with cataplexy is characterized by a loss of approximately 90% of hypocretin (Hcrt) neurons. However, more than a quarter of narcoleptics do not have cataplexy and have normal levels of hypocretin in their cerebrospinal fluid, raising the possibility that their disease is caused by unrelated abnormalities. In this study we examined hypocretin pathology in narcolepsy without cataplexy. Design: We examined postmortem brain samples, including the hypothalamus of 5 narcolepsy with cataplexy patients; one narcolepsy without cataplexy patient whose complete hypothalamus was available (patient 1); one narcolepsy without cataplexy patient with anterior hypothalamus available (patient 2); and 6 normal brains. The hypothalamic tissue was immunostained for Hcrt-1, melanin-concentrating hormone (MCH), and glial fibrillary acidic protein (GFAP). Measurements and Results: Neither of the narcolepsy without cataplexy patients had a loss of Hcrt axons in the anterior hypothalamus. The narcolepsy without cataplexy patient whose entire brain was available for study had an overall loss of 33% of hypocretin cells compared to normals, with maximal cell loss in the posterior hypothalamus. We found elevated levels of gliosis with GFAP staining, with levels increased in the posterior hypothalamic nucleus by (295%), paraventricular (211%), periventricular (123%), arcuate (126%), and lateral (72%) hypothalamic nuclei, but not in the anterior, dorsomedial, or dorsal hypothalamus. There was no reduction in the number of MCH neurons in either patient. Conclusions: Narcolepsy without cataplexy can be caused by a partial loss of hypocretin cells. Citation: Thannickal TC; Nienhuis R; Siegel JM. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. SLEEP 2009;32(8):993-998. PMID:19725250

  4. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.

    PubMed

    Wang, X; Hopkins, C

    2016-10-01

    Advanced Statistical Energy Analysis (ASEA) is used to predict vibration transmission across coupled beams which support multiple wave types up to high frequencies where Timoshenko theory is valid. Bending-longitudinal and bending-torsional models are considered for an L-junction and rectangular beam frame. Comparisons are made with measurements, Finite Element Methods (FEM) and Statistical Energy Analysis (SEA). When beams support at least two local modes for each wave type in a frequency band and the modal overlap factor is at least 0.1, measurements and FEM have relatively smooth curves. Agreement between measurements, FEM, and ASEA demonstrates that ASEA is able to predict high propagation losses which are not accounted for with SEA. These propagation losses tend to become more important at high frequencies with relatively high internal loss factors and can occur when there is more than one wave type. At such high frequencies, Timoshenko theory, rather than Euler-Bernoulli theory, is often required. Timoshenko theory is incorporated in ASEA and SEA using wave theory transmission coefficients derived assuming Euler-Bernoulli theory, but using Timoshenko group velocity when calculating coupling loss factors. The changeover between theories is appropriate above the frequency where there is a 26% difference between Euler-Bernoulli and Timoshenko group velocities.

  5. Model for nonlinear evolution of localized ion ring beam in magnetoplasma

    SciTech Connect

    Scales, W. A.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.

    2012-06-15

    An electrostatic hybrid model, which investigates the nonlinear evolution of a localized ion ring beam in a magnetoplasma, is described and applied to the generation and evolution of turbulence in the very low frequency (VLF) ({Omega}{sub ci}<{omega}<{Omega}{sub ce}) range, where {Omega}{sub ci(e)} is the ion (electron) gyro frequency. Electrons are treated as a fluid and the ions with the particle-in-cell method. Although the model is electrostatic, it includes the effects of energy loss by convection of electromagnetic VLF waves out of the instability region by utilizing a phenomenological model for effective collisions with the fluid electrons. In comparison with a more conventional electrostatic hybrid model, the new model shows much more efficient extraction of energy from the ion ring beam and reduced background plasma heating over a range of parameters.

  6. Bose-Hubbard model with localized particle losses

    NASA Astrophysics Data System (ADS)

    Kepesidis, Kosmas V.; Hartmann, Michael J.

    2012-06-01

    We consider the Bose-Hubbard model with particle losses at one lattice site. For the noninteracting case, we find that half of the bosons of an initially homogeneous particle distribution are not affected by dissipation that only acts on one lattice site in the center of the lattice. A physical interpretation of this result is that the surviving particles interfere destructively when they tunnel to the location of the dissipative defect and therefore never reach it. Furthermore we find for a one-dimensional model that a fraction of the particles can propagate across the dissipative defect even if the rate of tunneling between adjacent lattice sites is much slower than the loss rate at the defect. We analyze the robustness of our findings with respect to small interactions and small deviations from the symmetric setting. A possible experimental realization of our setup is provided by ultracold bosonic atoms in an optical lattice, where an electron beam on a single lattice site ionizes atoms that are then extracted by an electrostatic field.

  7. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  8. Beam Loss due to Foil Scattering in the SNS Accumulator Ring

    SciTech Connect

    Holmes, Jeffrey A; Plum, Michael A

    2012-01-01

    In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

  9. An approach to fundamental study of beam loss minimization

    SciTech Connect

    Jameson, R.A. )

    1999-06-01

    The accelerator design rules involving rms matching, developed at CERN in the 1970[close quote]s, are discussed. An additional rule, for equipartitioning the beam energy among its degrees of freedom, may be added to insure an rms equilibrium condition. If the strong stochasticity threshold is avoided, as it is in realistic accelerator designs, the dynamics is characterized by extremely long transient settling times, making the role of equipartitioning hard to explain. An approach to systematic study using the RFQ accelerator as a simulation testbed is discussed. New methods are available from recent advances in research on complexity, nonlinear dynamics, and chaos. [copyright] [ital 1999 American Institute of Physics.

  10. Location of Maximum Credible Beam Losses in LCLS Injector

    SciTech Connect

    Mao, Stan

    2010-12-13

    The memo describes the maximum credible beam the LCLS injector can produce and lose at various locations along the beamline. The estimation procedure is based upon three previous reports [1, 2, 3]. While specific numbers have been updated to accurately reflect the present design parameters, the conclusions are very similar to those given in Ref 1. The source of the maximum credible beam results from the explosive electron emission from the photocathode if the drive laser intensity exceeds the threshold for plasma production. In this event, the gun's RF field can extract a large number of electrons from this plasma which are accelerated out of the gun and into the beamline. This electron emission persists until it has depleted the gun of all its energy. Hence the number of electrons emitted per pulse is limited by the amount of stored RF energy in the gun. It needs to be emphasized that this type of emission is highly undesirable, as it causes permanent damage to the cathode.

  11. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  12. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  13. Beam Losses and Background Loads on Collider Detectors Due to Beam-Gas Interactions in the LHC

    SciTech Connect

    Drozhdin, A.I.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2009-04-01

    With a fully-operational high-efficient collimation system in the LHC, nuclear interactions of circulating protons with residual gas in the machine beam pipe can be a major source of beam losses in the vicinity of the collider detectors, responsible for the machine-induced backgrounds. Realistic modeling of Coulomb scattering, elastic and inelastic interactions of 7-TeV protons with nuclei in the vacuum chamber of the cold and warm sections of the LHC ring--with an appropriate pressure profile--is performed with the STRUCT and MARS15 codes. Multi-turn tracking of the primary beams, propagation of secondaries through the lattice, their interception by the tertiary collimators TCT as well as properties of corresponding particle distributions at the CMS and ATLAS detectors are studied in great detail and results presented in this paper.

  14. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  15. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  16. Broadband source localization using horizontal-beam acoustic intensity striations.

    PubMed

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel

    2010-01-01

    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  17. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    SciTech Connect

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; von Goeler, S.; White, R.B.; Zweben, S.J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P{sub NBI}=15 thinspthinspMW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40{percent} beam power is lost on a time scale much shorter than the tritium beam pulse length {Delta}t=70 thinspthinspms. In contrast with recent results [K. Tobita {ital et al.,} Nucl.thinspthinspFusion {bold 37}, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. {copyright} {ital 1999} {ital The American Physical Society}

  18. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    NASA Astrophysics Data System (ADS)

    Ruskov, E.; Bell, M.; Budny, R. V.; McCune, D. C.; Medley, S. S.; Redi, M. H.; Scott, S.; Synakowski, E. J.; von Goeler, S.; White, R. B.; Zweben, S. J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas ( PNBI = 15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14 MeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt = 70 ms. In contrast with recent results [K. Tobita et al., Nucl. Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly.

  19. Link between diffraction losses and light beam cross section in laser with telescopic resonator

    SciTech Connect

    Dmitriev, A.K.; Nekrasov, Yu.V.

    1987-06-01

    The light beam cross section change in a laser and its link with the diffraction losses during the telescopic converter defocusing is discussed. In addition, the measurements of the resonator astigmatism compensation by the Brewster window are carried out. It is demonstrated that in the resonator stability region, the light beam cross section is well described by the expression using the transmission matrix elements, the simplified model for the diffraction qualitatively correlates with the test data, and the mirror astigmatism due to the inclined light beam incidence is compensated for by Brewster's window.

  20. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity.

    PubMed

    Gonzalez, Andrew; Cardinale, Bradley J; Allington, Ginger R H; Byrnes, Jarrett; Arthur Endsley, K; Brown, Daniel G; Hooper, David U; Isbell, Forest; O'Connor, Mary I; Loreau, Michel

    2016-08-01

    Global species extinction rates are orders of magnitude above the background rate documented in the fossil record. However, recent data syntheses have found mixed evidence for patterns of net species loss at local spatial scales. For example, two recent data meta-analyses have found that species richness is decreasing in some locations and is increasing in others. When these trends are combined, these papers argued there has been no net change in species richness, and suggested this pattern is globally representative of biodiversity change at local scales. Here we reanalyze results of these data syntheses and outline why this conclusion is unfounded. First, we show the datasets collated for these syntheses are spatially biased and not representative of the spatial distribution of species richness or the distribution of many primary drivers of biodiversity change. This casts doubt that their results are representative of global patterns. Second, we argue that detecting the trend in local species richness is very difficult with short time series and can lead to biased estimates of change. Reanalyses of the data detected a signal of study duration on biodiversity change, indicating net biodiversity loss is most apparent in studies of longer duration. Third, estimates of species richness change can be biased if species gains during post-disturbance recovery are included without also including species losses that occurred during the disturbance. Net species gains or losses should be assessed with respect to common baselines or reference communities. Ultimately, we need a globally coordinated effort to monitor biodiversity so that we can estimate and attribute human impacts as causes of biodiversity change. A combination of technologies will be needed to produce regularly updated global datasets of local biodiversity change to guide future policy. At this time the conclusion that there is no net change in local species richness is not the consensus state of knowledge.

  1. Electron beam loss assumptions for ELI-NPMEGa-ray radioprotection analysis

    SciTech Connect

    Deis, G A

    2011-10-06

    The ELI-NP project is now working on the design of their conventional facility. Dr. Gheorghe Cata-Danil recently requested that I provide them with information on the location and amount of electron-beam loss in the MEGa-ray source they have proposed for ELI-NP. This memo is intended to document that information, for transmission to ELI-NP. The ELI-NP MEGa-ray source, as presently proposed, consists of two x-band accelerator sections separated by a large chicane, as show in figure 1. The basic parameters of the machine that are pertinent for specifying the radiation source terms are shown in table 1. These are the parameters of the intentionall-produced photobeam. In addition to the photobeam, the electron gun and accelerator will produce 'dark current' that originates throughout the RF structures (that is, distributed along the accelerator axis) and therefore has a distribution of energy below the energy of the photobeam. Because it is emitted from surfaces inside the RF structures, much of it is not transported through the accelerator and is lost in the accelerator RF structures. A large fraction of the total dark current is produced in the photogun and lost at the entrance of the 1st accelerator RF structure. Important sources of radiation during operation are beam alignment screens that are used for observing the image of the electron beam, during adjustment of beam steering and for general diagnostic purposes. Each screen consists of a 1 mm thick Ce:YAG plate that is moved into the path of the beam when desired. This destroys the electron beam, spraying all beam current into the structures downstream of the screen. Only one screen is inserted at a time. These screens may be located after each accelerator RF structure, and after each set of bend magnets, as shown in figure 3. The photobeam energy and currents at each location are listed in table 2; for simplicity, the dark current energy is (conseratively) assumed to be the same as the photobeam energy. In

  2. Numerical study on wave-induced beam ion prompt losses in DIII-D tokamak

    DOE PAGES

    Feng, Zhichen; Zhu, Jia; Fu, Guo -Yong; ...

    2017-08-30

    A numerical study is performed on the coherent beam ion prompt losses driven by Alfven eigenmodes (AEs) in DIII-D plasmas using realistic parameters and beam ion deposition profiles. The synthetic signal of a fast-ion loss detector (FILD) is calculated for a single AE mode. The first harmonic of the calculated FILD signal is linearly proportional to the AE amplitude with the same AE frequency in agreement with the experimental measurement. The calculated second harmonic is proportional to the square of the first harmonic for typical AE amplitudes. The coefficient of quadratic scaling is found to be sensitive to the AEmore » mode width. The second part of this work considers the AE drive due to coherent prompt loss. As a result, it is shown that the loss-induced mode drive is much smaller than the previous estimate and can be ignored for mode stability.« less

  3. Cavity loss factors of non-relativistic beams for Project X

    SciTech Connect

    Lunin, A.; Yakovlev, V.; Kazakov, S.; /Fermilab

    2011-03-01

    Cavity loss factor calculation is an important part of the total cryolosses estimation for the super conductive (SC) accelerating structures. There are two approaches how to calculate cavity loss factors, the integration of a wake potential over the bunch profile and the addition of loss factors for individual cavity modes. We applied both methods in order to get reliable results for non-relativistic beam. The time domain CST solver was used for a wake potential calculation and the frequency domain HFSS code was used for the cavity eigenmodes spectrum findings. Finally we present the results of cavity loss factors simulations for a non-relativistic part of the ProjectX and analyze it for various beam parameters.

  4. Measurement of transepidermal water loss in localized scleroderma.

    PubMed

    Ďurčanská, Veronika; Jedličková, Hana; Vašků, Vladimír

    2016-05-01

    Localized scleroderma (LS) is a disease characterized by fibrotic changes in the dermis. Connective tissue growth factor and transforming growth factor β2 are the main mediators of fibrogenesis; this, along with excessive connective tissue production, affects epidermal keratinocytes, and thereby contributes to the changed quality of skin barrier. The objective of this article was to study the objective measurement of the skin barrier quality in LS with transepidermal water loss (TEWL) meter. The measurements of TEWL were performed on LS plaques in all three stages of various body locations. Control measurements were made on the contralateral side of healthy skin. The difference between TEWL in LS area and the contralateral side of the healthy skin was evaluated. A higher average TEWL 7.86 g/m(2) /h (SD 5.29) was observed on LS plaques compared with the control measurements on healthy skin 6.39 g/m(2) /h (SD 2.77). TEWL average values decreased from the inflammatory stage, through the sclerotic and to the atrophic stage. The mean difference 1.301 g/m(2) /h (SD 5.16) was found between TEWL on LS plaques and on the contralateral healthy skin in 82 measurements, i.e., a higher TEWL was observed in LS. The difference was statistically significant with p = 0.0250. Although fibrogenesis in scleroderma is localized in dermis, the skin barrier changes can be detected. © 2016 Wiley Periodicals, Inc.

  5. Radiation losses in PLT during neutral beam and ICRF heating experiments

    SciTech Connect

    Suckewer, S.; Hinnov, E.; Hwang, D.

    1981-02-01

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed.

  6. Localization from the unique intensity gradient of an orbital-angular-momentum beam.

    PubMed

    Xie, Guodong; Li, Long; Ren, Yongxiong; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Bao, Changjing; Wang, Zhe; Liu, Cong; Song, Haoqian; Zhang, Runzhou; Pang, Kai; Ashrafi, Solyman; Tur, Moshe; Willner, Alan E

    2017-02-01

    We propose and simulate the use of the unique intensity gradient of beams carrying orbital angular momentum (OAM) for tracking and localization of an object. We design a three-pixel detector structure to efficiently determine the intensity gradient of an OAM beam. The resultant intensity gradient is then used to calculate the offset direction and distance of the target object from the center of the OAM beam. Our simulation results indicate the following: (i) an OAM-based localization system can have a stronger control signal than the one generated from a Gaussian beam; (ii) an OAM+2 beam may generate a ∼5× stronger localization feedback signal but operates over half the target capture area as an OAM+1 beam; and (iii) our scheme will generally have two orders of magnitude lower accuracy but ∼2× larger coverage area as the distance from the beam emitter to the target increases from 200 to 1000 m.

  7. Neutron doses due to beam losses in a novel concept of a proton therapy gantry

    NASA Astrophysics Data System (ADS)

    Talanov, V.; Kiselev, D. C.; Meer, D.; Rizzoglio, V.; Schippers, J. M.; Seidel, M.; Wohlmuther, M.

    2017-07-01

    A novel design of a gantry for proton therapy is investigated in which a degrader and emittance limiting collimators are mounted on the gantry. Due to the interactions of protons in these components there will be an additional neutron dose at the location where a patient is positioned during a proton therapy. The results of numerical study of this additional dose are presented. Neutron prompt dose at the patient position is estimated through the Monte Carlo simulation using the MCNPX 2.7.0 particle transport code. Secondary neutron and photon fluxes from the distinct beam loss points are taken into consideration and the resulting dose is calculated using realistic estimates of beam losses. The dependence of the dose on the beam energy and individual impacts of each loss point on the total dose at the patient position as well as on critical beam line components are estimated and potential design constraints are discussed. It has been found that compared with a conventional gantry the expected additional dose is higher but the optimization of the beam line configuration and additional shielding shall help to reduce the dose to an acceptable value.

  8. Heavy ion beam loss mechanisms at an electron-ion collider

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.

    2014-12-01

    There are currently several proposals to build a high-luminosity electron-ion collider, to study the spin structure of matter and measure parton densities in heavy nuclei, and to search for gluon saturation and new phenomena like the colored glass condensate. These measurements require operation with heavy nuclei. We calculate the cross sections for two important processes that will affect accelerator and detector operations: bound-free pair production and Coulomb excitation of the nuclei. Both of these reactions have large cross sections, 28-56 mb, which can lead to beam ion losses, produce beams of particles with altered charge:mass ratio, and produce a large flux of neutrons in zero degree calorimeters. The loss of beam particles limits the sustainable electron-ion luminosity to levels of several times 1032/cm2/s .

  9. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    NASA Astrophysics Data System (ADS)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  10. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1996-04-01

    Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B{sub T}, and by H-minority ICRF tail ions at higher B{sub T}. The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case.

  11. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response

    PubMed Central

    Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.

    2013-01-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4–7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12–30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments. PMID:23926037

  12. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    PubMed

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  13. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    SciTech Connect

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-10

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  14. Localized buckling of a heavy beam on a contacting surface: A model for beam mode buckling of buried pipelines

    SciTech Connect

    Yun, H.D.; Kyriakides, S.

    1984-06-01

    The paper presents an attempt at modeling the so called 'Beam Mode Buckling' exhibited under compression in pipelines. The line is modeled as a long heavy beam on a contacting surface. The reacting surface is modeled first as an elastic and subsequently as a rigid foundation with the additional constraint that it only reacts to compressive loads. The problem is assumed to possess a localized imperfection. Under compressive axial load a section of the beam lifts off the foundation. The problem is studied through a large deflection extensional beam nonlinear formulation. The large deflection response of the beam is found to exhibit a limit load which is shown to be very imperfection sensitive. A parametric study of the problem as well as a number of examples with actual pipeline parameters are presented.

  15. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    SciTech Connect

    Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  16. Background gas density and beam losses in NIO1 beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  17. Background gas density and beam losses in NIO1 beam source

    SciTech Connect

    Sartori, E. Veltri, P.; Serianni, G.; Cavenago, M.

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  18. Duration of memory loss due to electron beam exposure. Final report Jan-May 1983

    SciTech Connect

    Wheeler, T.G.; Tilton, B.M.

    1983-08-01

    Electron beam exposure has been shown to produce retrograde amnesia (RA). The objective of this study was to determine the duration of memory loss upon electron beam exposure. It is important to know if exposure produces a memory loss of the events which occurred in the preceding 1 sec or memory loss of the preceding minute's events. The task was a single-trial avoidance paradigm. The animal was placed in a small aversive chamber. After a 90-sec adaptation period, a door opened that provided access to a large, dark, preferred chamber. The time required for the animal to enter the preferred chamber was the measure of interest (T). Once inside the preferred chamber, a 1-sec footshock was delivered. Following the footshock by some preset delay (delta T), the animal was exposed to a 10-microsec, 10-rad electron beam (or X-ray). A second trial on the task was run 2 hr postexposure. The second trial consisted of placing the animal in the aversive chamber and monitoring the time (T') required to enter the preferred chamber. If the electron beam exposure interfered with the animal's ability to recall the shock, T' would be greatly reduced as compared with the sham controls. The exposure delay times used were delta T = 1, 3, 5, and 10 sec.

  19. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    SciTech Connect

    Lari, L.; Assmann, R.; Bracco, C.; Brugger, M.; Cerutti, F.; Doyle, E.; Ferrari, A.; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Smith, J.; Vlachoudis, V.; Weiler, T.; /CERN

    2011-11-07

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  20. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    SciTech Connect

    Lari, L.; Assmann, R.W.; Bracco, C.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, Vasilis; Weiler, Th.; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, Thomas W.; Smith, J.C.; Lari, L.; /LPHE, Lausanne

    2011-11-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  1. Modeling of beam loss in Tevatron and backgrounds in the BTeV detector

    SciTech Connect

    Alexandr I. Drozhdin; Nikolai V. Mokhov

    2004-07-07

    Detailed STRUCT simulations are performed on beam loss rates in the vicinity of the BTeV detector in the Tevatron CO interaction region due to beam-gas nuclear elastic interactions and out-scattering from the collimation system. Corresponding showers induced in the machine components and background rates in BTeV are modeled with the MARS14 code. It is shown that the combination of a steel collimator and concrete shielding wall located in front of the detector can reduce the accelerator-related background rates in the detector by an order of magnitude.

  2. Polarisation splitting of laser beams by large angles with minimal reflection losses

    SciTech Connect

    Davydov, B L

    2006-05-31

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal-air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables. (laser applications and other topics in quantum electronics)

  3. Measuring correlations between beam loss and residual radiation in the Fermilab Main Injector

    SciTech Connect

    Brown, Bruce C.; Wu, Guan Hong; /Fermilab

    2010-09-01

    In order to control beam loss for high intensity operation of the Fermilab Main Injector, electronics has been implemented to provide detailed loss measurements using gas-filled ionization monitors. Software to enhance routine operation and studies has been developed and losses are logged for each acceleration cycle. A systematic study of residual radiation at selected locations in the accelerator tunnel have been carried out by logging residual radiation at each of 142 bar-coded locations. We report on fits of the residual radiation measurements to half-life weighted sums of the beam loss data using a few characteristic lifetimes. The data are now available over a multi-year period including residual radiation measurements repeated multiple times during three extended facility shutdown periods. Measurement intervals of a few weeks combined with variable delays between beam off time and the residual measurement permits sensitivity to lifetimes from hours to years. The results allow planning for work in radiation areas to be based on calibrated analytic models.

  4. Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states

    NASA Astrophysics Data System (ADS)

    Man, Zhongsheng; Du, Luping; Min, Changjun; Zhang, Yuquan; Zhang, Chonglei; Zhu, Siwei; Paul Urbach, H.; Yuan, X.-C.

    2014-07-01

    Vector beams, which have space-variant state of polarization (SOP) comparing with scalar beams with spatially homogeneous SOP, are used to manipulate surface plasmon polarizations (SPPs). We find that the excitation, orientation, and distribution of the focused SPPs excited in a high numerical aperture microscopic configuration highly depend on the space-variant polarization of the incident vector beam. When it comes to vector beam with axial symmetry, multi-foci of SPPs with the same size and uniform intensity can be obtained, and the number of foci is depending on the polarization order n. Those properties can be of great value in biological sensor and plasmonic tweezers applications.

  5. Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states

    SciTech Connect

    Man, Zhongsheng; Zhang, Yuquan; Zhang, Chonglei; Du, Luping; Min, Changjun E-mail: xcyuan@szu.edu.cn; Yuan, X.-C. E-mail: xcyuan@szu.edu.cn; Zhu, Siwei; Paul Urbach, H.

    2014-07-07

    Vector beams, which have space-variant state of polarization (SOP) comparing with scalar beams with spatially homogeneous SOP, are used to manipulate surface plasmon polarizations (SPPs). We find that the excitation, orientation, and distribution of the focused SPPs excited in a high numerical aperture microscopic configuration highly depend on the space-variant polarization of the incident vector beam. When it comes to vector beam with axial symmetry, multi-foci of SPPs with the same size and uniform intensity can be obtained, and the number of foci is depending on the polarization order n. Those properties can be of great value in biological sensor and plasmonic tweezers applications.

  6. Analysis of detectability loss through fan-beam x-ray computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2013-03-01

    We consider detection of a small signal in fan-beam x-ray computed tomography (CT). In order to characterize the loss of intrinsic signal detectability from the projection data (sinogram) domain to the reconstructed image, we analyze the Hotelling observer SNR in each domain. Further, we characterize the loss of Hotelling observer SNR through decomposition into two components: loss of signal detectability which arises due to unequal variance in the noise of separate detector elements and loss of detectability arising from the fact that some noiseless signals have components which lie in the nullspace of a given reconstruction operator. The proposed methodology is investigated for the back-projection ltration (BPF) algorithm developed by our group [2].

  7. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    SciTech Connect

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here.

  8. A novel fast response and radiation-resistant scintillator detector for beam loss monitor

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Tang, Z.; Li, C.; Li, X.; Shao, M.

    2017-07-01

    At high luminosity area, beam loss monitor with fast response and high radiation resistance is crucial for accelerator operation. In this article, we report the design and test results of a fast response and radiation-resistant scintillator detector as the beam loss monitor for high luminosity collider, especially at low energy region such as RFQ. The detector is consisted of a 2 cm× 2 cm× 0.5 cm LYSO crystal readout by a 6 mm × 6 mm Silicon photomultiplier. Test results from various radioactive sources show that the detector has good sensitivity to photons from tens of keV to several MeV with good linearity and energy resolution (23% for 60 keV γ-ray). For field test, two such detectors are installed outside of the vacuum chamber shell of an 800 MeV electron storage ring. The details of the test and results are introduced.

  9. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  10. Influence of enhancement filters in apical bone loss measurement: A cone-beam computed tomography study.

    PubMed

    de Sousa, Emerson-Tavares; Pinheiro, Mayara-Abreu; Maciel, Patrícia-Pereira; Sales, Marcelo-Augusto-Oliveira

    2017-04-01

    The use of cone-beam computed tomography images (CBCT) providing a better assessment of bone injuries, although the sensibility of lesions measurement might be improved by the use of enhancement filters. Objective: This study aimed to analyze the influence of enhancement filters in apical bone loss measurement. Eighteen CBCT cases randomly selected of apical bone loss were evaluated. The analyses were carried out following the evaluation in axial, coronal and sagittal protocols, using enhancement filters as Hard, Normal, and Very Sharp. The variables were statistically analyzed by Friedman and Wilcoxon test, Spearman's rho, and intraclass correlation coefficient. The differences between filters in axial and sagittal protocols were significant (p<0.05); however, this was not observed in the coronal slice. The use of Hard filter demonstrates better results than Very Sharp and Normal filter, improving significantly the bone loss measurement. A strong, significant and positive correlation was noted for all filters (with p< 0.001), such as a strong agreement between the variables, when the Normal filter was used as a reference. The use of enhancement filters increases the sensitivity of alveolar bone loss measurement, with relative advantage for Hard filter. Key words:Cone-Beam computed tomography. endodontics. periapical periodontitis. image enhancement. alveolar bone loss.

  11. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    SciTech Connect

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-09-15

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  12. Reducing the extraction loss via laser notching the H- beam at the Booster injection revolution frequency

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; /Fermilab

    2005-05-01

    With the requirement for more protons per hour from Booster, the radiation is a limiting factor. Laser notching the H{sup -} beam at the Booster injection revolution frequency and properly aligning those notches on top of each other at the injection and relative to the trigger of firing extraction kickers can remove most of the extraction loss caused by the slow rise time of the kicker field.

  13. Beam filling loss adjustments for ASR-9 weather channel reflectivity estimates

    NASA Astrophysics Data System (ADS)

    Engholm, Cynthia D.; Troxel, Seth W.

    1990-10-01

    The FAA is deploying over 100 new airport surveillance radars (ASR-9) across the country. In contrast to earlier ASRs, the ASR-9 utilizes a separate digital weather processing channel to provide air traffic controllers with timely, calibrated displays of precipitation intensity. The ASR-9 utilizes dual selectable fan shaped elevation beams designed to track aircraft over a large volume. As a consequence, weather echoes received from these fan shaped beams represent vertically averaged quantities. If the precipitation only partially or nonuniformly fills the beam, then the vertically integrated reflectivity may underestimate the actual intensity of the storm. The ASR-9 weather channel corrects for this by adjusting the range dependent six level reflectivity thresholds. The appropriateness of the currently implemented correction has not been carefully examined and may require modification to take into account regional and morphological variability in storm structure. The method used to derive new beam filling loss adjustments is discussed. An extensive database of volumetric pencil beam radar data were used in conjunction with the ASR-9 simulation facility to derive adjustments aimed at calibrating the precipitation intensity reports to the maximum perceived hazard. Results from this calibration indicate that a single correction is appropriate for all sites and intensities. The new corrections yield substantially improved results over the current corrections in producing these reflectivity reports.

  14. The applications of in situ electron energy loss spectroscopy to the study of electron beam nanofabrication.

    PubMed

    Chen, Shiahn J; Howitt, David G; Gierhart, Brian C; Smith, Rosemary L; Collins, Scott D

    2009-06-01

    An in situ electron energy loss spectroscopy (EELS) technique has been developed to investigate the dynamic processes associated with electron-beam nanofabrication on thin membranes. In this article, practical applications germane to e-beam nanofabrication are illustrated with a case study of the drilling of nanometer-sized pores in silicon nitride membranes. This technique involves successive acquisitions of the plasmon-loss and the core-level ionization-loss spectra in real time, both of which provide the information regarding the hole-drilling kinetics, including two respective rates for total mass loss, individual nitrogen and silicon element depletion, and the change of the atomic bonding environment. In addition, the in situ EELS also provides an alternative method for endpoint detection with a potentially higher time resolution than by imaging. On the basis of the time evolution of in situ EELS spectra, a qualitative working model combining knock-on sputtering, irradiation-induced mass transport, and phase separation can be proposed.

  15. A Local Coordinate Approach in the MLPG Method for Beam Problems

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Phillips, Dawn R.

    2002-01-01

    System matrices for Euler-Bernoulli beam problems for the meshless local Petrov-Galerkin (MLPG) method deteriorate as the number of nodes in the beam models are consistently increased. The reason for this behavior is explained. To overcome this difficulty and improve the accuracy of the solutions, a local coordinate approach for the evaluation of the generalized moving least squares shape functions and their derivatives is proposed. The proposed approach retains the accuracy of the MLPG methods.

  16. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories.

    PubMed

    Schley, Ran; Kaminer, Ido; Greenfield, Elad; Bekenstein, Rivka; Lumer, Yaakov; Segev, Mordechai

    2014-10-30

    Self-accelerating beams--shape-preserving bending beams--are attracting great interest, offering applications in many areas such as particle micromanipulation, microscopy, induction of plasma channels, surface plasmons, laser machining, nonlinear frequency conversion and electron beams. Most of these applications involve light-matter interactions, hence their propagation range is limited by absorption. We propose loss-proof accelerating beams that overcome linear and nonlinear losses. These beams, as analytic solutions of Maxwell's equations with losses, propagate in absorbing media while maintaining their peak intensity. While the power such beams carry decays during propagation, the peak intensity and the structure of their main lobe region are maintained over large distances. We use these beams for manipulation of particles in fluids, steering the particles to steeper angles than ever demonstrated. Such beams offer many additional applications, such as loss-proof self-bending plasmons. In transparent media these beams show exponential intensity growth, which facilitates other novel applications in micromanipulation and ignition of nonlinear processes.

  17. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    SciTech Connect

    Powell, A.; Szekely, J.; Van Den Avyle, J.; Damkroger, B.

    1995-10-12

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  18. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  19. Investigation of local registration performance of IMS Nanofabrication's Multi-Beam Mask Writer

    NASA Astrophysics Data System (ADS)

    Chalom, Daniel; Klikovits, Jan; Geist, David; Hudek, Peter; Eder-Kapl, Stefan; Daneshpanah, Mehdi; Laske, Frank; Eyring, Stefan; Roeth, Klaus-Dieter

    2015-07-01

    Reticles for manufacturing upcoming 10nm and 7nm Logic devices will become very complex, no matter whether 193nm water immersion lithography will continue as main stream production path or EUV lithography will be able to take over volume production of critical layers for the 7nm node. The economic manufacturing of future masks for 193i, EUV and imprint lithography with further increasing complexity drives the need for multi-beam mask writing as this technology can overcome the influence of complexity on write time of today's common variable shape beam writers. Local registration of the multi-beam array is a critical component which greatly differs from variable shape beam systems. In this paper we would like to present the local registration performance of the IMS Multi-Beam Mask Writer system and the metrology tools that enable the characterization optimization.

  20. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    SciTech Connect

    Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

    2012-05-14

    A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

  1. Spin entanglement loss by local correlation transfer to the momentum

    SciTech Connect

    Lamata, Lucas; Leon, Juan; Salgado, David

    2006-05-15

    We show the decrease of spin-spin entanglement between two s=(1/2) fermions or two photons due to local transfer of correlations from the spin to the momentum degree of freedom of one of the two particles. We explicitly show how this phenomenon operates in the case where one of the two fermions (photons) passes through a local homogeneous magnetic field (optically active medium), losing its spin correlations with the other particle.

  2. Stochastic orbit loss of neutral beam ions from NSTX due to toroidal Alfvén eigenmode avalanches

    SciTech Connect

    Darrow, D. S.; Crocker, N.; Fredrickson, E. D.; Gorelenkov, N. N.; Gorelenkova, M.; Kubota, S.; Medley, S. S.; Podestà, M.; Shi, L.; White, R. B.

    2012-12-17

    Short toroidal Alfvén eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and could also cause a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions takes place. When beam ion orbits are followed with a guiding centre code that incorporates the plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are like those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary and the trajectories along which modes may transport particles extend from the deposition volume to the loss boundary.

  3. Loss of beam ions to the inside of the PDX (Poloidal Divertor Experiment) tokamak during the fishbone instability

    SciTech Connect

    Heidbrink, W.W.; Beiersdorfer, P.

    1986-11-01

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak.

  4. Interacting ultracold atomic kicked rotors: loss of dynamical localization

    NASA Astrophysics Data System (ADS)

    Qin, Pinquan; Andreanov, Alexei; Park, Hee Chul; Flach, Sergej

    2017-01-01

    We study the fate of dynamical localization of two quantum kicked rotors with contact interaction, which relates to experimental realizations of the rotors with ultra-cold atomic gases. A single kicked rotor is known to exhibit dynamical localization, which takes place in momentum space. The contact interaction affects the evolution of the relative momentum k of a pair of interacting rotors in a non-analytic way. Consequently the evolution operator U is exciting large relative momenta with amplitudes which decay only as a power law 1/k4. This is in contrast to the center-of-mass momentum K for which the amplitudes excited by U decay superexponentially fast with K. Therefore dynamical localization is preserved for the center-of-mass momentum, but destroyed for the relative momentum for any nonzero strength of interaction.

  5. Interacting ultracold atomic kicked rotors: loss of dynamical localization

    PubMed Central

    Qin, Pinquan; Andreanov, Alexei; Park, Hee Chul; Flach, Sergej

    2017-01-01

    We study the fate of dynamical localization of two quantum kicked rotors with contact interaction, which relates to experimental realizations of the rotors with ultra-cold atomic gases. A single kicked rotor is known to exhibit dynamical localization, which takes place in momentum space. The contact interaction affects the evolution of the relative momentum k of a pair of interacting rotors in a non-analytic way. Consequently the evolution operator U is exciting large relative momenta with amplitudes which decay only as a power law 1/k4. This is in contrast to the center-of-mass momentum K for which the amplitudes excited by U decay superexponentially fast with K. Therefore dynamical localization is preserved for the center-of-mass momentum, but destroyed for the relative momentum for any nonzero strength of interaction. PMID:28117347

  6. Analysis and modeling of proton beam loss and emittance growth in the Relativistic Heavy Ion Collider

    DOE PAGES

    Luo, Y.; Fischer, W.; White, S.

    2016-02-04

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we will present the operational observations at the routine proton physics stores. In addition, the mechanisms for the beam loss, transverse emittance growth, and bunch lengthening are analyzed. Lastly, numerical calculations and multiparticle tracking are used to model these observations.

  7. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams.

