On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus
NASA Astrophysics Data System (ADS)
Asala, G.; Ojo, O. A.
The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.
Electron beam machining using rotating and shaped beam power distribution
Elmer, J.W.; O`Brien, D.W.
1996-07-09
An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.
NASA Astrophysics Data System (ADS)
Kramer, Thorsten; Olowinsky, Alexander M.
2003-07-01
Conventional joining techniques like press fitting or crimping require the application of mechanical forces to the parts which, in combination with the tolerances of both parts to be joined, lead to imprecision and poor tensile strength. In contrast, laser beam micro welding provides consistent joining and high flexibility and it acts as an alternative as long as press fitting, crimping, screwing or gluing are not capable of batch production. Different parts and even different metals can be joined in a non-contact process at feed rates of up to 60 m/min and with weld seam lengths from 0.6 mm to 15.7 mm. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 μm have been attained. This results in low distortion of the joined watch components. Since the first applications of laser beam micro welding of watch components showed promising results, the process has further been enhanced using the SHADOW technique. Aspects of the technique such as tensile strength, geometry and precision of the weld seam as well as the acceptance amongst the -mostly conservative- watch manufacturers have been improved.
Improvement of the reliability of laser beam microwelding as interconnection technique
NASA Astrophysics Data System (ADS)
Glasmacher, Mathias; Pucher, Hans-Joerg; Geiger, Manfred
1996-04-01
The requirements of actual trends for joining within modern electronics production can be met with the technique of laser beam micro welding, which is the topic of this paper. Thereby component leads are welded directly to the conducting tracks of the circuit board. This technique is not limited to electronics, because fine mechanical parts can be joined with the same equipment, too. The advantages as high temperature strength, reduced manufacturing time and simplified material separation at the end of the life cycle are noted. Furthermore the drawbacks of laser beam micro welding as a competitive joining technique to soldering are discussed. The reasons for the unstable process behavior of different welding scenarios can be understood by taking the changes of some process parameters into account. Since the process reliability can be improved by a proper process design as well as by closed-loop-control, results of finite element calculations of the temperature field as well as experimental setup for the determination of the melting point are presented. Future work is stated to spread the applicability of this joining technique as well as to develop an on-line control for high performance welding of locally restricted structures.
3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology
NASA Astrophysics Data System (ADS)
Chen, Weilin; Yang, Tao; Yang, Ruixin
2017-07-01
Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Paul, V.; Saroja, S.; Albert, S.K.
This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less
Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding
NASA Astrophysics Data System (ADS)
Otto, Andreas; Patschger, Andreas; Seiler, Michael
The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.
Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques
NASA Astrophysics Data System (ADS)
Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.
2016-03-01
Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.
NASA Astrophysics Data System (ADS)
Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia
2014-04-01
In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.
Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys
NASA Astrophysics Data System (ADS)
Durocher, J.; Richards, N. L.
2011-10-01
The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.
Laser Assisted Micro Wire GMAW and Droplet Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.
2002-03-01
Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less
Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.
Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.
Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca
Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less
Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints
NASA Astrophysics Data System (ADS)
Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav
2018-04-01
Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.
Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-09-01
In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, E.; Quintana, I.; Etxarri, J.; Otaduy, D.; González, F.; Moreno, F.
2012-06-01
Laser transmission welding (LTW) of polymers is a direct bonding technique which is already used in different industrial applications sectors such as automobile, microfluidic, electronic and biomedicine. This technique offers several advantages over conventional methods, especially when a local deposition of energy and minimum thermal distortions are required. In LTW one of the polymeric materials needs to be transparent to the laser wavelength and the second part needs to be designed to be absorbed in IR spectrum. This report presents a study of laser weldability of ABS (acrylonitrile/butadiene/styrene) filled with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). These additives are used as infrared absorbing components in the laser welding process, affecting the thermal and optical properties of the material and, hence, the final quality of the weld seam. A tailored laser system has been designed to obtain high quality weld seams with widths between 0.4 and 1.0mm. It consists of two diode laser bars (50W per bar) coupled into an optical fiber using a non-imaging solution: equalization of the beam quality factor (M2) in the slow and fast axes by a pair of micro step-mirrors. The beam quality factor has been analyzed at different laser powers with the aim to guarantee a coupling efficiency to the multimode optical fiber. The power scaling is carried out by means of multiplexing polarization technique. The analysis of energy balance and beam quality is performed in two linked steps: first by means ray tracing simulations (ZEMAX®) and second, by validation. Quality of the weld seams is analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. The optimum laser power range for three different welding speeds is determinate meanwhile the clamping pressure is held constant. Additionally, the corresponding mechanical shear tests were carried out to analyze the mechanical properties of the weld seams. This work provides a detailed study concerning the effect of the material microstructure and laser beam quality on the final weld formation and surface integrity.
Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser
NASA Astrophysics Data System (ADS)
Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo
2012-06-01
Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.
Definition of Beam Diameter for Electron Beam Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John
It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1996-01-01
In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.
A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW
NASA Astrophysics Data System (ADS)
Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.
2011-05-01
Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best mechanical performances also possess better electrochemical properties. What's more, in these cases, the weld bead shows a cathodic behavior with respect to the parent material.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Laser Beam Welding of Nitride Steel Components
NASA Astrophysics Data System (ADS)
Gu, Hongping; Yin, Guobin; Shulkin, Boris
Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1985-01-01
The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.
Examinations on Laser Remote Welding of Ultra-thin Metal Foils Under Vacuum Conditions
NASA Astrophysics Data System (ADS)
Petrich, Martin; Stambke, Martin; Bergmann, Jean Pierre
Metal foils are commonly used for catalytic converters, vacuum insulations, in medical and electrical industry as well as for sensor applications and packaging. The investigations in this paper determine the influence of reduced atmospheric pressure during the welding process with a highly brilliant 400 W single-mode fiber laser combined with a 2D-scanning system. The laser beam is transmitted through a highly transparent glass into a vacuum chamber, where AISI 304 stainless steel foils with a thickness of 25 μm, 50 μm and 100 μm are positioned. The effects of reduced atmospheric pressure on the plasma formation are investigated by means of high-speed videography. Furthermore, the geometry of the weld seam is compared to atmospheric conditions as well as means of the process stability and the process efficiency. The welds were also evaluated by means of metallography. The research is a contribution for extending the range of micro welding applications and shows new aspects for future developments.
Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Khoshnoud, Afsaneh
2016-03-01
In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.
A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Calle, Luz M.
2005-01-01
The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
Additive Manufacturing for Superalloys - Producibility and Cost Validation (Preprint)
2011-03-01
evaluated in this study were: Shaped Metal Deposition (SMD, 3D Weld Deposition) Laser Powder Deposition (LPD) Electron Beam Wire Deposition (EBWD...envelope and would be removed during subsequent machining. Radiographic inspection also revealed fine random internal micro porosity in some of the...successfully fabricated the required deposition samples for Task 2 (see Figure 4). A surface examination revealed some surface cracks and porosity , but all
Diffractive beam shaping for enhanced laser polymer welding
NASA Astrophysics Data System (ADS)
Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.
2015-03-01
Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.
Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate
NASA Astrophysics Data System (ADS)
Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.
2017-09-01
Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.
NASA Astrophysics Data System (ADS)
Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael
The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.
Laser etching of austenitic stainless steels for micro-structural evaluation
NASA Astrophysics Data System (ADS)
Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd
2015-06-01
Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.
An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space
NASA Technical Reports Server (NTRS)
Fragomeni, James M.; Nunes, Arthur C., Jr.
1998-01-01
The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments fo
Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation
Trent, Jett B.; Murphy, Jimmy L.
1981-01-01
The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.
Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation
Trent, J.B.; Murphy, J.L.
1980-01-03
The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.
Optimization of operator and physical parameters for laser welding of dental materials.
Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V
2004-04-10
Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.
Ultrashort pulse laser micro-welding of cyclo-olefin copolymers
NASA Astrophysics Data System (ADS)
Roth, Gian-Luca; Rung, Stefan; Hellmann, Ralf
2017-06-01
We report on the joining of transparent thermoplastic polymers using infrared femtosecond laser pulses. Due to nonlinear absorption, the developed micro-welding process for cyclo-olefin copolymers does not require any intermediate absorbing layers or any surface pre-processing of the welding partners. In view of an optimized and stable micro-welding process, the influence of the welding speed and focal position on both, the quality and shear force strength are investigated. We highlight that welding seam widths of down to 65 μm are feasible for welding speeds of up to 75 mm/s. However, a variation of the welding speed affects the required focal position for a successful joining process. The shear force strength of the welding seam is determined to 37 MPa, which corresponds to 64% of the shear strength of the bulk material and is not affected by the welding speed.
Hybrid welding of hollow section beams for a telescopic lifter
NASA Astrophysics Data System (ADS)
Jernstroem, Petteri
2003-03-01
Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.
Surface-active element effects on the shape of GTA, laser, and electron-beam welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R.; Roper, J.R.; Stagner, R.T.
1983-03-01
Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less
Empirical modeling of high-intensity electron beam interaction with materials
NASA Astrophysics Data System (ADS)
Koleva, E.; Tsonevska, Ts; Mladenov, G.
2018-03-01
The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.