    PubMed

    Christensen, Jeppe Brage; Tölli, Heikki; Bassler, Niels

    2016-10-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. The advent of multiple field optimization in ion beams, allowing for complex patterns of dose delivery in both temporal and spatial domains, results in new challenges for recombination correction where the resulting recombination depends on the plan delivered. Here, the authors present the open source code IonTracks version 1.0, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. A space charge screening of the electric field is taken into account and the algorithm furthermore allows an inclusion of a free-electron component. The algorithm is numerically stable and in accordance with experimentally validated theories for initial recombination in heavy ion tracks and general recombination in a proton beam. Given IonTracks' ability to handle arbitrary inputs, IonTracks can in principle be applied to any complex particle field in the spatial and temporal domain. IonTracks is validated against the Jaffé's and Boag's theory of recombination in pulsed beams of multiple ion species. IonTracks is able to calculate the correction factor for initial and general recombination losses in parallel-plate ionization chambers. Even if only few

  8. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    SciTech Connect

    Blokland, Willem; Armstrong, Gary A

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  9. Prompt Loss of Energetic Ions during Early Neutral Beam Injection in the National Spherical Torus Experiment

    SciTech Connect

    S.S. Medley; D.S. Darrow; D. Liu; A.L. Roquemore

    2005-03-25

    Early neutral-beam injection is used in the National Spherical Torus Experiment (NSTX) to heat the electrons and slow current penetration which keeps q(0) elevated to avoid deleterious MHD activity and at the same time reduces Ohmic flux consumption, all of which aids long-pulse operation. However, the low plasma current (I{sub p} {approx} 0.5 MA) and electron density (n{sub e} {approx} 1 x 10{sup 13} cm{sup -3}) attending early injection lead to elevated orbit and shine through losses. The inherent orbit losses are aggravated by large excursions in the outer gap width during current ramp-up. An investigation of this behavior using various energetic particle diagnostics on NSTX and TRANSP code analysis is presented.

  10. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes. PMID:21750767

  11. Electron beams and loss cones in the auroral regions of Jupiter

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Bagenal, F.; Bolton, S.; Connerney, J.; Clark, G.; Ebert, R. W.; Kim, T. K.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Pollock, C.; Ranquist, D.; Reno, M.; Szalay, J. R.; Thomsen, M. F.; Valek, P.; Weidner, S.; Wilson, R. J.; Zink, J. L.

    2017-07-01

    We report on the first observations of 100 eV to 100 keV electrons over the auroral regions of Jupiter by the Jovian Auroral Distributions Experiment (JADE) on board the Juno mission. The focus is on the regions that were magnetically connected to the main auroral oval. Amongst the most remarkable features, JADE observed electron beams, mostly upward going but also some downward going in the south, at latitudes from 69° to 72° and -66° to -70° corresponding to M shells ("M" for magnetic) from 18 to 54 and 28 to 61, respectively. The beams were replaced by upward loss cones at lower latitudes. There was no evidence of strongly accelerated downward electrons analogous to the auroral "inverted Vs" at Earth. Rather, the presence of upward loss cones suggests a diffuse aurora process. The energy spectra resemble tails of distributions or power laws (suggestive of a stochastic acceleration process) but can also have some clear enhancements or even peaks generally between 1 and 10 keV. Electron intensities change on timescales of a second or less at times implying that auroral structures can be of the order of a few tens of kilometers.

  12. Energy loss of proton, alpha particle, and electron beams in hafnium dioxide films

    SciTech Connect

    Behar, Moni; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Abril, Isabel; Denton, Cristian D.; Garcia-Molina, Rafael; Arista, Nestor R.

    2009-12-15

    The electronic stopping power, S, of HfO{sub 2} films for proton and alpha particle beams has been measured and calculated. The experimental data have been obtained by the Rutherford backscattering technique and cover the range of 120-900 and 120-3000 keV for proton and alpha particle beams, respectively. Theoretical calculations of the energy loss for the same projectiles have been done by means of the dielectric formalism using the Mermin energy loss function--generalized oscillator strength (MELF-GOS) model for a proper description of the HfO{sub 2} target on the whole momentum-energy excitation spectrum. At low projectile energies, a nonlinear theory based on the extended Friedel sum rule has been employed. The calculations and experimental measurements show good agreement for protons and a quite good one for alpha particles. In particular, the experimental maximums of both stopping curves (around 120 and 800 keV, respectively) are well reproduced. On the basis of this good agreement, we have also calculated the inelastic mean-free path (IMFP) and the stopping power for electrons in HfO{sub 2} films. Our results predict a minimum value of the IMFP and a maximum value of the S for electrons with energies around 120 and 190 eV, respectively.

  13. Localization training results in individuals with unilateral severe to profound hearing loss.

    PubMed

    Firszt, Jill B; Reeder, Ruth M; Dwyer, Noël Y; Burton, Harold; Holden, Laura K

    2015-01-01

    Adults with unilateral hearing loss often demonstrate decreased sound localization ability and report that situations requiring spatial hearing are especially challenging. Few studies have evaluated localization abilities combined with training in this population. The present pilot study examined whether localization of two sound types would improve after training, and explored the relation between localization ability or training benefit and demographic factors. Eleven participants with unilateral severe to profound hearing loss attended five training sessions; localization cues gradually decreased across sessions. Localization ability was assessed pre- and post-training. Assessment stimuli were monosyllabic words and spectral and temporal random spectrogram sounds. Root mean square errors for each participant and stimulus type were used in group and correlation analyses; individual data were examined with ordinary least squares regression. Mean pre-to post-training test results were significantly different for all stimulus types. Among the participants, eight significantly improved following training on at least one localization measure, whereas three did not. Participants with the poorest localization ability improved the most and likewise, those with the best pre-training ability showed the least training benefit. Correlation results suggested that test age, age at onset of severe to profound hearing loss and better ear high frequency audibility may contribute to localization ability. Results support the need for continued investigation of localization training efficacy and consideration of localization training within rehabilitation protocols for individuals with unilateral severe to profound hearing loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Localization Training Results in Individuals with Unilateral Severe to Profound Hearing Loss

    PubMed Central

    Firszt, Jill B.; Reeder, Ruth M.; Dwyer, Noël Y.; Burton, Harold; Holden, Laura K.

    2014-01-01

    Adults with unilateral hearing loss often demonstrate decreased sound localization ability and report that situations requiring spatial hearing are especially challenging. Few studies have evaluated localization abilities combined with training in this population. The present pilot study examined whether localization of two sound types would improve after training, and explored the relation between localization ability or training benefit and demographic factors. Eleven participants with unilateral severe to profound hearing loss attended five training sessions; localization cues gradually decreased across sessions. Localization ability was assessed pre- and post-training. Assessment stimuli were monosyllabic words and spectral and temporal random spectrogram sounds. Root mean square errors for each participant and stimulus type were used in group and correlation analyses; individual data were examined with ordinary least squares regression. Mean pre- to post-training test results were significantly different for all stimulus types. Among the participants, eight significantly improved following training on at least one localization measure, whereas three did not. Participants with the poorest localization ability improved the most and likewise, those with the best pre-training ability showed the least training benefit. Correlation results suggested that test age, age at onset of severe to profound hearing loss and better ear high frequency audibility may contribute to localization ability. Results support the need for continued investigation of localization training efficacy and consideration of localization training within rehabilitation protocols for individuals with unilateral severe to profound hearing loss. PMID:25457655

  15. Effects on the photon beam from an electromagnetic array used for patient localization and tumor tracking.

    PubMed

    Zou, Wei; Betancourt, Ricardo; Yin, Lingshu; Metz, James; Avery, Stephen; Kassaee, Alireza

    2013-05-06

    One of the main components in a Calypso 4D localization and tracking system is an electromagnetic array placed above patients that is used for target monitoring during radiation treatment. The beam attenuation and beam spoiling properties of the Calypso electromagnetic array at various beam angles were investigated. Measurements were performed on a Varian Clinac iX linear accelerator with 6 MV and 15 MV photon beams. The narrow beam attenuation properties were measured under a field size of 1 cm × 1 cm, with a photon diode placed in a cylindrical graphite buildup cap. The broad beam attenuation properties were measured under a field size of 10 cm × 10 cm, with a 0.6 cc cylindrical Farmer chamber placed in a polystyrene buildup cap. Beam spoiling properties of the array were studied by measuring depth-dose change from the array under a field size of 10 cm × 10 cm in a water-equivalent plastic phantom with an embedded Markus parallel plate chamber. Change in depth doses were measured with the array placed at distances of 2, 5, and 10 cm from the phantom surface. Narrow beam attenuation and broad beam attenuation from the array were found to be less than 2%-3% for both 6 MV and 15 MV beams at angles less than 40°, and were more pronounced at more oblique angles. Spoiling effects are appreciable at beam buildup region, but are insignificant at depths beyond dmax. Dose measurements in a QA phantom using patient IMRT and VMAT treatment plans were shown to have less than 2.5% dose difference with the Calypso array. The results indicate that the dose difference due to the placement of Calypso array is clinically insignificant.

  16. Flexural vibration bandgaps in local resonance beam with a novel two-degree-of-freedom local resonance system

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Jing, Li; Guan, Dong

    2017-03-01

    In this paper, an elastic metamaterial beam with a novel two-degree-of-freedom local resonator is investigated theoretically, and the dispersion relation is calculated by using transfer matrix (TM). In order to confirm the existence of band gaps, the transmission spectrum of flexural wave are also studied by using finite element method. The formation mechanism of the flexural vibration bandgaps (FVBGs) are further analyzed by studying the displacement fields of the eigenmodes at the band-gap edges. At last, the evolution of the dispersion relations with the increasing of the distance from the one side rubber to the center of the local resonance mass are discussed in detail, and the effects of the outside diameter of the Cu ring and the equivalent stiffness k of the rubbers on the FVBGs are also investigated. Through the above analysis, we can draw the following conclusions, due to the unequal of the torques provided by the two rubbers, two different rotational vibrations of local resonance mass with two different local resonance frequencies are introduced in the local resonance system, thus the elastic metamaterial beam shows two FVBGs at low frequencies. The theoretical results are in good agreement with the numerical results. The magnitude of torques introduced in the local resonance system can obviously affect the locations of the FVBGs. With the asymmetry decreasing, the frequency region of the first FVBG moves to the higher value, while that of the second FVBG tends to the lower value, and when the two torques are equal, the two FVBGs coupled into one wider gap. For the elastic metamaterial beam with heavy resonance mass and weak rubbers is appropriate to obtain a lower band gap, and the total width of the FVBGs becomes wider. However, it does just the opposite under the condition of the case with light Cu ring and strong rubbers, but the total width of the band gaps also becomes wider. The propagation properties of the flexural wave in the designed local

  17. Minimizing irreversible losses in quantum systems by local counterdiabatic driving

    NASA Astrophysics Data System (ADS)

    Sels, Dries; Polkovnikov, Anatoli

    2017-05-01

    Counterdiabatic driving protocols have been proposed [Demirplak M, Rice SA (2003) J Chem Phys A 107:9937-9945; Berry M (2009) J Phys A Math Theor 42:365303] as a means to make fast changes in the Hamiltonian without exciting transitions. Such driving in principle allows one to realize arbitrarily fast annealing protocols or implement fast dissipationless driving, circumventing standard adiabatic limitations requiring infinitesimally slow rates. These ideas were tested and used both experimentally and theoretically in small systems, but in larger chaotic systems, it is known that exact counterdiabatic protocols do not exist. In this work, we develop a simple variational approach allowing one to find the best possible counterdiabatic protocols given physical constraints, like locality. These protocols are easy to derive and implement both experimentally and numerically. We show that, using these approximate protocols, one can drastically suppress heating and increase fidelity of quantum annealing protocols in complex many-particle systems. In the fast limit, these protocols provide an effective dual description of adiabatic dynamics, where the coupling constant plays the role of time and the counterdiabatic term plays the role of the Hamiltonian.

  18. Beam damage suppression of low-kappa porous Si-O-C films by cryo-electron-energy loss spectroscopy (EELS).

    PubMed

    Otsuka, Yuji; Shimizu, Yumiko; Tanaka, Isao

    2009-04-01

    Porous Si-O-C films with lower dielectric constant (kappa) relative to silicon dioxide have been widely studied as inter-layer dielectrics in new-generation microelectronic devices. On the analysis of the film by transmission electron microscopy (TEM), it is susceptible of beam damage during both sample preparation by a focused ion beam (FIB) technique and TEM observation. We use electron energy loss spectroscopy (EELS) to quantify the magnitude of the beam damage during these processes. The intensity of the 285-eV peak in C-K electron energy loss near edge structures (ELNES) is enhanced by the damage, which can be ascribed to the formation of the C=C double bonds as a result of the decomposition of the methyl groups by the beam. The use of cryo-holder for TEM at 100 K is found to be essential to reduce the damage of the low-kappa layers. The lowering of the acceleration voltage of FIB down to 5 keV does not change the spectra. Since the FIB damage is localized at the surface, the use of thick regions in the TEM foil such as 130 nm is preferred to reduce the superposition of EELS of the damaged region on those from the sample of interest.

  19. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect

    Kim, Hyung J.; Sen, Tanaji; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  20. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    SciTech Connect

    Koester, Petra; Cecchetti, Carlo A.; Booth, Nicola; Woolsey, Nigel; Chen, Hui; Evans, Roger G.; Gregori, Gianluca; Li, Bin; Mithen, James; Murphy, Christopher D.; Labate, Luca; Gizzi, Leonida A.; Levato, Tadzio; Makita, Mikako; Riley, David; Notley, Margaret; Pattathil, Rajeev

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  1. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    NASA Astrophysics Data System (ADS)

    Koester, Petra; Booth, Nicola; Cecchetti, Carlo A.; Chen, Hui; Evans, Roger G.; Gregori, Gianluca; Labate, Luca; Levato, Tadzio; Li, Bin; Makita, Mikako; Mithen, James; Murphy, Christopher D.; Notley, Margaret; Pattathil, Rajeev; Riley, David; Woolsey, Nigel; Gizzi, Leonida A.

    2015-02-01

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 1019 W/cm2. High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.

  2. Calculation of generalized Lorenz-Mie theory based on the localized beam models

    NASA Astrophysics Data System (ADS)

    Jia, Xiaowei; Shen, Jianqi; Yu, Haitao

    2017-07-01

    It has been proved that localized approximation (LA) is the most efficient way to evaluate the beam shape coefficients (BSCs) in generalized Lorenz-Mie theory (GLMT). The numerical calculation of relevant physical quantities is a challenge for its practical applications due to the limit of computer resources. The study presents an improved algorithm of the GLMT calculation based on the localized beam models. The BSCs and the angular functions are calculated by multiplying them with pre-factors so as to keep their values in a reasonable range. The algorithm is primarily developed for the original localized approximation (OLA) and is further extended to the modified localized approximation (MLA). Numerical results show that the algorithm is efficient, reliable and robust.

  3. Effects of Optical Loss Factors on Heliostat Field Layout for Beam-Down Solar Concentrating Systems

    NASA Astrophysics Data System (ADS)

    Utamura, Motoaki; Takamatsu, Tadahiko; Yuasa, Minoru; Kajita, Rina; Yamamoto, Takashi

    A methodology to give an optimal layout of a group of heliostats has been developed for beam-down concentrating solar tower systems. Given the maximum solar power together with optical parameters, the method determines an optimal configuration of a heliostat field around a tower. Various optical losses such as cosine factor, shadowing and blocking at heliostats are considered in the calculation. Furthermore, spillage at the receiver is taken into account due to the spread of light caused by the effects of a finite solar disk, flat facet and various stochastic errors in optical hardware and control. It is found the effect of spillage becomes significant at heliostats from the tower at the distance farther than four times of upper focus height of the reflector when receiver diameter is one fifteenth of the height and dominates the configuration of the optimal heliostat layout.

  4. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  5. Readout process and noise elimination firmware for the Fermilab beam loss system

    SciTech Connect

    Wu, Jinyuan; Baumbaugh, Alan; Drennan, Craig; Thurman-Keup, Randy; Lewis, Jonathan; Shi, Zonghan; /Fermilab

    2007-05-01

    In the Fermilab Beam Loss Monitor System, inputs from ion chambers are integrated for a short period of time, digitized and processed to create the accelerator abort request signals. The accelerator power supplies employing 3-phase 60Hz AC cause noise at various harmonics on our inputs which must be eliminated for monitoring purposes. During accelerator ramping, both the sampling frequency and the amplitudes of the noise components change. As such, traditional digital filtering can partially reduce certain noise components but not all. A nontraditional algorithm was developed in our work to eliminate remaining ripples. The sequencing in the FPGA firmware is conducted by a micro-sequencer core we developed: the Enclosed Loop Micro-Sequencer (ELMS). The unique feature of the ELMS is that it supports the ''FOR'' loops with pre-defined iterations at the machine code level, which provides programming convenience and avoids many micro-complexities from the beginning.

  6. Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches

    SciTech Connect

    Novokhatski, A.; /SLAC

    2009-10-17

    The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

  7. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9–4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9–4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  8. Mixed beam radiotherapy and combination chemotherapy in localized pancreatic adenocarcinoma - preliminary results

    SciTech Connect

    Bukowski, R.M.; Gahbauer, R.; Rodriquez-Antunez, A.; Hermann, R.

    1982-07-01

    A pilot study of mixed beam radiotherapy (fast neutrons alternating with photons) followed by combination chemotherapy with SMF (streptozotocin, 5-flouoruracil, mitomycin C) in localized pancreatic cancer was performed. Thirteen patients were treated and a median survival of 10.0 months was noted (range 5-30+). Toxicity was mild to moderate. Further studies of radiation and chemotherapy are indicated.

  9. Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    SciTech Connect

    Midya, Bikashkali; Roychoudhury, Rajkumar

    2014-02-15

    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.

  10. Modeling the Effects of Sensorineural Hearing Loss on Sound Localization in the Median Plane

    PubMed Central

    Majdak, Piotr; Laback, Bernhard

    2016-01-01

    Listeners use monaural spectral cues to localize sound sources in sagittal planes (along the up-down and front-back directions). How sensorineural hearing loss affects the salience of monaural spectral cues is unclear. To simulate the effects of outer-hair-cell (OHC) dysfunction and the contribution of different auditory-nerve fiber types on localization performance, we incorporated a nonlinear model of the auditory periphery into a model of sagittal-plane sound localization for normal-hearing listeners. The localization model was first evaluated in its ability to predict the effects of spectral cue modifications for normal-hearing listeners. Then, we used it to simulate various degrees of OHC dysfunction applied to different types of auditory-nerve fibers. Predicted localization performance was hardly affected by mild OHC dysfunction but was strongly degraded in conditions involving severe and complete OHC dysfunction. These predictions resemble the usually observed degradation in localization performance induced by sensorineural hearing loss. Predicted localization performance was best when preserving fibers with medium spontaneous rates, which is particularly important in view of noise-induced hearing loss associated with degeneration of this fiber type. On average across listeners, predicted localization performance was strongly related to level discrimination sensitivity of auditory-nerve fibers, indicating an essential role of this coding property for localization accuracy in sagittal planes. PMID:27659486

  11. Local Recurrence After Primary Proton Beam Therapy in Uveal Melanoma: Risk Factors, Retreatment Approaches, and Outcome.

    PubMed

    Seibel, Ira; Cordini, Dino; Rehak, Matus; Hager, Annette; Riechardt, Aline I; Böker, Alexander; Heufelder, Jens; Weber, Andreas; Gollrad, Johannes; Besserer, Angela; Joussen, Antonia M

    2015-10-01

    To evaluate the risk factors, recurrence rates, retreatments, and long-term patient outcomes following proton beam therapy for uveal melanoma. Retrospective interventional case series. All patients treated with primary proton beam therapy for uveal melanoma at the oncology service at Charité-Berlin and Helmholtz-Zentrum-Berlin between May 1998 and December 2008 were reviewed for local recurrence. Of 982 patients, 982 eyes matched the inclusion criteria. The data were obtained from electronic health records, operative reports, discharge letters, and radiation planning. Comparisons of fundus photographs and ultrasound measurements were performed to assess the growth pattern of the tumor and to determine the success of retreatment, in the case that a globe-retaining therapy was undertaken. Of 982 patients, 35 patients (3.6%) developed local recurrence. The median follow-up was 60.7 months (6.0-170.4 months). Local control rate was 96.4% and the overall eye retention rate was 95.0% in this cohort. Local recurrence was correlated with a higher risk for metastasis and reduced survival. Largest tumor diameter was identified as the sole statistically significant risk factor for local recurrence (P = .00001). All globe-retaining retreatment approaches for local recurrence, including proton beam therapy, brachytherapy, and transpupillary thermotherapy used for recurrences at the tumor margins, showed good local tumor control and similar metastasis-free survivals. This study showed that each globe-retaining retreatment approach can result in satisfying local tumor control. In case of early detection of local recurrence, preservation of the globe can be warranted. Therefore, regularly performed follow-ups should be ensured. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Damage localization and quantification in simply supported beams using static test data

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Solís, M.

    2017-05-01

    A novel simple method using static test data for damage detection, localization, and quantification in beams is presented in this paper. The method is based on the change of the deflections of the beam between a reference and a damaged state. For simply supported beams with a single damage, the maximum value of the change of deflections indicates the location of damage. Once the damage is located, one could estimate the rotational stiffness at the damaged cross section by applying a superposition scheme to isolate the effect of damage and by using basic structural analysis equilibrium equations. Afterwards, damage extent is evaluated through an existing relation between rotational stiffness and damage severity. Several static tests of a simply supported steel beam with a point load at different locations were conducted to exam the performance of the strategy. The damage is artificially introduced as an opened crack located at the bottom of the beam. The deflections of the beam were measured by using a Digital Image Correlation system. The results show that the method can accurately detect and quantify the damage. The method is non-model based and can be easily conducted. No specific loading positions are required and damage identification objective can be achieved from just one single static test.

  13. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    SciTech Connect

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs.

  14. Cyclic capacity of tubular beam-columns with local buckling: Numerical and experimental studies

    SciTech Connect

    Skallerud, B.; Amdahl, J.; Johansen, A.; Eide, O.I.

    1996-12-31

    The present investigation addresses the cyclic capacity of tubular members subjected to both local and global buckling during cyclic loading. Diameter to thickness ratios of 45 and 60 are studied. The performance of FE models, both a beam model and shell model, is compared to test results in terms of load versus displacement behavior and energy accumulation. Some problems regarding the prediction of local strain histories in the local buckle zone are pointed out. Damage accumulation models in terms of energy per cycle are discussed, aiming at possible member detachment criteria.

  15. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

    PubMed Central

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-01-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  16. A Meshless Local Petrov-Galerkin Method for Euler-Bernoulli Beam Problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.

    2002-01-01

    An accurate and yet simple Meshless Local Petrov-Galerkin (MLPG) formulation for analyzing beam problems is presented. In the formulation, simple weight functions are chosen as test functions. The use of these functions shows that the weak form can be integrated with conventional Gaussian integration. The MLPG method was evaluated by applying the formulation to a variety of patch test and thin beam problems. The formulation successfully reproduced exact solutions to machine accuracy when test functions with C2 continuity and an appropriate order of basis functions are used.

  17. Effect of Dual Sensory Loss on Auditory Localization: Implications for Intervention

    PubMed Central

    Simon, Helen J.; Levitt, Harry

    2007-01-01

    Our sensory systems are remarkable in several respects. They are extremely sensitive, they each perform more than one function, and they interact in a complementary way, thereby providing a high degree of redundancy that is particularly helpful should one or more sensory systems be impaired. In this article, the problem of dual hearing and vision loss is addressed. A brief description is provided on the use of auditory cues in vision loss, the use of visual cues in hearing loss, and the additional difficulties encountered when both sensory systems are impaired. A major focus of this article is the use of sound localization by normal hearing, hearing impaired, and blind individuals and the special problem of sound localization in people with dual sensory loss. PMID:18003869

  18. Loss of anatomical landmarks with eutectic mixture of local anesthetic cream for neonatal male circumcision.

    PubMed

    Plank, Rebeca M; Kubiak, David W; Abdullahi, Rasak Bamidele; Ndubuka, Nnamdi; Nkgau, Maggie M; Dapaah-Siakwan, Fredrick; Powis, Kathleen M; Lockman, Shahin

    2013-02-01

    We report two cases of newborns who developed marked local edema after application of a eutectic mixture of local anesthetic (EMLA) topical anesthetic cream for neonatal male circumcision (NMC). Although local edema and erythema are known potential side effects of EMLA cream, a common anesthetic used for NMC, the loss of landmarks precluding safe NMC has not previously been reported, and is described here. Although we cannot recommend an alternate local anesthetic for neonates with this reaction to EMLA, based on a review of the published data we think that serious systemic adverse events related to EMLA are extremely rare.

  19. Achievement of a low-loss 1-MW beam operation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Hotchi, H.; Harada, H.; Hayashi, N.; Kato, S.; Kinsho, M.; Okabe, K.; Saha, P. K.; Shobuda, Y.; Tamura, F.; Tani, N.; Watanabe, Y.; Yamamoto, K.; Yamamoto, M.; Yoshimoto, M.

    2017-06-01

    The 3-GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) is now in the final beam commissioning phase, aiming for a design output beam power of 1 MW. With a series of injector linac upgrades in 2013 and 2014, RCS developed a high-intensity beam test, and launched 1-MW beam tuning in October 2014. The most important issues in realizing such a high-power continuous beam operation are to control and minimize beam loss for maintaining machine activations within permissible levels. In RCS, numerical simulation was successfully utilized along with experimental approaches to isolate the mechanism of beam loss and find its solution. By iteratively performing actual beam experiments and numerical simulations, and also by several hardware improvements, we have recently established a 1-MW beam operation with very low fractional beam loss of a couple of 10-3 . In this paper, our recent efforts toward realizing such a low-loss high-intensity beam acceleration are presented as a follow-up of our previous article, H. Hotchi et al. Phys. Rev. ST Accel. Beams 12, 040402 (2009), 10.1103/PhysRevSTAB.12.040402, in which the initial beam commissioning status of RCS has been reported.

  20. Object representation for multi-beam sonar image using local higher-order statistics

    NASA Astrophysics Data System (ADS)

    Li, Haisen; Gao, Jue; Du, Weidong; Zhou, Tian; Xu, Chao; Chen, Baowei

    2017-01-01

    Multi-beam sonar imaging has been widely used in various underwater tasks such as object recognition and object tracking. Problems remain, however, when the sonar images are characterized by low signal-to-noise ratio, low resolution, and amplitude alterations due to viewpoint changes. This paper investigates the capacity of local higher-order statistics (HOS) to represent objects in multi-beam sonar images. The Weibull distribution has been used for modeling the background of the image. Local HOS involving skewness is estimated using a sliding computational window, thus generating the local skewness image of which a square structure is associated with a potential object. The ability of object representation with different signal-to-noise ratio (SNR) between object and background is analyzed, and the choice of the computational window size is discussed. In the case of the object with high SNR, a novel algorithm based on background estimation is proposed to reduce side lobe and retain object regions. The performance of object representation has been evaluated using real data that provided encouraging results in the case of the object with low amplitude, high side lobes, or large fluctuant amplitude. In conclusion, local HOS provides more reliable and stable information relating to the potential object and improves the object representation in multi-beam sonar image.

  1. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy.

    PubMed

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-07-06

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration.

  2. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  3. High-power terahertz lasers with excellent beam quality for local oscillator sources

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    Many molecular species that compose the interstellar medium have strong spectral features in the 2-5 THz range, and heterodyne spectroscopy is required to obtain ~km/s velocity resolution to resolve their complicated lineshapes and disentangle them from the background. Understanding the kinetics and energetics within the gas clouds of the interstellar medium is critical to understanding star formation processes and validating theories of galactic evolution. Herschel Observatory's heterodyne HIFI instrument provided several years of high-spectral-resolution measurements of the interstellar medium, although only up to 1.9 THz. The next frontier for heterodyne spectroscopy is the 2-6 THz region. However, development of heterodyne receivers above 2 THz has been severely hindered by a lack of convenient coherent sources of sufficient power to serve as local oscillators (LOs). The recently developed quantum-cascade (QC) lasers are emerging as candidates for LOs in the 1.5-5 THz range. The current generation of single-mode THz QC-lasers can provide a few milliwatts of power in a directive beam, and will be sufficient to pump single pixels and small-format heterodyne arrays (~10 elements). This proposal looks beyond the state-of-the-art, to the development of large format heterodyne arrays which contain on the order of 100-1000 elements. LO powers on the order of 10-100 mW delivered in a high-quality Gaussian beam will be needed to pump the mixer array - not only because of the microwatt mixer power requirement, but to account for large anticipated losses in LO coupling and distribution. Large format heterodyne array instruments are attractive for a dramatic speedup of mapping of the interstellar medium, particularly on airborne platforms such as the Stratospheric Observatory for Infrared Astronomy (SOFIA), and on long duration balloon platforms such as the Stratospheric Terahertz Observatory (STO), where observation time is limited. The research goal of this proposal is

  4. Beam loss simulations for the implementation of the Hard X-Ray Self-Seeding system at European XFEL

    NASA Astrophysics Data System (ADS)

    Liu, Shan; Decking, Winfried; Fröhlich, Lars

    2017-07-01

    The European XFEL is designed to be operated with a nominal beam energy of 17.5 GeV at a maximum repetition rate of 27000 bunches/second. The high repetition rate together with the high loss sensitivity of the undulators raises serious radiation damage concern, especially for the implementation of the Hard X-ray Self-Seeding (HXRSS) system, where a 100 µm thick diamond crystal will be inserted close to the beam in the undulator section. Since the seeding power level highly depends on the delay of the electron beam with respect to the photon beam, it is crucial to define the minimum electron beam offset to the edge of the crystal in the HXRSS chicane. At European XFEL a ∼200 m long post-linac collimation section has been designed to protect the undulators. In the HXRSS scheme, however, beam halo particles hitting the crystal can generate additional radiation. Particle tracking simulations have been performed using GEANT4 and BDSIM for the undulator and the collimation section, respectively. The critical number of electrons allowed to hit the crystal is estimated for a certain operation mode and the efficiency of beam halo collimation is investigated to predict the minimum HXRSS chicane delay.

  5. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Tang, Liling; Cheng, Li

    2017-05-01

    The Acoustic Black Hole (ABH) effect can be used to effectively reduce structural vibrations by trapping flexural waves in a thin-walled structure with a power-law thickness variation. In the present study, we used a wavelet-decomposed energy method to investigate an Euler-Bernoulli beam embedded with multiple ABHs. Broadband transmission attenuation bands at relatively low frequencies are observed in a beam containing only a few ABH elements. To explain the underlying phenomena, an infinite structure with periodic ABH elements is analyzed. Numerical results show that the periodic boundary conditions in terms of displacement and rotational slope of a unit cell, based on the finite model, are sufficient to describe the band structures, without requiring full treatment of the entire infinite structure. This provides an efficient and flexible means to predict, and eventually optimize, the band structure based on a single element. Meanwhile, the ABH-induced locally resonant band gaps coincide with the attenuation bands observed in the finite beams. Because of the unique ABH feature, the proposed beam requires only a small number of elements to obtain broad attenuation bands, which offers great potential for vibrational isolation applications and wave filter designs in beam structures.

  6. Localized conductive patterning via focused electron beam reduction of graphene oxide

    SciTech Connect

    Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval D.; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-30

    We report on a method for “direct-write” conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  7. Simulation of Local Material Properties during Laser Beam Welding of Aluminum-Titanium Compounds

    NASA Astrophysics Data System (ADS)

    Barr, Annika; Hunkel, Martin; von Hehl, Axel

    Combinations of aluminum and titanium by firmly bonding via laser beam welding enable the production of customized hybrid designs with enhanced properties. A novel approach of coupling process, microstructure and mechanical simulation, considering the development of weld geometry and local material conditions, is intended to deliver a fast and reliable method for evaluating the quasi-static strength of laser beam welded hybrid compounds. For microstructure and mechanical simulations a comprehensive data set of material specific mechanical properties is required to reach simulation results. This includes hot tensile tests, tensile tests concerning the heat affected zone (by means of micro flat specimens) and metallographic examinations to determine the microstructure and hardness. The data set was implemented into a simulation model in order to validate the simulation results including microstructure evolution and resulting local mechanical properties. These results provide the basis for refining and advancing the coupled simulation model.

  8. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  9. Measurement profiles of nano-scale ion beam for optimized radiation energy losses

    NASA Astrophysics Data System (ADS)

    Woo, T. H.; Cho, H. S.

    2011-10-01

    The behavior of charged particles is investigated for nano-scale ion beam therapy using a medical accelerator. Computational work is performed for the Bragg-peak simulation, which is focused on human organ material of pancreas and thyroid. The Results show that the trends of the dose have several different kinds of distributions. Before constructing a heavy ion collider, this study can give us the reliability of the therapeutic effect. Realistic treatment using human organs is calculated in a simple and cost effective manner using the computational code, the Stopping and Range of Ions in Matter 2008 (SRIM 2008). Considering the safety of the therapy, it is suggested to give a patient orient planning of the cancer therapy. The energy losses in ionization and phonon are analyzed, which are the behaviors in the molecular level nano-scopic investigation. The different fluctuations are shown at 150 MeV, where the lowest temperature is found in proton and pancreas case. Finally, the protocol for the radiation therapy is constructed by the simulation in which the procedure for a better therapy is selected. An experimental measurement incorporated with the simulations could be programmed by this protocol.

  10. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  11. Study of local in-homogeneity in ion beam mixing using SIMS ion imaging techniques

    SciTech Connect

    Singh, Ch. Kishan; Ilango, S.; Dash, S.; Tyagi, A. K.

    2012-06-05

    The local in-homogeneity in ion beam mixing of Mo/Si system subjected to 110keV Ar{sup +} ion implantation is studied using secondary ion imaging. Sequences of images are recorded across the interface and depth profiles are constructed from different regions of the image planes. Our results show a significant variation in decay length indicative of in-homogeneity in mixing.

  12. Motion correction for improved target localization with on-board cone-beam computed tomography.

    PubMed

    Li, T; Schreibmann, E; Yang, Y; Xing, L

    2006-01-21

    On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360 degrees scan) in acquiring the CBCT projection data, the patient's respiratory motion causes serious problems such as blurring, doubling, streaking and distortion in the reconstructed images, which heavily degrade the image quality and the target localization. In this work, we present a motion compensation method for slow-rotating CBCT scans by incorporating into image reconstruction a patient-specific motion model, which is derived from previously obtained four-dimensional (4D) treatment planning CT images of the same patient via deformable registration. The registration of the 4D CT phases results in transformations representing a temporal sequence of three-dimensional (3D) deformation fields, or in other words, a 4D model of organ motion. The algorithm was developed heuristically in two-dimensional (2D) parallel-beam geometry and extended to 3D cone-beam geometry. By simulations with digital phantoms capable of translational motion and other complex motion, we demonstrated that the algorithm can reduce the motion artefacts locally, and restore the tumour size and shape, which may thereby improve the accuracy of target localization and patient positioning when CBCT is used as the treatment guidance.

  13. Refraction of nonlinear beams by localized refractive index changes in nematic liquid crystals

    SciTech Connect

    Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.

    2010-11-15

    The propagation of solitary waves in nematic liquid crystals in the presence of localized nonuniformities is studied. These nonuniformities can be caused by external electric fields, other light beams, or any other mechanism which results in a modified director orientation in a localized region of the liquid-crystal cell. The net effect is that the solitary wave undergoes refraction and trajectory bending. A general modulation theory for this refraction is developed, and particular cases of circular, elliptical, and rectangular perturbations are considered. The results are found to be in excellent agreement with numerical solutions.

  14. Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Herrera, Christopher A.; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-02-01

    This study presents a methodology for nonlinear quantification, i.e., the identification of the linear and nonlinear regimes and estimation of the degree of nonlinearity, for a cantilever beam with a local, strongly nonlinear stiffness element. The interesting feature of this system is that it behaves linearly in the limits of extreme values of the nonlinear stiffness. An Euler-Bernoulli cantilever beam with two nonlinear configurations is used to develop and demonstrate the methodology. One configuration considers a cubic spring attached at a distance from the beam root to achieve a smooth nonlinear effect. The other configuration considers a vibro-impact element that generates non-smooth effects. Both systems have the property that, in the limit of small and large values of a configuration parameter, the system is almost linear and can be modeled as such with negligible error. For the beam with a cubic spring attachment, the forcing amplitude is the varied parameter, while for the vibro-impact beam, this parameter is the clearance between the very stiff stops and the beam at static equilibrium. Proper orthogonal decomposition is employed to obtain an optimal orthogonal basis used to describe the nonlinear system dynamics for varying parameter values. The frequencies of the modes that compose the basis are then estimated using the Rayleigh quotient. The variations of these frequencies are studied to identify parameter values for which the system behaves approximately linearly and those for which the dynamical response is highly nonlinear. Moreover, a criterion based on the Betti-Maxwell reciprocity theorem is used to verify the existence of nonlinear behavior for the set of parameter values suggested by the described methodology. The developed methodology is general and applicable to discrete or continuous systems with smooth or nonsmooth nonlinearities.

  15. An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

    SciTech Connect

    Lepkowski, Stefan Mark

    2015-05-01

    The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves a peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.

  16. Synapse loss and axon retraction in response to local muscle degeneration.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-10-01

    During metamorphosis in the moth, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. As the larval muscle degenerates, its motoneuron loses its end plates and retracts axon branches from the degenerating muscle. Muscle degeneration is under the control of the insect hormones, the ecdysteroids. Topical application of an ecdysteroid mimic resulted in animals that produced a localized patch of pupal cuticle. Muscle fibers underlying the patch showed a gradient of degeneration. The motoneuron showed end-plate loss and axon retraction from degenerating regions of a given fiber but maintained its fine terminal branches and end plates on intact regions. The results suggest that local steroid treatments that result in local muscle degeneration bring about a loss of synaptic contacts from regions of muscle degeneration.

  17. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    NASA Astrophysics Data System (ADS)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  18. Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation.

    PubMed

    Wei, Xianlong; Tang, Dai-Ming; Chen, Qing; Bando, Yoshio; Golberg, Dmitri

    2013-04-23

    In many previous reports, the engineering of nanostructures using electron beam irradiation (EBI) in a high vacuum has primarily been based on the knock-on atom displacement. Herein, we report a new phenomenon under EBI that can also be effectively used to engineer a nanostructure: local Coulomb explosion (LCE) of cantilevered multiwalled boron nitride nanotubes (BNNTs) resulted from their profound positive charging. The nanotubes are gradually shortened, while the tubular shells at free ends are torn into graphene-like pieces and then removed during LCE. The phenomenon is dependent not only on the characteristics of an incident electron beam, as in the case of a common knock-on process, but also on the cantilevered tube length. Only after the electron beam density and tube length exceed the threshold values can LCE take place, and the threshold value for one of the parameters decreases with increasing the value of the other one. A model based on the diffusion of electron-irradiation-induced holes along a BNNT is proposed to describe the positive charge accumulation and can well explain the observed LCE. LCE opens up an efficient and versatile way to engineer BNNTs and other dielectric nanostructures with a shorter time and a lower beam density than those required for the knock-on effect-based engineering.

  19. Investigation of in-body path loss in different human subjects for localization of capsule endoscope.

    PubMed

    Ara, Perzila; Cheng, Shaokoon; Heimlich, Michael; Dutkiewicz, Eryk

    2015-01-01

    Recent developments in capsule endoscopy have highlighted the need for accurate techniques to estimate the location of a capsule endoscope. A highly accurate location estimation of a capsule endoscope in the gastrointestinal (GI) tract in the range of several millimeters is a challenging task. This is mainly because the radio-frequency signals encounter high loss and a highly dynamic channel propagation environment. Therefore, an accurate path-loss model is required for the development of accurate localization algorithms. This paper presents an in-body path-loss model for the human abdomen region at 2.4 GHz frequency. To develop the path-loss model, electromagnetic simulations using the Finite-Difference Time-Domain (FDTD) method were carried out on two different anatomical human models. A mathematical expression for the path-loss model was proposed based on analysis of the measured loss at different capsule locations inside the small intestine. The proposed path-loss model is a good approximation to model in-body RF propagation, since the real measurements are quite infeasible for the capsule endoscopy subject.

  20. Acute toxicity during external-beam radiotherapy for localized prostate cancer: Comparison of different techniques

    SciTech Connect

    Vijayakumar, S.; Awan, A.; Karrison, T.; Culbert, H.; Chan, S.; Kolker, J.; Low, N.; Halpern, H.; Rubin, S.; Chen, G.T.Y.; Weicheselbaum, R.R. )

    1993-01-15

    The chronic and acute toxicities associated with conventional radiotherapy of localized prostate cancer are well documented. However, the degree and incidence of toxicities with conformal techniques are not known. Studying side effects associated with modern radiotherapeutic techniques is more important now since there has been a general trend to use computerized tomography-based techniques in recent years; beam's eye view-based conformal techniques are also becoming more commonplace. It is possible that the local disease control can be improved with the delivery of higher doses than currently used. Conformation of the treatment volume to the target volume may facilitate such dose-escalation. However, prior to such dose-escalation, it is important to know the toxicities associated with such techniques with conventional doses. We have compared week-by-week acute toxicities associated with conventional (Group A, 16 patients), computerized tomography-based, manual (Group B, 57 patients) and beam's eye view-based (Group C, 43 patients) techniques during 7 weeks of radiotherapy. Group B and C patients were treated contemporaneously (1988-1990). The incidence of acute toxicities was significantly less with the beams eye view-based technique than with the other two methods. A trend suggesting increased severity of toxicity with increase in the volume of treatment was seen.

  1. Improved SPGD algorithm to avoid local extremum for incoherent beam combining

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Wang, Tingfeng; Guo, Jin

    2017-01-01

    The stochastic parallel gradient descent (SPGD) algorithm and the fast steering mirrors (FSM) are applied for incoherent beam combining in this paper. An equation is derived to calculate the wavefront reflected from the FSM under certain control voltages and the relationship between the strength of random disturbances and the combing efficiency is discussed via simulations, indicating that the combining efficiency is inversely proportional to the square of the strength of disturbance. The maximum value of the acceptable disturbance can be determined though the fitting curve which presents an instructional way to reduce the disturbance in advance. Besides, the SPGD algorithm is improved to overcome the weakness of tending to be trapped in the local extremum in incoherent beam combining. In the proposed algorithm, pattern recognition is used to check whether the algorithm is trapped and an "additional move" can be applied to get out of local extremum. The results of simulations show that the proposed algorithm can improve the performance of the incoherent beam combining. Comparative simulations are conducted where the value of evaluation function is increased about 60% compared to the conventional algorithm under the same conditions. The threshold of disturbance also increases about 15% when the accepted value of evaluation function set to 0.8 in the normalized form showing the feasibility of the method. Also, statistical data shows the proposed method depends less on the gain coefficient.

  2. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; Chen, Yu; Xu, Yongjian; Yu, Ling; Li, Xiang; Zhang, Weitang

    2016-11-01

    Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001) and the International Science & Technology Cooperation Program of China (No. 2014DFG61950)

  3. Localization of deformation and loss of macroscopic ellipticity in microstructured solids

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, M. P.; Triantafyllidis, N.; Wen, G.

    2016-12-01

    Localization of deformation, a precursor to failure in solids, is a crucial and hence widely studied problem in solid mechanics. The continuum modeling approach of this phenomenon studies conditions on the constitutive laws leading to the loss of ellipticity in the governing equations, a property that allows for discontinuous equilibrium solutions. Micro-mechanics models and nonlinear homogenization theories help us understand the origins of this behavior and it is thought that a loss of macroscopic (homogenized) ellipticity results in localized deformation patterns. Although this is the case in many engineering applications, it raises an interesting question: is there always a localized deformation pattern appearing in solids losing macroscopic ellipticity when loaded past their critical state? In the interest of relative simplicity and analytical tractability, the present work answers this question in the restrictive framework of a layered, nonlinear (hyperelastic) solid in plane strain and more specifically under axial compression along the lamination direction. The key to the answer is found in the homogenized post-bifurcated solution of the problem, which for certain materials is supercritical (increasing force and displacement), leading to post-bifurcated equilibrium paths in these composites that show no localization of deformation for macroscopic strain well above the one corresponding to loss of ellipticity.

  4. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-01-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H[sup +] for proton injection into the PSR. Two foil thicknesses, 200 and 300 [mu]g/cm[sup 2], were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H[sub 0] atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  5. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-06-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H{sup +} for proton injection into the PSR. Two foil thicknesses, 200 and 300 {mu}g/cm{sup 2}, were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H{sub 0} atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  6. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    NASA Astrophysics Data System (ADS)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  7. Loss of local capture of the pulmonary vein myocardium after antral isolation: prevalence and clinical significance.

    PubMed

    Squara, Fabien; Liuba, Ioan; Chik, William; Santangeli, Pasquale; Zado, Erica S; Callans, David J; Marchlinski, Francis E

    2015-03-01

    Capture of the myocardial sleeves of the pulmonary veins (PV) during PV pacing is mandatory for assessing exit block after PV isolation (PVI). However, previous studies reported that a significant proportion of PVs failed to demonstrate local capture after PVI. We designed this study to evaluate the prevalence and the clinical significance of loss of PV capture after PVI. Thirty patients (14 redo) undergoing antral PVI were included. Before and after PVI, local PV capture was assessed during circumferential pacing (10 mA/2 milliseconds) with a circular multipolar catheter (CMC), using EGM analysis from each dipole of the CMC and from the ablation catheter placed in ipsilateral PV. Pacing output was varied to optimize identification of sleeve capture. All PVs demonstrated sleeve capture before PVI, but only 81% and 40% after first time and redo PVI, respectively (P < 0.001 vs. before PVI). In multivariate analysis, absence of spontaneous PV depolarizations after PVI and previous PVI procedures were associated with less PV sleeve capture after PVI (40% sleeve capture, P < 0.001 for both). Loss of PV local capture by design was coincident with the development of PV entrance block and importantly predicted absence of acute reconnection during adenosine challenge with 96% positive predictive value (23% negative predictive value). Loss of PV local capture is common after antral PVI resulting in entrance block, and may be used as a specific alternate endpoint for PV electrical isolation. Additionally, loss of PV local capture may identify PVs at very low risk of acute reconnection during adenosine challenge. © 2014 Wiley Periodicals, Inc.

  8. Local Recurrence After Uveal Melanoma Proton Beam Therapy: Recurrence Types and Prognostic Consequences

    SciTech Connect

    Caujolle, Jean-Pierre; Paoli, Vincent; Chamorey, Emmanuel; Maschi, Celia; Baillif, Stéphanie; Herault, Joël; Gastaud, Pierre; Hannoun-Levi, Jean Michel

    2013-04-01

    Purpose: To study the prognosis of the different types of uveal melanoma recurrences treated by proton beam therapy (PBT). Methods and Materials: This retrospective study analyzed 61 cases of uveal melanoma local recurrences on a total of 1102 patients treated by PBT between June 1991 and December 2010. Survival rates have been determined by using Kaplan-Meier curves. Prognostic factors have been evaluated by using log-rank test or Cox model. Results: Our local recurrence rate was 6.1% at 5 years. These recurrences were divided into 25 patients with marginal recurrences, 18 global recurrences, 12 distant recurrences, and 6 extrascleral extensions. Five factors have been identified as statistically significant risk factors of local recurrence in the univariate analysis: large tumoral diameter, small tumoral volume, low ratio of tumoral volume over eyeball volume, iris root involvement, and safety margin inferior to 1 mm. In the local recurrence-free population, the overall survival rate was 68.7% at 10 years and the specific survival rate was 83.6% at 10 years. In the local recurrence population, the overall survival rate was 43.1% at 10 years and the specific survival rate was 55% at 10 years. The multivariate analysis of death risk factors has shown a better prognosis for marginal recurrences. Conclusion: Survival rate of marginal recurrences is superior to that of the other recurrences. The type of recurrence is a clinical prognostic value to take into account. The influence of local recurrence retreatment by proton beam therapy should be evaluated by novel studies.

  9. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  10. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  11. Energy Loss of a High Charge Bunched Electron Beam in Plasma: Nonlinear Plasma Response and Linear Scaling

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Barov, N.; Thompson, M. C.; Yoder, R.

    2002-12-01

    There has been much experimental and theoretical interest in blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity, and relativistic plasma effects become important or dominant. The physical bases for this persistence of linear response are pointed out. As a byproduct of our analysis, we re-examine the issue of field divergence as the point-charge limit is approached, suggesting an important modification of commonly held views of evading unphysical energy loss. Deviations from linear behavior are investigated using simulations with finite length beams. The peak accelerating field in the plasma wave excited behind a finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude well into the nonlinear regime. On the other hand, at large enough normalized charge, linear scaling of fields collapses, with serious consequences for plasma wave excitation efficiency. The dramatic implications of these results for observing the collapse of linear scaling in planned experiments are discussed.

  12. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    PubMed

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p < 0.001). Analysis revealed improved sound localization performance in a horizontal plane with the activated transcutaneous bone conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  13. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  14. A novel digitization scheme with FPGA-base TDC for beam loss monitors operating at cryogenic temperature

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; /Fermilab

    2011-11-01

    Recycling integrators are common current-to-frequency converting circuits for measurements of low current such as that produced by Fermilab's cryogenic ionization chambers. In typical digitization/readout schemes, a counter is utilized to accumulate the number of pulses generated by the recycling integrator to adequately digitize the total charge. In order to calculate current with reasonable resolution (e.g., 7-8 bits), hundreds of pulses must be accumulated which corresponds to a long sampling period, i.e., a very low sampling rate. In our new scheme, an FPGA-based Time-to-Digital Convertor (TDC) is utilized to measure the time intervals between the pulses output from the recycling integrator. Using this method, a sample point of the current can be made with good resolution (>10 bits) for each pulse. This effectively increases the sampling rates by hundreds of times for the same recycling integrator front-end electronics. This scheme provides a fast response to the beams loss and is potentially suitable for accelerator protection applications. Moreover, the method is also self-zero-suppressed, i.e., it produces more data when the beam loss is high while it produces significantly less data when the beam loss is low.

  15. Enhanced needle localization in ultrasound using beam steering and learning-based segmentation.

    PubMed

    Hatt, Charles R; Ng, Gary; Parthasarathy, Vijay

    2015-04-01

    Segmentation of needles in ultrasound images remains a challenging problem. In this paper, we introduce a machine learning-based method for needle segmentation in 2D beam-steered ultrasound images. We used a statistical boosting approach to train a pixel-wise classifier for needle segmentation. The Radon transform was then used to find the needle position and orientation from the segmented image. We validated our method with data from ex vivo specimens and clinical nerve block procedures, and compared the results to those obtained using previously reported needle segmentation methods. Results show improved localization success and accuracy using the proposed method. For the ex vivo datasets, assuming that the needle orientation was known a priori, the needle was successfully localized in 86.2% of the images, with a mean targeting error of 0.48mm. The robustness of the proposed method to a lack of a priori knowledge of needle orientation was also demonstrated. For the clinical datasets, assuming that the needle orientation was closely aligned with the beam steering angle selected by the physician, the needle was successfully localized in 99.8% of the images, with a mean targeting error 0.19mm. These results indicate that the learning-based segmentation method may allow for increased targeting accuracy and enhanced visualization during ultrasound-guided needle procedures.

  16. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  17. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  18. Analysis of local strain in aluminum interconnects by convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Krämer, Stephan; Mayer, Joachim

    1999-11-01

    Energy filtered convergent beam electron diffraction (CBED) was used to investigate localized strain in aluminum interconnects. An analysis of the higher order Laue zone (HOLZ) line positions in CBED patterns makes it possible to measure the lattice strain with high accuracy (˜104) and high spatial resolution (10 to 100 nm). The strain development in a single grain was measured during thermal cycling between -170 °C and +100 °C. The grain showed reversible, elastic behavior over the whole temperature range building up large strains at low temperatures. By comparing with finite element simulations, a detailed understanding of the tri-axial strain state could be achieved.

  19. Predicting phosphorus losses with the PLEASE model on a local scale in Denmark and the Netherlands.

    PubMed

    van der Salm, Caroline; Dupas, Remi; Grant, Ruth; Heckrath, Goswin; lversen, Bo V; Kronvang, Brian; Levi, Clémentine; Rubaek, Gitte; Schoumans, Oscar F

    2011-01-01

    To reduce losses from agricultural soils to surface water, mitigation options have to be implemented as a local scale. For a cost-effective implementation of these measures, an instrument to identify critical areas for P leaching is indispensable. In many countries, P-index methods are used to identify areas as risk for P losses to surface water. In flat areas, where losses by leaching are dominant, these methods have their limitations because leaching is often not described in detail, PLEASE, is a simple mechanistic model designed to stimulate P Losses by leaching at the field scale using a limited amount of local field data. In this study, PLEASE, was applied to 17 lowland sites in Denmark and 14 lowland sites in the Netherlands. Results show that the simple model simulated measured fluxes and concentrations in water from pipe drains, suction cups, and groundwater quite well. The modeling efficiency ranged from 0.92 for modeling total-P fluxes to 0.36 fr modeling concentrations in groundwater. Poor results were obtained for heavy clay soils and eutrophic peat soils, where fluxes and concentration were strongly underestimated by the model. The poot performance for the heavy clay soil can be explained by the transport of P through macropores to the drain pipes and the underestimation of overland flow on this heavy-textured soil. In the eutrophic peat soils, fluxes were underestimated due to the release of P from deep soil layers.

  20. Local residents perception of benefits and losses from protected areas in India and Nepal.

    PubMed

    Karanth, Krithi K; Nepal, Sanjay K

    2012-02-01

    High densities of people living around protected areas (PAs) in South Asia require management strategies to balance conservation goals and livelihood needs. Based on a survey of 777 households around five PAs in India and Nepal, this paper provides a comparative perspective of Indian and Nepali households' views of protected area benefits and costs, their attitude toward conservation in general, and attitude toward protected area staff. Results indicate mixed responses towards tourism, varying from very favorable in Nepal to less favorable in India. The majority (81%) held positive attitudes towards the existence and importance of PAs but had negative perceptions of PA staff (69%). Most residents perceived benefits from access to fuel wood, fodder and other PA resources including benefits from tourism, while crop and livestock losses from wildlife were the main costs. Households overall positive attitudes towards the PAs and conservation despite high losses from living around PAs suggests that local residents may support conservation if their livelihood needs are met. Comparisons of household attitudes and perceptions suggest that locally based strategies rather than top-down approaches are likely to be more effective. Extending PA benefits to smaller landholders, households that are highly resource-dependent or experiencing higher income losses from human-wildlife conflicts, and less educated residents are particularly important to balance costs and losses from living around protected areas.

  1. Local Residents Perception of Benefits and Losses From Protected Areas in India and Nepal

    NASA Astrophysics Data System (ADS)

    Karanth, Krithi K.; Nepal, Sanjay K.

    2012-02-01

    High densities of people living around protected areas (PAs) in South Asia require management strategies to balance conservation goals and livelihood needs. Based on a survey of 777 households around five PAs in India and Nepal, this paper provides a comparative perspective of Indian and Nepali households' views of protected area benefits and costs, their attitude toward conservation in general, and attitude toward protected area staff. Results indicate mixed responses towards tourism, varying from very favorable in Nepal to less favorable in India. The majority (81%) held positive attitudes towards the existence and importance of PAs but had negative perceptions of PA staff (69%). Most residents perceived benefits from access to fuel wood, fodder and other PA resources including benefits from tourism, while crop and livestock losses from wildlife were the main costs. Households overall positive attitudes towards the PAs and conservation despite high losses from living around PAs suggests that local residents may support conservation if their livelihood needs are met. Comparisons of household attitudes and perceptions suggest that locally based strategies rather than top-down approaches are likely to be more effective. Extending PA benefits to smaller landholders, households that are highly resource-dependent or experiencing higher income losses from human-wildlife conflicts, and less educated residents are particularly important to balance costs and losses from living around protected areas.

  2. Gyrokinetic Simulation of Global and Local Alfv'en Eigenmodes Driven by Neutral Beam Injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Waltz, R. E.

    2012-10-01

    In ITER, convection of fusion-produced alpha particles by energetic particle (EP)-driven Alfv'en eigenmodes (AEs) risks wall damage and loss of alpha heating needed for ignition. We examine beam-excited AEs and induced quasilinear transport in a DIII-D AE experiment using the gyrokinetic code GYRO [1]. Global, linear eigenvalue simulations show reverse-shear AEs (RSAEs), toroidal AEs, and beta-induced AEs interacting over one (equilibrium time scale) RSAE frequency sweep. Eigenfunction modifications over MHD, including a poloidal twist and broad AE footprint observed in electron cyclotron emission imaging [2], show the value of a kinetic approach. Under a simple quasilinear saturation assumption, a sequence of comparatively inexpensive local simulations quantitatively recreates some global features, notably the quasilinear transport footprint. Accordingly, we present here a stiff EP transport model where AEs limit the EP density gradient to the local stability threshold, and a TGLF-driven quasilinear model elsewhere. The model gives some``worst case'' predictions of the AE-limited alpha profile in ITER.[4pt] [1] J. Candy and R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003). [2] B.J. Tobias, et al., Phys. Rev. Lett. 106, 075003 (2011).

  3. Energy loss in intergalactic pair beams: Particle-in-cell simulation

    NASA Astrophysics Data System (ADS)

    Kempf, A.; Kilian, P.; Spanier, F.

    2016-01-01

    Aims: The change in the distribution function of electron-positron pair beams determines whether GeV photons can be produced as secondary radiation from TeV photons. We will discuss the instabilities driven by pair beams. Methods: The system of a thermal proton-electron plasma and the electron-positron beam is collision free. We have, therefore, used the particle-in-cell simulation approach. It was necessary to alter the physical parameters, but the ordering of growth rates has been retained. Results: We were able to show that plasma instabilities can be recovered in particle-in-cell simulations, but their effect on the pair distribution function is negligible for the beam-background energy density ratios typically found in blazars.

  4. Estimation of propagation losses for infrared laser beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zaponov, A. E.; Sakharov, M. V.

    2016-11-01

    In present work, the radiation propagation in atmosphere from laser source to the receiver is considered by taking into account deviations of optical beam due to turbulence. The photon flux density on the receiver has been evaluated.

  5. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  6. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    SciTech Connect

    Wang Zhiheng Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-12-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors.

  7. Prediction of local losses of low Re flows in elastic porous media

    NASA Astrophysics Data System (ADS)

    Becker, Sid; Gasow, Stefan

    2016-11-01

    An isotropic elastic porous structure whose pore scale geometry is regular (periodically uniform) will experience non-uniform deformation when a viscous fluid flows through the matrix under the influence of an externally applied pressure difference. In such a case, the flow field will experience a non uniform pressure gradient whose magnitude increases in the direction of bulk flow. In this study, a method is presented that predicts local losses of the flow through a porous matrix whose geometry varies in the direction of flow. Employing an asymptotic expansion about the deformation provides an expression relating local hydraulic permeability to local pore geometry. In this way the pressure field is able to be determined without requiring the explicit solution of the flow field. In this study a test case is presented showing that the local pressure losses are predicted to be within 0.5% those of the solution to the Navier-Stokes Equations. The approach can be used to simplify the coupled fluid-solid problem of flow through elastic porous media by replacing the need to explicitly solve the flow field.

  8. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    PubMed

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-05

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  9. Localization of atomic beams using standing wave optical quenching: Atom lithography and atomic imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Kent Sherwood

    1998-11-01

    We have developed a novel technique for imaging the spatial distribution of metastable atoms hitting a surface and have used this technique to image Heisenberg- limited localization of atoms produced by an optical standing wave. This thesis reports the first direct nanometer-scale imaging of an atomic state distribution created by an optical pumping process. The spatially dependent de-excitation of a beam of metastable atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atomic beam were patterned by the metastable atoms: the de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching, thus demonstrating the first use of a quantum mechanical steady state distribution for sub-100- nanometer lithography.

  10. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  11. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  12. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  13. Processes governing phytoplankton blooms in estuaries. I: The local production-loss balance

    USGS Publications Warehouse

    Lucas, L.V.; Koseff, Jeffrey R.; Cloern, J.E.; Monismith, Stephen G.; Thompson, J.K.

    1999-01-01

    The formation and spatial distribution of phytoplankton blooms in estuaries are controlled by (1) local mechanisms, which determine the production-loss balance for a water column at a particular spatial location (i.e. control if a bloom is possible), and (2) transport-related mechanisms, which govern biomass distribution (i.e. control if and where a bloom actually occurs). In this study, the first of a 2-paper series, we use a depth-averaged numerical model as a theoretical tool to describe how interacting local conditions (water column height, light availability, benthic grazing) influence the local balance between phytoplankton sources and sinks. We also explore trends in the spatial variability of the production-loss balance across the topographic gradients between deep channels and lateral shoals which are characteristic of shallow estuaries. For example, under conditions of high turbidity and slow benthic grazing the highest rates of phytoplankton population growth are found in the shallowest regions. On the other hand, with low turbidity and rapid benthic grazing the highest growth rates occur in the deeper areas. We also explore the effects of semidiurnal tidal variation in water column height, as well as spring-neap variability. Local population growth in the shallowest regions is very sensitive to tidal-scale shallowing and deepening of the water column, especially in the presence of benthic grazing. A spring-neap signal in population growth rate is also prominent in the shallow areas. Population growth in deeper regions is less sensitive to temporal variations in tidal elevation. These results show that both shallow and deep regions of estuaries can act as sources or sinks for phytoplankton biomass, depending on the local conditions of mean water column height, tidal amplitude, light-limited growth rate, and consumption by grazers.

  14. Local filtration based scatter correction for cone-beam CT using primary modulation.

    PubMed

    Zhu, Lei

    2016-11-01

    Excessive scatter contamination fundamentally limits the image quality of cone-beam CT (CBCT), hindering its quantitative use in clinical applications. The author has previously proposed an effective scatter correction method for CBCT using primary modulation. A Fourier transform-based algorithm (FTPM) was implemented to estimate scatter from modulated projections, with a few limitations including the assumption of uniform modulation frequency and magnitude that becomes less accurate in the presence of beam-hardening and other nonideal effects. This paper aims to overcome the above drawbacks by developing a new algorithm for the primary modulation method with improved accuracy and reliability. Incident x-ray intensities for each detector pixel with and without the interception of the modulator blocker are estimated from a modulated flat-field image. A new signal relationship is then developed to obtain a first scatter estimate from a modulated projection using a spatially varying modulation distribution. The method empirically adjusts the effective modulation magnitude for each projection ray to account for the beam-hardening effects. Estimated scatter signals with high expected errors are discarded in the generation of the final scatter distribution. The author proposes a technique of local filtration to accelerate major portions of the signal processing, and the new algorithm is referred to as local filtration based primary modulation (LFPM). The study on the Catphan® 600 phantom shows that LFPM effectively removes scatter-induced cupping artifacts on CBCT images and reduces the CT image error from 222 to 15 HU. In addition, the image contrast on eight contrast rods of the phantom is enhanced by a factor of 2 on average. On an anthropomorphic head phantom, LFPM reduces the CT image error from 153 to 18 HU and eliminates the streak artifacts observed on the result of FTPM with substantially improved image uniformity. On the Rando® phantom, LFPM reduces the CT

  15. Impact of inward turbulence spreading on energy loss of edge-localized modes

    SciTech Connect

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; Xia, T. Y.; Snyder, P. B.; Kim, S. S.

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.

  16. Impact of inward turbulence spreading on energy loss of edge-localized modes

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show thatmore » the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.« less

  17. Impact of inward turbulence spreading on energy loss of edge-localized modesa)

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show thatmore » the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.« less

  18. Impact of inward turbulence spreading on energy loss of edge-localized modes

    SciTech Connect

    Ma, C. H.; Xi, P. W.; Xu, X. Q.; Xia, T. Y.; Snyder, P. B.; Kim, S. S.

    2015-05-15

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes (ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. The gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.

  19. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  20. Rehabilitation of molar-incisor hypomineralization (MIH) complicated with localized tooth surface loss: a case report.

    PubMed

    Lam, Walter Y H; Ho, Edward H T; Pow, Edmond H N

    2014-05-01

    Molar-incisor hypomineralization (MIH) is a developmental enamel hypomineralized condition characteristically involving the first permanent molars and sometimes also the incisors. The affected teeth are predisposed to tooth surface loss (TSL) which may not only compromise the esthetics and function but also endanger the pulp and longevity of the teeth. This report describes the management of a patient with MIH complicated with localized TSL and lack of occlusal clearance due to dentoalveolar compensation. The atypical TSL pattern involved all anterior teeth and required the placement of Dahl appliances on both arches.

  1. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  2. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    SciTech Connect

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-15

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  3. A new approach for beam hardening correction based on the local spectrum distributions

    NASA Astrophysics Data System (ADS)

    Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza

    2015-09-01

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called ;beam hardening;. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile.

  4. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  5. A local and iterative neural reconstruction algorithm for cone-beam data

    NASA Astrophysics Data System (ADS)

    Gallo, Ignazio

    2010-04-01

    This work presents a new neural algorithm designed for the reconstruction of tomographic images from Cone Beam data. The main objective of this work is the search of a new reconstruction method, able to work locally, more robust in presence of noisy data and in situations with a small number of projections. This study should be intended as the first step to evaluate the potentialities of the proposed algorithm. The algorithm is iterative and based on a set of neural networks that are working locally and sequentially. All the x-rays passing through a cell of the volume to be reconstructed, give origin to a neural network which is a single-layer perceptron network. The network does not need a training set but uses the line integral of a single x-ray as ground-truth of each output neuron. The neural network uses a gradient descent algorithm in order to minimize a local cost function by varying the value of the cells to be reconstructed. The proposed strategy was first evaluated in conditions where the quality and quantity of input data varies widely, using a the Shepp-Logan Phantom. The algorithm was also compared with the iterative ART algorithm and the well known filtered backprojection method. The results show how the proposed algorithm is much more accurate even in the presence of noise and under conditions of lack of data. In situations with little noise the reconstruction, after a few iterations, is almost identical to the original.

  6. Effect of local buckling on hysteretic behavior of beam-column with circular cross-section

    SciTech Connect

    Ueda, Yukio; Murakawa, Hidekazu; Shaker, R.E.

    1994-12-31

    In this paper, the hysteretic behavior of beam-column member having circular cross-section under simultaneously acting constant compressive axial load and cyclic lateral load is investigated. Elasto-plastic large deformation analysis by means of Finite Element Method (FEM) is utilized in this research. An emphasis is placed on the effect of the axial compressive load and geometrical parameters on the deterioration of the ultimate strength, the stiffness and the energy-dissipation capacity. Also, effect of the tangent modulus in the strain hardening region and different hardening rules are discussed. From this study, it is found that, in the absence of the axial compressive load, no deterioration in the strength, the stiffness and the absorbed energy are observed in all investigated members having different geometries. Meanwhile, in the case of the presence of axial load, local buckling (locally accumulated deflection under cyclic loading) may be induced depending on the geometrical parameters, namely, diameter-to-thickness ratio D/t and slenderness parameter {lambda} as well as the value of axial load ratio. Such local buckling reduces the ultimate strength and the stiffness of the member. The strength and the stiffness of the member are improved with smaller values of D/t and {lambda} and larger tangent modulus in the strain hardening region of the material.

  7. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE PAGES

    Jiang, Nan; Su, Dong; Spence, John C. H.

    2017-08-24

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  8. Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation

    NASA Astrophysics Data System (ADS)

    Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.

  9. Energy exchange and localization in the planar motion of a weightless beam carrying two discrete masses

    NASA Astrophysics Data System (ADS)

    Silina, Kseniya G.; Kikot, Irina P.; Manevitch, Leonid I.

    2015-03-01

    We present analytical and numerical studies of nonstationary resonance processes in a system with four degrees of freedom. The system under consideration can be considered as one of the simplest geometrically nonlinear discrete models of an elastic beam supported by nonlinear elastic grounding support. Two symmetrically distributed discrete masses reflect the inertial properties of the beam, two angular springs simulate its bending stiffness. The longitudinal springs, as is usual in systems of oscillators, reflect the tensile stiffness and two transversal springs simulate the reaction of grounding support. Dealing with low-energy dynamics, we singled out the equations of transversal motion corresponding to the approximation of two coupled oscillators with nonlocal nonlinearity in elastic forces. We have analyzed this model using the concept of limiting phase trajectories (LPT). LPT's concept was recently developed to study the nonstationary resonance dynamics. An analytical description of intensive interparticle energy exchange was obtained in terms of nonsmooth functions, which is consistent with numerical results. We have identified two dynamic transitions the first of which corresponds to the instability of out-of-phase normal mode and the second one is a transition from the intense energy exchange to the energy localization on the initially excited oscillator. Special attention was paid to the influence of bending stiffness on the conditions that ensure the implementation of each of the dynamic transitions.

  10. Refining Tungsten Purification by Electron Beam Melting Based on the Thermal Equilibrium Calculation and Tungsten Loss Control

    NASA Astrophysics Data System (ADS)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Liu, Ye; Liu, Shuhua

    2015-10-01

    Electron beam melting (EBM) technology has been considered as one of the key steps for preparing high purity tungsten, and reasonable setting of process parameters is the premise. In this paper, the optimum process parameters obtained from thermal equilibrium calculation and evaporation loss control of tungsten are presented. Effective power is closely related to melting temperature, and the required power for maintaining the superheating melt linearly increases with the increase of melt superheat temperature. The evaporation loss behavior of tungsten is significantly influenced by melting rate and melting temperature. Analysis of experiments show that the best results are realized at melting rate of 1.82 g/s, melting temperature of 4200 K, and the corresponding melting power of 130 kW, in which the main impurity elements in tungsten, such as As, Cd, Mg and Sn, present high removal ratio of 90%, 95%, 85.7% and 90%, respectively.

  11. Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2003-01-01

    A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.

  12. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  13. Local oxidation of GaP wafers heated by Nd:YAG laser beam

    NASA Astrophysics Data System (ADS)

    Kawamura, Tsutomu

    1990-02-01

    GaP wafer optical properties, such as absorption coefficient and reflectance, were investigated around 1.06 μm wavelength. Next the wafers were locally heated by Nd:YAG laser beam (1.06 μm) between 600 and 1470 °C (melting point). A steep temperature gradient and the consequent explosive disordering played an important role in violent exothermic reaction on oxidation for differently surface-treated GaP wafers, resulting in the formation of GaPO4 polycrystals. However, there was a marked difference in initial oxidation rates between a wafer, which had been mirror-polished on only one surface, and a wafer mirror-polished on both surfaces. The reason for this phenomena is discussed in detail.

  14. The effect of local land use and loss of forests on bats and nocturnal insects.

    PubMed

    Treitler, Julia T; Heim, Olga; Tschapka, Marco; Jung, Kirsten

    2016-07-01

    Land-use intensification at local and landscape level poses a serious threat to biodiversity and affects species interactions and ecosystem function. It is thus important to understand how interrelated taxa respond to land-use intensification and to consider the importance of different spatial scales. We investigated whether and how local land-use intensity and landscape features affect the predator-prey interaction of bats and insects. Bats and nocturnal insects were assessed on 50 grassland sites in the Schorfheide-Chorin. We analyzed the effect of local land use and distance to forested areas as a proxy for site accessibility on bats and insects and their biological interaction measured in bat's feeding activity. Insect abundance increased with higher land-use intensity, while size and diversity of insects decreased. In contrast, bat activity, diversity, and species composition were determined by the distance to forested areas and only slightly by land-use intensity. Feeding attempts of bats increased with higher insect abundance and diversity but decreased with insect size and distance to forested areas. Finally, our results revealed that near forested areas, the number of feeding attempts was much lower on grassland sites with high, compared to those with low land-use intensity. In contrast, far from forests, the feeding attempts did not differ significantly between intensively and extensively managed grassland sites. We conclude that the two interrelated taxa, bats and insects, respond to land-use intensification on very different scales. While insects respond to local land use, bats are rather influenced by surrounding landscape matrix. Hereby, proximity to forests reveals to be a prerequisite for higher bat species diversity and a higher rate of feeding attempts within the area. However, proximity to forest is not sufficient to compensate local high land-use intensity. Thus, local land-use intensification in combination with a loss of forest remnants

  15. Modelling of local modification of chemical composition generated by artificial beam injection in stratosphere

    NASA Astrophysics Data System (ADS)

    Oraevsky, V.; Ruzhin, Y.; Borisov, N.; Nesterov, I.

    The physical/chemical processes that are occurring in the middle atmosphere, are very complex and knowledge of them are obviously poor. At the same time the understanding of these processes is necessary, in particular, for an explanation of ozone dynamics and influencing on it of the different factors, for example, impurities of anthropogenous nature. In the present activity the capability of creation of noticeable local disturbances of concentration of ozone and other minor neutral components in stratosphere si theoretically modeled for artificial injection of high energy electron beams from a high-altitude balloon. With the help of numerical simulations (31 reactions) the quantitative assessments of expected effect for different altitudes (range of 35-45 km) and different values of eddy diffusion factor are obtained and presented. It is shown the considered means has a number of advantages in comparison with method of artificial action on stratosphere ozone by VHF generation of ionized area in atmosphere. At first, it is much more friend and precisely to conduct diagnostic of effect, which one arises due to "in -situ" onboard measurements from a balloon. Secondly, it is possible to inject any impurities (freons) to study directly in stratosphere their affect on ozone. The method, tendered here, requires considerably smaller material costs and can be realized already now. Based on presented modeling results it is important to note that in our method an integral disturbance in stratosphere (full quantity of created molecules of ozone, nitric oxides etc.) is rather insignificant, as the effect is localized near to injected electron beam. Therefore there is no hazard of deposition of unchecked injury to environment. At the same time realization of tendered experiment will allow essentially to deepen our representations about composite physical/chemical processes occurring in middle atmosphere (stratosphere).

  16. External Beam Radiation Therapy Enhances Local Control in Pigmented Villonodular Synovitis

    SciTech Connect

    Horoschak, Melissa; Tran, Phuoc T. Bachireddy, Pavan; West, Robert B.; Mohler, David; Beaulieu, Christopher F.; Kapp, Daniel S.; Donaldson, Sarah S.