Electron beam, laser beam and plasma arc welding studies
NASA Technical Reports Server (NTRS)
Banas, C. M.
1974-01-01
This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.
Electron Beam Welding of Gear Wheels by Splitted Beam
NASA Astrophysics Data System (ADS)
Dřímal, Daniel
2014-06-01
This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.
Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration
NASA Astrophysics Data System (ADS)
Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan
2014-03-01
Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.
Electron beam welding of copper-Monel facilitated by circular magnetic shields
NASA Technical Reports Server (NTRS)
Lamb, J. N.
1966-01-01
High permeability, soft magnetic rings are placed on both sides of electron beam weld seams in copper-Monel circular joint. This eliminates deflection of the electron beam caused by magnetic fields present in the weld area.
Exposure of welders and other metal workers to ELF magnetic fields.
Skotte, J H; Hjøllund, H I
1997-01-01
This study assessed exposure to extremely low frequency (ELF) magnetic fields of welders and other metal workers and compared exposure from different welding processes. Exposure to ELF magnetic fields was measured for 50 workers selected from a nationwide cohort of metal workers and 15 nonrandomly selected full-time welders in a shipyard. The measurements were carried out with personal exposure meters during 3 days of work for the metal workers and I day of work for the shipyard welders. To record a large dynamic range of ELF magnetic field values, the measurements were carried out with "high/low" pairs of personal exposure meters. Additional measurements of static magnetic fields at fixed positions close to welding installations were done with a Hall-effect fluxmeter. The total time of measurement was 1273 hours. The metal workers reported welding activity for 5.8% of the time, and the median of the work-period mean exposure to ELF magnetic fields was 0.18 microT. DC metal inert or active gas welding (MIG/MAG) was used 80% of the time for welding, and AC manual metal arc welding (MMA) was used 10% of the time. The shipyard welders reported welding activity for 56% of the time, and the median and maximum of the workday mean exposure to ELF magnetic fields was 4.70 and 27.5 microT, respectively. For full-shift welders the average workday mean was 21.2 microT for MMA welders and 2.3 microT for MIG/MAG welders. The average exposure during the effective time of welding was estimated to be 65 microT for the MMA welding process and 7 microT for the MIG/MAG welding process. The time of exposure above 1 microT was found to be a useful measure of the effective time of welding. Large differences in exposure to ELF magnetic fields were found between different groups of welders, depending on the welding process and effective time of welding. MMA (AC) welding caused roughly 10 times higher exposure to ELF magnetic fields compared with MIG/MAG (DC) welding. The measurements of static fields suggest that the combined exposure to static and ELF fields of MIG/MAG (DC) welders and the exposure to ELF fields of MMA (AC) welders are roughly of the same level.
Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.
A Review of Similar and Dissimilar Micro-joining of Nitinol
NASA Astrophysics Data System (ADS)
Deepan Bharathi Kannan, T.; Ramesh, T.; Sathiya, P.
2016-04-01
NiTinol belongs to a class of smart materials which has a wide range of applications in the field of automotive, aerospace, biomedical, robotics, etc., owing to the growing trend in miniaturization of components. Micro-joining is becoming one of the important and familiar processes in the fabrication of miniaturized components. Recently, effective micro-joining of thin sheets has been gaining a lot of interest among researchers. In this article, the research and progress in micro-joining of NiTinol to itself and other metals are reviewed at different aspects. To date, laser welding, tungsten inert gas welding, and resistance welding have been used to a large extent in investigating the weldability of NiTinol alloys. Some important welding parameters used in micro joining by various researchers and their effects on weld qualities are detailed in this review. Metallurgical aspects, mechanical properties and corrosion aspects of micro-joined NiTinol sheets/wires are discussed. The aim of this report is to review the recent progress in micro-joining of NiTinol and to provide a basis for follow-on research.
Initiation and growth kinetics of solidification cracking during welding of steel
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.
2017-01-01
Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475
NASA Astrophysics Data System (ADS)
Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa
2018-05-01
High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.
Electron Beam Welding to Join Gamma Titanium Aluminide Articles
NASA Technical Reports Server (NTRS)
Kelly, Thomas Joseph (Inventor)
2008-01-01
A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.
Evaluation of a method to shield a welding electron beam from magnetic interference
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui
2017-02-01
An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.
Superconducting accelerator cavity with a heat affected zone having a higher RRR
Brawley, John; Phillips, H. Lawrence
2000-01-01
An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.
NASA Astrophysics Data System (ADS)
Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki
Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.
Electron beam weld development on a Filter Pack Assembly
NASA Astrophysics Data System (ADS)
Dereskiewicz, J. P.
1994-06-01
A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.
Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint
NASA Astrophysics Data System (ADS)
Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai
2018-04-01
Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.
NASA Technical Reports Server (NTRS)
Martukanitz, R. P.; Jan. R.
1996-01-01
Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.
Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint
NASA Astrophysics Data System (ADS)
Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai
2018-05-01
Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.
Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness.
Angella, Giuliano; Barbieri, Giuseppe; Donnini, Riccardo; Montanari, Roberto; Richetta, Maria; Varone, Alessandra
2017-09-05
Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds ( v ) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ' phase in MZ consisted of small (20-40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ' phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ' and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ' particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones.
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-01-01
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design. PMID:28773800
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-08-09
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.
NASA Astrophysics Data System (ADS)
Hemmerich, Malte; Thiel, Christiane; Lupp, Friedrich; Hanebuth, Henning; Weber, Rudolf; Graf, Thomas
High-power laser beam welding in industrial environment often suffers from process induced contamination of laser focusing optics. Especially exposed to this contamination is the plane protection glass which is positioned directly above the process to protect the expensive lenses from contaminations such as spatter and metal vapor. Locally increased absorption due to con-tamination leads to a temperature rise in the protection glass and a corresponding change of its optical characteristics. This results in a reduced beam quality and a shift of the focus position. Both effects lead to a reduced intensity of radiation on the workpiece causing a lower welding penetration depth. In this article we present laser beam measurements using laser processing optics with protection glasses of different materials and different grades of contamination. Welds in mild steel illustrate the extraordinary advantage of sapphire protection glasses, allowing a constant welding depth even when they are strongly contaminated. Welding results, beam caustic measurements and an estimation of economic efficiency will be shown.
Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.
Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi
2018-04-01
Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.
NASA Astrophysics Data System (ADS)
Vadolia, Gautam R.; Premjit Singh, K.
2017-04-01
Electron Beam Welding (EBW) technology is an established and widely adopted technique in nuclear research and development area. Electron beam welding was thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor at BARC, Mumbai and Niobium superconducting accelerator cavity at BARC has adopted the EB welding technique as a fabrication route. Study of process capability and limitations based on available literature is consolidated in this short review paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
A computational and experimental study was carried out to quantitatively understand the influence of the heat flow and the fluid flow in the transient development of the weld pool during gas tungsten arc (GTA) and laser beam welding of Type 304 stainless steel. Stationary gas tungsten arc and laser beam welds were made on two heats of Type 304 austenitic stainless steels containing 90 ppm sulfur and 240 ppm sulfur. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool. In this paper, the results of the heat flow and fluidmore » flow analysis are presented.« less
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.
Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A
2016-04-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding
Fethke, Nathan B.; Peters, Thomas M.; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A.
2016-01-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m−3 for bare beam; 65.7mg m−3 for through deck), with estimated mass concentrations of iron (7.8mg m−3 for bare beam; 15.8mg m−3 for through deck), zinc (0.2mg m−3 for bare beam; 15.8mg m−3 for through deck), and manganese (0.9mg m−3 for bare beam; 1.5mg m−3 for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. PMID:26602453
Influence of laser beam incidence angle on laser lap welding quality of galvanized steels
NASA Astrophysics Data System (ADS)
Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan
2017-11-01
Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.
Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.
Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar
2012-01-01
The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.
Optical penetration sensor for pulsed laser welding
Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.
2000-01-01
An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
Effect of Travel Speed and Beam Focus on Porosity in Alloy 690 Laser Welds
NASA Astrophysics Data System (ADS)
Tucker, Julie D.; Nolan, Terrance K.; Martin, Anthony J.; Young, George A.
2012-12-01
Advances in laser welding technology, including fiber optic delivery and high power density, are increasing the applicability of this joining technique. The inherent benefits of laser welding include small heat-affected zones, minimal distortion, and limited susceptibility to cracking. These advantages are of special interest to next-generation nuclear power systems where welding solute-rich alloys is expected to increase. Alloy 690 (A690) is an advanced corrosion-resistant structural material used in many replacement components and in construction of new commercial power plants. However, the application of A690 is hindered by its difficult weldability using conventional arc welding, and laser welding is a promising alternate. This work studies the effects of travel speed and beam focus on porosity formation in partial penetration, autogenous A690 laser welds. Porosity has been characterized by light optical microscopy and x-ray computed tomography to quantify its percent volume in the welds. This work describes the tradeoff between weld penetration and defect density as a function of beam defocus and travel speed. Additionally, the role of shield gas in porosity formation is discussed to provide a mitigation strategy for A690 laser welding. A process map is provided that shows the optimal combinations of travel speed and beam defocus to minimize porosity and maximize weld penetration at a laser power of 4 kW.
The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.
2011-10-01
In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.