    2009-09-01

    Purpose: Pigmented villonodular synovitis (PVNS) is a rare proliferative disorder of the synovium with locally aggressive behavior. We reviewed our experience using radiation therapy in the treatment of PVNS. Materials and Methods: Seventeen patients with 18 sites of PVNS were treated with radiation between 1993 and 2007. Cases were retrospectively reviewed for patient information, treatment parameters, complications, and outcome. Seven sites were primary presentations and 11 were recurrent with an average of 2.5 prior surgical interventions. The most common location was the knee joint (67%). Cytoreductive surgery was performed before radiation therapy in 16/18 sites with all having proven or suspected residual disease. Radiation was delivered using 4-15 MV photons with an average total dose 34 Gy (range, 20-36 Gy). Seventeen of 18 sites (94%) had postradiotherapy imaging. Results: With average follow-up of 46 months (range, 8-181 months), initial local control was achieved in 75% (12/16) of the sites with prior cytoreductive surgery (mean time to recurrence, 38 months). Ultimate local control was 100% after repeat resection (mean follow-up, 61 months). Two additional sites without prior cytoreductive surgery showed growth after radiotherapy (mean time to documented growth, 10.5 months). Seventeen of the 18 involved joints (94%) were scored as excellent or good PVNS-related function, one site (5%) as fair function, and no site with poor function. No patient required amputation; and there were no Grade 3/4 treatment-related complications. Conclusion: Postoperative external beam radiation is effective in preventing disease recurrence and should be offered following maximal cytoreduction to enhance local control in PVNS.

  17. Excellent Local Control With Stereotactic Radiotherapy Boost After External Beam Radiotherapy in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Hara, Wendy; Loo, Billy W.; Goffinet, Don R.; Chang, Steven D.; Adler, John R.; Pinto, Harlan A.; Fee, Willard E.; Kaplan, Michael J.; Fischbein, Nancy J.; Le, Quynh-Thu

    2008-06-01

    Purpose: To determine long-term outcomes in patients receiving stereotactic radiotherapy (SRT) as a boost after external beam radiotherapy (EBRT) for locally advanced nasopharyngeal carcinoma (NPC). Methods and Materials: Eight-two patients received an SRT boost after EBRT between September 1992 and July 2006. Nine patients had T1, 30 had T2, 12 had T3, and 31 had T4 tumors. Sixteen patients had Stage II, 19 had Stage III, and 47 had Stage IV disease. Patients received 66 Gy of EBRT followed by a single-fraction SRT boost of 7-15 Gy, delivered 2-6 weeks after EBRT. Seventy patients also received cisplatin-based chemotherapy delivered concurrently with and adjuvant to radiotherapy. Results: At a median follow-up of 40.7 months (range, 6.5-144.2 months) for living patients, there was only 1 local failure in a patient with a T4 tumor. At 5 years, the freedom from local relapse rate was 98%, freedom from nodal relapse 83%, freedom from distant metastasis 68%, freedom from any relapse 67%, and overall survival 69%. Late toxicity included radiation-related retinopathy in 3, carotid aneurysm in 1, and radiographic temporal lobe necrosis in 10 patients, of whom 2 patients were symptomatic with seizures. Of 10 patients with temporal lobe necrosis, 9 had T4 tumors. Conclusion: Stereotactic radiotherapy boost after EBRT provides excellent local control for patients with NPC. Improved target delineation and dose homogeneity of radiation delivery for both EBRT and SRT is important to avoid long-term complications. Better systemic therapies for distant control are needed.

  18. Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam.

    PubMed

    Watanabe, Kouyou; Terakado, Goro; Kano, Hiroshi

    2009-04-15

    We propose an imaging principle that employs a radially polarized zeroth-order Bessel beam in the illlumination system of the localized surface plasmon microscope. The illumination system enables the microscope to visualize a refractive index distribution on a substrate fabricated in the Kretschmann configuration by the measurement of reflected intensity. The experimentally observed image of a particle reveals that the spatial resolution reaches the optical diffraction limit. The proposed principle can contribute to increase the imaging speed of localized surface plasmon microscopy by use of a beam scanning device.

  19. [Effect of cochlear implantation on sound localization for patients with unilateral sensorineural hearing loss].

    PubMed

    Liu, J F; Dai, J S; Wang, N Y

    2016-08-07

    The aim of this review was to examine the current literature regarding application of cochlear implantation on patients with unilateral sensorineural hearing loss (USNHL) for improvement on sound localization. The literature were searched in the PubMed database with 'cochlear implantation AND single-sided deafness' or 'cochlear implantation AND unilateral deafness' as keywords. The publication date of the articles was up to 2015-2-12. A total of 12 articles were included. The results show that the ability of sound localization for most of the USNHL subjects (90%) with cochlear implantation was significantly improved than that without CI, which suggests that CI is a superior auditory rehabilitation treatment than BAHA and CROS hearing aids for patients with USNHL, because of the re-establishment of the benefits of binaural hearing. In addition, the benefit of CI for USNHL requires a period of auditory experience or training. About 30% subjects showed significantly improvement on sound localization ability after CI worked for three months. For most of the patients (90%), the sound localization ability improved after CI worked for six months. When CI worked for nine months, all the subjects would show improvement on sound localization ability. Sound localization of the USNHL subjects with a CI is based primarily on interaural level differences (ILD) while interaural time differences (ITD) provide little advantage or probably not perceptible at all. The younger subject suffers from USNHL, the stronger the plasticity of the auditory center shows, which results in more obvious degeneration of the affected side and adaptive enhancement of the contralateral side of the auditory pathway. Similarly, the longer duration of USNHL lead to more obvious degeneration of the affected side and adaptive enhancement of the contralateral side. An adaptive enhancement of auditory pathway corresponding to the healthy ear will rely more on the monaural spatial cues that available to the

  20. Local reduction of decadal glacier thickness loss through mass balance management in ski resorts

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea; Helfricht, Kay; Stocker-Waldhuber, Martin

    2016-11-01

    For Austrian glacier ski resorts, established in the 1970s and 1980s during a period of glacier advance, negative mass balances with resulting glacier area loss and decrease in surface elevation present an operational challenge. Glacier cover, snow farming, and technical snow production were introduced as adaptation measures based on studies on the effect of these measures on energy and mass balance. After a decade of the application of the various measures, we studied the transition from the proven short-term effects of the measures on mass balance to long-term effects on elevation changes. Based on lidar digital elevation models and differential GPS measurements, decadal surface elevation changes in 15 locations with mass balance management were compared to those without measures (apart from piste grooming) in five Tyrolean ski resorts on seven glaciers. The comparison of surface elevation changes presents clear local differences in mass change, and it shows the potential to retain local ice thickness over 1 decade. Locally up to 21.1 m ± 0.4 m of ice thickness was preserved on mass balance managed areas compared to non-maintained areas over a period of 9 years. In this period, mean annual thickness loss in 15 of the mass balance managed profiles is 0.54 ± 0.04 m yr-1 lower (-0.23 ± 0.04 m yr-1on average) than in the respective reference areas (-0.78 ± 0.04 m yr-1). At two of these profiles the surface elevation was preserved altogether, which is promising for a sustainable maintenance of the infrastructure at glacier ski resorts. In general the results demonstrate the high potential of the combination of mass balance management by snow production and glacier cover, not only in the short term but also for multi-year application to maintain the skiing infrastructure.

  1. High frequency core localized modes in neutral beam heated plasmas on TFTR

    SciTech Connect

    Nazikian, R.; Chang, Z.; Fredrickson, E.D.

    1995-11-01

    A band of high frequency modes in the range 50--150 kHz with intermediate toroidal mode numbers 4 < n < 10 are commonly observed in the core of supershot plasmas on TFTR. Two distinct varieties of MHD modes are identified corresponding to a flute-like mode predominantly appearing around the q = 1 surface and an outward ballooning mode for q > 1. The flute-like modes have nearly equal amplitude on the high field and low field side of the magnetic axis and are mostly observed in moderate performance supershot plasmas with {tau}{sub E} < 2{tau}{sub L} while the ballooning-like modes have enhanced amplitude on the low field side of the magnetic axis and tend to appear in higher performance supershot plasmas with {tau}{sub E} > 2{tau}{sub L}, where {tau}{sub L} is the equivalent L-mode confinement time. The modes propagate in the ion diamagnetic drift direction and are highly localized with radial widths {Delta}r {approximately} 5--10 cm, fluctuation levels {tilde n}/n, {tilde T}{sub e}/T{sub e} < 0.01, and radial displacements {zeta}{sub r} {approximately} 0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR, these modes are typically much weaker, more benign, and may be indicative of kinetic ballooning modes destabilized by resonant circulating neutral beam ions.

  2. [Complete response of locally recurrent anorectal cancer to proton beam therapy alone--a case report].

    PubMed

    Ie, Masafumi; Yamaguchi, Tomohiro; Kinugasa, Yusuke; Sato, Sumito; Yamakawa, Yushi; Kagawa, Hiroyasu; Tomioka, Hiroyuki; Shiomi, Akio; Fuji, Hiroshi; Murayama, Shigeyuki

    2014-12-01

    We report a case of locally recurrent anorectal cancer treated with proton beam therapy (PBT) alone that led to a clinically complete response. A 70-year-old woman with paraparesis due to infantile paralysis underwent abdominoperineal resection (APR) and D3 lymphadenectomy for anorectal cancer (PERb, type 2, 50×40 mm, muc-tub1, M1a[lung], Stage IV a]. Three months after APR, right middle and right lower lobectomies were performed for synchronous lung metastases. Adjuvant chemotherapy was not administered. One year and 8 months after APR, computed tomography (CT) showed local recurrence of the tumor (29×28 mm), which contacted the right ischial spine. Pelvic exenteration combined with sacral resection was not performed because of the patient's poor performance status. PBT (70 Gy [RBE]/25 F/5 week) was administered for treatment of the recurred tumor. CT revealed that the tumor disappeared 1 year after PBT, which was defined as complete response. The patient is alive and has not experienced recurrence for 7 years.

  3. LASER BEAMS. CAVITIES: Coupling losses in laser cavities with a hollow rectangular or planar waveguide

    NASA Astrophysics Data System (ADS)

    Kubarev, V. V.

    1998-05-01

    The problem of the coupling losses experienced by the main waveguide mode is solved for a laser cavity formed by two mirrors with a hollow rectangular or planar waveguide between them. The optimal configurations and mirror positions are found for waveguides with different ratios of the sides. Laser cavities supporting a wide range of wavelengths are considered.

  4. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    SciTech Connect

    Sands, M.; Rees, John R.; /SLAC

    2005-08-08

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called ''cavity radiation''. The proposed method is analyzed in some detail.

  5. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    SciTech Connect

    Sands, M.; Rees, J.

    2016-12-19

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called "cavity radiation". The proposed method is analyzed in some detail.

  6. Fast radioactive seed localization in intraoperative cone beam CT for low-dose-rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael

    2013-03-01

    A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.

  7. Reirradiation of Locally Recurrent Nasopharynx Cancer With External Beam Radiotherapy With or Without Brachytherapy

    SciTech Connect

    Koutcher, Lawrence; Lee, Nancy; Zelefsky, Michael; Chan, Kelvin; Cohen, Gilad; Pfister, David; Kraus, Dennis; Wolden, Suzanne

    2010-01-15

    Purpose: To determine survival rates of patients with locally recurrent nasopharynx cancer (LRNPC) treated with modern therapeutic modalities. Methods and Materials: From July 1996 to March 2008, 29 patients were reirradiated for LRNPC. Thirteen patients received combined-modality treatment (CMT), consisting of external beam radiotherapy (EBRT) followed by intracavitary brachytherapy, whereas 16 received EBRT alone. The median age was 50 years, 59% were male, 38% were Asian, 69% had World Health Organization Class III histology, and 86% were treated for their first recurrence. Nine, 6, 8, and 6 patients had recurrent Stage I, II, III, and IV disease, respectively. Patients in the EBRT-alone group had more advanced disease. Median time to reirradiation was 3.9 years. In total, 93% underwent imaging with positron emission tomography and/or magnetic resonance imaging before reirradiation, 83% received intensity-modulated radiotherapy, and 93% received chemotherapy, which was platinum-based in 85% of cases. Results: The median follow-up for all patients was 45 months and for surviving patients was 54 months. Five-year actuarial local control, event-free survival, and overall survival rates were 52%, 44%, and 60%, respectively. No difference was observed between patients treated with EBRT or CMT. Overall survival was superior in patients who achieved local control (p = 0.0003). The incidence of late Grade >=3 events in patients re-treated with EBRT alone was significantly increased compared with those receiving CMT (73% vs. 8%; p = 0.005). Conclusions: In this modern reirradiation series of patients with LRNPC, favorable overall survival compared with historical series was achieved. Patients treated with CMT experienced significantly fewer severe late effects compared with those treated with EBRT.

  8. [Localization of lumbar epidural space by loss of resistance and using the Episensor: a comparative study].

    PubMed

    de Andrés, J; Gomar, C; Calatrava, P; Gutiérrez, M H; Rojas, R; Nalda, M A

    1990-01-01

    Since the existence of negative pressure in the epidural space was reported, its technique of localization has undergone changes directed to improve objectivity, reliability and safety. The aim of the present study was to evaluate a new electronic divide to localize the epidural space, i.e. the Episensor (Palex, Spain). To this end, 71 patients, both males and females, undergoing elective urological surgery and in whom catheterization of the lumbar epidural space had been planned, were prospectively evaluated and randomly assigned to two homogeneous groups. In group I (n = 35) the epidural space was localized by the classical technique of loss of resistance, while in group II the Episensor was used. In both groups several technical parameters, the qualification of the operator and the complications of the procedure were evaluated. There were no significant differences between both groups regarding the quality of epidural blockade or the subjective technical difficulty of the operator. The incidence of complications of the technique of puncture was significantly higher in group II (p less than 0.05); the most common were dura mater puncture in 13 group II patients and in one group I patient (p less than 0.001). There was no correlation between the qualification of the operator and the development of complications. It was concluded that the use of Episensor to localize lumbar epidural space did not improve the effectiveness of blockade but increased the iatrogenic effects of the puncture. Our lack of experience with this new technique and the low negative pressure of lumbar epidural space might have been the causes of the poor results, that we consider as initial in the evaluation of this new method.

  9. Impact of inward turbulence spreading on energy loss of edge-localized modes

    NASA Astrophysics Data System (ADS)

    Ma, Chenhao

    2014-10-01

    BOUT++ six-field Landau-fluid simulations show that an ELM crash has two phases: fast initial crash of ion temperature profile on the order of Alfven time scale near the peak gradient region and slow electron inward turbulence spreading from the ELM crash event. Both of them contribute to the ELM energy loss. However, the conducted ELM energy loss dominates over the convected ELM energy loss, which remains almost constant after the initial crash. The total ELM energy loss is mainly determined by the MHD turbulence spreading when the pedestal temperature height is large. The inward front propagation of electron temperature perturbation spreads into the linearly stable zone, while the ion perturbation front has much less spreading. The electron temperature fluctuation peaks on the rational surfaces and the front jumps gradually inwards towards neighboring rational surfaces. The electron wave-particle resonances via Landau closure provide a relatively strong parallel damping effect on the electron temperature perturbation and induce a large cross-phase shift of about π / 2 angle between ExB velocity and the ion temperature, which yields almost no spreading for ion temperature and density fluctuation. When pedestal temperature height increases, the cross-phase shift of electron decreases and is close to π / 4 angle which yields a large turbulence spreading and generates the large electron conducted energy loss. The front propagation stops at the position where the radial turbulent correlation length is shorter than the magnetic surface spacing. The energy burst of an ELM is controlled by the magnetic shear profile, the characteristic front propagating velocity and the turbulence correlation time. The inward turbulence spreading is mainly driven by (1) a series of micro-crashes due to a localized steepening of profile and (2) the magnetic flutter. The impact of other kinetic effects, such as full FLR effect and toroidal resonance, will be presented via simulations of

  10. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    SciTech Connect

    Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  11. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    PubMed

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The

  12. Acute canine distemper encephalitis is associated with rapid neuronal loss and local immune activation.

    PubMed

    Rudd, Penny A; Bastien-Hamel, Louis-Etienne; von Messling, Veronika

    2010-04-01

    For most virus infections of the central nervous system (CNS), immune-mediated damage, the route of inoculation and death of infected cells all contribute to the pathology observed. To investigate the role of these factors in early canine distemper neuropathogenesis, we infected ferrets either intranasally or intraperitoneally with the neurovirulent canine distemper virus strain Snyder Hill. Regardless of the route of inoculation, the virus primarily targeted the olfactory bulb, brainstem, hippocampus and cerebellum, whereas only occasional foci were detected in the cortex. The infection led to widespread neuronal loss, which correlated with the clinical signs observed. Increased numbers of activated microglia, reactive gliosis and different pro-inflammatory cytokines were detected in the infected areas, suggesting that the presence and ultimate death of infected cells at early times after infection trigger strong local immune activation, despite the observed systemic immunosuppression.

  13. Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam.

    PubMed

    Chung, A H; Hynynen, K; Colucci, V; Oshio, K; Cline, H E; Jolesz, F A

    1996-11-01

    The parameters of a spoiled gradient-echo (SPGR) pulse sequence have been optimized for in vivo localization of a focused ultrasound beam. Temperature elevation was measured by using the proton resonance frequency shift technique, and the phase difference signal-to-noise ratio (SNR delta phi) was estimated in skeletal muscle and kidney cortex in 10 rabbits. Optimized parameters included the echo time equivalent to T2* of the tissue, the longest repetition time possible with a 20-s sonication, and the flip angle equivalent to the Ernst angle. Optimal SPGR phase imaging can detect a sonication beam with a peak phase difference of 0.55 radian, which corresponds to a temperature elevation of 7.3 degrees C. The sonication beam can be localized within one voxel (0.6 x 0.6 x 5 mm3) at power levels that are below the threshold for thermal damage of the tissue.

  14. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    SciTech Connect

    Lunev, A. G. Nadezhkin, M. V.; Konovalov, S. V.; Teresov, A. D.

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  15. Superficial Hyperthermia plus External Beam Radiation in the Palliation of Locally Progressive Chemoradiation-Resistant Breast Cancer

    PubMed Central

    Heese, Curt; Lavagnini, Pablo; Mills, Pamela; Lewis, Mark; Markman, Maurie

    2012-01-01

    Local chest wall progression of chemotherapy/radiation-resistant breast cancer can result in substantial morbidity. In this retrospective review of 39 patients in this difficult clinical setting treated at Cancer Treatment Centers of America (Eastern Regional Medical Center), approximately one-half of the population experienced meaningful short-term palliation and improvement in quality of life when managed with local superficial hyperthermia plus external beam radiation. PMID:23139665

  16. Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats

    PubMed Central

    Guo, Changjun; Li, Changwei; Yang, Kai; Kang, Hui; Xu, Xiaoya; Xu, Xiangyang; Deng, Lianfu

    2016-01-01

    Radiation therapy is commonly used to treat cancer patients but exhibits adverse effects, including insufficiency fractures and bone loss. Epigenetic regulation plays an important role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, we reported local bone changes after single-dose exposure to 137CS irradiation in rats. Femur bone mineral density (BMD) and trabecular bone volume in the tibia were significantly decreased at 12 weeks after irradiation. Micro-CT results showed that tBMD, Tb.h and Tb.N were also significantly reduced at 12 weeks after irradiation exposure. ALP-positive OB.S/BS was decreased by 42.3% at 2 weeks after irradiation and was decreased by 50.8% at 12 weeks after exposure. In contrast to the decreased expression of Runx2 and BMP2, we found EZH2 expression was significantly increased at 2 weeks after single-dose 137CS irradiation in BMSCs. Together, our results demonstrated that single-dose 137CS irradiation induces BMD loss and the deterioration of bone microarchitecture in the rat skeleton. Furthermore, EZH2 expression increased and osteoblastogenesis decreased after irradiation. The underlying mechanisms warrant further investigation. PMID:27499068

  17. Uncontrolled admixture and loss of genetic diversity in a local Vietnamese pig breed.

    PubMed

    Berthouly-Salazar, Cécile; Thévenon, Sophie; Van, Thu Nhu; Nguyen, Binh Trong; Pham, Lan Doan; Chi, Cuong Vu; Maillard, Jean-Charles

    2012-05-01

    The expansion of intensive livestock production systems in developing countries has increased the introduction of highly productive exotic breeds facilitating indiscriminate crossbreeding with local breeds. In this study, we set out to investigate the genetic status of the Vietnamese Black H'mong pig breed by evaluating (1) genetic diversity and (2) introgression from exotic breeds. Two exotic breeds, namely Landrace and Yorkshire used for crossbreeding, and the H'mong pig population from Ha Giang (HG) province were investigated using microsatellite markers. Within the province, three phenotypes were observed: a White, a Spotted and a Black phenotype. Genetic differentiation between phenotypes was low (0.5-6.1%). The White phenotypes showed intermediate admixture values between exotic breeds and the Black HG population (0.53), indicating a crossbreed status. Management practices were used to predict the rate of private diversity loss due to exotic gene introgressions. After 60 generations, 100% of Black private alleles will be lost. This loss is accelerated if the admixture rate is increased but can be slowed down if the mortality rate (e.g., recruitment rate) is decreased. Our study showed that a large number of markers are needed for accurately identifying hybrid classes for closely related populations. While our estimate of admixture still seems underestimated, genetic erosion can occur very fast even through indiscriminate crossbreeding.

  18. Uncontrolled admixture and loss of genetic diversity in a local Vietnamese pig breed

    PubMed Central

    Berthouly-Salazar, Cécile; Thévenon, Sophie; Van, Thu Nhu; Nguyen, Binh Trong; Pham, Lan Doan; Chi, Cuong Vu; Maillard, Jean-Charles

    2012-01-01

    The expansion of intensive livestock production systems in developing countries has increased the introduction of highly productive exotic breeds facilitating indiscriminate crossbreeding with local breeds. In this study, we set out to investigate the genetic status of the Vietnamese Black H’mong pig breed by evaluating (1) genetic diversity and (2) introgression from exotic breeds. Two exotic breeds, namely Landrace and Yorkshire used for crossbreeding, and the H’mong pig population from Ha Giang (HG) province were investigated using microsatellite markers. Within the province, three phenotypes were observed: a White, a Spotted and a Black phenotype. Genetic differentiation between phenotypes was low (0.5–6.1%). The White phenotypes showed intermediate admixture values between exotic breeds and the Black HG population (0.53), indicating a crossbreed status. Management practices were used to predict the rate of private diversity loss due to exotic gene introgressions. After 60 generations, 100% of Black private alleles will be lost. This loss is accelerated if the admixture rate is increased but can be slowed down if the mortality rate (e.g., recruitment rate) is decreased. Our study showed that a large number of markers are needed for accurately identifying hybrid classes for closely related populations. While our estimate of admixture still seems underestimated, genetic erosion can occur very fast even through indiscriminate crossbreeding. PMID:22837841

  19. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Shim, Jiwook; Rivera, Jose A.; Bashir, Rashid

    2013-10-01

    We report the development of single, locally crystallized nanopores in HfO2 membranes for biosensing applications. HfO2 is chosen for its isoelectric point of 7.0, mechanical and chemical stability in solution, and for its potential as a high-k material for nanopore ionic field effect transistor applications. The HfO2 membrane is deposited on a graphene layer suspended over a 300 nm FIB hole, where graphene is used as the mechanical support. Exposure of the membrane to a focused electron beam causes crystallization in the vicinity of the nanopore during pore formation. We investigate the effects of crystallization on the electrical and surface properties of HfO2 films. Our surface analysis of HfO2 reveals improved hydrophilicity of crystallized HfO2, a notable advantage over the hydrophobicity of as-deposited HfO2. We also demonstrate detection of dsDNA translocation through HfO2 nanopores under various applied bias levels. In addition, our device architecture also presents a promising first step toward the realization of high-k HfO2 nanopore transistors.We report the development of single, locally crystallized nanopores in HfO2 membranes for biosensing applications. HfO2 is chosen for its isoelectric point of 7.0, mechanical and chemical stability in solution, and for its potential as a high-k material for nanopore ionic field effect transistor applications. The HfO2 membrane is deposited on a graphene layer suspended over a 300 nm FIB hole, where graphene is used as the mechanical support. Exposure of the membrane to a focused electron beam causes crystallization in the vicinity of the nanopore during pore formation. We investigate the effects of crystallization on the electrical and surface properties of HfO2 films. Our surface analysis of HfO2 reveals improved hydrophilicity of crystallized HfO2, a notable advantage over the hydrophobicity of as-deposited HfO2. We also demonstrate detection of dsDNA translocation through HfO2 nanopores under various applied

  20. Localization algorithm with on-line path loss estimation and node selection.

    PubMed

    Bel, Albert; Vicario, José López; Seco-Granados, Gonzalo

    2011-01-01

    RSS-based localization is considered a low-complexity algorithm with respect to other range techniques such as TOA or AOA. The accuracy of RSS methods depends on the suitability of the propagation models used for the actual propagation conditions. In indoor environments, in particular, it is very difficult to obtain a good propagation model. For that reason, we present a cooperative localization algorithm that dynamically estimates the path loss exponent by using RSS measurements. Since the energy consumption is a key point in sensor networks, we propose a node selection mechanism to limit the number of neighbours of a given node that are used for positioning purposes. Moreover, the selection mechanism is also useful to discard bad links that could negatively affect the performance accuracy. As a result, we derive a practical solution tailored to the strict requirements of sensor networks in terms of complexity, size and cost. We present results based on both computer simulations and real experiments with the Crossbow MICA2 motes showing that the proposed scheme offers a good trade-off in terms of position accuracy and energy efficiency.

  1. Localization Algorithm with On-line Path Loss Estimation and Node Selection

    PubMed Central

    Bel, Albert; Vicario, José López; Seco-Granados, Gonzalo

    2011-01-01

    RSS-based localization is considered a low-complexity algorithm with respect to other range techniques such as TOA or AOA. The accuracy of RSS methods depends on the suitability of the propagation models used for the actual propagation conditions. In indoor environments, in particular, it is very difficult to obtain a good propagation model. For that reason, we present a cooperative localization algorithm that dynamically estimates the path loss exponent by using RSS measurements. Since the energy consumption is a key point in sensor networks, we propose a node selection mechanism to limit the number of neighbours of a given node that are used for positioning purposes. Moreover, the selection mechanism is also useful to discard bad links that could negatively affect the performance accuracy. As a result, we derive a practical solution tailored to the strict requirements of sensor networks in terms of complexity, size and cost. We present results based on both computer simulations and real experiments with the Crossbow MICA2 motes showing that the proposed scheme offers a good trade-off in terms of position accuracy and energy efficiency. PMID:22163992

  2. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    SciTech Connect

    Robert, Normand Polack, George G.; Sethi, Benu; Rowlands, John A.; Crystal, Eugene

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  3. Retrograde amnesia produced by electron beam exposure: casual parameters and duration of memory loss. Final report for November 84

    SciTech Connect

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron-beam exposure was investigated. RA production was evaluated using a single-trial avoidance task for 10, 1, and 0.1 microsecond pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 1,000,000 rad/sec. By employing a 10 rad (1,000,000 rad/s) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory system activation which provided a novel stimulus that masked previous stimuli.

  4. Assessment of Local Biodiversity Loss in Uranium Mining-Tales And Its Projections On Global Scale

    NASA Astrophysics Data System (ADS)

    Sharshenova, D.; Zhamangulova, N.

    2015-12-01

    In Min-Kush, northern Kyrgyzstan there are 8 mining tales with an estimate of 1 961 000 tones of industrial Uranium. Local ecosystem services have declined rapidly. We analyzed a terrestrial assemblage database of Uranium mine-tale to quantify local biodiversity responses to land use and environmental changes. In the worst-affected habitats species richness reduced by 95.7%, total abundance by 60.9% and rarefaction-based richness by 72.5%. We estimate that, regional mountain ecosystem affected by this pressure reduced average within-sample richness (by 17.01%), total abundance (16.5%) and rarefaction-based richness (14.5%). Business-as-usual scenarios are the widely practiced in the region and moreover, due to economic constraints country can not afford any mitigation scenarios. We project that biodiversity loss and ecosystem service impairment will spread in the region through ground water, soil, plants, animals and microorganisms at the rate of 1km/year. Entire Tian-Shan mountain chain will be in danger within next 5-10 years. Our preliminary data shows that local people live in this area developed various forms of cancer, and the rate of premature death is as high as 40%. Strong international scientific and socio-economic partnership is needed to develop models and predictions.

  5. Effects of local vibration on bone loss in -tail-suspended rats.

    PubMed

    Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B

    2014-06-01

    We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  7. Hormonal changes after localized prostate cancer treatment. Comparison between external beam radiation therapy and radical prostatectomy.

    PubMed

    Planas, J; Celma, A; Placer, J; Maldonado, X; Trilla, E; Salvador, C; Lorente, D; Regis, L; Cuadras, M; Carles, J; Morote, J

    2016-11-01

    To determine the influence of radical prostatectomy (RP) and external beam radiation therapy (EBRT) on the hypothalamic pituitary axis of 120 men with clinically localized prostate cancer treated with RP or EBRT exclusively. 120 patients with localized prostate cancer were enrolled. Ninety two patients underwent RP and 28 patients EBRT exclusively. We measured serum levels of luteinizing hormone, follicle stimulating hormone (FSH), total testosterone (T), free testosterone, and estradiol at baseline and at 3 and 12 months after treatment completion. Patients undergoing RP were younger and presented a higher prostate volume (64.3 vs. 71.1 years, p<0.0001 and 55.1 vs. 36.5 g, p<0.0001; respectively). No differences regarding serum hormonal levels were found at baseline. Luteinizing hormone and FSH levels were significantly higher in those patients treated with EBRT at three months (luteinizing hormone 8,54 vs. 4,76 U/l, FSH 22,96 vs. 8,18 U/l, p<0,0001) while T and free testosterone levels were significantly lower (T 360,3 vs. 414,83ng/dl, p 0,039; free testosterone 5,94 vs. 7,5pg/ml, p 0,018). At 12 months FSH levels remained significantly higher in patients treated with EBRT compared to patients treated with RP (21,01 vs. 8,51 U/l, p<0,001) while T levels remained significantly lower (339,89 vs. 402,39ng/dl, p 0,03). Prostate cancer treatment influences the hypothalamic pituitary axis. This influence seems to be more important when patients with prostate cancer are treated with EBRT rather than RP. More studies are needed to elucidate the role that prostate may play as an endocrine organ. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Variation in Adherence to External Beam Radiotherapy Quality Measures Among Elderly Men With Localized Prostate Cancer

    SciTech Connect

    Bekelman, Justin E. Zelefsky, Michael J.; Jang, Thomas L.; Basch, Ethan M.; Schrag, Deborah

    2007-12-01

    Purpose: To characterize the variation in adherence to quality measures of external beam radiotherapy (EBRT) for localized prostate cancer and its relation to patient and provider characteristics in a population-based, representative sample of U.S. men. Methods and Materials: We evaluated EBRT quality measures proposed by a RAND expert panel of physicians among men aged {>=}65 years diagnosed between 2000 and 2002 with localized prostate cancer and treated with primary EBRT using data from the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare program. We assessed the adherence to five EBRT quality measures that were amenable to analysis using SEER-Medicare data: (1) use of conformal RT planning; (2) use of high-energy (>10-MV) photons; (3) use of custom immobilization; (4) completion of two follow-up visits with a radiation oncologist in the year after therapy; and (5) radiation oncologist board certification. Results: Of the 11,674 patients, 85% had received conformal RT planning, 75% had received high-energy photons, and 97% had received custom immobilization. One-third of patients had completed two follow-up visits with a radiation oncologist, although 91% had at least one visit with a urologist or radiation oncologist. Most patients (85%) had been treated by a board-certified radiation oncologist. Conclusions: The overall high adherence to EBRT quality measures masked substantial variation in geography, socioeconomic status in the area of residence, and teaching affiliation of the RT facility. Future research should examine the reasons for the variations in these measures and whether the variation is associated with important clinical outcomes.

  9. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  10. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  11. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    PubMed Central

    Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840

  12. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications

    PubMed Central

    Shim, Jiwook; Rivera, Jose; Bashir, Rashid

    2013-01-01

    We report the development of single, locally crystallized nanopores in HfO2 membranes for biosensing applications. HfO2 is chosen for its isoelectric point of 7.0, mechanical and chemical stability in solution, and for its potential as a high-k material for nanopore ionic field effect transistor applications. The HfO2 membrane is deposited on a graphene layer suspended over a 300 nm FIB hole, where graphene is used as the mechanical support. Exposure of the membrane to a focused electron beam causes crystallization in the vicinity of the nanopore during pore formation. We investigate the effects of crystallization on the electrical and surface properties of HfO2 films. Our surface analysis of HfO2 reveals improved hydrophilicity of crystallized HfO2, a notable advantage over the hydrophobicity of as-deposited HfO2. We also demonstrate detection of dsDNA translocation through HfO2 nanopores under various applied bias levels. In addition, our device architecture also presents a promising first step toward the realization of high-k HfO2 nanopore transistors. PMID:23945603

  13. Local intensity feature tracking and motion modeling for respiratory signal extraction in cone beam CT projections.

    PubMed

    Dhou, Salam; Motai, Yuichi; Hugo, Geoffrey D

    2013-02-01

    Accounting for respiration motion during imaging can help improve targeting precision in radiation therapy. We propose local intensity feature tracking (LIFT), a novel markerless breath phase sorting method in cone beam computed tomography (CBCT) scan images. The contributions of this study are twofold. First, LIFT extracts the respiratory signal from the CBCT projections of the thorax depending only on tissue feature points that exhibit respiration. Second, the extracted respiratory signal is shown to correlate with standard respiration signals. LIFT extracts feature points in the first CBCT projection of a sequence and tracks those points in consecutive projections forming trajectories. Clustering is applied to select trajectories showing an oscillating behavior similar to the breath motion. Those "breathing" trajectories are used in a 3-D reconstruction approach to recover the 3-D motion of the lung which represents the respiratory signal. Experiments were conducted on datasets exhibiting regular and irregular breathing patterns. Results showed that LIFT-based respiratory signal correlates with the diaphragm position-based signal with an average phase shift of 1.68 projections as well as with the internal marker-based signal with an average phase shift of 1.78 projections. LIFT was able to detect the respiratory signal in all projections of all datasets.

  14. Localization of impacted maxillary canines using cone beam computed tomography. Review of the literature

    PubMed Central

    Rossini, Giulia; Cavallini, Costanza; Cassetta, Michele; Galluccio, Gabriella; Barbato, Ersilia

    2012-01-01

    Summary This review analyzed the literature focused on Cone- Beam Computed Tomography (CBCT) diagnostic accuracy and efficacy in detecting impacted maxillary canines, and evaluated the possible advantages in using CBCT technique compared with traditional radiographs. PubMed and Embase searches were performed selecting papers since 1998 up to September 2011, moreover reference lists were hand searched. Two reviewers selected relevant publications on the basis of predetermined inclusion criteria. The literature search yielded 94 titles, of which 5 were included in the review. Three studies used CBCT technique to 3D localize maxillary impacted canines and assess root resorption of adjacent teeth. Other two publications compared traditional radiographs with CBCT images in the diagnosis of maxillary impacted canines. Only three studies presented the results using statistical analysis. The present review highlighted that the use of CBCT has a potential diagnostic effect and may influence the outcome of treatment when compared with traditional panoramic radiography for the assessment of impacted maxillary canines. Furthermore it underlines the need of future studies performed according with high level methodological standards, investigating diagnostic accuracy and effectiveness of CBCT in the diagnosis of maxillary impacted teeth. PMID:22783450

  15. Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Ikarashi, Nobuyuki; Ono, Haruhiko

    2000-03-01

    We examined the lattice strain distribution around local oxidation of silicon (LOCOS) in a semiconductor device by using highly accurate (1.8×10 -4 standard deviation) convergent-beam electron diffraction (CBED) at a nanometer-scale spatial resolution (10 nm in diameter). The nanometer-scale measurement was done by reducing the elastic relaxation using a thick (about 600 nm) sample and by removing the inelastically scattered electrons by means of an electron energy filter. A highly accurate measurement was achieved through the analysis of higher-order Laue zone (HOLZ) patterns using the least-squares fitting of HOLZ line intersection distances between the observations and calculations. Our examination showed that the LOCOS structure gave singularities in strain distributions at the field edge. That is, compressive strain exists in both the vertical and horizontal directions of the substrate, and the shear strain increased there. Most notably, two-dimensional measurements revealed that the singularity of the normal strain in the horizontal direction of the substrate generated at the field edge propagated into the substrate.

  16. Hypofractionated proton boost combined with external beam radiotherapy for treatment of localized prostate cancer.

    PubMed

    Johansson, Silvia; Aström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity.