NASA Astrophysics Data System (ADS)
Ma, Guolong; Li, Liqun; Chen, Yanbin
2017-06-01
Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.
Next generation high-brightness diode lasers offer new industrial applications
NASA Astrophysics Data System (ADS)
Timmermann, Andre; Meinschien, Jens; Bruns, Peter; Burke, Colin; Bartoschewski, Daniel
2008-02-01
So far, diode laser systems could not compete against CO II-lasers or DPSSL in industrial applications like marking or cutting due to their lower brightness. Recent developments in high-brightness diode laser bars and beam forming systems with micro-optics have led to new direct diode laser applications. LIMO presents 400W output from a 200μm core fibre with an NA of 0.22 at one wavelength. This is achieved via the combination of newly designed laser diode bars on passive heat sinks coupled with optimized micro-optical beam shaping. The laser is water cooled with a housing size of 375mm x 265mm x 70mm. The applications for such diode laser modules are mainly in direct marking, cutting and welding of metals and other materials, but improved pumping of fibre lasers and amplifiers is also possible. The small spot size leads to extremely high intensities and therefore high welding speeds in cw operation. For comparison: The M2 of the fibre output is 70, which gives a comparable beam parameter product (22mm*mrad) to that of a CO II laser with a M2 of 7 because of the wavelength difference. Many metals have a good absorption within the wavelength range of the laser diodes (NIR, 808nm to 980nm), which permits the cutting of thin sheets of aluminium or steel with a 200W version of this laser. First welding tests show reduced splatters and pores owing to the optimized process behaviour in cw operation with short wavelengths. The availability of a top-hat profile proves itself to be advantageous compared to the traditional Gaussian beam profiles of fibre, solid-state and gas lasers in that the laser energy is evenly distributed over the working area. For the future, we can announce an increase of the output power up to 1200W out of a 200μm fibre (0.22 NA). This will be achieved by further sophistication and optimisation of the coupling technique and the coupling of three wavelengths. The beam parameter product will then remain at 22mm*mrad with a power density of 3.8 MW/cm2 if focussed to a 200µm spot. This leads to excellent laser cutting results with extremely small cutting kerfs down to 200μm and very plane cutting edges. Process speeds rise up to more than 10m/min i.e. for thin sheets of stainless steel or titanium.
New technique of skin embedded wire double-sided laser beam welding
NASA Astrophysics Data System (ADS)
Han, Bing; Tao, Wang; Chen, Yanbin
2017-06-01
In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.
NASA Technical Reports Server (NTRS)
Witt, R. H.
1972-01-01
Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.
Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints
NASA Astrophysics Data System (ADS)
Lakshminarayanan, A. K.; Balasubramanian, V.
2012-04-01
This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.
The use of ion beam cleaning to obtain high quality cold welds with minimal deformation
NASA Technical Reports Server (NTRS)
Sater, B. L.; Moore, T. J.
1978-01-01
A variation of cold welding is described which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation.
Dual beam Nd:YAG laser welding: influence of lubricants to lap joint welding of steel sheets
NASA Astrophysics Data System (ADS)
Geiger, M.; Merklein, M.; Otto, A.; Blankl, A.
2007-05-01
Laser welding is applied in large-volume production since the late eighties and has revolutionized the possibilities of designing and engineering products. Nevertheless, problems appear during application because the operational conditions in industrial environments fluctuate and can influence the welding process negatively. Contaminations, like lubricants and organic solids, are an example of changing conditions in laser beam welding. If a lap joint is welded, these materials have to be removed from the sheets, otherwise pores and surface failures may appear due to keyhole instabilities induced by uncontrolled outgassing. One possibility for solving this problem is the use of two separate laser beams. For producing these two beams several systems are available for all different kind of lasers. A bifocal optic is such a solution for an Nd:YAG laser. By using this system, the laser beam is divided after collimation with a prism. Afterwards the two beams are focussed with a lens to the surface of the sheet and two single spots are produced. If the distance between the two spots is low, one common, elliptical keyhole is created. With this system two different welding strategies are possible. The spots can be oriented parallel or normal to the feed direction. For stabilizing the laser welding of contaminated steel sheets the parallel arrangement is better, because the amount of contamination is nearly the same as in single spot welding but the total volume of the keyhole is greater and so pressure variations due to uncontrolled evaporation of contaminations are lower. In order to prove this theory and to determine the exact effects some investigations were made at the Chair of Manufacturing Technology of the University of Erlangen-Nuremberg. A 4 kW Nd:YAG laser with a beam parameter product of 25 mm*mrad and a focal distance of 200 mm was used to weld two 1 mm DC04 steel sheets together with a lap joint. Between the sheets a deep drawing lubricant, Castrol FST 6, was used to simulate the contaminations. The sheets were welded with mono- and bifocal optic, whereas with bifocal the power distribution between the two beams was varied. After welding, the seams were qualified by analyzing surface defects and mechanical properties. The results of the investigations show that the adoption of a bifocal optic can increase the stability of the welding process. The distribution between the two single spots has an essential influence on the welding result. In order to get a higher penetration and failure free seams, a 30 % to 70 % distribution between the two spots is better. Furthermore the blade angle has another slight impact on the welding result. For monofocus and bifocus a towing angle between the sheets and the beam produces better welding results. Considering these results it can be resumed that the application of a bifocal optic is a possibility to increase the quality and the stability of lap joint welding but the parameter settings for good results can only be varied in a tight tolerance zone.
Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products
NASA Astrophysics Data System (ADS)
Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao
2003-03-01
Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.
An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space
NASA Technical Reports Server (NTRS)
Fragomeni, James M.; Nunes, Arthur C., Jr.
1998-01-01
The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.
Development of a beam builder for automatic fabrication of large composite space structures
NASA Technical Reports Server (NTRS)
Bodle, J. G.
1979-01-01
The composite material beam builder which will produce triangular beams from pre-consolidated graphite/glass/thermoplastic composite material through automated mechanical processes is presented, side member storage, feed and positioning, ultrasonic welding, and beam cutoff are formed. Each process lends itself to modular subsystem development. Initial development is concentrated on the key processes for roll forming and ultrasonic welding composite thermoplastic materials. The construction and test of an experimental roll forming machine and ultrasonic welding process control techniques are described.
Twin-spot laser welding of advanced high-strength multiphase microstructure steel
NASA Astrophysics Data System (ADS)
Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian
2017-07-01
The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.
Manufacturing Methods and Technology Application of High Energy Laser Welding Process.
1980-08-01
surface appearance and the lowest porosity of the three beam shapes evaluated. Welds made with the pure annular beam resembled a TIG weld in both surface...improper starts and stops when welding with a conventional MIG or TIG process. Figure 16 left and center illustrates cracking due to fast freezing conditions...REPORT RL-82-2 0 MANUFACTURING METHODS AND TECHNOLOGY APPLICATION _OF HIGH ENERGY LASER WELDING PROCESS 0John V. Melonas Structures Directorate, U S
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1986-01-01
Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.
Pulsed Laser Beam Welding of Pd43Cu27Ni10P20 Bulk Metallic Glass.
Shao, Ling; Datye, Amit; Huang, Jiankang; Ketkaew, Jittisa; Woo Sohn, Sung; Zhao, Shaofan; Wu, Sujun; Zhang, Yuming; Schwarz, Udo D; Schroers, Jan
2017-08-11
We used pulsed laser beam welding method to join Pd 43 Cu 27 Ni 10 P 20 (at.%) bulk metallic glass and characterized the properties of the joint. Fusion zone and heat-affected zone in the weld joint can be maintained completely amorphous as confirmed by X-ray diffraction and differential scanning calorimetry. No visible defects were observed in the weld joint. Nanoindentation and bend tests were carried out to determine the mechanical properties of the weld joint. Fusion zone and heat-affected zone exhibit very similar elastic moduli and hardness when compared to the base material, and the weld joint shows high ductility in bending which is accomplished through the operation of multiple shear bands. Our results reveal that pulsed laser beam welding under appropriate processing parameters provides a practical viable method to join bulk metallic glasses.
Study of residual stresses in CT test specimens welded by electron beam
NASA Astrophysics Data System (ADS)
Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.
2018-03-01
The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang
2016-12-01
Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.
NASA Astrophysics Data System (ADS)
Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.
2016-11-01
Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.
Optically controlled welding system
NASA Technical Reports Server (NTRS)
Gordon, Stephen S. (Inventor)
1988-01-01
An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.
Method and apparatus for real time weld monitoring
Leong, Keng H.; Hunter, Boyd V.
1997-01-01
An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
NASA Astrophysics Data System (ADS)
Oh, J. E.; Ianno, N. J.; Ahmed, A. U.
A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO2 laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained.
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
Viewing Welds By Computer Tomography
NASA Technical Reports Server (NTRS)
Pascua, Antonio G.; Roy, Jagatjit
1990-01-01
Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.