  17. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  18. A beam based method for target localization: inspiration from bats' directivity and binaural reception for ultrasonic sonar.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony

    2013-06-01

    The process of echolocation is accomplished by bats partly using the beam profiles associated with their ear shapes that allow for discrimination between different echo directions. Indeed, knowledge of the emitted signal characteristic and measurement of the echo travel time from a target make it possible to compensate for attenuation due to distance, and to focus on filtering through the receivers' beam profiles by comparing received echoes to the original signal at all frequencies in the spectrum of interest. From this basis, a beam profile method to localize a target in three-dimensional space for an ultrasonic sensor system equipped with an emitter and two receivers is presented. Simulations were conducted with different noise levels, and only the contribution of the receivers' beam profiles was considered to estimate the orientation of the target with respect to the receivers. The beam pattern of the Phyllostomus discolor's ear was adopted as that of a receiver. Analyses of beam resolution and frequency ranges were conducted to enhance the accuracy of orientation estimates. The choice of appropriate resolution and frequency ranges guarantee that error mean values for most of the orientations are within [0.5°, 1.5°], even in noisy situations: Signal-to-noise ratio values considered in this work are 35 and 50 dB.

  19. Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss

    NASA Astrophysics Data System (ADS)

    Zeng, Qi-Bo; Chen, Shu; Lü, Rong

    2017-06-01

    We investigate the Anderson localization in non-Hermitian Aubry-André-Harper (AAH) models with imaginary potentials added to lattice sites to represent the physical gain and loss during the interacting processes between the system and environment. By checking the mean inverse participation ratio (MIPR) of the system, we find that different configurations of physical gain and loss have very different impacts on the localization phase transition in the system. In the case with balanced physical gain and loss added in an alternate way to the lattice sites, the critical region (in the case with p -wave superconducting pairing) and the critical value (both in the situations with and without p -wave pairing) for the Anderson localization phase transition will be significantly reduced, which implies an enhancement of the localization process. However, if the system is divided into two parts with one of them coupled to physical gain and the other coupled to the corresponding physical loss, the transition process will be impacted only in a very mild way. Besides, we also discuss the situations with imbalanced physical gain and loss and find that the existence of random imaginary potentials in the system will also affect the localization process while constant imaginary potentials will not.

  20. Localized bleaching in Hawaii causes tissue loss and a reduction in the number of gametes in Porites compressa

    NASA Astrophysics Data System (ADS)

    Sudek, M.; Aeby, G. S.; Davy, S. K.

    2012-06-01

    Localized bleaching (a discrete white area on the coral) was observed in one of the main framework-building corals in Hawaii, Porites compressa. This study aimed to determine the degree of virulence of the lesion. We investigated the whole-colony effects by following disease progression through time and examining the effect of localized bleaching on coral fecundity. After two months, 35 of 42 (83.3%) individually tagged colonies affected by localized bleaching showed tissue loss and partial colony mortality. Histological slides of healthy P. compressa and samples from colonies showing signs of localized bleaching were compared showing that affected colonies had a significant reduction (almost 50%) in gamete development, egg numbers, and egg size in the affected tissue. The observed localized bleaching results in both partial colony mortality and a reduced number of gametes and was termed Porites Bleaching with Tissue Loss (PBTL).

  1. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    SciTech Connect

    Thome, Lionel; Debelle, Aurelien; Garrido, Frederico; Trocellier, Patrick; Serruys, Yves; Miro, Sandrine

    2013-04-08

    Single and dual-beam irradiations of oxide (c-ZrO{sub 2}, MgO, Gd{sub 2}Ti{sub 2}O{sub 7}) and carbide (SiC) single crystals were performed to study combined effects of nuclear (S{sub n}) and electronic (S{sub e}) energy losses. Rutherford backscattering experiments in channeling conditions show that the S{sub n}/S{sub e} cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO{sub 2} and Gd{sub 2}Ti{sub 2}O{sub 7}. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative S{sub n}/S{sub e} effects may lead to the preservation of the integrity of nuclear devices.

  2. Few-view and limited-angle cone-beam megavoltage CT for breast localization in radiation therapy

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Pan, Xiaochuan; Pelizzari, Charles A.; Martel, Mary

    2004-05-01

    In radiation therapy for breast cancer treatment, information about the external (skin) and internal (lung) boundaries is highly useful for determining the relative locations of the target and lung. In this work, we investigate the feasibility of tomographic reconstruction from few-view and limited-angle cone-beam projections acquired in radiation therapy unit for obtaining critical boundary information. From the few-view and limited-angle projections acquired directly in the treatment machine with an amorphous silicon electronic portal imaging device (EPID), We compared and evaluated the performance of the conventional cone-beam FDK algorithm and an iterative algorithm based upon the maximum-likelihood method for transmission tomography (ML-TR). Preliminary results demonstrated that the ML-TR algorithm is more promising than is the cone-beam FDK algorithm. Useful boundary information for breast localization can be obtained with very few projections in a limited angle range from the reconstruction of ML-TR algorithm.

  3. Synchronous heating of two local regions of a biological tissue phantom using automated targeting of phase conjugate ultrasound beams

    NASA Astrophysics Data System (ADS)

    Krutyansky, L. M.; Brysev, A. P.; Klopotov, R. V.

    2015-01-01

    Synchronous heating of two local regions of an absorbing medium by phase conjugate ultrasound beams focused on them has been experimentally demonstrated. A polymeric biological tissue phantom with two small air cavities scattering sound has been used as the medium irradiated by a 5-MHz "probe" ultrasound beam. The scattered field is incident on a parametric device for ultrasonic wave phase conjugation. The conjugate and amplified field is self-adaptive focused on scatterers and heats the medium owing to the absorption of the ultrasonic energy. In this case, these regions are heated by about 5°C in 70 s. Only an insignificant increase in the temperature owing to the heat conduction effect is observed in the remaining volume of the phantom. The implemented effect can be used in medical applications of phase conjugate ultrasound beams.

  4. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    SciTech Connect

    Huang, Yimei Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J.

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  5. Prostate Localization on Daily Cone-Beam Computed Tomography Images: Accuracy Assessment of Similarity Metrics

    SciTech Connect

    Kim, Jinkoo; Hammoud, Rabih; Pradhan, Deepak; Zhong Hualiang; Jin, Ryan Y.; Movsas, Benjamin; Chetty, Indrin J.

    2010-07-15

    Purpose: To evaluate different similarity metrics (SM) using natural calcifications and observation-based measures to determine the most accurate prostate and seminal vesicle localization on daily cone-beam CT (CBCT) images. Methods and Materials: CBCT images of 29 patients were retrospectively analyzed; 14 patients with prostate calcifications (calcification data set) and 15 patients without calcifications (no-calcification data set). Three groups of test registrations were performed. Test 1: 70 CT/CBCT pairs from calcification dataset were registered using 17 SMs (6,580 registrations) and compared using the calcification mismatch error as an endpoint. Test 2: Using the four best SMs from Test 1, 75 CT/CBCT pairs in the no-calcification data set were registered (300 registrations). Accuracy of contour overlays was ranked visually. Test 3: For the best SM from Tests 1 and 2, accuracy was estimated using 356 CT/CBCT registrations. Additionally, target expansion margins were investigated for generating registration regions of interest. Results: Test 1-Incremental sign correlation (ISC), gradient correlation (GC), gradient difference (GD), and normalized cross correlation (NCC) showed the smallest errors ({mu} {+-} {sigma}: 1.6 {+-} 0.9 {approx} 2.9 {+-} 2.1 mm). Test 2-Two of the three reviewers ranked GC higher. Test 3-Using GC, 96% of registrations showed <3-mm error when calcifications were filtered. Errors were left/right: 0.1 {+-} 0.5mm, anterior/posterior: 0.8 {+-} 1.0mm, and superior/inferior: 0.5 {+-} 1.1 mm. The existence of calcifications increased the success rate to 97%. Expansion margins of 4-10 mm were equally successful. Conclusion: Gradient-based SMs were most accurate. Estimated error was found to be <3 mm (1.1 mm SD) in 96% of the registrations. Results suggest that the contour expansion margin should be no less than 4 mm.

  6. Long-term results of intraoperative electron beam radiation therapy for nonmetastatic locally advanced pancreatic cancer

    PubMed Central

    Chen, Yingtai; Che, Xu; Zhang, Jianwei; Huang, Huang; Zhao, Dongbing; Tian, Yantao; Li, Yexiong; Feng, Qinfu; Zhang, Zhihui; Jiang, Qinglong; Zhang, Shuisheng; Tang, Xiaolong; Huang, Xianghui; Chu, Yunmian; Zhang, Jianghu; Sun, Yuemin; Zhang, Yawei; Wang, Chengfeng

    2016-01-01

    Abstract To assess prognostic benefits of intraoperative electron beam radiation therapy (IOERT) in patients with nonmetastatic locally advanced pancreatic cancer (LAPC) and evaluate optimal adjuvant treatment after IOERT. A retrospective cohort study using prospectively collected data was conducted at the Cancer Hospital of the Chinese Academy of Medical Sciences, China National Cancer Center. Two hundred forty-seven consecutive patients with nonmetastatic LAPC who underwent IOERT between January 2008 and May 2015 were identified and included in the study. Overall survival (OS) was calculated from the day of IOERT. Prognostic factors were examined using Cox proportional hazards models. The 1-, 2-, and 3-year actuarial survival rates were 40%, 14%, and 7.2%, respectively, with a median OS of 9.0 months. On multivariate analysis, an IOERT applicator diameter < 6 cm (hazards ratio [HR], 0.67; 95% confidence interval [CI], 0.47–0.97), no intraoperative interstitial sustained-release 5-fluorouracil chemotherapy (HR, 0.46; 95% CI, 0.32–0.66), and receipt of postoperative chemoradiotherapy followed by chemotherapy (HR, 0.11; 95% CI, 0.04–0.25) were significantly associated with improved OS. Pain relief after IOERT was achieved in 111 of the 117 patients, with complete remission in 74 and partial remission in 37. Postoperative complications rate and mortality were 14.0% and 0.4%, respectively. Nonmetastatic LAPC patients with smaller size tumors could achieve positive long-term survival outcomes with a treatment strategy incorporating IOERT and postoperative adjuvant treatment. Chemoradiotherapy followed by chemotherapy might be a recommended adjuvant treatment strategy for well-selected cases. Intraoperative interstitial sustained-release 5-fluorouracil chemotherapy should not be recommended for patients with nonmetastatic LAPC. PMID:27661028

  7. Massive Bone Loss Due to Orchidectomy and Localized Disuse: Preventive Effects of a Biosphonsphonate

    NASA Astrophysics Data System (ADS)

    Libouban, H.; Moreau, M. F.; Chappard, D.

    2008-06-01

    Orchidectomy (ORX) and hindlimb paralysis induced by botulinum neurotoxin (BTX) were combined to see if their effects were cumulative and if bone loss could be prevented by an antiresorptive agent (risedronate) or testosterone. Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Bone loss and microarchitecture deterioration were maximized on the immobilized bone. Risedronate but not testosterone prevented trabecular bone loss but was less effective on cortical bone loss. ORX and BTX had additive effects on bone loss which can be prevented by risedronate but not testosterone.

  8. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100).

    PubMed

    Schirmer, M; Walz, M-M; Vollnhals, F; Lukasczyk, T; Sandmann, A; Chen, C; Steinrück, H-P; Marbach, H

    2011-02-25

    We have investigated the lithographic generation of TiO(x) nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  9. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100)

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Walz, M.-M.; Vollnhals, F.; Lukasczyk, T.; Sandmann, A.; Chen, C.; Steinrück, H.-P.; Marbach, H.

    2011-02-01

    We have investigated the lithographic generation of TiOx nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  10. Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy

    SciTech Connect

    Ho, Kean Fatt; Marchant, Tom; Moore, Chris; Webster, Gareth; Rowbottom, Carl; Penington, Hazel; Lee, Lip; Yap, Beng; Sykes, Andrew; Slevin, Nick

    2012-03-01

    Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT was prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated

  11. Localized plateau beam resulting from strong nonlocal coupling in a cavity filled by metamaterials and liquid-crystal cells

    NASA Astrophysics Data System (ADS)

    Tlidi, M.; Fernandez-Oto, C.; Clerc, M. G.; Escaff, D.; Kockaert, P.

    2015-11-01

    We investigate the formation of a localized plateau beam in the transverse section of a nonlinear optical ring cavity filled with a metamaterial and a nonlocal medium such as a nematic liquid crystal. We show that, far from the modulational instability regime, localized structures with a varying width may be stable in one and two-dimensional settings. The mechanism of stabilization is related with strong nonlocal coupling mediated by a Lorentzian type of kernel. We show that there exists stable bright and dark localized structures. A reduction of Lugiato-Lefever equation in the regime close to the nascent bistability allows us to analytically derive a simple formula for the width of localized structures in one-dimensional systems. Direct numerical simulations of the dynamical model agree with the analytical predictions.

  12. Mars Express observations of high altitude planetary ion beams and their relation to the "energetic plume" loss channel

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Johnson, Blake C.; Fränz, Markus; Barabash, Stas

    2014-12-01

    This study presents observational evidence of high-energy (ions >2 keV) beams of planetary ions above Mars' induced magnetospheric boundary (IMB) and relates them with the energetic plume loss channel calculated from numerical models. A systematic search of the Mars Express (MEX) ion data using an orbit filtering criteria is described, using magnetometer data from Mars Global Surveyor (MGS) to determine the solar wind motional electric field (Esw) direction. Two levels of statistical survey are presented, one focused on times when the MEX orbit was directly in line with the Esw and another for all angles between the MEX location and the Esw. For the first study, within the 3 year overlap of MGS and MEX, nine brief intervals were found with clear and unambiguous high-energy O+ observations consistent with the energetic plume loss channel. The second survey used a point-by-point determination of MEX relative to the E-field and contained many thousands of 192 s measurements. This study yielded only a weak indication for an Esw-aligned plume. Furthermore, the y-z components of the weighted average velocities in the bins of this y-z spatial domain survey do not systematically point in the Esw direction. The first survey implies the existence of this plume and shows that its characteristics are seemingly consistent with the expected energy and flight direction from numerical studies; the second study softens the finding and demonstrates that there are many planetary ions beyond the IMB moving in unexpected directions. Several possible explanations for this discrepancy are discussed.

  13. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons

  14. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system.

    PubMed

    Tong, Xu; Chen, Xiaoming; Li, Jinsheng; Xu, Qianqian; Lin, Mu-Han; Chen, Lili; Price, Robert A; Ma, Chang-Ming

    2015-03-08

    This paper investigates the clinical significance of real-time monitoring of intrafractional prostate motion during external beam radiotherapy using a commercial 4D localization system. Intrafractional prostate motion was tracked during 8,660 treatment fractions for 236 patients. The following statistics were analyzed: 1) the percentage of fractions in which the prostate shifted 2-7 mm for a certain duration; 2) the proportion of the entire tracking time during which the prostate shifted 2-7mm; and 3) the proportion of each minute in which the shift exceeded 2-7 mm. The ten patients exhibiting maximum intrafractional-motion patterns were analyzed separately. Our results showed that the percentage of fractions in which the prostate shifted by > 2, 3, 5, and 7 mm off the baseline in any direction for > 30 s was 56.8%, 27.2%, 4.6%, and 0.7% for intact prostate and 68.7%, 35.6%, 10.1%, and 1.8% for postprostatectomy patients, respectively. For the ten patients, these percentages were 91.3%, 72.4%, 36.3%, and 6%, respectively. The percentage of tracking time during which the prostate shifted > 2, 3, 5, and 7 mm was 27.8%, 10.7%, 1.6%, and 0.3%, respectively, and it was 56.2%, 33.7%, 11.2%, and 2.1%, respectively, for the ten patients. The percentage of tracking time for a > 3 mm posterior motion was four to five times higher than that in other directions. For treatments completed in 5 min (VMAT) and 10 min (IMRT), the proportion for the prostate to shift by > 3mm was 4% and 12%, respectively. Although intrafractional prostate motion was generally small, caution should be taken for patients who exhibit frequent large intrafractional motion. For those patients, adjustment of patient positioning may be necessary or a larger treatment margin may be used. After the initial alignment, the likelihood of prostate motion increases with time. Therefore, it is favorable to use advanced techniques (e.g., VMAT) that require less delivery time in order to reduce the treatment

  15. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  16. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    SciTech Connect

    Chen, Xi; Heidbrink, William W.; Kramer, Gerrit J.; Van Zeeland, Michael A.; Pace, David C.; Petty, Craig C.; Fisher, Raymond K.; Nazikian, Raffi; Zeng, Lei; Austin, Max E.; Grierson, Brian A.; Podesta, Mario

    2014-08-04

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. Finally, an analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  17. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    DOE PAGES

    Chen, Xi; Heidbrink, William W.; Kramer, Gerrit J.; ...

    2014-08-04

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred frommore » the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. Finally, an analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.« less

  18. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    SciTech Connect

    Chen, X.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Zeng, L.; Austin, M. E.

    2014-08-15

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  19. The Localized Discovery and Recovery for Query Packet Losses in Wireless Sensor Networks with Distributed Detector Clusters

    PubMed Central

    Teng, Rui; Leibnitz, Kenji; Miura, Ryu

    2013-01-01

    An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data. Hence, the reliable and successful dissemination of query messages to sensor nodes is a non-trivial problem. The target of this paper is to enable highly successful query delivery to sensor nodes by localized and energy-efficient discovery, and recovery of query losses. We adopt local and collective cooperation among sensor nodes to increase the success rate of distributed discoveries and recoveries. To enable the scalability in the operations of discoveries and recoveries, we employ a distributed name resolution mechanism at each sensor node to allow sensor nodes to self-detect the correlated queries and query losses, and then efficiently locally respond to the query losses. We prove that the collective discovery of query losses has a high impact on the success of query dissemination and reveal that scalability can be achieved by using the proposed approach. We further study the novel features of the cooperation and competition in the collective recovery at PHY and MAC layers, and show that the appropriate number of detectors can achieve optimal successful recovery rate. We evaluate the proposed approach with both mathematical analyses and computer simulations. The proposed approach enables a high rate of successful delivery of query messages and it results in short route lengths to recover from query losses. The proposed approach is scalable and operates in a fully distributed manner. PMID:23748172

  20. Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance.

    PubMed

    Otte, Rik J; Agterberg, Martijn J H; Van Wanrooij, Marc M; Snik, Ad F M; Van Opstal, A John

    2013-04-01

    Several studies have attributed deterioration of sound localization in the horizontal (azimuth) and vertical (elevation) planes to an age-related decline in binaural processing and high-frequency hearing loss (HFHL). The latter might underlie decreased elevation performance of older adults. However, as the pinnae keep growing throughout life, we hypothesized that larger ears might enable older adults to localize sounds in elevation on the basis of lower frequencies, thus (partially) compensating their HFHL. In addition, it is not clear whether sound localization has already matured at a very young age, when the body is still growing, and the binaural and monaural sound-localization cues change accordingly. The present study investigated sound-localization performance of children (7-11 years), young adults (20-34 years), and older adults (63-80 years) under open-loop conditions in the two-dimensional frontal hemifield. We studied the effect of age-related hearing loss and ear size on localization responses to brief broadband sound bursts with different bandwidths. We found similar localization abilities in azimuth for all listeners, including the older adults with HFHL. Sound localization in elevation for the children and young adult listeners with smaller ears improved when stimuli contained frequencies above 7 kHz. Subjects with larger ears could also judge the elevation of sound sources restricted to lower frequency content. Despite increasing ear size, sound localization in elevation deteriorated in older adults with HFHL. We conclude that the binaural localization cues are successfully used well into later stages of life, but that pinna growth cannot compensate the more profound HFHL with age.

  1. Proton beam therapy for localized prostate cancer 101: basics, controversies, and facts.

    PubMed

    Wisenbaugh, Eric S; Andrews, Paul E; Ferrigni, Robert G; Schild, Steven E; Keole, Sameer R; Wong, William W; Vora, Sujay A

    2014-01-01

    Proton beam therapy for prostate cancer has become a source of controversy in the urologic community, and the rapid dissemination and marketing of this technology has led to many patients inquiring about this therapy. Yet the complexity of the technology, the cost, and the conflicting messages in the literature have left many urologists ill equipped to counsel their patients regarding this option. This article reviews the basic science of the proton beam, examines the reasons for both the hype and the controversy surrounding this therapy, and, most importantly, examines the literature so that every urologist is able to comfortably discuss this option with inquiring patients.

  2. Evaluation of 1p Losses in Primary Carcinomas, Local Recurrences and Peripheral Metastases from Colorectal Cancer Patients1

    PubMed Central

    Thorstensen, Lin; Qvist, Hanne; Heim, Sverre; Liefers, Gerrit-Jan; Nesland, Jahn M; Giercksky, Karl-Erik; Lothe, Ragnhild A

    2000-01-01

    Abstract Cytogenetic and molecular genetic analyses of colorectal adenomas and carcinomas have shown that loss of the distal part of chromosome arm 1p is common, particularly in tumors of the left colon. Because the importance of 1p loss in colorectal cancer metastases is unknown, we compared the frequency, exact site and extent of 1p deletions in primary carcinomas (n=28), local recurrences (n=19) and metastases (n=33) from 67 colorectal cancer patients using 14 markers in an allelic imbalance study. Loss of 1p was found in 50% of the primary carcinomas, 33% of the local recurrences, and 64% of the metastases, revealing a significant difference between the local recurrences and the metastases (P=.04). The smallest region of 1p deletion overlap (SRO) defined separately for each group of lesions had the region between markers D1S2647 and D1S2644, at 1p35–36, in common. The genes PLA2G2A (1p35.1–36) and TP73 (1p36.3) were shown to lie outside this consistently lost region, suggesting that neither of them are targets for the 1p loss. In the second part of the study, microdissected primary carcinomas and distant metastases from the same colorectal cancer patients (n=18) were analyzed, and the same 1p genotype was found in the majority of patients (12/18, 67%). The finding that primary carcinoma cells with metastatic ability usually contain 1p deletions, and that some cases lacking 1p alterations in the primary tumor acquire such changes during growth of a metastatic lesion, supports the notion that 1p loss may be important both early and late in colorectal carcinogenesis, with the apparent exception of local recurrences. PMID:11228544

  3. Parametric response mapping of CT images provides early detection of local bone loss in a rat model of osteoporosis.

    PubMed

    Hoff, Benjamin A; Kozloff, Kenneth M; Boes, Jennifer L; Brisset, Jean-Christophe; Galbán, Stefanie; Van Poznak, Catherine H; Jacobson, Jon A; Johnson, Timothy D; Meyer, Charles R; Rehemtulla, Alnawaz; Ross, Brian D; Galbán, Craig J

    2012-07-01

    Loss of bone mass due to disease, such as osteoporosis and metastatic cancer to the bone, is a leading cause of orthopedic complications and hospitalization. Onset of bone loss resulting from disease increases the risk of incurring fractures and subsequent pain, increasing medical expenses while reducing quality of life. Although current standard CT-based protocols provide adequate prognostic information for assessing bone loss, many of the techniques for evaluating CT scans rely on measures based on whole-bone summary statistics. This reduces the sensitivity at identifying local regions of bone resorption, as well as formation. In this study, we evaluate the effectiveness of a voxel-based image post-processing technique, called the Parametric Response Map (PRM), for identifying local changes in bone mass in weight-bearing bones on CT scans using an established animal model of osteoporosis. Serial CT scans were evaluated weekly using PRM subsequent to ovariectomy or sham surgeries over the period of one month. For comparison, bone volume fraction and mineral density measurements were acquired and found to significantly differ between groups starting 3 weeks post-surgery. High resolution ex vivo measurements acquired four weeks post-surgery validated the extent of bone loss in the surgical groups. In contrast to standard methodologies for assessing bone loss, PRM results were capable of identifying local decreases in bone mineral by week 2, which were found to be significant between groups. This study concludes that PRM is able to detect changes in bone mineral with higher sensitivity and spatial differentiation than conventional techniques for evaluating CT scans, which may aid in clinical decision making for patients suffering from bone loss. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan; Eschrich, Tina; Leich, Martin; Grimm, Stephan; Kobelke, Jens; Lorenz, Martin; Bartelt, Hartmut; Jäger, Matthias

    2017-10-01

    The use of short local tapers in large mode area fiber amplifiers is proposed for peak power scaling while maintaining good beam quality. To avoid modal distortions, the powder-sintering (REPUSIL) method was employed to obtain core materials with excellent refractive index homogeneity. First experiments with Yb3+-doped rod-type amplifiers delivered 2 ns pulses with peak powers of 540 kW and energies of 1.4 mJ for the untapered rod and 230 kW for the tapered rod (limited by facet damage). The beam quality improved from an M 2 value of approximately 10 to 3.5. The investigation of the taper structure indicates room for further improvement.

  5. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Astrophysics Data System (ADS)

    Chutjian, A.; Smith, Steven J.; Lozano, J. A.

    2002-11-01

    There is increasing emphasis within this decade on understanding energy balance and new phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, and the X-ray spectral return from the HETG on Chandra and the LETGS on XMM-Newton are just beginning. The line emissions are almost entirely from highly-charged ions (HCIs) of C, N, O, Ne, Mg, S, Si, Ca, and Fe. In addition, the Constellation-X mission, currently in the planning stages, will provide high-throughput X-ray spectroscopy up to photon energies of 0.12 nm (10 keV), where the primary line emitters will again be the HCIs. This array of space instruments is providing an overwhelming return of HCI spectral data from a variety of astrophysical objects. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma [1]. The JPL electron energy-loss and merged-beams approach [2] has been used to measure absolute collision strengths in a number of ions, with critical comparisons to the best available theories. Experimental methods will be reviewed, and results presented on experimental comparisons to R-Matrix and Breit-Pauli theoretical results in C3+[3], O2+[4], O5+[5], S2+[6], and Fe9+ [7]. Work is planned for comparisons in Mgq+, and higher charge states Fe(10-15)+. J. Lozano thanks the National Research Council for a fellowship though the NASA- NRC program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was supported under contract with the National Aeronautics and Space Administration.

  6. Local and Global Mechanical Behavior and Microstructure of Ti6Al4V Parts Built Using Electron Beam Melting Technology

    NASA Astrophysics Data System (ADS)

    Ladani, Leila

    2015-09-01

    Laser and electron beam melting are prime technologies in metallic powder bed additive manufacturing in which parts are built layer by layer using high energy source. The technology is at a level where each layer can be as thin as 50 µm. Melting and solidification of each powder layer is typically accompanied by some subsurface melting to assure adherence and fusion of layers. In addition to anisotropic mechanical behavior of material caused by layering phenomenon, it is expected that the local mechanical behavior and microstructure vary throughout each build. In this manuscript, local and global mechanical behavior of Ti6Al4V parts produced using electron beam melting technology is investigated using bulk scale mechanical testing and nanoindentation. Parts fabricated in different build orientation were tested at different strain rates at a large scale. The experiment showed that strength is minimal perpendicular to the build plate. Additionally, material exhibited different local mechanical properties relative to distance from base plate. Investigation of the microstructure indicated very distinguished variations in the grain size and alpha and beta phase formation of material in different locations of part relative to build plate. Strength reduction in perpendicular direction is examined and explained through understanding of the microstructure and plastic deformation mechanism in α phase and prior β grains.

  7. Effectiveness of local delivery of alendronate in reducing alveolar bone loss following periodontal surgery in rats.

    PubMed

    Binderman, I; Adut, M; Yaffe, A

    2000-08-01

    Mucoperiosteal flaps are used to access bone and root surfaces for debridement, pocket elimination, management of periodontal defects, and in regenerative procedures, as well as in implant surgery. Many reports show that periodontal surgery stimulates osteoclast activity with varying amounts of alveolar bone loss. Alendronate given intravenously significantly reduced alveolar bone loss in mucoperiosteal flap procedures. In the present study, we explored the effectiveness of different concentrations of alendronate, delivered at the surgical site at the time of surgery, in distant delivery in reducing alveolar bone loss. Following elevation of a mucoperiosteal flap next to molars of the rat mandible, a gelatin sponge soaked with different concentrations of alendronate (0, 1, 5, 20, or 40 mg/ml; experiment A) was applied to exposed bone on the experimental side. In the second group (experiment B), alendronate (0, 50, 200, or 400 microg) was topically delivered in the cheek submucosa on the left side (distant to the surgical site) in a small cut into which the gelatin sponge soaked with the drug was placed. Topical application of 200 microg and 400 microg doses of alendronate at the time of surgery was significantly effective (P <0.001) in reducing bone loss. Generally, the percentage of sections with mild bone loss (V1, V2) increased with an increase in the dose of alendronate, while the percentage of sections with severe bone loss (H1, H2) decreased with an increase in alendronate dose. Topical application of 400 microg of alendronate had a systemic effect. This study implies that topical delivery of alendronate at the time of surgery reduces bone loss in periodontal procedures involving mucoperiosteal flap surgery. The most effective dose is 200 microg for topical delivery at the surgical site and 400 microg for distant sites.

  8. Properties of Welded Joints from Alloy Zr - 2.5 % Nb after Electron-Beam Local Thermocycling

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Plyshevskii, M. I.; Melyukov, V. V.; Korepanov, A. G.; Rassoshkina, N. S.; Uvarov, A. A.

    2014-03-01

    Modes of electron-beam local thermocycling treatment of welded joints of ∅ 88 × 4 mm pipes from alloy É125 (Zr - 2.5 % Nb) are tested. The structure of the welds is studied. The characteristics of mechanical properties are determined under tension and static and dynamic bending. The corrosion resistance is determined in long-term tests in an autoclave with water at 285 °C and in fast tests in an autoclave at 360 °C for 336 h in accordance with the International Standard.

  9. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome

    PubMed Central

    Cuenca, Argelia; Ross, T. Gregory; Graham, Sean W.; Barrett, Craig F.; Davis, Jerrold I.; Seberg, Ole; Petersen, Gitte

    2016-01-01

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. PMID:27435795

  10. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    PubMed

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    SciTech Connect

    Thomé, Lionel Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Velisa, Gihan; Miro, Sandrine; Trocellier, Patrick; Serruys, Yves

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  12. Optical characterization of locally and compositionally mixed superlattices using conventional and focused ion beam implantation

    SciTech Connect

    Choo, A.G.

    1992-01-01

    Spatially resolved Raman scattering and low temperature photoluminescence have been utilized to investigate implantation-induced lattice damage and compositional disordering in multiple quantum well (MQW) structures prepared using by ion beam (conventional and focused) implantation and subsequent rapid thermal annealing (RTA). The RTA of 10 sec at 950[degrees] for short period MQW and 10 sec at 1000[degrees]C for long period MQW are appropriate thermal annealing condition. Focused on beam (FIB) implantation induces more damage than conventional ion beam (CIB) implantation for the whole dose range. The highest dose FIB induces significant damage compared to the CIB. The degree of FIB implantation-induced intermixing increases with increasing ion dose. As RTA time increases, additional enhanced intermixing does not occur in MQW channel waveguide structure. The donor-to-acceptor transition from PL is dominant in the ion-implanted samples. The multiple scan FIB and the CIB shows more compensation than the single scan FIB. The spatial scanning of Raman scattering is demonstrated to characterize MQW channel waveguide structure.

  13. DETECTORS AND EXPERIMENTAL METHODS: Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Hang; Tian, Jian-Min; Chen, Chang; Chen, Yuan-Bo; Xu, Tao-Guang; Lu, Shuang-Tong

    2009-02-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (approx800 V) and linearity range up to 200 Roentgen/h are obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  14. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    NASA Astrophysics Data System (ADS)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  15. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states.

    PubMed

    Moerland, Robert J; Weppelman, I Gerward C; Garming, Mathijs W H; Kruit, Pieter; Hoogenboom, Jacob P

    2016-10-17

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80-90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.

  16. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  17. High-dose rate brachytherapy for local recurrent adenoid cystic carcinoma of the tongue base following postoperative external beam radiotherapy

    PubMed Central

    Lee, Sun Young; Kim, Jung Soo; Kwon, Hyoung Cheol

    2016-01-01

    Adenoid cystic carcinoma is a rare neoplasm commonly originating from the minor salivary glands. The clinical findings typical of this tumor include slow growth, perineural invasion and high frequency of local recurrence. In this study, a patient presented with a tongue base lesion that was treated with surgical excision and additional postoperative external beam radiotherapy. However, local recurrence occurred 8 months after radiotherapy. If recurrence occurs after radiation therapy, total glossectomy should be considered. However, the patient refused re-operation and, considering the patient's age, brachytherapy was used to ensure organ preservation. Complete remission was achieved following brachytherapy, without serious side effects. There has been no progression of the lesion during a follow-up period of 2 years. PMID:27882233

  18. Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans.

    PubMed

    Ellemberg, D; Lewis, T L; Defina, N; Maurer, D; Brent, H P; Guillemot, J-P; Lepore, F

    2005-10-01

    We compared sensitivity to first-order versus second-order local motion in patients treated for dense central congenital cataracts in one or both eyes. Amplitude modulation thresholds were measured for discriminating the direction of motion of luminance-modulated (first-order) and contrast modulated (second-order) horizontal sine-wave gratings. Early visual deprivation, whether monocular or binocular, caused losses in sensitivity to both first- and second-order motion, with greater losses for second-order motion than for first-order motion. These findings are consistent with the hypothesis that the two types of motion are processed by different mechanisms and suggest that those mechanisms are differentially sensitive to early visual input.

  19. Proton beam therapy leads to excellent local control rates in choroidal melanoma in the intermediate fundus zone.

    PubMed

    Schönfeld, Shideh; Cordini, Dino; Riechardt, Aline I; Seibel, Ira; Willerding, Gregor; Bechrakis, Nikolaos E; Moser, Lutz; Joussen, Antonia M

    2014-12-01

    To evaluate long-term outcomes of proton beam radiotherapy in the treatment of choroidal melanoma of the intermediate zone of the fundus. Retrospective interventional single-center study. The study was a retrospective analysis with long-term follow-up of 62 patients with a minimum tumor-to-disc and tumor-to-fovea distance of 2 mm of choroidal melanoma in the intermediate zone of the fundus. Mean values of tumor prominence, largest basal diameter, and tumor distances to the optic disc and fovea were 7.6, 12.8, 5.2, and 4.6 mm, respectively. All patients were irradiated with a total proton dose of 60 cobalt gray equivalents. After proton beam radiotherapy, 71.0% of the patients received subsequent endoresection of the tumor. Only 18 patients (29.0%) did not require additional tumor resection and were analyzed as a separate group. For the total of patients, the median follow-up time was 70.3 months. The 5-year Kaplan-Meier rates of local tumor relapse, enucleation, and distant metastasis were 3.9%, 3.7%, and 13.4%, respectively. Cataract surgery was the most frequent secondary treatment in our cohort. In this study we demonstrate the effectiveness of proton beam irradiation in tumor control and preservation of the globe in the analyzed patients. The rate of metastasis was not higher than previously described. Nevertheless, consecutive tumor surgery is frequently required to maintain the eye in patients with large-sized choroidal melanomas. In conclusion, proton beam radiotherapy allows preservation of the eye in mid-zone choroidal melanomas. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss

    PubMed Central

    Tatham, Andrew J.; Miki, Atsuya; Weinreb, Robert N.; Zangwill, Linda M.; Medeiros, Felipe A.