The research of PSD location method in micro laser welding fields
NASA Astrophysics Data System (ADS)
Zhang, Qiue; Zhang, Rong; Dong, Hua
2010-11-01
In the field of micro laser welding, besides the special requirement in the parameter of lasers, the locating in welding points accurately is very important. The article adopt position sensitive detector (PSD) as hard core, combine optic system, electric circuits and PC and software processing, confirm the location of welding points. The signal detection circuits adopt the special integrate circuit H-2476 to process weak signal. It is an integrated circuit for high-speed, high-sensitivity optical range finding, which has stronger noiseproof feature, combine digital filter arithmetic, carry out repair the any non-ideal factors, increasing the measure precision. The amplifier adopt programmable amplifier LTC6915. The system adapt two dimension stepping motor drive the workbench, computer and corresponding software processing, make sure the location of spot weld. According to different workpieces to design the clamps. The system on-line detect PSD 's output signal in the moving processing. At the workbench moves in the X direction, the filaments offset is detected dynamic. Analyze the X axes moving sampling signal direction could be estimate the Y axes moving direction, and regulate the Y axes moving values. The workbench driver adopt A3979, it is a stepping motor driver with insert transducer and operate easily. It adapts the requirement of location in micro laser welding fields, real-time control to adjust by computer. It can be content up 20 μm's laser micro welding requirement on the whole. Using laser powder cladding technology achieve inter-penetration welding of high quality and reliability.
Portable electron beam weld chamber
NASA Technical Reports Server (NTRS)
Lewis, J. R.; Dimino, J. M.
1972-01-01
Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.
Beam/seam alignment control for electron beam welding
Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.
1980-01-01
This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, Edward F.; Cassidy, Dale A.; Sommer, Robert G.
1987-01-01
The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.
1985-11-29
This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser
NASA Astrophysics Data System (ADS)
Kim, Taewon; Suga, Yasuo; Koike, Takashi
TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.
2018-03-01
An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.
Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation
NASA Astrophysics Data System (ADS)
Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen
2015-07-01
Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.
Optically controlled welding system
NASA Technical Reports Server (NTRS)
Gordon, Stephen S. (Inventor)
1989-01-01
An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.
T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses
NASA Astrophysics Data System (ADS)
Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.
2012-03-01
Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.
NASA Astrophysics Data System (ADS)
Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.
2017-07-01
In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1 × 1015 ions cm-2, 3 × 1015 ions cm-2 and 1 × 1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.
2017-01-01
The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1984-01-01
A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).
Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints
NASA Astrophysics Data System (ADS)
Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael
Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.
Electron beam welding passes initial test
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sirvy, B.
1979-11-01
Once the new electron-beam welding process is coupled with vertical or J-curve pipelaying techniques, Total-Compagnie Francaise des Petroles (Gestion and Recherches) will be able to offer a system capable of laying up to 36-in. pipe in deep water (1000-9900 ft) at a pace competitive with the best performance of a shallow-water barge: 8200 ft in 24 hr. Electron-beam welding provides the fast, single-station joining needed to make J-curve laying economical. Tests recently demonstrated that this welding technique can join 1.25-in.-wall, 24-in. pipe in less than 3 min; conventional processes require 1-1 1/2 hr.
Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness
Angella, Giuliano; Montanari, Roberto; Richetta, Maria; Varone, Alessandra
2017-01-01
Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds (v) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ’ phase in MZ consisted of small (20–40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ’ phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ’ and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ’ particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones. PMID:28872620
NASA Technical Reports Server (NTRS)
Miller, F. R.
1972-01-01
Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.
SRF test facility for the superconducting LINAC ``RAON'' — RRR property and e-beam welding
NASA Astrophysics Data System (ADS)
Jung, Yoochul; Hyun, Myungook; Joo, Jongdae; Joung, Mijoung
2015-02-01
Equipment, such as a vacuum furnace, high pressure rinse (HPR), eddy current test (ECT) and buffered chemical polishing (BCP), are installed in the superconducting radio frequency (SRF) test facility. Three different sizes of cryostats (diameters of 600 mm for a quarter wave resonator (QWR), 900 mm for a half wave resonator (HWR), and 1200 mm for single spoke resonator 1&2 (SSR 1&2)) for vertical RF tests are installed for testing cavities. We confirmed that as-received niobium sheets (ASTM B393, RRR300) good electrical properties because they showed average residual resistance ratio (RRR) values higher than 300. However, serious RRR degradation occurred after joining two pieces of Nb by e-beam welding because the average RRR values of the samples were ˜179, which was only ˜60% of as-received RRR value. From various e-beam welding experiments in which the welding current and a speed at a fixed welding voltage were changed, we confirmed that good welding results were obtained at a 53 mA welding current and a 20-mm/s welding speed at a fixed welding voltage of 150 kV.
Beam Splitter For Welding-Torch Vision System
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.
1991-01-01
Compact welding torch equipped with along-the-torch vision system includes cubic beam splitter to direct preview light on weldment and to reflect light coming from welding scene for imaging. Beam splitter integral with torch; requires no external mounting brackets. Rugged and withstands vibrations and wide range of temperatures. Commercially available, reasonably priced, comes in variety of sizes and optical qualities with antireflection and interference-filter coatings on desired faces. Can provide 50 percent transmission and 50 percent reflection of incident light to exhibit minimal ghosting of image.
Shimmed electron beam welding process
Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas
2002-01-01
A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.
Heat Pipe and Thermal Energy Storage and Corrosion Studies (1988)
1989-06-01
of air environment melting and end cap TIG welding [2]. Because of its severity, vacuum thermal cycling of the salt clad capsules between salt eutectic...melting of the salt under an inert gas atmosphere and welding of the specimen capsules by electron beam welding in contrast to previously used methods...electron beam welding . However, no ill effects were believed to have occurred on the overall testing program. Ultrapure fluoride salts LiF, MgF2, NaF
Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser
NASA Astrophysics Data System (ADS)
Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira
A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.
Nd-glass laser for deep-penetration welding and hardening
NASA Astrophysics Data System (ADS)
Kayukov, Serguei V.; Yaresko, Sergey I.; Mikheyev, Pavel A.
2000-04-01
Pulsed Nd-glass lasers usually have low beam quality (200 - 300 mm-mrad), and are used only for surface hardening of metals. However, high pulse energy make them feasible for deep penetration welding if their beam quality could be improved. We investigated beam properties of Nd-glass laser with unstable resonator with semitransparent output coupler (URSOC). We had found that beam divergence of the laser with URSOC was an order of magnitude smaller than that of the laser with stable resonator. The achieved beam quality (40 - 50 mm-mrad) permitted to perform deep penetration welding with the aspect ratio of approximately 8. For beam divergence of 3 mrad melt depth of 6.3 mm was achieved with the ratio of depth to pulse energy of 0.27 mm/J.
Laser diagnostics of welding plasma by polarization spectroscopy.
Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel
2007-05-01
The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.
Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique
NASA Astrophysics Data System (ADS)
Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.
2018-03-01
The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.
Heavy-section welding with very high power laser beams: the challenge
NASA Astrophysics Data System (ADS)
Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.
1997-08-01
The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.
Characterization of nitrogen effects in high energy density weldments of Nitronic 40 stainless steel
NASA Astrophysics Data System (ADS)
Pfeif, Erik Andrew
Variation in the welding environment for laser beam welding and electron beam welding can alter the resulting weld chemical composition, microstructure and therefore the mechanical properties. The room temperature mechanical properties of Nitronic 40 stainless steel weld metal from three different heats containing 0.24, 0.28, and 0.31 wt. pct. nitrogen were evaluated for continuous mode Ytterbium doped Fiber laser welds conducted with argon and nitrogen shielding gases, and for electron beam welds. The bulk nitrogen contents were monitored and the resulting properties were then related to microstructural features measured using Electron BackScatter Diffraction (EBSD). Traditional tensile testing of weld metal is conducted on composite tensile bars consisting of base metal and weld metal often leading to failure in the region adjacent to the weld due to strength mismatch at the weld interface. These tests provide composite strength but do not specifically determine the mechanical properties of the heterogeneous weld metal. In this research, microtensile testing was conducted to characterize the properties of the different regions of the weld. The microtensile testing procedures were developed using two geometries of tensile bars measuring the properties through the thickness of 3 mm full penetration welds. In all cases an increase in the strength of the weld metal was found to occur, though the electron beam welds exhibited a higher strength than the laser welds. Standard predictive equations were found to under-predict the strength of the laser welds, even when average grain size or intercept distances were measured. The contribution of nitrogen solid solution strengthening was consistent at approximately 513 MPa per wt. pct. nitrogen. Similar cooling rates and heat inputs allow for a comparison across high energy density welding techniques. Though microstructural differences through the depth of the weld metal were observed as nitrogen vaporization decreased and cooling rates increased. Vermicular ferrite, lacy ferrite and intercellular ferrite were identified as predicted in prior research done on high nitrogen austenitic stainless steels. The resulting laser weld metal microstructures were analyzed with EBSD for grain size and ferrite content measurements, while grain boundary character was determined for a Hansen model used for multi-scale mechanical property measurements. It was found that the low angle grain boundaries were the predominant microstructural feature responsible for strengthening within the weld metal and that this contribution must be accounted for when predicting yield strength of the weld metal.
The use of ion beam cleaning to obtain high quality cold welds with minimal deformation
NASA Technical Reports Server (NTRS)
Sater, B. L.; Moore, T. J.
1978-01-01
This paper describes a variation of cold welding which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation. Due to experimental fixture limitation in applying pressure work has been limited to a few low yield strength materials.
Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar
2018-03-01
CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.
NASA Astrophysics Data System (ADS)
Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.
Nomoto, Rie; Takayama, Yasuko; Tsuchida, Fujio; Nakajima, Hiroyuki
2010-12-01
The purpose of this study was to measure the porosity in different laser welded cast alloys non-destructively using X-ray micro-focus computerized tomography (micro-CT) and to evaluate the effect of porosity on the tensile strength of the welded joints. The welding procedure was conducted in rectangular cast metals, CoCr, Ti and platinum added gold alloy (AuPt). The metal plates were butted CoCr to CoCr (CoCr/CoCr) or Ti to Ti (Ti/Ti) for welding of similar metals and Ti to AuPt (Ti/AuPt) for welding of dissimilar metals. Specimens were welded under several laser-welding conditions; with groove (normal), without groove (no groove), spatter, crack, or no overlapped welding (no overlap) (n=5). Porosity in the welded area was evaluated using a micro-CT. Tensile strength of the welded specimens was measured at a crosshead speed of 1mm/min. Multiple comparisons of the group means were performed using ANOVA and Fisher's multiple comparisons test (α=.05). The relationship between the porosity and the tensile strength was investigated with a regression analysis. Three-dimensional images of Ti/AuPt could not be obtained due to metal artifacts and the tensile specimens of Ti/AuPt were debonded prior to the tensile test. All other welded specimens had porosity in the welded area and the porosities ranged from 0.01% to 0.17%. The fractures of most of the CoCr/CoCr and Ti/Ti specimens occurred in the parent metals. Joint strength had no relationship with the porosity in the welded area (R(2)=0.148 for CoCr/CoCr, R(2)=0.088 for Ti/Ti, respectively). The small amount of porosity caused by the laser-welding procedures did not affect the joint strength. The joint strength of Ti/AuPt was too weak to be used clinically. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Spot-welding solid targets for high current cyclotron irradiation
Ellison, Paul A.; Valdovinos, Hector F.; Graves, Stephen A.; Barnhart, Todd E.; Nickles, Robert J.
2016-01-01
Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50 μA proton beam degraded to 14 MeV. The resulting activity yield of 48 ± 4 MBq/(μA·hr) now extends the outreach of 89Zr for a broader distribution. PMID:27771445
Welding and Weldability of AZ31B by Gas Tungsten Arc and Laser Beam Welding Processes
NASA Astrophysics Data System (ADS)
Lathabai, S.; Barton, K. J.; Harris, D.; Lloyd, P. G.; Viano, D. M.; McLean, A.
Welding will play an important role in the fabrication of modular lightweight structures based on magnesium alloy die castings, extrusion profiles and wrought products. Minimisation of rejection rates during fabrication requires that satisfactory weldability be established for a particular combination of materials and welding procedures. In this paper, we present the results of a study to quantify the weldability of wrought alloy AZ31B by gas tungsten arc (GTA) and laser beam (LB) welding processes. The susceptibility to weld metal solidification cracking was evaluated using the Circular Patch weldability test. Operating windows of welding parameters for crack-free and porosity-free GTA and LB welding were identified, based on which welding procedures were developed for sheet and plate AZ31B. The microstructure and mechanical properties of welded test plates were assessed, leading to a better understanding of microstructurat development and structure-property relationships in GTA and LB weldments in AZ31B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in
Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported componentsmore » to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)« less
Milewski, John O.; Sklar, Edward
1998-01-01
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.
Milewski, J.O.; Sklar, E.
1998-06-02
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.
Comparison of joint designs for laser welding of cast metal plates and wrought wires.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2013-01-01
The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.
Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.
A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam
NASA Astrophysics Data System (ADS)
Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun
2018-04-01
The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.
Factors affecting weld root morphology in laser keyhole welding
NASA Astrophysics Data System (ADS)
Frostevarg, Jan
2018-02-01
Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.
NASA Astrophysics Data System (ADS)
Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun
2014-12-01
The present paper studied the evolution of tensile damage in joints welded using laser beam welding (LBW) and gas tungsten arc welding (TIG) under a uniaxial tensile load. The damage evolution in the LBW joints and TIG-welded joints was studied by using digital image correlation (DIC) technology and monitoring changes in Young's modulus during tensile testing. To study the mechanism of void nucleation and growth in the LBW joints and TIG-welded joints, test specimens with various amounts of plastic deformation were analyzed using a scanning electron microscope (SEM). Compared with TIG-welded joints, LBW-welded joints have a finer microstructure and higher microhardness in the fusion zone. The SEM analysis and DIC test results indicated that the critical strain of void nucleation was greater in the LBW-welded joints than in the TIG-welded joints, while the growth rate of voids was lower in the LBW-welded joints than in the TIG-welded joints. Thus, the damage ratio in the LBW joints was lower than that in the TIG-welded joints during tensile testing. This can be due to the coarser martensitic α' and the application of TC-1 welding rods in the TIG-welded joint.
NASA Astrophysics Data System (ADS)
Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.
2018-02-01
The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.
Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation
NASA Astrophysics Data System (ADS)
Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas
Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.
9. DETAIL VIEW OF BOTTOM CHORD/FLOOR BEAM/IBAR PIN CONNECTION. WELDED ...
9. DETAIL VIEW OF BOTTOM CHORD/FLOOR BEAM/I-BAR PIN CONNECTION. WELDED PLATE AT PIN CONNECTION IS 20TH CENTURY REVISION. - Bucks County Bridge No. 313, Spanning Delaware Canal at Letchworth Avenue, Yardley, Bucks County, PA
Spot-welding solid targets for high current cyclotron irradiation.
Ellison, Paul A; Valdovinos, Hector F; Graves, Stephen A; Barnhart, Todd E; Nickles, Robert J
2016-12-01
Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89 Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50µA proton beam degraded to 14MeV. The resulting activity yield of 48±4 MBq/(μA∙hr) now extends the outreach of 89 Zr for a broader distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Particulate electron beam weld emission hazards in space
NASA Technical Reports Server (NTRS)
Bunton, Patrick H.
1996-01-01
The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.
Fusion welding studies using laser on Ti-SS dissimilar combination
NASA Astrophysics Data System (ADS)
Shanmugarajan, B.; Padmanabham, G.
2012-11-01
Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.
Electron beam additive manufacturing with wire - Analysis of the process
NASA Astrophysics Data System (ADS)
Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz
2018-05-01
The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.
The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy
NASA Technical Reports Server (NTRS)
Moore, T. J.; Titran, R. H.; Grobstein, T. L.
1986-01-01
Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.
Method for laser welding a fin and a tube
Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O
2001-01-01
A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.
Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet
NASA Astrophysics Data System (ADS)
Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo
A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.
NASA Technical Reports Server (NTRS)
Guirguis, Kamal; Price, Daniel S.
1990-01-01
Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.
NASA Astrophysics Data System (ADS)
Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio
2017-10-01
Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.
Laser beam welding of new ultra-high strength and supra-ductile steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin
2015-03-01
Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.
ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals
NASA Astrophysics Data System (ADS)
Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.
1985-01-01
It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.
NASA Astrophysics Data System (ADS)
Zareie Rajani, H. R.; Phillion, A. B.
2015-06-01
A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.
Electron Beam Welding of Duplex Steels with using Heat Treatment
NASA Astrophysics Data System (ADS)
Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman
2010-01-01
This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C.; Vaughn, J.; Stocks, C.; ODell, D.; Bhat, B.
1996-01-01
Test welds were made in argon over a range of pressures from 10-5 to 10-3 torr (the latter pressure an order of magnitude above pressures anticipated in the space shuttle bay during welding) with and without plasma on 304 stainless steel, 6Al-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1977-01-01
Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.
Post weld and epoxy anchorage variations for w-beam guardrail attached to low-rill culverts.
DOT National Transportation Integrated Search
2013-08-01
The research effort consisted of two objectives for dealing with alterations to the W-beam guardrail system developed : for attachment to the top of low-fill culverts. This effort included: (1) investigation of an alternative weld detail to simplify ...
Pulsed Nd:YAG laser welding of cardiac pacemaker batteries with reduced heat input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerschbach, P.W.; Hinkley, D.A.
1997-03-01
The effects of Nd:YAG laser beam welding process parameters on the resulting heat input in 304L stainless steel cardiac pacemaker batteries have been studied. By careful selection of process parameters, the results can be used to reduce temperatures near glass-to-metal seals and assure hermeticity in laser beam welding of high reliability components. Three designed response surface experiments were used to compare welding performance with lenses of varying focal lengths. The measured peak temperatures at the glass-to-metal seals varied from 65 to 140 C (149 to 284 F) and depended strongly on the levels of the experimental factors. It was foundmore » that welds of equivalent size can be made with significantly reduced temperatures. The reduction in battery temperatures has been attributed to an increase in the melting efficiency. This increase is thought to be due primarily to increased travel speeds, which were facilitated by high peak powers and low pulse energies. For longer focal length lenses, weld fusion zone widths were found to be greater even without a corresponding increase in the size of the weld. It was also found that increases in laser beam irradiance either by higher peak powers or smaller spot sizes created deeper and larger welds. These gains were attributed to an increase in the laser energy transfer efficiency.« less
Studying of welding aerosol using laser granulometry
NASA Astrophysics Data System (ADS)
Kirichenko, K. Y.; Gridasov, A. V.; Drozd, V. A.; Golokhvast, K. S.