    2013-01-01

    Objective To determine whether focal abnormalities of the lamina cribrosa (LC) are present in glaucomatous eyes with localized retinal nerve fiber layer (RNFL) defects. Design Cross-sectional observational study. Participants 20 eyes of 14 subjects with localized RNFL defects detected by masked grading of stereophotographs and 40 eyes of 25 age-matched healthy subjects recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) at the University of California, San Diego. Methods All eyes had stereoscopic optic disc photography and in vivo LC imaging using enhanced depth optical coherence tomography (EDI-OCT). Two masked graders identified focal LC defects defined by a standardized protocol using 48 radial scan EDI-OCT images. The Kappa coefficient was calculated as a measure of the reliability of interobserver agreement. Main Outcome Measures The number of focal LC defects and the relationship between the location of LC defects and the location of localized RNFL defects. Results 15 of 20 eyes with a localized RNFL defect (75%) had at least one LC defect compared to only 1 of 40 healthy eyes (3%). 13 eyes with localized RNFL defects had 1 LC defect, 1 eye had 2 LC defects and 1eye had 3 LC defects. The largest area LC defect was present in a radial line EDI-OCT scan corresponding to a localized RNFL defect in 13/15 (87%) of eyes. There was good agreement between graders as to whether an eye had a LC defect (Kappa=0.87, 95% CI 0.73–1.00, P<0.001) and the location of the largest defect (Kappa=0.72, 95% CI 0.44–1.00, P<0.001). Conclusions Focal defects of the lamina cribrosa were frequently visible in glaucomatous eyes with localized RNFL defects. Focal abnormalities of the LC may be associated with focal retinal nerve fiber damage. PMID:24144452

  1. Intracultural Differences in Local Botanical Knowledge and Knowledge Loss among the Mexican Isthmus Zapotecs.

    PubMed

    Saynes-Vásquez, Alfredo; Vibrans, Heike; Vergara-Silva, Francisco; Caballero, Javier

    2016-01-01

    This study reports on the socio-demographic and locality factors that influence ethnobiological knowledge in three communities of Zapotec indigenous people of the Isthmus of Tehuantepec, Mexico. It uses local botanical nomenclature as a proxy for general ethnobiological knowledge. In each of these communities (one urban and two rural), 100 adult men were interviewed aided with a field herbarium. Fifty had a background in farming, and 50 worked in the secondary or tertiary sector as their main economic activity, totaling 300 interviews. Using a field herbarium with samples of 30 common and rare wild regional species, we documented visual recognition, knowledge of the local life form, generic and specific names and uses (five knowledge levels measuring knowledge depth). The relationship between sociodemographic variables and knowledge was analyzed with simple correlations. Differences between the three communities and the five knowledge levels were then evaluated with a discriminant analysis. A general linear analysis identified factors and covariables that influenced the observed differences. Differences between the groups with different economic activities were estimated with a t-test for independent samples. Most of the relationships found between sociodemographic variables and plant knowledge were expected: age and rurality were positively related with knowledge and years of formal schooling was negatively related. However, the somewhat less rural site had more traditional knowledge due to local circumstances. The general linear model explained 70-77% of the variation, a high value. It showed that economic activity was by far the most important factor influencing knowledge, by a factor of five. The interaction of locality and economic activity followed. The discriminant analysis assigned interviewees correctly to their localities in 94% of the cases, strengthening the evidence for intracultural variation. Both sociodemographic and historic intracultural

  2. Intracultural Differences in Local Botanical Knowledge and Knowledge Loss among the Mexican Isthmus Zapotecs

    PubMed Central

    Saynes-Vásquez, Alfredo; Vibrans, Heike; Vergara-Silva, Francisco; Caballero, Javier

    2016-01-01

    This study reports on the socio-demographic and locality factors that influence ethnobiological knowledge in three communities of Zapotec indigenous people of the Isthmus of Tehuantepec, Mexico. It uses local botanical nomenclature as a proxy for general ethnobiological knowledge. In each of these communities (one urban and two rural), 100 adult men were interviewed aided with a field herbarium. Fifty had a background in farming, and 50 worked in the secondary or tertiary sector as their main economic activity, totaling 300 interviews. Using a field herbarium with samples of 30 common and rare wild regional species, we documented visual recognition, knowledge of the local life form, generic and specific names and uses (five knowledge levels measuring knowledge depth). The relationship between sociodemographic variables and knowledge was analyzed with simple correlations. Differences between the three communities and the five knowledge levels were then evaluated with a discriminant analysis. A general linear analysis identified factors and covariables that influenced the observed differences. Differences between the groups with different economic activities were estimated with a t-test for independent samples. Most of the relationships found between sociodemographic variables and plant knowledge were expected: age and rurality were positively related with knowledge and years of formal schooling was negatively related. However, the somewhat less rural site had more traditional knowledge due to local circumstances. The general linear model explained 70–77% of the variation, a high value. It showed that economic activity was by far the most important factor influencing knowledge, by a factor of five. The interaction of locality and economic activity followed. The discriminant analysis assigned interviewees correctly to their localities in 94% of the cases, strengthening the evidence for intracultural variation. Both sociodemographic and historic intracultural

  3. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.

    PubMed

    Kim, S; Russell, M; Henry, M; Kim, S S; Naik, R R; Voevodin, A A; Jang, S S; Tsukruk, V V; Fedorov, A G

    2015-09-28

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an "n-p-n" junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 10(18) e(-) per cm(2)). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 10(19) e(-) per cm(2) results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, "direct-write" functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.

  4. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    SciTech Connect

    Petit, Clémence; Maire, Eric; Meille, Sylvain; Adrien, Jérôme; Kurosu, Shingo; Chiba, Akihiko

    2016-06-15

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive buckling of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.

  5. Accurate and Fast Localization of Prostate for External Beam Radiation Therapy

    DTIC Science & Technology

    2009-03-01

    reconstruction for CBCT using edge- preserving prior”, Medical Physics, vol. 36, pp. 252-260, 2009 3. L. Zhu, J. Wang, and L. Xing, “Noise suppression...1. J. Wang, A. Chai, L. Xing, “Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT ”, poster...presentation in 2009 SPIE Medical Imaging conference, Orlando, FL 2. J. Wang, T. Li, and L. Xing, “Low-dose CBCT Imaging for External Beam Radiotherapy

  6. Damage localization and quantification of composite stratified beam Structures using residual force method

    NASA Astrophysics Data System (ADS)

    Behtani, A.; Bouazzouni, A.; Khatir, S.; Tiachacht, S.; Zhou, Y.-L.; Abdel Wahab, M.

    2017-05-01

    In this paper, the problem of using measured modal parameters to detect and locate damage in beam composite stratified structures with four layers of graphite/epoxy [0°/902°/0°] is investigated. A technique based on the residual force method is applied to composite stratified structure with different boundary conditions, the results of damage detection for several damage cases demonstrate that using residual force method as damage index, the damage location can be identified correctly and the damage extents can be estimated as well.

  7. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.

    PubMed

    Wu, C H; Ku, W S; Jhan, F J; Chen, J H; Jeng, J T

    2015-05-01

    High-T(c) Josephson junctions were fabricated by nanolithography using focused ion beam (FIB) milling and ion implantation. The junctions were formed in a YBa2Cu3O7-x, thin film in regions defined using a gold-film mask with 50-nm-wide (top) slits, engraved by FIB. The focused ion beam system parameters for dwell time and passes were set to remove gold up to a precise depth. 150 keV oxygen ions were implanted at a nominal dose of up to 5 x 10(13) ions/cm2 into YBa2Cu3O7-x microbridges through the nanoscale slits. The current-voltage curves of the ion implantation junctions exhibit resistive-shunted-junction-like behavior at 77 K. The junction had an approximately linear temperature dependence of critical current. Shapiro steps were observed under microwave irradiation. A 50-nm-wide slit and 0-20-nm-thick buffer layers were chosen in order to make Josephson junctions due to the V-shape of the FIB-milled trench.

  8. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Evora, M. C.; Araujo, J. R.; Ferreira, E. H. M.; Strohmeier, B. R.; Silva, L. G. A.; Achete, C. A.

    2015-04-01

    Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO4·7H2O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  9. Translational and rotational localization errors in cone-beam CT based image-guided lung stereotactic radiotherapy.

    PubMed

    Garibaldi, Cristina; Piperno, Gaia; Ferrari, Annamaria; Surgo, Alessia; Muto, Matteo; Ronchi, Sara; Bazani, Alessia; Pansini, Floriana; Cremonesi, Marta; Jereczek-Fossa, Barbara Alicja; Orecchia, Roberto

    2016-07-01

    Accurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins. The internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors. The mean 3D vector at initial set-up was 6.6±2.3mm, which was significantly reduced to 1.6±0.8mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3mm in the LR, SI and AP directions, respectively. On-line image guidance with the ITV-CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS).

    PubMed

    Godfrey, Devon J; Ren, Lei; Yan, Hui; Wu, Q; Yoo, Sua; Oldham, M; Yin, Fang Fang

    2007-08-01

    Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 degrees to 40 degrees and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTSapprox), as well as three different DTS scan angles (22 degrees, 44 degrees, and 65 degrees) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and onboard DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning +/-5 mm and rotations spanning +/-5 degrees were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTSapprox method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.50 along each axis, using only a single 44 degrees coronal on-board DTS scan of the chest phantom.

  11. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS)

    SciTech Connect

    Godfrey, Devon J.; Ren Lei; Yan Hui; Wu, Q.; Yoo Sua; Oldham, M.; Yin Fangfang

    2007-08-15

    Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 deg. to 40 deg. and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTS{sub approx}), as well as three different DTS scan angles (22 deg., 44 deg., and 65 deg.) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and on-board DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning {+-}5 mm and rotations spanning {+-}5 deg. were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTS{sub approx} method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.5 deg. along each axis, using only a single 44 deg. coronal on-board DTS scan of the chest phantom.

  12. Production of radioactivity in local soil at AGS fast neutrino beam

    SciTech Connect

    Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1984-01-01

    Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures.

  13. The loss of local HGF, an endogenous gastrotrophic factor, leads to mucosal injuries in the stomach of mice

    SciTech Connect

    Nakahira, Rie; Mizuno, Shinya; Yoshimine, Toshiki; Nakamura, Toshikazu . E-mail: nakamura@onbich.med.osaka-u.ac.jp

    2006-03-24

    The stomach is constantly exposed to mechanical and chemical stresses. Under persistent damages, epithelial cell proliferation is required to maintain mucosal integrity. Nevertheless, which ligand system(s) is physiologically involved in gastric defense remains unclear. Herein, we provide evidence that HGF is a key 'natural ligand' to reverse gastric injury. The injection of cisplatin in mice led to the loss of HGF in the gastric interstitium, associated with the decrease in proliferating epithelium and the progression of mucotitis. When c-Met tyrosine phosphorylation was abolished by anti-HGF IgG, mucosal cell proliferation became faint, leading to delayed recovery from mucotitis, and vice versa in cases of HGF supplementation. Our findings indicate that: (1) HGF/c-Met signal on mucosa is needed to restore gastric injuries; and (2) the loss of local HGF leads to manifestation of gastric lesions. This study provides a rationale that explains why HGF supplement is useful for reversing gastric diseases.

  14. HIFU therapy for local recurrence of prostate cancer after external beam radiotherapy and radical prostatectomy - 5,5 years experience

    NASA Astrophysics Data System (ADS)

    Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.

    2017-03-01

    Objectives. To evaluate the clinical efficacy of high-intensity focused ultrasound ablation (HIFU) for local recurrence of prostate cancer after external beam radiotherapy (EBRT) and radical prostatectomy (RPE). Materials and Methods: During 2007-2013 years 47 patients with local recurrence of prostate cancer after EBRT and RPE undertook HIFU therapy on the system "Ablaterm» (EDAP, France). Relapse arose after an average of 2 years after EBRT and RPE. Median follow-up after HIFU therapy was 38 (12-60) months. The mean age was 68.5 ± 5.8 years. The median PSA level before HIFU - 15.4 (7-48) ng / mL. Results: In 34 patients (72.3%) at six months after treatment the median PSA was 0.4 (0-3.2) ng / mL, in 48 months - 0.9 (0.4-7.5) ng / mL. In 13 patients (27.7%) at 6 months was observed progression of the disease. In general, after a 5-year follow-up 72.3% of the patients had no data for the progression and recurrence. Conclusion: HIFU therapy in patients with local recurrence of prostate cancer after EBRT and RPE is minimally invasive and effective technology.

  15. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.

  16. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect

    Martin, R. W.; Sathish, S.; Blodgett, M. P.

    2013-01-25

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  17. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    NASA Astrophysics Data System (ADS)

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  18. A New Approach of evaluating the damage in simply-supported reinforced concrete beam by Local mean decomposition (LMD)

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei

    2017-08-01

    How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.

  19. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams.

    PubMed

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-12

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  20. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    PubMed Central

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. PMID:28401942

  1. Congruent evaporation temperature of molecular beam epitaxy grown GaAs (001) determined by local droplet etching

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Jesson, D. E.

    2015-10-01

    The congruent evaporation temperature Tc of GaAs (001) is critical for many technological processes and is fundamental to the control and stability of Ga droplets for quantum structure fabrication. We apply the technique of local droplet etching (LDE) to measure Tc for technologically important molecular beam epitaxy (MBE) grown GaAs (001). Below Tc, Ga droplets deposited on the surface shrink and form nanoholes via LDE and thermal widening. Above Tc, droplets grow by capturing excess Ga. From the transition between both regimes, we determine Tc = 680 ± 10 °C. Additionally, we find that the nanohole/droplet densities follow an Arrhenius-type temperature dependence with an activation energy of 1.31 eV. The method probes the stability of pre-existing droplets formed by deposition and so avoids the complication of nucleation barriers and readily allows the measurement of Tc for technologically important planar GaAs surfaces in any standard MBE system.

  2. Indoor Positioning in Wireless Local Area Networks with Online Path-Loss Parameter Estimation

    PubMed Central

    Bruno, Luigi

    2014-01-01

    Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario. PMID:25165755

  3. Indoor positioning in wireless local area networks with online path-loss parameter estimation.

    PubMed

    Bruno, Luigi; Addesso, Paolo; Restaino, Rocco

    2014-01-01

    Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario.

  4. Local structure of human hair spatially resolved by sub-micron X-ray beam

    PubMed Central

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-01-01

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair’s axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle’s boundary in which the IFs are aligned with the hair’s axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems. PMID:26617337

  5. Local structure of human hair spatially resolved by sub-micron X-ray beam

    NASA Astrophysics Data System (ADS)

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-11-01

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair’s axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle’s boundary in which the IFs are aligned with the hair’s axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.

  6. Local structure of human hair spatially resolved by sub-micron X-ray beam.

    PubMed

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-11-30

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.

  7. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    PubMed

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  8. RSS-Based Method for Sensor Localization with Unknown Transmit Power and Uncertainty in Path Loss Exponent

    PubMed Central

    Huang, Jiyan; Liu, Peng; Lin, Wei; Gui, Guan

    2016-01-01

    The localization of a sensor in wireless sensor networks (WSNs) has now gained considerable attention. Since the transmit power and path loss exponent (PLE) are two critical parameters in the received signal strength (RSS) localization technique, many RSS-based location methods, considering the case that both the transmit power and PLE are unknown, have been proposed in the literature. However, these methods require a search process, and cannot give a closed-form solution to sensor localization. In this paper, a novel RSS localization method with a closed-form solution based on a two-step weighted least squares estimator is proposed for the case with the unknown transmit power and uncertainty in PLE. Furthermore, the complete performance analysis of the proposed method is given in the paper. Both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The relationships between the deterministic CRLB and the proposed stochastic CRLB are presented. The paper also proves that the proposed method can reach the stochastic CRLB. PMID:27618055

  9. RSS-Based Method for Sensor Localization with Unknown Transmit Power and Uncertainty in Path Loss Exponent.

    PubMed

    Huang, Jiyan; Liu, Peng; Lin, Wei; Gui, Guan

    2016-09-08

    The localization of a sensor in wireless sensor networks (WSNs) has now gained considerable attention. Since the transmit power and path loss exponent (PLE) are two critical parameters in the received signal strength (RSS) localization technique, many RSS-based location methods, considering the case that both the transmit power and PLE are unknown, have been proposed in the literature. However, these methods require a search process, and cannot give a closed-form solution to sensor localization. In this paper, a novel RSS localization method with a closed-form solution based on a two-step weighted least squares estimator is proposed for the case with the unknown transmit power and uncertainty in PLE. Furthermore, the complete performance analysis of the proposed method is given in the paper. Both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The relationships between the deterministic CRLB and the proposed stochastic CRLB are presented. The paper also proves that the proposed method can reach the stochastic CRLB.

  10. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    PubMed

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  11. Quality of Life and Toxicity From Passively Scattered and Spot-Scanning Proton Beam Therapy for Localized Prostate Cancer

    SciTech Connect

    Pugh, Thomas J.; Munsell, Mark F.; Choi, Seungtaek; Nguyen, Quyhn Nhu; Mathai, Benson; Zhu, X. Ron; Sahoo, Narayan; Gillin, Michael; Johnson, Jennifer L.; Amos, Richard A.; Dong, Lei; Mahmood, Usama; Kuban, Deborah A.; Frank, Steven J.; Hoffman, Karen E.; McGuire, Sean E.; Lee, Andrew K.

    2013-12-01

    Purpose: To report quality of life (QOL)/toxicity in men treated with proton beam therapy for localized prostate cancer and to compare outcomes between passively scattered proton therapy (PSPT) and spot-scanning proton therapy (SSPT). Methods and Materials: Men with localized prostate cancer enrolled on a prospective QOL protocol with a minimum of 2 years' follow-up were reviewed. Comparative groups were defined by technique (PSPT vs SSPT). Patients completed Expanded Prostate Cancer Index Composite questionnaires at baseline and every 3-6 months after proton beam therapy. Clinically meaningful differences in QOL were defined as ≥0.5 × baseline standard deviation. The cumulative incidence of modified Radiation Therapy Oncology Group grade ≥2 gastrointestinal (GI) or genitourinary (GU) toxicity and argon plasma coagulation were determined by the Kaplan-Meier method. Results: A total of 226 men received PSPT, and 65 received SSPT. Both PSPT and SSPT resulted in statistically significant changes in sexual, urinary, and bowel Expanded Prostate Cancer Index Composite summary scores. Only bowel summary, function, and bother resulted in clinically meaningful decrements beyond treatment completion. The decrement in bowel QOL persisted through 24-month follow-up. Cumulative grade ≥2 GU and GI toxicity at 24 months were 13.4% and 9.6%, respectively. There was 1 grade 3 GI toxicity (PSPT group) and no other grade ≥3 GI or GU toxicity. Argon plasma coagulation application was infrequent (PSPT 4.4% vs SSPT 1.5%; P=.21). No statistically significant differences were appreciated between PSPT and SSPT regarding toxicity or QOL. Conclusion: Both PSPT and SSPT confer low rates of grade ≥2 GI or GU toxicity, with preservation of meaningful sexual and urinary QOL at 24 months. A modest, yet clinically meaningful, decrement in bowel QOL was seen throughout follow-up. No toxicity or QOL differences between PSPT and SSPT were identified. Long-term comparative results in a

  12. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model.

    PubMed

    Wright, Laura E; Buijs, Jeroen T; Kim, Hun-Soo; Coats, Laura E; Scheidler, Anne M; John, Sutha K; She, Yun; Murthy, Sreemala; Ma, Ning; Chin-Sinex, Helen J; Bellido, Teresita M; Bateman, Ted A; Mendonca, Marc S; Mohammad, Khalid S; Guise, Theresa A

    2015-07-01

    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; p < 0.0001) and femurs (-14%; p = 0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; p = 0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct

  13. Numerical investigation on the generation of high-order Laguerre-Gaussian beams in end-pumped solid-state lasers by introducing loss control.

    PubMed

    Hu, Ajian; Lei, Jian; Chen, Peifeng; Wang, Ying; Li, Shumo

    2014-11-20

    This paper reports a robust and systematic approach to generate high-order scalar Laguerre-Gaussian (LGp,l) beams in end-pumped solid-state lasers by introducing loss control. Based on the spatial distributions of Laguerre-Gaussian modes and the theory of transverse mode selection, the "loss control" is implemented by an amplitude mask in the resonator. This proposed mechanism can be divided into three categories: radial loss, azimuthal loss, and the combination of radial and azimuthal loss, which correspond to excite radial high-order modes (LGp,0), azimuthal high-order modes (LG0,l), and regular high-order modes (LGp,l), respectively. By controlling the locations and thicknesses of opaque rings and lines on the mask, all kinds of LGp,l modes can be obtained. With the application of mode purity, all the generated modes possess high mode purities greater than 93% in simulation.

  14. Aeroelastic modal characteristics of mistuned blade assemblies: Mode localization and loss of eigenstructure

    NASA Technical Reports Server (NTRS)

    Pierre, Christophe; Murthy, Durbha V.

    1991-01-01

    An investigation of the effects of small mistuning on the aeroelastic modes of bladed disk assemblies with aerodynamic coupling between blades is presented. The cornerstone of the approach is the use and development of perturbation methods that exhibit the crucial role of the interblade coupling and yield general findings regarding mistuning effects. It is shown that blade assemblies with weak aerodynamic interblade coupling are highly sensitive to small blade mistuning, and that their dynamics is quantitatively altered in the following ways: the regular pattern that characterizes the root locus of the tuned aeroelastic eigenvalues in the complex plane is totally lost; the aeroelastic mode shapes becomes severely localized to only a few blades of the assembly and lose their constant interblade phase angle feature; and curve veering phenomena take place when the eigenvalues are plotted versus a mistuning parameter.

  15. Global and Local Conformation of Human IgG Antibody Variants Rationalizes Loss of Thermodynamic Stability.

    PubMed

    Edgeworth, Matthew J; Phillips, Jonathan J; Lowe, David C; Kippen, Alistair D; Higazi, Daniel R; Scrivens, James H

    2015-12-07

    Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion-mobility mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.

  16. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  17. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  18. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGES

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  19. Investigation of local losses as a function of material removal in a large-grain superconducting niobium cavity

    SciTech Connect

    G. Ciovati, P. Kneisel

    2008-01-02

    The performance of a superconducting radio-frequency (RF) cavity made of residual resistivity ratio (RRR) > 200 large-grain niobium has been investigated as a function of material removal, between 70 and 240 mu-m, by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2 K were taken for each step of chemical etching and revealed localized losses (hot-spots), which contribute to the degradation of the cavity quality factor as a function of the RF surface field. It was found that the number of hot-spots decreased for larger material removal. Interestingly, the losses at the hot-spots at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance (Rs) at low field between 4.2 K and 1.7 K, the variation of material parameters such as the energy gap at 0 K, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution shows the results of the RF tests along with the temperature maps and the analysis of the losses caused by the "hot-spots."

  20. Investigation of local losses as a function of material removal in a large-grain superconducting niobium cavity

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel

    2006-08-02

    The performance of a superconducting radio-frequency (RF) cavity made of residual resistivity ratio (RRR) > 200 large-grain niobium has been investigated as a function of material removal, between 70 and 240 ?m, by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2.0 K were taken for each step of chemical etching and revealed localized losses (''hot-spots''), which contribute to the degradation of the cavity quality factor as a function of the RF surface field. It was found that the number of ''hot-spots'' decreased for larger material removal. Interestingly, the losses at the ''hot-spots'' at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance (Rs) at low field between 4.2 K and 1.7 K, the variation of material parameters such as the energy gap at 0 K, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution presents the results of the RF tests along with the temperature maps and the analysis of the losses caused by the ''hot-spots''.

  1. Study of the evolution of the atomic composition of thin NbN films under irradiation with mixed ion beams by methods of electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dement'eva, M. M.; Prikhod'ko, K. E.; Gurovich, B. A.; Kutuzov, L. V.; Komarov, D. A.

    2016-11-01

    The variation in the atomic composition of ultrathin NbN films under irradiation by mixed ion beams to a doze of 4 dpa (for nitrogen) is experimentally studied by methods of electron energy loss spectroscopy with a transmission electron microscope in the transmission scan mode on cross-cut samples. The behavior of the substitution of nitrogen atoms by oxygen atoms has been established; it is characterized by changing the composition of the conducting part of the film from NbN to NbNO.

  2. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  3. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  4. Iodine-125 implant and external beam irradiation in patients with localized pancreatic carcinoma. [Efficacy and complications

    SciTech Connect

    Shipley, W.U.; Nardi, G.L.; Cohen, A.M.; Ling, C.C.

    1980-02-15

    Twelve patients with biopsy-proven clinically localized ductal pancreatic cancers (less than 7 cm in greatest diameter) judged unsuitable for resection were treated by bypass surgery, an Iodine-125 implant (20 to 39 mCi), and postoperative irradiation (4000 to 4500 rads). The potential problems of significant bleeding, pancreatic fistula, or pancreatitis were not experienced. A local recurrence developed in one patient and two recurred in regional lymph nodes. The projected median survival of the group is 11 months with four of the 12 patients still surviving. For purposes of comparison all patients with pancreatic ductal carcinoma treated by radical resection during a similar time were evaluated. All ten have died with a median survival of six months. Twelve of 22 (55%) of the combined implanted and resected groups have developed distant metastasis. Further pursuit of intraoperative techniques of irradiation in combination with adjuvant multidrug chemotherapy seems indicated in an attempt to prolong patient survival which is now limited by hematogenous metastases.

  5. Plasmon Waveguides: Balancing Propagation, Localization, and Loss below the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer; Sweatlock, Luke; Atwater, Harry; Polman, Albert

    2005-03-01

    On subwavelength scales, photon-matter interactions are limited by diffraction. Circumventing this diffraction limit is now a principle focus of integrated nanophotonics. Here, we present studies of surface plasmon (SP) waveguides exhibiting both long-range propagation and spatial confinement of light with lateral dimensions of less than 10 percent of the free-space wavelength. Attention is given to characterizing the dispersion relations, mode profiles, wavelength dependent propagation, and energy density decay in metallodielectric waveguides comprised of silicon dioxide/Ag/silicon dioxide and Ag/silicon dioxide/Ag structures with waveguide thicknesses ranging from 12nm-50nm. Numerical dispersion analysis indicates the presence of three distinct SP branches, including the existence of modes in the plasmon bandgap. For bound modes in Ag waveguides, near-IR propagation lengths exceed centimeter scales only at the expense of confinement. However, enhanced propagation is observed at shorter wavelengths despite notable field localization in the metal. Likewise, for silicon dioxide SP waveguides, propagation lengths exceed tens of microns with fields confined to within 30 nanometers of the structure. Applications of both short and long-wavelength plasmons to photonic waveguiding will be discussed, and utilization of such results for integrated plasmonic applications will be explored.

  6. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer.

    PubMed

    Chaux, Alcides; Peskoe, Sarah B; Gonzalez-Roibon, Nilda; Schultz, Luciana; Albadine, Roula; Hicks, Jessica; De Marzo, Angelo M; Platz, Elizabeth A; Netto, George J

    2012-11-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most frequently lost tumor suppressor genes in human cancers and it has been described in more than two-thirds of patients with advanced/aggressive prostate cancer. Previous studies suggest that, in prostate cancer, genomic PTEN loss is associated with tumor progression and poor prognosis. Thus, we evaluated whether immunohistochemical PTEN expression in prostate cancer glands was associated with higher risk of recurrence, using a nested case-control study that included 451 men who recurred and 451 men who did not recur with clinically localized prostate cancer treated by radical prostatectomy. Recurrence was defined as biochemical recurrence (serum prostate-specific antigen >0.2 ng/ml) or clinical recurrence (local recurrence, systemic metastases, or prostate cancer-related death). Cases and controls were matched on pathological T stage, Gleason score, race/ethnicity, and age at surgery. Odds ratios of recurrence and 95% confidence intervals were estimated using conditional logistic regression to account for the matching factors and to adjust for year of surgery, preoperative prostate-specific antigen concentrations, and status of surgical margins. Men who recurred had a higher proportion of PTEN negative expression (16 vs 11%, P=0.05) and PTEN loss (40 vs 31%, P=0.02) than controls. Men with markedly decreased PTEN staining had a higher risk of recurrence (odds ratio=1.67; 95% confidence intervals 1.09, 2.57; P=0.02) when compared with all other men. In summary, in patients with clinically localized prostate cancer treated by prostatectomy, decreased PTEN expression was associated with an increased risk of recurrence, independent of known clinicopathological factors.

  7. Survival After Conservative Management Versus External Beam Radiation Therapy in Elderly Patients With Localized Prostate Cancer.

    PubMed

    Dell'Oglio, Paolo; Boehm, Katharina; Trudeau, Vincent; Tian, Zhe; Larcher, Alessandro; Leyh-Bannurah, Sami-Ramzi; Moschini, Marco; Capitanio, Umberto; Shariat, Shahrokh F; Briganti, Alberto; Montorsi, Francesco; Saad, Fred; Karakiewicz, Pierre I

    2016-12-01

    To compare survival in elderly men with clinically localized prostate cancer (PCa) according to treatment type, defined as radiation therapy (RT) with or without androgen deprivation therapy (ADT) versus conservative management (observation). In the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified 23,790 patients aged 80 years or more with clinically localized PCa treated with either RT or observation between 1991 and 2009. Competing risks analyses focused on cancer-specific mortality and other-cause mortality, after accounting for confounders. All analyses were repeated after stratification according to grade (well-differentiated vs moderately differentiated vs poorly differentiated disease), race, and United States region, in patients with no comorbidities and in patients with at least 1 comorbidity. Analyses were repeated within most contemporary patients, namely those treated between 2001 and 2009. Radiation therapy was associated with more favorable cancer-specific mortality rates than observation in patients with moderately differentiated disease (hazard ratio [HR] 0.79; 95% confidence interval [CI] 0.66-0.94; P=.009) and in patients with poorly differentiated disease (HR 0.58; 95% CI 0.49-0.69; P<.001). Conversely, the benefit of RT was not observed in well-differentiated disease. The benefit of RT was confirmed in black men (HR 0.54; 95% CI 0.35-0.83; P=.004), across all United States regions (all P≤.004), in the subgroups of the healthiest patients (HR 0.67; 95% CI 0.57-0.78; P<.001), in patients with at least 1 comorbidity (HR 0.69; 95% CI 0.56-0.83; P<.001), and in most contemporary patients (HR 0.55; 95% CI 0.46-0.66; P<.001). Radiation therapy seems to be associated with a reduction in the risk of death from PCa relative to observation in elderly patients with clinically localized PCa, except for those with well-differentiated disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. LOCAL-AREA CARTILAGE SEGMENTATION (LACS), A SEMI-AUTOMATED NOVEL METHOD OF MEASURING CARTILAGE LOSS IN KNEE OSTEOARTHRITIS

    PubMed Central

    Duryea, Jeffrey; Iranpour-Boroujeni, Tannaz; Collins, Jamie E.; Vanwynngaarden, Case; Guermazi, Ali; Katz, Jeffrey N.; Losina, Elena; Russell, Ruby; Ratzlaff, Charles

    2014-01-01

    OBJECTIVE To assess the responsiveness and reader time of a novel semi-automated tool to detect knee cartilage loss over two years in subjects with knee OA. METHODS 122 subjects from the OAI Progression Cohort were selected. A reader used the software method to segment cartilage on DESS scans in the medial compartment of the femur from the baseline and 24-month visits. Change in cartilage volume (ΔV) was measured at a fixed weight-bearing (WB) location with respect to the three-dimensional coordinate system based on cylindrical coordinates. Change was measured for five regions of varying WB surface area centered on the fixed point. The average change (ΔV), the standard deviation (SD) of ΔV and the standardized response mean (SRM) are reported. RESULTS The SRM value was −0.52 for the largest region and decreased in magnitude as smaller regions of cartilage were probed. The average evaluation time was less than 20 minutes per knee compartment, split approximately evenly between a technician and a trained reader. CONCLUSION The results establish that measurement of cartilage loss in a local region can be done efficiently and that the resultant measures are responsive to loss of cartilage over time. The coordinate system can potentially be used to objectively examine and establish a consistent location for all knees that is most responsive to change in cartilage volume. This technique can provide an objective quantitative measure of cartilage loss rapidly and could substantially reduce study costs for large trials and datasets. PMID:24664976

  9. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    PubMed Central

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  10. Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO{sub 3} films grown by molecular beam epitaxy

    SciTech Connect

    Fisher, P.; Du, H.; Skowronski, M.; Salvador, P. A.; Maksimov, O.; Weng, X.

    2008-01-01

    SrTiO{sub 3} films were grown by reactive molecular beam epitaxy to have varying degrees of both global and local cationic nonstoichiometries (with stoichiometry defined as a 1:1 ratio of Sr:Ti). Slight global excesses of Sr and Ti resulted in two-fold reconstructions in the reflection high-energy electron diffraction patterns along the [110] and [100] azimuths, respectively. Larger global nonstoichiometries (2:1 and 1:2 ratios) were also accommodated into the film's crystalline structure and affected the long-range crystalline order as observed in the x-ray diffraction patterns, both of which were related to the parent perovskite pattern. Local nonstoichiometries were introduced by depositing multiple monolayers (MLs) (from 2 to 33) of SrO and TiO{sub 2} in an alternating fashion, while maintaining the global SrTiO{sub 3} stoichiometry. These layered structures of SrO and TiO{sub 2} blocks inter-reacted during growth to form highly crystalline epitaxial SrTiO{sub 3}. Films grown in this manner with blocks thicker than 8 MLs were fully relaxed and, when the block thicknesses ranged between 8 and 10 MLs, the full widths at half maxima of 2{theta} peaks were narrower than the standard SrTiO{sub 3} films having blocks 1 ML thick.

  11. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model.

    PubMed

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-06-27

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.

  12. ACR Appropriateness Criteria® external-beam radiation therapy treatment planning for clinically localized prostate cancer.

    PubMed

    Abdel-Wahab, May; Mahmoud, Omar; Merrick, Gregory; Hsu, I-Chow Joe; Arterbery, V Elayne; Ciezki, Jay P; Frank, Steven J; Mohler, James Lloyd; Moran, Brian J; Rosenthal, Seth A; Rossi, Carl J; Yamada, Yoshiya

    2012-04-01

    Image-based radiation treatment planning and localization have contributed to better targeting of the prostate and sparing of normal tissues. Guidelines are needed to address radiation dose delivery, including patient setup and immobilization, target volume definition, treatment planning, treatment delivery methods, and target localization. Guidelines for external-beam radiation treatment planning have been updated and are presented here. The use of appropriate doses, simulation techniques, and verification of field setup are essential for the accurate delivery of radiation therapy. The ACR Appropriateness Criteria(®) are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  13. Investigation of artificial domains realized by local gallium focused ion-beam modification of Pt/Co/Pt trilayer structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Bending, S. J.; Roberts, H.; Crampin, S.; Heard, P. J.; Marrows, C. H.

    2006-04-01

    We present the results of experimental investigations of magnetic switching and magnetotransport in a generation of magnetic devices containing artificially patterned domains. Our devices are realized by locally reducing the coercive field of a perpendicularly magnetized Pt(3.5 nm)/Co(0.5 nm)/Pt(1.6 nm) trilayer structure using a gallium focused ion beam. Artificial domain walls are created at the interfaces between dosed and undosed regions when an external magnetic field switches the former but not the latter. We have exploited this property to create stripelike domains with widths down to submicron length scales, separated by undosed regions. Using the extraordinary Hall effect to monitor the local magnetization we have investigated the reversal dynamics of these artificial domains by measuring major and minor hysteresis loops. The coercive field of regions irradiated with identical doses systematically increases as their size decreases. In the lower branch of minor loops, reversal is seen to occur via a few large Barkhausen events. Preliminary measurements of transport across domain walls reveal a positive domain-wall resistance, that does not change sign from 4.2 to 300 K.

  14. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    SciTech Connect

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  15. Prostate-specific antigen kinetics following hypofractionated stereotactic body radiotherapy boost as post-external beam radiotherapy versus conventionally fractionated external beam radiotherapy for localized prostate cancer

    PubMed Central

    Phak, Jeong Hoon; Kim, Hun Jung; Kim, Woo Chul

    2015-01-01

    Background Stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. The purpose of this study was to compare the prostate-specific antigen (PSA) kinetics between conventionally fractionated external beam radiotherapy (CF-EBRT) and SBRT boost after whole pelvis EBRT (WP-EBRT) in localized prostate cancer. Methods A total of 77 patients with localized prostate cancer [T-stage, T1–T3; Gleason score (GS) 5–9; PSA < 20 ng/mL] were enrolled. A total of 35 patients were treated with SBRT boost (21 Gy in 3 fractions) after WP-EBRT and 42 patients were treated with CF-EBRT (45 Gy WP-EBRT and boost of 25.2–30.6 Gy in 1.8-Gy fractions). PSA nadir and rate of change in PSA (slope) were calculated and compared. Results With a median follow-up of 52.4 months (range, 14–74 months), the median PSA nadir and slope for SBRT boost were 0.29 ng/mL and −0.506, −0.235, −0.129, and −0.092 ng/mL/mo, respectively, for durations of 1 year, 2 years, 3 years, and 4 years postradiotherapy. Similarly, for CF-EBRT, the median PSA nadir and slopes were 0.39 ng/mL and −0.720 ng/mL/mo, −0.204 ng/mL/mo, −0.121 ng/mL/mo, and −0.067 ng/mL/mo, respectively. The slope of CF-EBRT was significantly different with a greater median rate of change for 1 year postradiotherapy than that of SBRT boost (P = 0.018). Contrastively, the slopes of SBRT boost for durations of 2 years, 3 years, and 4 years tended to be continuously greater than that of CF-EBRT. The significantly lower PSA nadir was observed in SBRT boost (median nadir 0.29 ng/mL) compared with CF-EBRT (median nadir 0.35 ng/mL, P = 0.025). Five-year biochemical failure (BCF) free survival was 94.3% for SBRT boost and 78.6% for CF-EBRT (P = 0.012). Conclusion Patients treated with SBRT boost after WP-EBRT experienced a lower PSA nadir and there tended to be a continuously greater rate of decline of PSA for durations of 2 years, 3 years, and

  16. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    SciTech Connect

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-07-15

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic ({sigma}) and random ({sigma}) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic ({sigma}) and random ({sigma}) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  17. Percutaneous transthoracic localization of pulmonary nodules under C-arm cone-beam CT virtual navigation guidance.

    PubMed

    Kim, Tae Ho; Park, Chang Min; Lee, Sang Min; McAdams, H Page; Kim, Young Tae; Goo, Jin Mo

    2016-01-01

    We aimed to describe our initial experience with percutaneous transthoracic localization (PTL) of pulmonary nodules using a C-arm cone-beam CT (CBCT) virtual navigation guidance system. From February 2013 to March 2014, 79 consecutive patients (mean age, 61±10 years) with 81 solid or ground-glass nodules (mean size, 12.36±7.21 mm; range, 4.8-25 mm) underwent PTLs prior to video-assisted thoracoscopic surgery (VATS) excision under CBCT virtual navigation guidance using lipiodol (mean volume, 0.18±0.04 mL). Their procedural details, radiation dose, and complication rates were described. All 81 target nodules were successfully localized within 10 mm (mean distance, 2.54±3.24 mm) from the lipiodol markings. Mean number of CT acquisitions was 3.2±0.7, total procedure time was 14.6±5.14 min, and estimated radiation exposure during the localization was 5.21±2.51 mSv. Postprocedural complications occurred in 14 cases (17.3%); complications were minimal pneumothorax (n=10, 12.3%), parenchymal hemorrhage (n=3, 3.7%), and a small amount of hemoptysis (n=1, 1.2%). All target nodules were completely resected; pathologic diagnosis included invasive adenocarcinoma (n=53), adenocarcinoma-in-situ (n=10), atypical adenomatous hyperplasia (n=4), metastasis (n=7), and benign lesions (n=7). PTL procedures can be performed safely and accurately under the guidance of a CBCT virtual navigation system.

  18. Effect of local buckling and work-hardening properties of the material on the hysteretic behavior of cantilever I-beam subjected to lateral cyclic load

    SciTech Connect

    Shaker, R.E.; Murakawa, Hidekazu; Ueda, Yukio

    1993-12-31

    The hysteretic behavior of cantilever I-beam subjected to cyclic lateral loads is investigated in this paper. Finite Element Method (FEM) considering the geometrical and material non-linearities is utilized in this study. Special attention is paid to the effects of local buckling occurring in the flanges and the web, and the material work-hardening properties on the performance of I-beam in view of a seismic design considerations. The behavior of I-beam subjected to cyclic lateral loads is closely examined with respect to the ductility, strength and absorbed energy. From this study, it is found that smaller slenderness ratios of the flange and web are recommended for improving the ductility, strength and absorbed energy. Also, the material having lower yield-to-tensile strength improves the ductility of I-beam under cyclic lateral loads as well as monotonically increasing load.

  19. Long-Term Quality of Life Outcome After Proton Beam Monotherapy for Localized Prostate Cancer

    SciTech Connect

    Coen, John J.; Paly, Jonathan J.; Niemierko, Andrzej; Weyman, Elizabeth; Rodrigues, Anita; Shipley, William U.; Zietman, Anthony L.; Talcott, James A.

    2012-02-01

    Objectives: High-dose external radiation for localized prostate cancer results in favorable clinical outcomes and low toxicity rates. Here, we report long-term quality of life (QOL) outcome for men treated with conformal protons. Methods: QOL questionnaires were sent at specified intervals to 95 men who received proton radiation. Of these, 87 men reported 3- and/or 12-month outcomes, whereas 73 also reported long-term outcomes (minimum 2 years). Symptom scores were calculated at baseline, 3 months, 12 months, and long-term follow-up. Generalized estimating equation models were constructed to assess longitudinal outcomes while accounting for correlation among repeated measures in an individual patient. Men were stratified into functional groups from their baseline questionnaires (normal, intermediate, or poor function) for each symptom domain. Long-term QOL changes were assessed overall and within functional groups using the Wilcoxon signed-rank test. Results: Statistically significant changes in all four symptom scores were observed in the longitudinal analysis. For the 73 men reporting long-term outcomes, there were significant change scores for incontinence (ID), bowel (BD) and sexual dysfunction (SD), but not obstructive/irritative voiding dysfunction (OID). When stratified by baseline functional category, only men with normal function had increased scores for ID and BD. For SD, there were significant changes in men with both normal and intermediate function, but not poor function. Conclusions: Patient reported outcomes are sensitive indicators of treatment-related morbidity. These results quantitate the long-term consequences of proton monotherapy for prostate cancer. Analysis by baseline functional category provides an individualized prediction of long-term QOL scores. High dose proton radiation was associated with small increases in bowel dysfunction and incontinence, with more pronounced changes in sexual dysfunction.

  20. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    SciTech Connect

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S.; Rimner, Andreas

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  1. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    PubMed Central

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S.

    2014-01-01

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  2. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    PubMed

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  3. SU-E-T-215: Comparison of VMAT-SABR Treatment Plans with Flattened Filter (FF) Beam and Flattening Filter-Free (FFF) Beam for Localized Prostate Cancer

    SciTech Connect

    Chung, J; Kim, J; Kang, S; Suh, T

    2015-06-15

    Purpose: The purpose of this study is to access VMAT-SABR plan using flattening filter (FF) and flattening filter-free (FFF) beam, and compare the verification results for all pretreatment plans. Methods: SABR plans for 20 prostate patients were optimized in the Eclipse treatment planning system. A prescription dose was 42.7 Gy/7 fractions. Four SABR plans for each patient were calculated using Acuros XB algorithm with both FF and FFF beams of 6- and 10-MV. The dose-volume histograms (DVH) and technical parameters were recorded and compared. A pretreatment verification was performed and the gamma analysis was used to quantify the agreement between calculations and measurements. Results: For each patient, the DVHs are closely similar for plans of four different beams. There are small differences showed in dose distributions and corresponding DVHs when comparing the each plan related to the same patient. Sparing on bladder and rectum was slightly better on plans with 10-MV FF and FFF than with 6-MV FF and FFF, but this difference was negligible. However, there was no significance in the other OARs. The mean agreement of 3%/3mm criteria was higher than 97% in all plans. The mean MUs and deliver time employed was 1701±101 and 3.02±0.17 min for 6-MV FF, 1870±116 and 1.69±0.08 min for 6-MV FFF, 1471±86 and 2.68±0.14 min for 10-MV FF, and 1619±101 and 0.98±0.04 min for 10-MV FFF, respectively. Conclusion: Dose distributions on prostate SABR plans using FFF beams were similar to those generated by FF beams. However, the use of FFF beam offers a clear benefit in delivery time when compared to FF beam. Verification of pretreatment also represented the acceptable and comparable results in all plans using FF beam as well as FFF beam. Therefore, this study suggests that the use of FFF beam is feasible and efficient technique for prostate SABR.

  4. Deformable Image Registration with Local Rigidity Constraints for Cone-Beam CT Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    Image-guided spine surgery is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative CBCT using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced 3 properties of a rigid transformation – namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (𝒟 = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (𝒮 = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  5. Defective Neutrophil Recruitment in Leukocyte Adhesion Deficiency Type I Disease Causes Local IL-17-driven Inflammatory Bone Loss

    PubMed Central

    Moutsopoulos, Niki; Konkel, Joanne; Sarmadi, Mojgan; Eskan, Mehmet A.; Wild, Teresa; Dutzan, Nicolas; Abusleme, Loreto; Zenobia, Camille; Hosur, Kavita B.; Abe, Toshiharu; Uzel, Gulbu; Chen, WanJun; Chavakis, Triantafyllos; Holland, Steven M.; Hajishengallis, George

    2014-01-01

    Leukocyte adhesion deficiency Type I (LAD-I), a disease syndrome associated with frequent microbial infections, is caused by mutations on the CD18 subunit of β2 integrins. LAD-I is invariably associated with severe periodontal bone loss, historically attributed to lack of neutrophil surveillance of the periodontal infection. Here, we challenge this dogma by showing that the cytokine IL-17 plays a major role in the oral pathology of LAD-I. Defective neutrophil recruitment in LAD-I patients, or in LFA-1 (CD11a/CD18)-deficient mice that exhibit the LAD-I periodontal phenotype, was associated with excessive production of predominantly T cell-derived IL-17 in the periodontal tissue. The pathological elevation of IL-17 in the LFA-1–deficient periodontal tissue derived also from innate lymphoid cells. Strikingly, local treatment with anti-IL-17 (or anti-IL-23) in LFA-1-deficient mice not only blocked inflammatory periodontal bone loss but also caused a reduction in the total bacterial burden, suggesting that the IL-17-driven pathogenesis of LAD-I periodontitis leads to dysbiosis. Our findings therefore support an IL-17-targeted therapy for this condition. PMID:24670684

  6. Serotonin-reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect.

    PubMed

    Ortuño, María José; Robinson, Samuel T; Subramanyam, Prakash; Paone, Riccardo; Huang, Yung-Yu; Guo, X Edward; Colecraft, Henry M; Mann, J John; Ducy, Patricia

    2016-10-01

    The use of selective serotonin-reuptake inhibitors (SSRIs) has been associated with an increased risk of bone fracture, raising concerns about their increasingly broader usage. This deleterious effect is poorly understood, and thus strategies to avoid this side effect remain elusive. We show here that fluoxetine (Flx), one of the most-prescribed SSRIs, acts on bone remodeling through two distinct mechanisms. Peripherally, Flx has anti-resorptive properties, directly impairing osteoclast differentiation and function through a serotonin-reuptake-independent mechanism that is dependent on intracellular Ca(2+) levels and the transcription factor Nfatc1. With time, however, Flx also triggers a brain-serotonin-dependent rise in sympathetic output that increases bone resorption sufficiently to counteract its local anti-resorptive effect, thus leading to a net effect of impaired bone formation and bone loss. Accordingly, neutralizing this second mode of action through co-treatment with the β-blocker propranolol, while leaving the peripheral effect intact, prevents Flx-induced bone loss in mice. Hence, this study identifies a dual mode of action of SSRIs on bone remodeling and suggests a therapeutic strategy to block the deleterious effect on bone homeostasis from their chronic use.

  7. Serotonin reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local antiresorptive effect

    PubMed Central

    Ortuño, María José; Robinson, Samuel T.; Subramanyam, Prakash; Paone, Riccardo; Huang, Yung-yu; Guo, X. Edward; Colecraft, Henry M.; Mann, J. John; Ducy, Patricia

    2016-01-01

    The use of selective serotonin reuptake inhibitors (SSRIs) has been associated with an increased risk of bone fracture, raising concerns about their increasingly broader usage. This deleterious effect is poorly understood and thus strategies to avoid this side effect remain elusive. We show here that fluoxetine (Flx), one of the most prescribed SSRI, acts on bone remodeling through two distinct mechanisms. Peripherally, Flx has antiresorptive properties, directly impairing osteoclast differentiation and function through a serotonin reuptake-independent Ca2+-calmodulin-NFATc1-dependent mechanism. With time, however, Flx also triggers a brain serotonin-dependent rise in sympathetic output that increases bone resorption sufficiently to counteract its local antiresorptive effect; thus leading to a net effect of impaired bone formation and bone loss. Accordingly, neutralizing this second mode of action through co-treatment with the β-blocker propranolol, while leaving the peripheral effect intact, prevents Flx-induced bone loss in mice. Hence, this study identifies a dual mode of action of SSRIs on bone remodeling and suggests a therapeutic strategy to block the deleterious effect on bone homeostasis from their chronic use. PMID:27595322

  8. Low-energy-loss electron microscopy of doxorubicin in human breast cancer MCF-7 cells: localization by color.

    PubMed

    Mhawi, A Amir; Fernandes, Allan B; Ottensmeyer, F Peter

    2007-04-01

    The distribution of the anti-cancer drug doxorubicin (DOX) in human breast cancer MCF-7 cells was imaged directly by low-energy-loss electron microscopy (EM) without specific antibodies or heavy metal stains, using only the electron-induced molecular orbital excitation of the drug. Cells treated with DOX were examined live by confocal fluorescence microscopy and as very thin sections in an electron microscope equipped with an electron energy filter having an energy resolution of 1 eV. The distribution of DOX obtained by EM from pairs of images at energy losses of 3+/-1 eV and 10+/-1 eV agreed with fluorescence microscope observations, but provided much more detail, easily distinguishing localization between nuclear membrane and perimembrane compartments and between vacuolated nucleoli and perinucleolar chromatin. Treatment times up to 1h and DOX concentrations up to 30 microM indicated a progression of DOX ingress from higher concentrations in the nuclear membrane to labeling of the nucleolus. Subsequently DOX moved into perinucleolar chromatin and concentrated in perimembrane chromatin aggregations. Quantification of the DOX signal indicated a decay half-life of 320 e/A2 under electron irradiation, whereas each image at 3000 x required 10 e/A2. The results point to a new field of high resolution microanalysis: color electron microscopy.

  9. A phased array antenna with a broadly steerable beam based on a low-loss metasurface lens

    NASA Astrophysics Data System (ADS)

    Liu, Yahong; Jin, Xueyu; Zhou, Xin; Luo, Yang; Song, Kun; Huang, Lvhongzi; Zhao, Xiaopeng

    2016-10-01

    A new concept for a gradient phase discontinuity metasurface lens integrated with a phased array antenna possessing a broadly steerable beam is presented in this paper. The metasurface lens is composed of a metallic H-shaped pattern and the metallic square split ring can achieve complete 360° transmission phase coverage at 30° phase intervals. The metasurface can refract an incident plane wave to an angle at will by varying the lattice constant. We demonstrate that the beam steering range of the phased array antenna is between 12° and 85° when the metasurface lens with a refracting electromagnetic wave is employed at 45°. Interestingly, the proposed array antenna has a much higher gain than a conventional phased array antenna at low elevation angles. It is expected that the proposed array antenna will have potential applications in wireless and satellite communications. Furthermore, the proposed array antenna is fabricated easily and is also low in cost due to its microstrip technology.

  10. Sound transmission loss through metamaterial plate with lateral local resonators in the presence of external mean flow.

    PubMed

    Wang, Ting; Sheng, Meiping; Qin, Qinghua

    2017-02-01

    In the context of sound incident upon a metamaterial plate, explicit formulas for sound transmission loss (STL) are derived in the presence of external mean flow. Metamaterial plate, consisting of homogeneous plate and lateral local resonators (LLRs), is homogenized by using effective medium method to obtain the effective mass density and facilitate the calculation of STL. Results show that (a) vigorously oscillating LLRs lead to higher STL compared with bare plate, (b) increasing Mach number of the external mean flow helps obtain higher STL below the coincidence frequency but decreases STL above the coincidence frequency due to the added mass effect of light fluid loading and aerodynamic damping effect, (c) the coincidence frequency shifts to higher frequency range for the refracted effect of the external mean flow. However, effects of the flow on STL within negative mass density range can be neglected because of the lateral local resonance occurring. Moreover, hysteretic damping from metamaterial can only smooth the transmission curves by lowering higher peaks and filling dips. Effects of incident angles on STL are also examined. It is demonstrated that increasing elevation angle can improve the sound insulation, while the azimuth angle does not.

  11. Identification of local phase of nanoscale BaTiO₃ powders by high-resolution electron energy loss spectroscopy.

    PubMed

    Moon, Sun-Min; Wang, Xiaohui; Cho, Nam-Hee

    2013-08-01

    The electron energy loss spectroscopy (EELS) technique was applied to investigate the local variation in the phase of barium titanate (BaTiO₃) ceramics. It was found that the fine structure of the titanium L₂,₃ edge and their satellite peaks were sensitively varied with the tetragonal-cubic phase transition. The peak splitting of Ti-L₃ edge of tetragonal-phased BaTiO₃ ceramics was widened because of the increased crystal field effect compared with that of cubic-phased BaTiO₃. In case of nanoscale BaTiO₃ powders, the L₃ edge splitting of the core region was found to be smaller than that of the shell region. The energy gap between peaks t₂g and eg varied from 2.36 to 1.94 eV with changing the probe position from 1 to 20 nm from the surface. These results suggest that the EELS technique can be used to identify the local phase of sintered BaTiO₃ ceramics.

  12. Stereotactic Ablative Radiosurgery for Locally Advanced or Recurrent Skull Base Malignancies with Prior External Beam Radiation Therapy

    PubMed Central

    Xu, Karen M.; Quan, Kimmen; Clump, David A.; Ferris, Robert L.; Heron, Dwight E.

    2015-01-01

    Purpose: Stereotactic ablative radiotherapy (SABR) is an attractive modality to treat malignancies invading the skull base as it can deliver a highly conformal dose with minimal toxicity. However, variation exists in the prescribed dose and fractionation. The purpose of our study is to examine the local control, survival, and toxicities in SABR for the treatment of previously irradiated malignant skull base tumors. Materials and methods: A total of 31 patients and 40 locally advanced or recurrent head and neck malignancies involving the skull base treated with a common SABR regimen, which delivers a radiation dose of 44 Gy in 5 fractions from January 1st, 2004 to December 31st, 2013, were retrospectively reviewed. The local control rate (LC), progression-free survival rate, overall survival (OS) rate, and toxicities were reported. Results: The median follow-up time of all patients was 11.4 months (range: 0.6–67.2 months). The median tumor volume was 27 cm3 (range: 2.4–205 cm3). All patients received prior external beam radiation therapy with a median radiation dose of 64 Gy (range: 24–75.6 Gy) delivered in 12–42 fractions. Twenty patients had surgeries prior to SABR. Nineteen patients received chemotherapy. Specifically, eight patients received concurrent cetuximab (Erbitux™) with SABR. The median time-to-progression (TTP) was 3.3 months (range: 0–16.9 months). For the 29 patients (93.5%) who died, the median time from the end of first SABR to death was 10.3 months (range: 0.5–41.4 months). The estimated 1-year OS rate was 35%. The estimated 2-year OS rate was 12%. Treatment was well-tolerated without grade 4 or 5 treatment-related toxicities. Conclusion: Stereotactic ablative radiotherapy has been shown to achieve low toxicities in locally advanced or recurrent, previously irradiated head and neck malignancies invading the skull base. PMID:25853093

  13. Localized Si enrichment in coherent self-assembled Ge islands grown by molecular beam epitaxy on (001)Si single crystal

    SciTech Connect

    Valvo, M.; Bongiorno, C.; Giannazzo, F.; Terrasi, A.

    2013-01-21

    Transmission electron microscopy (TEM), atomic force microscopy, and Rutherford backscattering spectrometry (RBS) have been used to investigate the morphology, structure, and composition of self-assembled Ge islands grown on Si (001) substrates by molecular beam epitaxy (MBE) at different temperatures. Increasing the temperature from 550 Degree-Sign C to 700 Degree-Sign C causes progressive size and shape uniformity, accompanied by enhanced Si-Ge intermixing within the islands and their wetting layer. Elemental maps obtained by energy filtered-TEM (EF-TEM) clearly show pronounced Si concentration not only in correspondence of island base perimeters, but also along their curved surface boundaries. This phenomenon is strengthened by an increase of the growth temperature, being practically negligible at 550 Degree-Sign C, while very remarkable already at 650 Degree-Sign C. The resulting island shape is affected, since this localized Si enrichment not only provides strain relief near their highly stressed base perimeters but it also influences the cluster surface energy by effective alloying, so as to form Si-enriched SiGe interfaces. Further increase to 700 Degree-Sign C causes a shape transition where more homogenous Si-Ge concentration profiles are observed. The crucial role played by local 'flattened' alloyed clusters, similar to truncated pyramids with larger bases and enhanced Si enrichment at coherently stressed interfaces, has been further clarified by EF-TEM analysis of a multi-layered Ge/Si structure containing stacked Ge islands grown at 650 Degree-Sign C. Sharp accumulation of Si has been here observed not only in proximity of the uncapped island surface in the topmost layer but also at the buried Ge/Si interfaces and even in the core of such capped Ge islands.

  14. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  15. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    NASA Astrophysics Data System (ADS)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG

  16. Analysis of automatic match results for cone-beam computed tomography localization of conventionally fractionated lung tumors.

    PubMed

    Grams, Michael P; Brown, Lindsay C; Brinkmann, Debra H; Pafundi, Deanna H; Mundy, Daniel W; Garces, Yolanda I; Park, Sean S; Olivier, Kenneth R; de los Santos, Luis E Fong

    2014-01-01

    To evaluate the dependence of an automatic match process on the size of the user-defined region of interest (ROI), the structure volume of interest (VOI), and changes in tumor volume when using cone-beam computed tomography (CBCT) for tumor localization and to compare these results with a gold standard defined by a physician's manual match. Daily CBCT images for 11 patients with lung cancer treated with conventionally fractionated radiation therapy were retrospectively matched to a reference CT image using the Varian On Board Imager software (Varian, Palo Alto, CA) and a 3-step automatic matching protocol. Matches were performed with 3 ROI sizes (small, medium, large), with and without a structure VOI (internal target volume [ITV] or planning target volume [PTV]) used in the last step. Additionally, matches were performed using an intensity range that isolated the bony anatomy of the spinal column. All automatic matches were compared with a manual match made by a physician. The CBCT images from 109 fractions were analyzed. Automatic match results depend on ROI size and the structure VOI. Compared with the physician's manual match, automatic matches using the PTV as the structure VOI and a small ROI resulted in differences ≥ 5 mm in 1.8% of comparisons. Automatic matches using no VOI and a large ROI differed by ≥ 5 mm in 30.3% of comparisons. Differences between manual and automatic matches using the ITV as the structure VOI increased as tumor size decreased during the treatment course. Users of automatic matching techniques should carefully consider how user-defined parameters affect tumor localization. Automatic matches using the PTV as the structure VOI and a small ROI were most consistent with a physician's manual match, and were independent of volumetric tumor changes. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. A freely localized discharge excited by intense microwave beams in high-pressure gases. Physics and applications

    SciTech Connect

    Vikharev, A.L.; Gorbachev, A.M.

    1995-12-31

    In the paper the recent successes of IAP microwave discharge group in studies of a discharge excited by intense converging microwave beams in high-pressure gases are presented. This discharge as a source of nonequilibrium freely localized plasma is very promising for a lot of applications in industry such as surface treatment, thin film deposition and super-pure plasma chemistry. But its successful application depends on the understanding of the physical processes which define dynamics, complicated discharge structure and plasma parameters. In the experiments the microwaves of wavelength 8-mm, pulse power 400 kW, pulse duration 50--500 microsecond, pulses repetition frequency 0.1--10 Hz are used. The main discharge properties in different gases at pressure 100--760 Torr are investigated. Numerical simulation of the discharge dynamics, taking into account heating and displacement of the gas in the nonisobaric case, permits them to generalize the existing results of experimental studies, and to discover new effects associated with the appearance of the plasma filament. Thus, they have shown that ultraviolet (UV) emission call be stimulated from the plasma filament. The efficient generation of UV radiation in a high-pressure discharge shows that its application in plasma chemical reactors for clearing air of industrial pollution (e.g., freon) is promising.

  18. The behavior of beams of relativistic non-thermal electrons under the influence of collisions and synchrotron losses

    NASA Technical Reports Server (NTRS)

    Mctiernan, James M.; Petrosian, Vahe

    1989-01-01

    For many astrophysical situations, such as in solar flares or cosmic gamma-ray bursts, continuum gamma rays with energies up to hundreds of MeV were observed, and can be interpreted to be due to bremsstrahlung radiation by relativistic electrons. The region of acceleration for these particles is not necessarily the same as the region in which the radiation is produced, and the effects of the transport of the electrons must be included in the general problem. Hence it is necessary to solve the kinetic equation for relativistic electrons, including all the interactions and loss mechanisms relevant at such energies. The resulting kinetic equation for non-thermal electrons, including the effects of Coulomb collisions and losses due to synchrotron emission, was solved analytically in some simple limiting cases, and numerically for the general cases including constant and varying background plasma density and magnetic field. New approximate analytic solutions are presented for collision dominated cases, for small pitch angles and all energies, synchrotron dominated cases, both steady-state and time dependent, for all pitch angles and energies, and for cases when both synchrotron and collisional energy losses are important, but for relativistic electrons. These analytic solutions are compared to the full numerical results in the proper limits. These results will be useful for calculation of spectra and angular distribution of the radiation (x rays, gamma-rays, and microwaves) emitted via synchrotron or bremsstrahlung processes by the electrons. These properties and their relevance to observations will be observed in subsequent papers.

  19. SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery

    SciTech Connect

    Atkinson, P; Chen, Q

    2016-06-15

    Purpose: To assess the clinical efficacy of auto beam hold during prostate RapidArc delivery, triggered by fiducial localization on kV imaging with a Varian True Beam. Methods: Prostate patients with four gold fiducials were candidates in this study. Daily setup was accomplished by aligning to fiducials using orthogonal kV imaging. During RapidArc delivery, a kV image was automatically acquired with a momentary beam hold every 60 degrees of gantry rotation. The position of each fiducial was identified by a search algorithm and compared to a predetermined 1.4 cm diameter target area. Treatment continued if all the fiducials were within the target area. If any fiducial was outside the target area the beam hold was not released, and the operators determined if the patient needed re-alignment using the daily setup method. Results: Four patients were initially selected. For three patients, the auto beam hold performed seamlessly. In one instance, the system correctly identified misaligned fiducials, stopped treatment, and the patient was re-positioned. The fourth patient had a prosthetic hip which sometimes blocked the fiducials and caused the fiducial search algorithm to fail. The auto beam hold was disabled for this patient and the therapists manually monitored the fiducial positions during treatment. Average delivery time for a 2-arc fraction was increased by 59 seconds. Phantom studies indicated the dose discrepancy related to multiple beam holds is <0.1%. For a plan with 43 fractions, the additional imaging increased dose by an estimated 68 cGy. Conclusion: Automated intrafraction kV imaging can effectively perform auto beam holds due to patient movement, with the exception of prosthetic hip patients. The additional imaging dose and delivery time are clinically acceptable. It may be a cost-effective alternative to Calypso in RapidArc prostate patient delivery. Further study is warranted to explore its feasibility under various clinical conditions.

  20. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-10-15

    Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Two borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.

  1. PTH1-34 Alleviates Radiotherapy-induced Local Bone Loss by Improving Osteoblast and Osteocyte Survival

    PubMed Central

    Chandra, Abhishek; Lin, Tiao; Tribble, Mary Beth; Zhu, Ji; Altman, Allison R.; Tseng, Weiju; Zhang, Yejia; Akintoye, Sunday O.; Cengel, Keith; Liu, X. Sherry; Qin, Ling

    2014-01-01

    Cancer radiotherapy is often complicated by a spectrum of changes in the neighboring bone from mild osteopenia to osteoradionecrosis. We previously reported that parathyroid hormone (PTH, 1–34), an anabolic agent for osteoporosis, reversed bone structural deterioration caused by multiple microcomputed tomography (microCT) scans in adolescent rats. To simulate clinical radiotherapy for cancer patients and to search for remedies, we focally irradiated the tibial metaphyseal region of adult rats with a newly available small animal radiation research platform (SARRP) and treated these rats with intermittent injections of PTH1–34. Using a unique 3D image registration method that we recently developed, we traced the local changes of the same trabecular bone before and after treatments, and observed that, while radiation caused a loss of small trabecular elements leading to significant decreases in bone mass and strength, PTH1–34 preserved all trabecular elements in irradiated bone with remarkable increases in bone mass and strength. Histomorphometry demonstrated that SARRP radiation severely reduced osteoblast number and activity, which were impressively reversed by PTH treatment. In contrast, suppressing bone resorption by alendronate failed to rescue radiation-induced bone loss and to block the rescue effect of PTH1–34. Furthermore, histological analyses revealed that PTH1–34 protected osteoblasts and osteocytes from radiation-induced apoptosis and attenuated radiation-induced bone marrow adiposity. Taken together, our data strongly support a robust radioprotective effect of PTH on trabecular bone integrity through preserving bone formation and shed light on further investigations of an anabolic therapy for radiation-induced bone damage. PMID:24998454

  2. PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival.

    PubMed

    Chandra, Abhishek; Lin, Tiao; Tribble, Mary Beth; Zhu, Ji; Altman, Allison R; Tseng, Wei-Ju; Zhang, Yejia; Akintoye, Sunday O; Cengel, Keith; Liu, X Sherry; Qin, Ling

    2014-10-01

    Cancer radiotherapy is often complicated by a spectrum of changes in the neighboring bone from mild osteopenia to osteoradionecrosis. We previously reported that parathyroid hormone (PTH, 1-34), an anabolic agent for osteoporosis, reversed bone structural deterioration caused by multiple microcomputed tomography (microCT) scans in adolescent rats. To simulate clinical radiotherapy for cancer patients and to search for remedies, we focally irradiated the tibial metaphyseal region of adult rats with a newly available small animal radiation research platform (SARRP) and treated these rats with intermittent injections of PTH1-34. Using a unique 3D image registration method that we recently developed, we traced the local changes of the same trabecular bone before and after treatments, and observed that, while radiation caused a loss of small trabecular elements leading to significant decreases in bone mass and strength, PTH1-34 preserved all trabecular elements in irradiated bone with remarkable increases in bone mass and strength. Histomorphometry demonstrated that SARRP radiation severely reduced osteoblast number and activity, which were impressively reversed by PTH treatment. In contrast, suppressing bone resorption by alendronate failed to rescue radiation-induced bone loss and to block the rescue effect of PTH1-34. Furthermore, histological analyses revealed that PTH1-34 protected osteoblasts and osteocytes from radiation-induced apoptosis and attenuated radiation-induced bone marrow adiposity. Taken together, our data strongly support a robust radioprotective effect of PTH on trabecular bone integrity through preserving bone formation and shed light on further investigations of an anabolic therapy for radiation-induced bone damage.

  3. Numerical analysis of ac loss in bifilar stacks and coils of ion beam assisted deposition YBCO coated conductors

    SciTech Connect

    Nguyen, Doan N.; Ashworth, Stephen P.; Willis, Jeffrey O.

    2009-03-15

    In this paper we present a finite element model using the commercial COMSOL software package for calculating the ac loss in bifilar stacks of high temperature superconducting tape. In the model, the current-voltage relationship characterizing the superconducting properties is assumed to follow a power law. The calculations were performed for infinite bifilar stacks with different values of layer-to-layer separation D. With appropriate settings for the boundary conditions, the numerical results agree well with the analytical data obtained from a recently proposed model [J. R. Clem, Phys. Rev. B 77, 134506 (2008)]. The numerical approach was also used to investigate the end effects in a bifilar stack to answer the following question: how many layers away from the end of a stack are required before the environment of a given layer is identical to that in an infinite stack? We find that the answer to this question depends strongly on the value of D. Based on this study, a model for calculating the ac loss in bifilar noninductively wound coils with a finite number of turns is proposed.

  4. Beam transport and space charge compensation strategies (invited).

    PubMed

    Meusel, O; Droba, M; Noll, D; Schulte, K; Schneider, P P; Wiesner, C

    2016-02-01

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.

  5. Beam transport and space charge compensation strategies (invited)

    SciTech Connect

    Meusel, O. Droba, M.; Noll, D.; Schulte, K.; Schneider, P. P.; Wiesner, C.

    2016-02-15

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.

  6. Patient-Reported Outcomes After 3-Dimensional Conformal, Intensity-Modulated, or Proton Beam Radiotherapy for Localized Prostate Cancer

    PubMed Central

    Gray, Phillip J.; Paly, Jonathan J.; Yeap, Beow Y.; Sanda, Martin G.; Sandler, Howard. M.; Michalski, Jeff M.; Talcott, James A.; Coen, John J.; Hamstra, Daniel A.; Shipley, William U.; Hahn, Stephen M.; Zietman, Anthony L.; Bekelman, Justin E.; Efstathiou, Jason A.

    2013-01-01

    BACKGROUND Recent studies have suggested differing toxicity patterns for patients with prostate cancer who receive treatment with 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), or proton beam therapy (PBT). METHODS The authors reviewed patient-reported outcomes data collected prospectively using validated instruments that assessed bowel and urinary quality of life (QOL) for patients with localized prostate cancer who received 3DCRT (n = 123), IMRT (n = 153) or PBT (n = 95). Clinically meaningful differences in mean QOL scores were defined as those exceeding half the standard deviation of the baseline mean value. Changes from baseline were compared within groups at the first post-treatment follow-up (2–3 months from the start of treatment) and at 12 months and 24 months. RESULTS At the first post-treatment follow-up, patients who received 3DCRT and IMRT, but not those who received PBT, reported a clinically meaningful decrement in bowel QOL. At 12 months and 24 months, all 3 cohorts reported clinically meaningful decrements in bowel QOL. Patients who received IMRT reported clinically meaningful decrements in the domains of urinary irritation/obstruction and incontinence at the first post-treatment follow-up. At 12 months, patients who received PBT, but not those who received IMRT or 3DCRT, reported a clinically meaningful decrement in the urinary irritation/ obstruction domain. At 24 months, none of the 3 cohorts reported clinically meaningful changes in urinary QOL. CONCLUSIONS Patients who received 3DCRT, IMRT, or PBT reported distinct patterns of treatment-related QOL. Although the timing of toxicity varied between the cohorts, patients reported similar modest QOL decrements in the bowel domain and minimal QOL decrements in the urinary domains at 24 months. Prospective randomized trials are needed to further examine these differences. PMID:23436283

  7. Radical External Beam Radiotherapy for Clinically Localized Prostate Cancer in Japan: Changing Trends in the Patterns of Care Process Survey

    SciTech Connect

    Ogawa, Kazuhiko; Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Araya, Masayuki; Mukumoto, Nobutaka; Teshima, Teruki; Mitsumori, Michihide

    2011-12-01

    Purpose: To delineate changing trends in radical external beam radiotherapy (EBRT) for prostate cancer in Japan. Methods and Materials: Data from 841 patients with clinically localized prostate cancer treated with EBRT in the Japanese Patterns of Care Study (PCS) from 1996 to 2005 were analyzed. Results: Significant increases in the proportions of patients with stage T1 to T2 disease and decrease in prostate-specific antigen values were observed. Also, there were significant increases in the percentages of patients treated with radiotherapy by their own choice. Median radiation doses were 65.0 Gy and 68.4 Gy from 1996 to 1998 and from 1999 to 2001, respectively, increasing to 70 Gy from 2003 to 2005. Moreover, conformal therapy was more frequently used from 2003 to 2005 (84.9%) than from 1996 to 1998 (49.1%) and from 1999 to 2001 (50.2%). On the other hand, the percentage of patients receiving hormone therapy from 2003 to 2005 (81.1%) was almost the same as that from 1996 to 1998 (86.3%) and from 1999 to 2001 (89.7%). Compared with the PCS in the United States, patient characteristics and patterns of treatments from 2003 to 2005 have become more similar to those in the United States than those from 1996 to 1998 and those from 1999 to 2001. Conclusions: This study indicates a trend toward increasing numbers of patients with early-stage disease and increasing proportions of patients treated with higher radiation doses with advanced equipment among Japanese prostate cancer patients treated with EBRT during 1996 to 2005 survey periods. Patterns of care for prostate cancer in Japan are becoming more similar to those in the United States.

  8. A six-site method for the evaluation of periodontal bone loss in cone-beam CT images

    PubMed Central

    Guo, Yu-Jiao; Ge, Zhi-pu; Ma, Ruo-han; Hou, Jian-xia

    2016-01-01

    Objectives: In contrast to two-dimensional planar images, a measuring point is hardly repeatedly determined in a CBCT image when alveolar bone loss is assessed. Thus, the aim of the present study was to propose a six-site measuring method, which is closely related to anatomical structure, for the evaluation of alveolar bone loss in CBCT images. Methods: 150 measuring points in 11 molars and 14 premolars from 6 patients (2 males and 4 females) were included. CBCT images of the teeth were acquired prior to periodontal surgery. Four observers measured the distances between cemento–enamel junctions and the apical bases of the periodontal bone defect at the mesio–buccal, mid-buccal, disto–buccal, mesio–lingual/palatal, mid-lingual/palatal and disto–lingual/palatal sites in CBCT images. Direct measurements of the six sites were correspondingly obtained in the subsequent periodontal surgeries. Differences between the distances measured in the CBCT images and during the surgery were analysed. Interobserver and intraobserver variances were tested. Results: No statistically significant difference was found between the surgical and CBCT measurements (p = 0.84). Diagnostic coincidence rates of four observers were 86.7%, 87.3%, 88.7% and 88.0%, respectively. The interobserver (p = 0.95) and intraobserver (p = 0.30) variances were not significant. Conclusions: The six-site measuring method validated in the present study may be a useful three-dimensional measuring method for the evaluation of periodontal disease. PMID:26509657

  9. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  10. Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: improved directional hearing with a bone-conduction device.

    PubMed

    Agterberg, Martijn J H; Snik, Ad F M; Hol, Myrthe K S; Van Wanrooij, Marc M; Van Opstal, A John

    2012-04-01

    Sound localization in the horizontal (azimuth) plane relies mainly on interaural time differences (ITDs) and interaural level differences (ILDs). Both are distorted in listeners with acquired unilateral conductive hearing loss (UCHL), reducing their ability to localize sound. Several studies demonstrated that UCHL listeners had some ability to localize sound in azimuth. To test whether listeners with acquired UCHL use strongly perturbed binaural difference cues, we measured localization while they listened with a sound-attenuating earmuff over their impaired ear. We also tested the potential use of monaural pinna-induced spectral-shape cues for localization in azimuth and elevation, by filling the cavities of the pinna of their better-hearing ear with a mould. These conditions were tested while a bone-conduction device (BCD), fitted to all UCHL listeners in order to provide hearing from the impaired side, was turned off. We varied stimulus presentation levels to investigate whether UCHL listeners were using sound level as an azimuth cue. Furthermore, we examined whether horizontal sound-localization abilities improved when listeners used their BCD. Ten control listeners without hearing loss demonstrated a significant decrease in their localization abilities when they listened with a monaural plug and muff. In 4/13 UCHL listeners we observed good horizontal localization of 65 dB SPL broadband noises with their BCD turned off. Localization was strongly impaired when the impaired ear was covered with the muff. The mould in the good ear of listeners with UCHL deteriorated the localization of broadband sounds presented at 45 dB SPL. This demonstrates that they used pinna cues to localize sounds presented at low levels. Our data demonstrate that UCHL listeners have learned to adapt their localization strategies under a wide variety of hearing conditions and that sound-localization abilities improved with their BCD turned on.