2016-11-01
The paper presents results of a study of the size of the particles that arise during the welding process using laser granulometry method. It is shown that the welding aerosol - extremely dangerous for human and animal health and the source of nano- and micro-sized particles.
Determination and Dependencies of Melt Pool Dimensions in Laser Micro Welding
NASA Astrophysics Data System (ADS)
Patschger, Andreas; Bliedtner, Jens
Melt pool dimensions such as width and length influence the properties of the resulting weld joint and should be considered when designing the laser welding process. The melt pool width and as a consequence the weld seam width determine the strength of the joint. The melt pool length is directly linked to the solidification time which affects the resulting metallurgical micro structure. The melt pool dimensions can be estimated by given analytical solutions based on the capillary diameter. In order to test the given estimations, melt pool dimensions of bead-on-plate welds in stainless steel foils were measured by means of high speed imaging and microscopy. The welds were obtained by applying different focal diameters between 25 μm and 204 μm to foil thicknesses of 50 μm and 100 μm. As a result, simplified correlations based on the focal diameter are derived which is less complex to determine in practice. Regression analyses ensure a statistical comparability.
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
1997-11-01
Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.
NASA Astrophysics Data System (ADS)
Zhang, W. W.; Cong, S.; Luo, S. B.; Fang, J. H.
2018-05-01
The corrosion resistance performance of SAF2205 duplex stainless steel depends on the amount of ferrite to austenite transformation, but the ferrite content after power beam welding is always excessively high. To obtain laser beam welding joints with better mechanical and corrosion resistance performance, the effects of the energy density and shielding medium on the austenite content, hardness distribution, and shear strength were investigated. The results showed that ferrite to austenite transformation was realized with increase in the energy density. When the energy density was increased from 120 J/mm to 200 J/mm, the austenite content of the welding joint changed from 2.6% to 38.5%. Addition of nitrogen gas to the shielding medium could promote formation of austenite. When the shielding medium contained 50% and 100% nitrogen gas, the austenite content of the welding joint was 42.7% and 47.2%, respectively. The hardness and shear strength were significantly improved by increase in the energy density. However, the shielding medium had less effect on the mechanical performance. Use of the optimal welding process parameters resulted in peak hardness of 375 HV and average shear strength of 670 MPa.
Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper
NASA Astrophysics Data System (ADS)
Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan
2018-06-01
Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.
Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum
NASA Astrophysics Data System (ADS)
Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.
Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.
Preliminary studies concerning Hadfield steel behavior during laser beam welding in pulsating regime
NASA Astrophysics Data System (ADS)
David, Ion; Şerban, Viorel-Aurel
2007-08-01
This work proposes to analyze the behavior of austenitic manganese - Hadfield steel during laser beam welding in continuous regime. In order to limit the number of experiments, a 2 4 type factorial experiment was used, with 16 assays, after a frequently used program matrix for these situations. Fusion lines at different service regimes, as well as head to head welds were performed. Microhardness measurements and microstructure modifications that appear as an effect of laser irradiation are also analyzed.
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang
2017-02-01
We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP < 8 mm mrad at all power levels up to 1 kW, as well as free space collimated outputs with even lower BPP. The initial design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of <3.5 mm*mrad in the fast axis and <5 mm*mrad in the slow axis. Next, further power scaling is accomplished by polarization combining and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with over 500 W launched into a 100 μm fiber with 0.15 NA. The beam profile of the free space module remains rectangular, with a nearly flat top and conserves the beam parameter product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.
Non-Equilibrium Phenomena in High Power Beam Materials Processing
NASA Astrophysics Data System (ADS)
Tosto, Sebastiano
2004-03-01
The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.
Biaxial Creep Specimen Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
JL Bump; RF Luther
This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less
NASA Astrophysics Data System (ADS)
Daurelio, Giuseppe; Ludovico, Antonio D.; Lugara, M. P.; De Filippis, L. A. C.; Spera, A. M.; Rocco, S.
2005-03-01
The aim of this search is to evaluate the WE (Welding Efficiency) of each beads versus the different positions of the laser beam optical focus (positive or negative or zero values) respect to the work-piece surface and also versus different laser beam incidence angles (80° and 70°) by using two laser power levels (2 and 2.5 KW) and two welding speeds (3 and 6 m/min). The WE values have been reported on two DA.LU. method plots and the relate evaluations regarding the same ones as well as the recorded best parameters have been evidenced.
NASA Astrophysics Data System (ADS)
Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael
The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.
Thermal Impacts in Vibration-assisted Laser Deep Penetration Welding of Aluminum
NASA Astrophysics Data System (ADS)
Radel, T.
Mechanical vibrations affect the nucleation and grain growth conditions during welding. In order to understand the vibration-induced influences on the grain formation conditions in laser beam welding of aluminum the thermal impacts of simultaneously applied vibrations are analyzed in this study. Therefore, laser deep penetration welding at vibration frequencies between 0.5 kHz and 5 kHz is investigated. Besides full penetration, partial penetration experiments were carried out. The results show that the thermal and absorption efficiencies are not significantly affected by the applied excitation. The solidification time increases in case of applied excitation which is rather disadvantageous regarding grain refinement. Thus, mechanical-metallurgical and not thermal-metallurgical effects should be responsible for the change in grain nucleation and grain growth conditions in laser beam welding with simultaneously applied vibrations.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1977-01-01
Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.
Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K
2004-11-01
Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.
NASA Astrophysics Data System (ADS)
Kwon, Soon Il; Bae, Sang Hyun; Do, Jeong Hyeon; Jo, Chang Yong; Hong, Hyun Uk
2016-02-01
The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (-196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (-196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.
The characteristics of welded joints for air conditioning application
NASA Astrophysics Data System (ADS)
Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.
2017-10-01
In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.
Microstructure Formation in Dissimilar Metal Welds: Electron Beam Welding of Ti/Ni
NASA Astrophysics Data System (ADS)
Chatterjee, Subhradeep; Abinandanan, T. A.; Reddy, G. Madhusudhan; Chattopadhyay, Kamanio
2016-02-01
We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of γ-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.
NASA Astrophysics Data System (ADS)
Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan
2016-11-01
A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.
Optimization of process parameters in welding of dissimilar steels using robot TIG welding
NASA Astrophysics Data System (ADS)
Navaneeswar Reddy, G.; VenkataRamana, M.
2018-03-01
Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.
Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong
2018-01-01
Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.
High-intensity fibre laser design for micro-machining applications
NASA Astrophysics Data System (ADS)
Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.
2010-11-01
This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Liu, Guiqian
2015-01-01
During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.
Investigations for the improvement of space shuttle main engine electron beam welding equipment
NASA Technical Reports Server (NTRS)
Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.
1977-01-01
Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.
NASA Astrophysics Data System (ADS)
Steyn, Gideon; Vermeulen, Christiaan; Isaacs, Eugene
2018-05-01
The techniques employed at iThemba LABS for the encapsulation of solid radionuclide production targets, based on cold indentation welding, electron beam welding and laser welding, are described. Some aspects of the target holders and cooling requirements to bombard targets in a tandem configuration with a 66 MeV proton beam, with intensities up to nominally 250 A, are also briefly discussed. These techniques are inter alia suitable for a production regimen compatible with the new generation of commercial, high-intensity 70 MeV cyclotrons.
The effect of weld stresses on weld quality. [stress fields and metal cracking
NASA Technical Reports Server (NTRS)
Chihoski, R. A.
1972-01-01
A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.
Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075
NASA Astrophysics Data System (ADS)
Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.
High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.
Electron beam technologies in Poland state of the art and possibilities of development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcicki, S.
1994-12-31
The recent state of high energy electron beam /EB/ used for metals melting and welding in Poland has been presented. Some typical construction of EB furnaces and EB welding machines designed and constructed in Institute of Vacuum Technology in Warsaw are shown. The examples of their application has also been described.
Dovetail Rotor Construction For Permanent-Magnet Motors
NASA Technical Reports Server (NTRS)
Kintz, Lawrence J., Jr.; Puskas, William J.
1988-01-01
New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.
NASA Astrophysics Data System (ADS)
Bykov, Yu. G.; Fomichev, E. O.; Kashapov, O. S.; Kyaramyan, K. A.
2017-12-01
The conditions of electron-beam welding (EBW) of ring samples made of a VT41 alloy are adjusted to produce large welded joints of this alloy for a high-pressure compressor (HPC) of an advanced engine. The problems of quality control of a welded joint, the level of residual stresses in the near-weld zone, the microstructure of the welded joint, and its properties are considered.
Structural and mechanical properties of welded joints of reduced activation martensitic steels
NASA Astrophysics Data System (ADS)
Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.
2002-12-01
Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.
Ultrafast Bessel beams: advanced tools for laser materials processing
NASA Astrophysics Data System (ADS)
Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois
2018-05-01
Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.
Laser skin welding using water absorption and heat management
NASA Astrophysics Data System (ADS)
Halder, Rabindra K.; Katz, Alvin; Savage, Howard E.; Kartazayev, Vladimir; McCormick, Steven A.; Budansky, Yury; Paul, Misu; Rosen, Richard B.; Alfano, Robert R.
2005-04-01
Laser skin welding (LSW) is being pursued for scarless wound healing. We present a new LSW approach using a contact glass slide over the sample and rapid scanning of the laser beam around the area to be welded. This led to dramatic improvement in welding efficacy. A 400 mW beam at 1455 nm with a focused spot diameter of 80 μm in air was scanned at a rate of 5mm/second over a 5mm line of incision in 5 mm x 20 mm human skin samples. Histological analysis of the welded samples using hematoxyline and eosin under unpolarized light showed full-thickness full-length weld, and that with picrosirius red F3BA stain under polarized light revealed that there was no appreciable damage. Measured tensile strength of 2.1 kg/cm2 is markedly greater than our previous LSW results of 1.05 +/- 0.19 kg/cm2, which is greater than the typical values of 0.4 kg/cm2 obtained using sutures.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong
2017-05-01
Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.
Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination
NASA Astrophysics Data System (ADS)
Choi, M. S.; Yang, M. S.
1991-02-01
The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.
Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li
2018-03-01
A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead
NASA Astrophysics Data System (ADS)
Gu, Hongping; Van Gelder, Aldo
Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less
Ultrasonic velocity testing of steel pipeline welded joints
NASA Astrophysics Data System (ADS)
Carreón, Hector
2017-04-01
In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
Onorbit electron beam welding experiment definition
NASA Technical Reports Server (NTRS)
1989-01-01
The proposed experiment design calls for six panels to be welded, each having unique characteristics selected to yield specific results and information. The experiment is completely automated and the concept necessitated the design of a new, miniaturized, self-contained electron beam (EB) welding system, for which purpose a separate IR and D was funded by the contractor, Martin Marietta Corporation. Since future tasks beyond the proposed experiment might call for astronauts to perform hand-held EB gun repairs or for the gun to be interfaced with a dexterous robot such as the planned flight telerobotic servicer (FTS), the EB gun is designed to be dismountable from the automated system. In the experiment design, two separate, identical sets of weld panels will be welded, one on earth in a vacuum chamber and the other onorbit in the aft cargo bay of an orbiter. Since the main objective of the experiment is to demonstrate that high quality welds can be achieved under onorbit conditions, the welds produced will be subjected to a wide range of discriminating non-destructive Q.C. procedures and destructive physical tests. However, advantage will be taken of the availability of a fairly large quantity of welded material in the two series of welded specimens to widen the circle of investigative talent by providing material to academic and scientific institutions for examination.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
NASA Astrophysics Data System (ADS)
Szabo, Attila
While large structural components can be electron beam (EB) welded, equipment and operating costs increase with the requisite vacuum chamber's size. Attention is presently given to cost-effective ways of EB welding launch-vehicle assemblies without compromise of weld quality in such alloys as 2219, 2090, Weldalite, and HP9-4-30/20. Weld strengths at both room and cryogenic temperatures that were 50 percent higher than those obtainable for such materials with arc welding have been demonstrated. Fracture toughnesses were also 40-50 percent higher than arc-welded values. Attention is given to EB joint fit-up allowables for 2219-T87 Al alloy.
NASA Astrophysics Data System (ADS)
Tube to tube-sheet joints in heat exchangers are currently welded by the orbital TIG process characterized by very high quality of the weld beads and good repeatability. However, due to high number of welds, a reduction in the welding cycle time would have an interesting impact on manufacturing costs and delays and laser welding technology is aimed to improve this factor. The main disadvantage is the positioning accuracy required by the laser welding process since beam deviations from real joint cause lack of penetration. It is expected that the Orbital laser welding head developed under the European project ORBITAL will avoid this drawback.
NASA Astrophysics Data System (ADS)
Karwande, Amit H.; Rao, Seeram Srinivasa
2018-04-01
Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.
NASA Astrophysics Data System (ADS)
Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.
2017-04-01
It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.
2000W high beam quality diode laser for direct materials processing
NASA Astrophysics Data System (ADS)
Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong
2011-11-01
This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.
Ultrasonic Welding of Graphite/Thermoplastic Composite
NASA Technical Reports Server (NTRS)
Hardy, S. S.; Page, D. B.
1982-01-01
Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.
Ramifications of welding a soleplate to a precast metal insert of a prestressed single-tee beam.
DOT National Transportation Integrated Search
1976-01-01
A model of the bearing assembly specified on the plans for the bridges being constructed in Norton, Virginia, was prepared in the laboratory at the Research Council. The shielded metal-arc welding process was used to weld the soleplate to the metal i...
NASA Astrophysics Data System (ADS)
Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.
2016-11-01
In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.
Design of reinforcement welding machine within steel framework for marine engineering
NASA Astrophysics Data System (ADS)
Wang, Gang; Wu, Jin
2017-04-01
In this project, a design scheme that reinforcement welding machine is added within the steel framework is proposed according to the double-side welding technology for box-beam structure in marine engineering. Then the design and development of circuit and transmission mechanism for new welding equipment are completed as well with one sample machine being made. Moreover, the trial running is finished finally. Main technical parameters of the equipment are: the working stroke: ≥1500mm, the welding speed: 8˜15cm/min and the welding sheet thickness: ≥20mm.
Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration
NASA Astrophysics Data System (ADS)
Yang, Guang
In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein referred to as cross-beam). To compare the three joining processes, the transient heat distribution, cooling rates, and solidification rates were analyzed by three-dimensional finite element models using ANSYS. Microstructure evolution, tensile strength, fracture mechanisms, and surface roughness of joints were investigated accordingly. To improve the weld surface quality of aluminum joints, the laser-wire position and the gas parameters were optimized. Visualization of the gas flow by a CCD camera revealed the effects of nozzle shape, flow rate, inclination angle of the gas tube, nozzle position, and gas compositions (argon and helium) on the weld surface quality. The suppression of plasma plume and the effects of oxidation on the molten pool were illustrated in detail. With an optimized set of processing parameters, the weld surface roughness (Ra) of approximately 1 microm can be achieved. The feasibility of fabricating the aluminum alloy panel joint in the as-received condition, i.e., with stamping lubricant, by using the cross-beam laser was investigated. Two commercial mineral oils, Bonderite L-FM MP-404 and Ferrocote 61 MAL HCL, were applied onto clean panels prior to joining in order to simulate the conditions of the production environment. The formation and growth of hydrogen bubbles inside the molten pool, the stability of welding process, and the possible energy absorption capability of the porous weld were explained. Besides joining of similar materials, cross-beam laser was applied to join aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 microm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. Simulation of the mechanical response of a coach-peel joint is instructive for improvement of the joining process. The effective true stress-strain curve of fusion-brazed AA 4047 was difficult to obtain experimentally. Therefore, the von Mises isotropic flow function of the weld bead was inversely derived by image-based finite element analysis. Through iterative correction, the predicted tensile response of the coach-peel joint matched well with the experiment. The von Mises fracture stresses at the fusion zone boundary and the brazing interface were identified, respectively.
Use of pre-pulse in laser spot welding of materials with high optical reflection
NASA Astrophysics Data System (ADS)
Mys, Ihor; Geiger, Manfred
2003-11-01
Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.
NASA Astrophysics Data System (ADS)
Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong
2018-03-01
The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.
High Power Laser Welding. [of stainless steel and titanium alloy structures
NASA Technical Reports Server (NTRS)
Banas, C. M.
1972-01-01
A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.F.; Herfurth, G.
1998-11-01
Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at {minus} 20 C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effectmore » of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO{sub 2}, {gamma} Al{sub 2}O{sub 3}, or MnO. Al{sub 2}O{sub 3} as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 {micro}m in diameter. The combination of more oxide inclusions greater than 1 {micro}m and less acicular ferrite is considered to be the explanation for the lower Charpy values.« less
Electron beam machining using rotating and shaped beam power distribution
Elmer, John W.; O'Brien, Dennis W.
1996-01-01
An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.
2013-01-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.
CHARACTERIZATION OF Pro-Beam LOW VOLTAGE ELECTRON BEAM WELDING MACHINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.
The purpose of this paper is to present and discuss data related to the performance of a newly acquired low voltage electron beam welding machine. The machine was made by Pro-Beam AG &Co. KGaA of Germany. This machine was recently installed at LANL in building SM -39; a companion machine was installed in the production facility. The PB machine is substantially different than the EBW machines typically used at LANL and therefore, it is important to understand its characteristics as well as possible. Our basic purpose in this paper is to present basic machine performance data and to compare thosemore » with similar results from the existing EBW machines. It is hoped that this data will provide a historical record of this machine’s characteristics as well as possibly being helpful for transferring welding processes from the old EBW machines to the PB machine or comparable machines that may be purchased in the future.« less
Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding
NASA Astrophysics Data System (ADS)
Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.
2018-04-01
In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.
Resistance welding graphite-fiber composites
NASA Technical Reports Server (NTRS)
Lamoureux, R. T.
1980-01-01
High-strength joints are welded in seconds in carbon-reinfored thermoplastic beams. Resistance-welding electrode applies heat and pressure to joint and is spring-loaded to follow softening material to maintain contact; it also holds parts together for cooling and hardening. Both transverse and longitudinal configurations can be welded. Adhesive bonding and encapsulation are more time consuming methods and introduce additional material into joint, while ultrasonic heating can damage graphite fibers in composite.