  11. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  12. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  13. External Beam Radiotherapy for Clinically Localized Hormone-Refractory Prostate Cancer: Clinical Significance of Nadir Prostate-Specific Antigen Value Within 12 Months

    SciTech Connect

    Ogawa, Kazuhiko Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Shioyama, Yoshiyuki; Araya, Masayuki; Mukumoto, Nobutaka M.S.; Mitsumori, Michihide; Teshima, Teruki

    2009-07-01

    Purpose: To analyze retrospectively the results of external beam radiotherapy for clinically localized hormone-refractory prostate cancer and investigate the clinical significance of nadir prostate-specific antigen (PSA) value within 12 months (nPSA12) as an early estimate of clinical outcomes after radiotherapy. Methods and Materials: Eighty-four patients with localized hormone-refractory prostate cancer treated with external beam radiotherapy were retrospectively reviewed. The total radiation doses ranged from 30 to 76 Gy (median, 66 Gy), and the median follow-up period for all 84 patients was 26.9 months (range, 2.7-77.3 months). Results: The 3-year actuarial overall survival, progression-free survival (PFS), and local control rates in all 84 patients after radiotherapy were 67%, 61%, and 93%, respectively. Although distant metastases and/or regional lymph node metastases developed in 34 patients (40%) after radiotherapy, local progression was observed in only 5 patients (6%). Of all 84 patients, the median nPSA12 in patients with clinical failure and in patients without clinical failure was 3.1 ng/mL and 0.5 ng/mL, respectively. When dividing patients according to low (<0.5 ng/mL) and high ({>=}0.5 ng/mL) nPSA12 levels, the 3-year PFS rate in patients with low nPSA12 and in those with high nPSA12 was 96% and 44%, respectively (p < 0.0001). In univariate analysis, nPSA12 and pretreatment PSA value had a significant impact on PFS, and in multivariate analysis nPSA12 alone was an independent prognostic factor for PFS after radiotherapy. Conclusions: External beam radiotherapy had an excellent local control rate for clinically localized hormone-refractory prostate cancer, and nPSA12 was predictive of clinical outcomes after radiotherapy.

  14. Nanometer-scale local structural study of the paraelectric cubic phase of KNbO3 by convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenji; Tanaka, Michiyoshi

    2017-10-01

    Nanometer-scale local structures of the paraelectric cubic phase of potassium niobate (KNbO3) are examined by convergent-beam electron diffraction (CBED) using a nanometer-size electron probe. The breaking of the cubic symmetry has been directly observed in the nanometer-scale areas of the cubic phase of KNbO3. This indicates the existence of local polarization clusters in the cubic phase. Symmetry breaking index maps for the fourfold rotation symmetry are given at different temperatures with the combined use of scanning transmission electron microscopy (STEM) and CBED (STEM–CBED).

  15. Baseline-free damage localization method for statically determinate beam structures using dual-type response induced by quasi-static moving load

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Ren, Wei-Xin; Zhu, Songye

    2017-07-01

    Structural damage could be localized through comparing the quasi-static moving load induced response before (taken as baseline) and after damage. However, it is very difficult, if not impossible, to obtain the baseline (information from the undamaged structure) for some structures. On this hand, structural response in damaged state only is not sufficient for such methods. On the other hand, only single type response (acceleration, strain or displacement) is employed for moving load based damage localization, i.e., multi-type response is inefficiently utilized. In this paper, a baseline-free damage localization method for statically determinate beam structures is proposed by using dual-type response (strain and displacement) excited by quasi-static moving load. It makes full use of the property that local damage causes no change on the static strain response of statically determinate beam structures except the damaged regions. The baseline displacement response in undamaged state is estimated through the strain response in damaged state. Then the measured displacement response in damaged state is compared with the estimated baseline displacement response, and the area change of the zone encircled by the displacement response and each sub-region (ADRC) is calculated to localize damage. Only the strain response and the displacement response in damaged state are required, and their comprehensive utilization avoids the need for a baseline. Numerical and experimental studies are conducted to investigate the feasibility, effectiveness, and limitations of the proposed method.

  16. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-12-01

    Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the three systems can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides,[Na2O]ex or[Al2O3]ex=|Na2O - Al2O3|, and excess B2O3,[B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without[Na2O]ex or[Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either[Na2O]ex or[Al2O3]ex. Assuming 1BO4 : 1Gd : 2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]= Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominantly through boron complexation of the metal oxide.

  17. Small pulmonary nodule localization with cone beam computed tomography during video-assisted thoracic surgery: a feasibility study.

    PubMed

    Rouzé, Simon; de Latour, Bertrand; Flécher, Erwan; Guihaire, Julien; Castro, Miguel; Corre, Romain; Haigron, Pascal; Verhoye, Jean-Philippe

    2016-06-01

    To describe a non-invasive guidance procedure, using intraoperative cone beam computed tomography (CBCT) and augmented fluoroscopy to guide lung resection during video-assisted thoracic surgery (VATS). Patients with solitary or multiple lung nodules between 5 and 20 mm in size were included. Under general anaesthesia, a moderate pneumothorax allowing the CBCT acquisition was first performed. Then a segmentation of the lesion was performed on a 3D reconstruction. A projection of this 3D reconstruction was then integrated into the digital workspace and automatically registered into the fluoroscopic images, creating an augmented fluoroscopy. The procedure was continued under classic video-thoracoscopic vision taking account of the augmented fluoroscopy to locate the targeted nodule. Eight patients were included (mean age 61 ± 11.7 years): 7 patients had an isolated lesion and 1 patient had two lesions (mean size 13.2 ± 5.1 mm). Their mean depth to the pleura was 21.4 ± 10.7 mm. Four patients underwent a wedge resection associated with lymph node resection. Two patients had an initial wedge resection followed by a complementary lobectomy associated with lymph node resection (primary lung tumour). One patient had a wedge resection in the upper lobe and a lobectomy of the inferior lobe associated with lymph node resection. One patient underwent a conversion and a bilobectomy due to vascular injury. The mean global operating time was 100.6 ± 36.7 min. All the nodules have been identified on the CBCT acquisitions. The segmentation of the lesion has been performed in all cases. We have been able to detect all the nodules and to successfully perform the resection in all cases owing to the augmented fluoroscopy. The mean fluoroscopic time was 134.2 ± 55.0 s. The mean imaging time, between the incision and the final nodule localization, was 11.8 ± 3.8 min. This paper is the first describing a clinical application of CBCT performed during thoracic surgery. Associated with

  18. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-10-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30-130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5-52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30-90%, as

  19. /sup 125/I implants as an adjuvant to surgery and external beam radiotherapy in the management of locally advanced head and neck cancer

    SciTech Connect

    Martinez, A.; Goffinet, D.R.; Fee, W.; Goode, R.; Cox, R.S.

    1983-03-15

    /sup 125/I seeds either individually placed or inserted into absorbable Vicryl suture carriers were utilized in conjunction with surgery and external beam radiotherapy in an attempt to increase local control rates in patients with advanced oropharyngeal and laryngopharyngeal cancers (T3-T4, N2-N3), massive cervical lymphadenopathy (N3) and an unknown primary site and locally recurrent head and neck cancers. Forty-eight patients were treated with 55 implants. The carotid artery was implanted in 15 patients, while seven patients had seeds inserted into the base of the skull region, and another three patients had implants near cranial nerves. Eighteen of the 48 patients were treated for cure. The actuarial survival at five years in this subgroup was 50%. The overall local control in the head and neck area was 58%. In this group no patients to date have had a local failure in the implanted volume. Seventeen patients with comparable stage of disease treated prior to 1974 with curative intent without /sup 125/I implants were analyzed retrospectively for comparison with the implanted patients. The actuarial survival of these patients was 18% and the overall head and neck control was 21%. These differences are statistically significant at a P value of 0.01 and 0.007, respectively. Seventeen patients received implants for local recurrence. The local control in the head and neck area was 50%; however, the 2.5 year actuarial survival was only 17%. The complication rate was 11% (six of 55 implants). The improved survival, the high local control, and the minimal complication rates in this series makes the intraoperative implantation of /sup 125/I seeds and effective adjunctive treatment to surgery and external beam irradiation.

  20. /sup 125/Iodine implants as an adjuvant to surgery and external beam radiotherapy in the management of locally advanced head and neck cancer

    SciTech Connect

    Martinez, A.; Goffinet, D.R.; Fee, W.; Goode, R.; Cox, R.S.

    1983-03-15

    /sup 125/Iodine seeds either individually placed or inserted into absorbable Vicryl suture carriers were utilized in conjunction with surgery and external beam radiotherapy in an attempt to increase local control rates in patients with (1) advanced oropharyngeal and laryngopharyngeal cancers (T3-T4, N2-N3), (2) massive cervical lymphadenopathy (N3) and an unknown primary site and (3) locally recurrent head and neck cancers. Forty-eight patients were treated with 55 implants. The carotid artery was implanted in 15 patients, while seven patients had seeds inserted into the base of the skull region, and another three patients had implants near cranial nerves. Eighteen of the 48 patients were treated for cure. The actuarial survival at five years in this subgroup was 50%. The overall local control in the head and neck area was 58%. In this group no patients to date have had a local failure in the implanted volume. Seventeen patients with comparable stage of disease treated prior to 1974 with curative intent without /sup 125/I implants were analyzed retrospectively for comparison with the implanted patients. The actuarial survival of these patients was 18% and the overall head and neck control was 21%. These differences are statistically significant at a P value of 0.01 and 0.007, respectively. Seventeen patients received implants for local recurrence. The local control in the head and neck area was 50%; however, the 2.5 year actuarial survival was only 17%. The complication rate was 11% (six of 55 implants). The improved survival, the high local control, and the minimal complication rates in this series makes the intraoperative implantation of /sup 125/I seeds and effective adjunctive treatment to surgery and external beam irradiation.

  1. Cone beam computed tomographic analysis of maxillary premolars and molars to detect the relationship between periapical and marginal bone loss and mucosal thickness of maxillary sinus

    PubMed Central

    Sekerci, Ahmet-Ercan; Köse, Emre; Sisman, Yildiray

    2015-01-01

    Background This study assessed the relationship between mucosal thickness (MT) of the maxillary sinus and periodontal bone loss (PBL) and periapical condition of related teeth. We also aimed to identify the association between root apices and the inferior wall of the maxillary sinus using Cone beam computed tomography (CBCT). Material and Methods In this study, CBCT images of 205 patients with 410 maxillary sinuses were examined, retrospectively. A total of 582 maxillary molars and 587 premolars were observed. The relationship of each root with maxillary sinus and apical lesions of these roots were classified, PBL was examined and the situations of adjacent teeth were estimated. The effect of these conditions on sinus mucosal thickness (MT) was evaluated. Results There was a significant correlation between MT of maxillary sinus and both PBL and age (r = 0.52, p=0.000 and r = 0.111, p= 0.002, respectively). The frequency of MT increased as the severity of apical lesion enlarged. A positive correlation was found between MT and degree of PBL and periapical lesions. To reveal the association between MT and pulpoperiapical condition bivariate correlation was done and a significant relationship between the pulpoperiapical condition and MT was found (r = 0.17, p=0.000). Conclusions This retrospective study showed that MT of the maxillary sinus was common among patients with PBL and MT was significantly associated with PBL and apical lesions. The relationship of maxillary sinus to adjacent teeth had also positive correlation with MT. CBCT imaging enabled better evaluation of maxillary sinus, posterior teeth and surrounding structures compared to other imaging tools. Key words:Maxillary sinus mucosal thickness, apical periodontitis, periodontal bone loss, CBCT. PMID:26241459

  2. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    SciTech Connect

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  3. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss.

    PubMed

    Takeshita, Wilton Mitsunari; Vessoni Iwaki, Lilian Cristina; Da Silva, Mariliani Chicarelli; Tonin, Renata Hernandes

    2014-07-01

    To evaluate the diagnostic accuracy of different radiographic methods in the assessment of proximal alveolar bone loss (ABL). ABL, the distance between cement-enamel junction and alveolar bone crest, was measured in 70 mandibular human teeth - directly on the mandibles (control), using conventional periapical radiography with film holders (Rinn XCP and Han-Shin), digital periapical radiography with complementary metal-oxide semiconductor sensor, conventional panoramic, and cone-beam computed tomography (CBCT). Three programs were used to measure ABL on the images: Image tool 3.0 (University of Texas Health Sciences Center, San Antonio, Texas, USA), Kodak Imaging 6.1 (Kodak Dental Imaging 6.1, Carestream Health(®), Rochester, NY, USA), and i-CAT vision 1.6.20. Statistical analysis used ANOVA and Tukey's test at 5% significance level. The tomographic images showed the highest means, whereas the lowest were found for periapical with Han-Shin. Controls differed from periapical with Han-Shin (P < 0.0001). CBCT differed from panoramic (P = 0.0130), periapical with Rinn XCP (P = 0.0066), periapical with Han-Shin (P < 0.0001), and digital periapical (P = 0.0027). Conventional periapicals with film holders differed from each other (P = 0.0007). Digital periapical differed from conventional periapical with Han-Shin (P = 0.0004). Conventional periapical with Han-Shin film holder was the only method that differed from the controls. CBCT had the closest means to the controls.

  4. Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the μSR spectrometer

    NASA Astrophysics Data System (ADS)

    Khaw, K. S.; Antognini, A.; Crivelli, P.; Kirch, K.; Morenzoni, E.; Salman, Z.; Suter, A.; Prokscha, T.

    2015-10-01

    The PSI low-energy μSR spectrometer is an instrument dedicated to muon spin rotation and relaxation measurements. Knowledge of the muon beam parameters such as spatial, kinetic energy and arrival-time distributions at the sample position are important ingredients to analyze the μSR spectra. We present here the measured energy losses in the thin carbon foil of the muon start detector deduced from time-of-flight measurements. Muonium formation in the thin carbon foil (10 nm thickness) of the muon start detector also affect the measurable decay asymmetry and therefore need to be accounted for. Muonium formation and energy losses in the start detector, whose relevance increase with decreasing muon implantation energy (<10 keV), have been implemented in Geant4 Monte Carlo simulation to reproduce the measured time-of-flight spectra. Simulated and measured time-of-flight and beam spot agrees only if a small fraction of so called ``unmoderated'' muons which contaminate the mono-energetic muon beam of the μSR spectrometer is introduced. Moreover the sensitivity of the beam size and related upstream-downstream asymmetry for a specially shaped ``nose'' sample plate has been studied for various beam line settings, which is of relevance for the study of thermal muonium emission into vacuum from mesoporous silica at cryogenic temperatures.

  5. Association of percent positive prostate biopsies and perineural invasion with biochemical outcome after external beam radiotherapy for localized prostate cancer.

    PubMed

    Wong, William W; Schild, Steven E; Vora, Sujay A; Halyard, Michele Y

    2004-09-01

    Few studies have evaluated the significance of the percentage of positive biopsies (PPB) and perineural invasion (PNI) for patients treated with external beam radiotherapy (EBRT) for localized prostate cancer. Our goal was to investigate the value of these factors in predicting biochemical control (bNED) after EBRT. The study cohort consisted of 331 patients who received EBRT between 1993 and 1999 for clinically localized prostate cancer. The median follow-up was 4.4 years (range, 3 months to 9.6 years). The distribution by clinical T stage was as follows: T1 in 55 (17%), T2a in 94 (28%), T2b in 76 (23%), T2c in 74 (22%), T3a in 27 (8%), and T3b in 5 (2%). The pretreatment prostate-specific antigen (iPSA) level was < or =10 ng/mL in 224 patients, 10.1-20 ng/mL in 72 patients, and >20 ng/mL in 35 patients. The biopsy Gleason score was < or =6 in 216 patients and > or =7 in 115 patients. On the basis of the pathology report, the PPB was calculated for 239 patients and was < or =33% in 109, 34-66% in 72, and > or =67% in 58 patients. PNI was present in 30 patients. The median dose of EBRT was 68.4 Gy (range, 64-71 Gy). Patients were categorized into three risk groups: 142 patients were low risk (T1-T2, iPSA < or =10 ng/mL, and Gleason score < or =6), 137 were intermediate risk (increase in the value of one of the risk factors); and 52 patients were high risk (increase in value of two or more of the risk factors). Biochemical failure was defined as three consecutive rises in the PSA level. The 5-year bNED rate for the entire cohort was 62%. The 5-year bNED rate for the low-, intermediate, and high-risk group was 79%, 51%, and 47%, respectively (p <0.0001). On univariate analysis (log-rank test), clinical stage (p = 0.0073), grade (p <0.0001), iPSA (p = 0.0043), risk group (p <0.0001), PPB (p = 0.0193), and presence of PNI (p = 0.0137) correlated with bNED. For T1-T2a, T2b-T2c, and T3 patients, the 5-year bNED rate was 71%, 59%, and 40%, respectively. The 5-year b

  6. Localization of a Portion of an Endorectal Balloon for Prostate Image-Guided Radiation Therapy Using Cone-Beam Tomosynthesis: A Feasibility Study

    SciTech Connect

    Ng, Sook Kien; Zygmanski, Piotr; Lyatskaya, Yulia; D'Amico, Anthony V.; Cormack, Robert A.

    2012-06-01

    Purpose: To assess the feasibility of using cone-beam tomosynthesis (CBTS) to localize the air-tissue interface for the application of prostate image-guided radiation therapy using an endorectal balloon for immobilization and localization. Methods and Materials: A Feldkamp-David-Kress-based CBTS reconstruction was applied to selected sets of cone-beam computed tomography (CBCT) projection data to simulate volumetric imaging achievable from tomosynthesis for a limited range of scan angles. Projection data were calculated from planning CT images of 10 prostate cancer patients treated with an endorectal balloon, as were experimental CBCT projections for a pelvic phantom in two patients. More than 50 points at the air-tissue interface were objectively identified by an intensity-based interface-finding algorithm. Using three-dimensional point sets extracted from CBTS images compared with points extracted from corresponding CBCT images, the relative shift resulting from a reduced scan angle was determined. Because the CBCT and CBTS images were generated from the same projection data set, shift identified was presumed to be due to distortions introduced by the tomosynthesis technique. Results: Scans of {>=}60 Degree-Sign were shown to be able to localize an air-tissue interface near the isocenter with accuracy on the order of a millimeter. The accuracy was quantified in terms of the mean discrepancy as a function of reconstruction angle. Conclusion: This work provides an understanding of the effect of scan angle used in localization of a portion of an endorectal balloon by means of CBTS. CBTS with relatively small scan angles is capable of accurately localizing an extended interface near the isocenter and may provide clinically relevant measurements to guide IGRT treatments while reducing imaging radiation to the patient.

  7. Formation and microstructural properties of locally distributed ZnSiO3 nanoparticles embedded in a SiO2 layer by using a focused electron beam.

    PubMed

    Shin, J W; No, Y S; Kim, T W; Choi, W K

    2008-10-01

    Locally distributed crystalline ZnSiO3 nanoparticles embedded in a SiO2 layer inserted between the ZnO thin film and the Si substrate were formed using transmission electron microscopy (TEM) with a focused electron beam irradiation process. High-resolution TEM (HRTEM) images and energy dispersive X-ray spectroscopy (EDS) profiles showed that ZnSiO3 nanocrystals with a size of approximately 6 nm were formed in the SiO2 layer. The formation mechanisms of the ZnSiO3 nanocrystals in the SiO2 layer are described on the basis of the HRTEM images and the EDS profiles.

  8. Transmission-reflection analysis for localization of temporally successive multipoint perturbations in a distributed fiber-optic loss sensor based on Rayleigh backscattering.

    PubMed

    Spirin, Vasilii V

    2003-03-01

    A novel method is presented for the localization of multipoint loss-inducing perturbations in a distributed fiber-optic sensor. The proposed simple technique is based on measurement of the transmitted and the Rayleigh-backscattered powers of an unmodulated light launched into a sensing fiber. The positions of consecutive perturbations are determined by measuring the slopes of the dependence of normalized Rayleigh-backscattering power versus the square of normalized transmitted power. It is shown that these slopes uniquely depend on the positions of the disturbances along the test fiber. The method allows localization of any number of the perturbations that appear one after another at different positions along the test fiber without ambiguity. Good agreement is obtained between calculated and experimentally measured slopes for a loss that was consecutively induced near the source and remote ends of 2.844-km-long fiber.

  9. Translation of a behavioral weight loss intervention for mid-life, low-income women in local health departments.

    PubMed

    Samuel-Hodge, Carmen D; Garcia, Beverly A; Johnston, Larry F; Gizlice, Ziya; Ni, Andy; Cai, Jianwen; Kraschnewski, Jennifer L; Gustafson, Alison A; Norwood, Arnita F; Glasgow, Russell E; Gold, Alison D; Graham, John W; Evenson, Kelly R; Trost, Stewart; Keyserling, Thomas C

    2013-09-01

    To translate a behavioral weight loss intervention for mid-life, low-income women in real world settings. In this pragmatic clinical trial, we randomly selected six North Carolina county health departments and trained their current staff to deliver a 16-session evidence-based behavioral weight loss intervention (special intervention, SI). SI weight loss outcomes were compared to a delayed intervention (DI) control group. Of 432 women expressing interest, 189 completed baseline measures and were randomized within health departments to SI (N = 126) or DI (N = 63). At baseline, average age was 51 years, 53% were African American, mean weight was 100 kg, and BMI averaged 37 kg/m2 . A total of 96 (76%) SI and 55 (87%) DI participants returned for 5-month follow-up measures. The crude weight change was -3.1 kg in the SI and -0.4 kg in the DI group, for a difference of 2.8 kg (95% CI 1.4 to 4.1, p = 0.0001). Diet quality and physical activity improved significantly more in the SI group, and estimated intervention costs were $327 per participant. This pragmatic short-term weight loss intervention targeted to low-income mid-life women yielded meaningful weight loss when translated to the county health department setting. Copyright © 2013 The Obesity Society.

  10. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post

  11. Nonlinear Dynamics of Beam-driven TAEs in NSTX

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong; Liu, Deyong; Wang, Feng

    2015-11-01

    Energetic particle modes and Alfvénic modes driven by super-Alfvénic beam ions were routinely observed in neutral beam heated plasmas on NSTX. These modes can significantly impact beam-ion transport, thus causing beam-ion redistribution and losses. Recent simulation results of TAEs show mode radial structure consistent with the reflectometer measurements of electron density fluctuations. In this paper we report on new simulations of multiple TAEs in NSTX plasmas using the M3D-K code. The results show strong interaction between TAEs and fishbone that either enhances or reduces saturation level of individual modes depending on mode number and other parameters. As beam ion beta increases beyond a threshold, mode saturation levels are found to increases sharply. Correspondingly the locally flattening regions merge together resulting in global particle transport and substantial particle loss. These results are similar to the TAE avalanche observed in NSTX.

  12. Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

    SciTech Connect

    Mayhall, D J; Stein, W; Gronberg, J B

    2006-05-15

    We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.

  13. The Severity of Infection Determines the Localization of Damage and Extent of Sensorineural Hearing Loss in Experimental Pneumococcal Meningitis.

    PubMed

    Perny, Michael; Roccio, Marta; Grandgirard, Denis; Solyga, Magdalena; Senn, Pascal; Leib, Stephen L

    2016-07-20

    Hearing loss is an important sequela of pneumococcal meningitis (PM), occurring in up to 30% of survivors. The role of the severity of infection on hearing function and pathomorphological consequences in the cochlea secondary to PM have not been investigated to date. Using a well-established model of PM, we systematically investigated the functional hearing outcome and the long-term fate of neurosensory cells in the cochlea, i.e., hair cells and spiral ganglion neurons (SGNs), with a focus on their tonotopic distribution. Intracisternal infection of infant rats with increasing inocula of Streptococcus pneumoniae resulted in a dose-dependent increase in CSF levels of interleukin-1β, interleukin-6, tumor necrosis factor α, interleukin-10, and interferon-γ in acute disease. The severity of long-term hearing loss at 3 weeks after infection, measured by auditory brainstem response recordings, correlated to the initial inoculum dose and to the levels of proinflammatory cytokines determined in the acute phase of PM. Quantitative cochlear histomorphology revealed a significant loss of SGNs and outer hair cells that strongly correlated to the level of infection, with the most severe damage occurring in the basal part of the cochlea. Inner hair cells (IHCs) were not significantly affected throughout the entire cochlea. However, surviving IHCs lost synaptic connectivity to remaining SGNs in all cochlear regions. These findings provide evidence that the inoculum concentration, i.e., severity of infection, is the major determinant of long-term morphological cell pathologies in the cochlea and functional hearing loss. Hearing loss is a neurofunctional deficit occurring in up to 30% of patients surviving pneumococcal meningitis (PM). Here, we analyze the correlation between the severity of infection and the inflammatory response in the CSF, the tonotopic distribution of neurosensory pathologies in the cochlea, and the long-term hearing function in a rat model of pneumococcal

  14. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.

    PubMed

    Mhaisekar, Ashutosh; Kazmierczak, Michael J; Banerjee, Rupak

    2005-05-01

    The differential momentum and thermal energy equations for fluid flow and convective heat-transfer around the sample biocrystal, with coupled internal heat conduction, are solved using advanced computational fluid dynamics techniques. Average \\bar{h} as well as local h(theta) values of the convective heat-transfer coefficients are obtained from the fundamental equations. The results of these numerical solutions show the three-dimensional fluid flow field around the sample in conjunction with the detailed internal temperature distribution inside the crystal. The external temperature rise and maximum internal temperature increase are reported for various cases. The effect of the important system parameters, such as gas velocity and properties, crystal size and thermal conductivity and incident beam conditions (intensity and beam size), are all illustrated with comparative examples. For the reference case, an external temperature rise of 7 K and internal temperature increase of 0.5 K are calculated for a 200 microm-diameter cryocooled spherical biocrystal subjected to a 13 keV X-ray beam of 4 x 10(14) photons s(-1) mm(-2) flux density striking half the sample. For all the cases investigated, numerical analysis shows that the controlling thermal resistance is the rate of convective heat-transfer and not internal conduction. Thermal diffusion results in efficient thermal spreading of the deposited energy and this results in almost uniform internal crystal temperatures (DeltaT(internal) approximately 0.5 K), in spite of the non-uniform h(theta) with no more than 1.3 K internal temperature difference for the worst case of localized and focused beam heating. Rather, the major temperature variation occurs between the outer surface of the crystal/loop system and the gas stream, T(s) - T(gas), which itself is only about DeltaT(external) approximately 5-10 K, and depends on the thermal loading imposed by the X-ray beam, the rate of convection and the size of the loop

  15. Route Planning and Estimate of Heat Loss of Hot Water Transportation Piping for Fuel Cell Local Energy Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    The method of supplying the electric power and heat energy for the energy demand of buildings by Centralized system type and distributed system type of fuel cell network is studied. The hot-water piping route planning program of fuel cell network was developed by using genetic algorithm based on the view of TSP ( Traveling salesman problem) . In this program, the piping route planning which minimizes the quantity of heat loss in hot-water piping can be performed. The residential section model of Sapporo city of 74 buildings was analyzed, and the quantity of heat loss from the hot-water piping of both systems was estimated. Consequently, the ratio of the quantity of heat loss of a distributed system to a centralized system was about 50% in the full year average. This program is introduced into the route planning of hot- Water piping system of the fuel cell network, and plan to reduce the quantity of heat loss in a distributed system will be made.

  16. Clinicohistopathological correlations in juvenile localized scleroderma: studies on a subset of children with hypopigmented juvenile localized scleroderma due to loss of epidermal melanocytes.

    PubMed

    Sung, Joanne J; Chen, Tina S; Gilliam, Anita C; McCalmont, Timothy H; Gilliam, Amy E

    2011-08-01

    Localized scleroderma or morphea is a connective tissue disorder characterized by fibrosis of the skin and subcutaneous tissue. Excessive accumulation of collagen underlies the fibrosis, yet the pathogenesis is unknown. A subset of localized scleroderma/morphea, juvenile localized scleroderma (JLS), affects children and adolescents. The clinical and microscopic features of JLS have not been fully characterized. The goal is to better characterize the microscopic features of JLS. We collected a distinctive data set of 35 children with JLS, 19 (54%) of whom presented with hypopigmented lesions, and performed a retrospective chart and pathology review. We had adequate tissue for immunostaining studies on 8 of these individuals. We found that: (1) CD34 and factor XIIIa immunostaining, reported previously in adult morphea and scleroderma, when used with clinical information, is valuable for confirming a diagnosis of JLS; and (2) presence of hypopigmented lesions in JLS correlates with immunostaining studies. Decreased numbers of MelanA(+) melanocytes were present at the dermoepidermal junction in lesional skin in two of 3 children with hypopigmented JLS and in two of 4 children with nonhypopigmented JLS. The number of cases is small, a function of the small number of children who have biopsy specimens with material sufficient for multiple immunostaining procedures. These results provide a useful immunostaining method for confirmation of the diagnosis of JLS. They suggest a complex autoimmune phenotype in some children with JLS. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Comparison of VMAT-SABR treatment plans with flattening filter (FF) and flattening filter-free (FFF) beam for localized prostate cancer.

    PubMed

    Chung, Jin-Beom; Kim, Jae-Sung; Eom, Keun-Yong; Kim, In-Ah; Kang, Sang-Won; Lee, Jeong-Woo; Kim, Jin-Young; Suh, Tae-Suk

    2015-11-01

    The purpose of this study is to investigate the feasibility of using a flattening filter-free (FFF) beam with an endorectal balloon for stereotactic ablative body radiotherapy (SABR) of clinically localized prostate cancer. We assessed plans of SABR with volumetric-modulated arc therapy (VMAT) that used a flattening filter (FF) beam and an FFF beam and compared the verification results of dosimetric quality assurance for all pretreatment plans. A total of 20 patients with prostate cancer were enrolled in the study. SABR plans using VMAT with two full arcs were optimized in the Eclipse treatment planning system. All plans prescribed 42.7 Gy in 7 fractions of 6.1 Gy each. Four SABR plans were computed for each patient: two with FF beams and two with FFF beams of 6 and 10 MV. For all plans, the cumulative dose-volume histograms (DVHs) for the target volumes and organs at risk (OARs) were recorded and compared. Pretreatment quality assurance (QA) was performed using the I'mRT MatriXX system and radiochromic EBT3 film to verify treatment delivery, and gamma analysis was used to quantify the agreement between calculations and measurements. In addition, total monitor units (MUs) and delivery time were investigated as technical parameters of delivery. All four plans achieved adequate dose conformity to the target volumes and had comparable dosimetric data. The DVHs of all four plans for each patient were very similar. All plans were highly conformal with CI<1.05 and CN>0.90, and the doses were homogeneous (HI = 0.08-0.15). Sparing for the bladder and rectum was slightly better with the 10 MV FF and FFF plans than with the 6 MV FF and FFF plans, but the difference was negligible. However, there was no significant difference in sparing for the other OARs. The mean agreement with the 3%/3% mm criterion was higher than 97% for verifying all plans. For the 2%/2% mm criterion, the corresponding agreement values were more than 90%, which showed that the plans were acceptable

  18. Comparison of VMAT-SABR treatment plans with flattening filter (FF) and flattening filter-free (FFF) beam for localized prostate cancer.

    PubMed

    Chung, Jin-Beom; Kim, Jae-Sung; Eom, Keun-Yong; Kim, In-Ah; Kang, Sang-Won; Lee, Jeong-Woo; Kim, Jin-Young; Suh, Tae-Suk

    2015-11-08

    The purpose of this study is to investigate the feasibility of using a flattening filter-free (FFF) beam with an endorectal balloon for stereotactic ablative body radiotherapy (SABR) of clinically localized prostate cancer. We assessed plans of SABR with volumetric-modulated arc therapy (VMAT) that used a flattening filter (FF) beam and an FFF beam and compared the verification results of dosimetric quality assurance for all pretreatment plans. A total of 20 patients with prostate cancer were enrolled in the study. SABR plans using VMAT with two full arcs were optimized in the Eclipse treatment planning system. All plans prescribed 42.7 Gy in 7 fractions of 6.1 Gy each. Four SABR plans were computed for each patient: two with FF beams and two with FFF beams of 6 and 10 MV. For all plans, the cumulative dose-volume histograms (DVHs) for the target volumes and organs at risk (OARs) were recorded and compared. Pretreatment quality assurance (QA) was performed using the I'mRT MatriXX system and radiochromic EBT3 film to verify treatment delivery, and gamma analysis was used to quantify the agreement between calculations and measurements. In addition, total monitor units (MUs) and delivery time were investigated as technical parameters of delivery. All four plans achieved adequate dose conformity to the target volumes and had comparable dosimetric data. The DVHs of all four plans for each patient were very similar. All plans were highly conformal with CI < 1.05 and CN > 0.90, and the doses were homogeneous (HI = 0.08-0.15). Sparing for the bladder and rectum was slightly better with the 10 MV FF and FFF plans than with the 6 MV FF and FFF plans, but the difference was negligible. However, there was no significant difference in sparing for the other OARs. The mean agreement with the 3%/3 mm criterion was higher than 97% for verifying all plans. For the 2%/2 mm criterion, the corresponding agreement values were more than 90%, which showed that the plans were acceptable

  19. Proposed method to study the factors affecting local control with combined external beam and interstitial implantation of mobile tongue and floor of mouth

    SciTech Connect

    Hintz, B.L.; Kagan, A.R.; Chan, P.; Rao, A.R.; Nussbaum, H.; Ryoo, M.C.; Wollin, M.

    1986-12-01

    Twenty-seven patients with squamous cell carcinoma of the mobile tongue and floor of the mouth were treated with external beam and interstitial radiation. Good prognostic factors were T1N0, T2N0, superficial tumors, tumor shrinkage by 75% with external beam, and no apparent tumor clinically 2 months after treatment. On the other hand, T3N0, T1-3N1, and deeply necrotic tumors had a poor prognosis. We recommend using a flexible afterloading system to implant the initial local tumor volume (not just the residual nidus) that does not exceed 45 cm3. The minimum (reference) dose was prescribed to a surface 1/2 cm beyond the most peripheral rim of radioactive sources. For acceptable local control and complication rates, our suggested minimum (reference) doses are less than or equal to 7500 rads for T1 (or a time-dose-fractionation (TDF) of 131-140), less than or equal to 8000 rads for T2 (TDF of 131-140), and probably less than 8500 rads for T3 (TDF of less than or equal to 150). These guidelines should be considered preliminary.

  20. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    SciTech Connect

    Wang Zhiheng Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-02-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm.

  1. Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction

    SciTech Connect

    Blessing, Manuel; Stsepankou, Dzmitry; Wertz, Hansjoerg; Arns, Anna; Lohr, Frank; Hesser, Juergen; Wenz, Frederik

    2010-11-15

    Purpose: Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials: An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90{sup o} within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 x 512 x 512 volume within 6 s. Results: The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2-3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180{sup o}-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was <6 mGy. Conclusion: The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV-MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.

  2. Impact of local strain on Ti-L₂,₃ electron energy-loss near-edge structures of BaTiO₃: a first-principles multiplet study.

    PubMed

    Ootsuki, Shirou; Ikeno, Hidekazu; Umeda, Yuji; Yonezawa, Yu; Moriwake, Hiroki; Kuwabara, Akihide; Kido, Osamu; Ueda, Satoko; Tanaka, Isao; Fujikawa, Yoshinori; Mizoguchi, Teruyasu

    2014-06-01

    Identification of local strains is crucial because the local strains largely influence the ferroelectric property of BaTiO₃. The effects of local strains induced by external pressures on the Ti-L₂,₃ electron energy-loss near-edge structure (ELNES) of BaTiO₃ were theoretically investigated using first-principles multiplet calculations. We revealed that the effects appear in the position of the spectral threshold, namely the spectrum shifts to lower and higher energy sides by the tensile and compressive pressures, respectively. We concluded that conventional ELNES observations can identify only large strains induced by -10 GPa, and 0.1 eV energy resolution is required to identify ±2% of strains.

  3. True oxide electron beam induced current for low-voltage imaging of local defects in very thin silicon dioxide films

    NASA Astrophysics Data System (ADS)

    Lau, W. S.; Chan, D. S. H.; Phang, J. C. H.; Chow, K. W.; Pey, K. S.; Lim, Y. P.; Cronquist, B.

    1993-10-01

    A new low-voltage contrast mechanism due to electron hole pairs generated in the oxide by an electron beam was observed at an electric field lower than 3.5 MV/cm in addition to the tunneling current microscopy (TCM) contrast mechanism at electric fields higher than 3.5 MV/cm. The new contrast mechanism is opposite in sign to the TCM contrast mechanism. Good contrast can be obtained at an electric field as low as 2.4 MV/cm, which is two to three times smaller than that needed for TCM contrast. Potential applications include large area imaging and quantitative imaging of oxide defects.

  4. Highlights of Fire in the United States: Deaths, Injuries, Dollar Loss, and Incidents at the National, State, and Local Levels.

    ERIC Educational Resources Information Center

    National Fire Prevention and Control Administration (DOC), Washington, DC. National Fire Data Center.

    This report provides fire departments, federal and state governments, and others active in the fire protection field with information which can be used to improve the e