73rd American Welding Society annual meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference wasmore » also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.« less
Welding And Cutting A Nickel Alloy By Laser
NASA Technical Reports Server (NTRS)
Banas, C. M.
1990-01-01
Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, T; Elmer, J; Pong, R
This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
Nano- and Microparticles in Welding Aerosol: Granulometric Analysis
NASA Astrophysics Data System (ADS)
Kirichenko, K. Yu.; Drozd, V. A.; Chaika, V. V.; Gridasov, A. V.; Kholodov, A. S.; Golokhvast, K. S.
The paper presents the first results of the study of the size of particles appearing in the welding process by means of laser granulometry. It is shown that welding aerosol is the source of nano-and micro-sized particles extremely dangerous for human and animal health. Particle size distribution in the microrange was from 1 to 10 μm and up to 100%. It is shown that in 9 cases out of 28 with the use of various welding modes, welding rods and components the emission of aerosol with nano-sized particles (from 45.5% to 99.4%) is observed.
NASA Astrophysics Data System (ADS)
Adalarasan, R.; Santhanakumar, M.
2015-01-01
In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.
Energy Losses Estimation During Pulsed-Laser Seam Welding
NASA Astrophysics Data System (ADS)
Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana
2014-06-01
The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.
[Stress-corrosion test of TIG welded CP-Ti].
Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y
2000-12-01
In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.
Process characteristics of the combination of laser beam- and gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalla, G.; Neuenhahn, J.; Koerber, C.
1994-12-31
In this presentation, experiences regarding the combination of laser beam-and gas metal arc welding are discussed. The combination of both techniques offers the possibility of using the specific advantages include the deep penetration effect and the concentrated heat input. Additionally, the gas metal arc welding (GMAW) process is characterized by several advantages, such as high thermal efficiency and good gap-bridging ability. Beyond these characteristics, the combination leads to additional advantages concerning process, technique, and quality. Improvement of seam quality and properties are of special note. Adaptation of the GMAW parameters reduces the hardness of the seam weld at increasing weldingmore » speed. This is possible by adapting the efficiency of metal deposition and by the suitable choice of wire material composition. Another advantage is an improvement of surface topology. The surface of the weld seam and the connection to the base material are very smooth. This leads to advantages with regard to the fatigue strength of the seam.« less
NASA Astrophysics Data System (ADS)
Anil Kumar, V.; Gupta, R. K.; Venkateswaran, T.; Ram Kumar, P.
2018-02-01
Nb-10% Hf-1% Ti refractory alloy is a high performance material extensively used for high temperature applications. Electron beam welding is one of the most widely used techniques to join refractory and reactive alloys. Bigger sizes of nozzles for rocket propulsion applications can be either made through deep drawing and flow turning route or by roll bending and welding route both using sheets/plates as input material for fabrication. The latter is a more economical option for mass production of the hardware using such exotic and expensive alloys. In view of this, both as-welded (AW) coupon and weld plus post-weld vacuum-annealed (AW + VA) coupon have been prepared to study their mechanical behavior. It has been observed that tensile strength and ductility have not been reduced in both these conditions vis-à-vis the base metal, confirming weld efficiency of the alloy to be 100%. Microhardness is found to be 150-160 VHN in the base metal and 200-225 VHN in the weld fusion zone in AW condition, which became uniform (145-155 VHN) throughout the weldment in AW + VA condition. Microstructure of the weldment in AW condition is found to be consisting of grains solidified by epitaxial mode from base metal toward the weld centre. In AW + VA condition, improvement in tensile elongation is observed, which is found to be due to the presence of homogenized grains/more uniform microstructure near the heat-affected zone as compared to the steep gradient in grain size in different zones in the weld in AW condition.
Contribution to applications of EBW in instrument techniques
NASA Astrophysics Data System (ADS)
Hrabovsky, Miroslav
1999-07-01
The electron beam welding belongs to so-called physical methods of welding and it is utilized to welding of most materials, that can be arc welded. It is of use there, where one taxing welding technics and structure technologyableless heavily. As a rule, the quality of weld is better than at most first-rate welds being done by inert gas shielded arc welding (WIG, Argoarc). In plant instrumentation, where the limitation of any welded material distortion is of extraordinary importance, this way of welding is significant at welding of thermal-treated Cu-Be alloys, used in measurement technics, structural members from Ti alloys and stainless steels in branches of biomedicine and cryotechnics. This technology positives, especially high weld purity, narrow and deep root penetration, high welding rate, together with low energy consumption, lead to applications and verification of optimum operating mode at welding of frequent materials. In the contribution the results of this proofs of selected welded materials from viewpoint of weld quality, their physical-mechanic properties and microhardness, are presented.
Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W
2005-12-01
We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.
NASA Astrophysics Data System (ADS)
Zhang, T. H.; Wang, Y.; Fang, X. F.; Liang, P.; Zhao, Y.; Li, Y. H.; Liu, X. M.
2018-02-01
Due to the deformation caused by residual stress in the welding process, welded components need treatment to reduce welding distortion. In this paper, several different times of flame-heating and water-cooling treatment were subjected to the friction stir welding joints of 15mm thick 7N01P-T4 aluminum alloy sheets to study the microstructure variation of friction stir welding joints of 7N01P-T4 aluminum alloy, and to analyze the effect on micro-hardness, tensile and fracture mechanical properties. This investigation will be helpful to optimize treatment methods and provide instruction on industrial production.
Laser-TIG Welding of Titanium Alloys
NASA Astrophysics Data System (ADS)
Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.
2016-08-01
The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.
[The application of laser beam welding of biological tissues for the purpose of ossiculoplasty].
Semenov, V F
2013-01-01
The objective of the present work was to estimate the functional outcome of ossiculoplasty in the patients presenting with chronic suppurative otitis media and treated by means of laser beam welding of biological tissues. In order to obtain a good functional result of tympanoplasty including ossiculoplasty, it is necessary to conserve the elements of the sound-conducting system in the positions to which they were set during surgery. We reached this goal by fixing individual elements of the chain of the auditory ossicles by means of the laser beam welding of biological tissues with the use of platelet-rich plasma as a solder alloy. The audiometric examination of the patients within 1, 3, and 12 months after surgery showed that this technique improves the functional outcome of the treatment of the patients with chronic suppurative otitis media using prostheses for the substitution of the auditory ossicles.
A mathematical model of the chevron-like wave pattern on a weld piece
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowden, J.; Kapadia, P.
1996-12-31
In welding processes in general the surface of a metallic weld displays a chevron-like pattern. Such a pattern is also clearly seen to be present if welding is carried out using a laser beam. In the welding process a laser beam is directed normally on the metal undergoing translation and usually penetrates it to form a keyhole. The keyhole is surrounded by a molten region, the weld pool. Even if a CO{sub 2} laser is used, there are numerous fluctuations and instabilities that occur, so that the keyhole imposes forcing frequencies on the molten weld pool, additional to vibrations attendantmore » on the process of translation. The weld pool in turn responds by supporting a spectrum of waves of different frequencies involving the natural frequency of the weld pool as well as various forcing frequencies. These waves are surface tension-type capillary waves and previous publications have attempted to model their behavior mathematically, although not all aspects of the problem have always been included. The wave pattern that is manifested in the chevron-like pattern seen on the weld piece is, however, not necessarily identical to the wave pattern present in the weld pool. This is because the chevron-like wave pattern forms as a result of several complicating effects that arise as the weld specimen cools on its surface immediately after the weld has been formed. This process involves the waves on the surface of the weld pool freezing to form the chevron-like wave pattern. A feature that is often ignored is the fact that the waves on the weld pool can only be regarded as irrotational if the translation speed is sufficiently low. This paper describes mathematically the formation of the chevron-like wave pattern based on suitable simplifying assumptions to model the process. The mathematical description of the way in which this chevron-like pattern forms is a step toward a more comprehensive understanding of this process.« less
High-power CW and long-pulse lasers in the green wavelength regime for copper welding
NASA Astrophysics Data System (ADS)
Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander
2016-03-01
We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.
NASA Astrophysics Data System (ADS)
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Ming-Liang, E-mail: mlzhu@ecust.edu.cn; Wang, De-Qiang; Xuan, Fu-Zhen
2014-01-15
Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{submore » 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.« less
Method and apparatus for optimizing the efficiency and quality of laser material processing
Susemihl, Ingo
1990-01-01
The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.
Method and apparatus for optimizing the efficiency and quality of laser material processing
Susemihl, I.
1990-03-13
The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.
Picosecond laser welding of similar and dissimilar materials.
Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P
2014-07-01
We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.
Laser weld jig. [Patent application
Van Blarigan, P.; Haupt, D.L.
1980-12-05
A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.
2017-10-01
Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.
Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.
Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R
2010-06-01
The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.
2007-05-16
and silicon carbide; spent elastic abrasive media; rags and wipes from the NDI process ; and unused scraps of TIG welding wire. Dust from the thermal...used, which would not be expected to produce regulated air emissions. For this process , no air quality permit updates are anticipated. • Welding ...The electron beam welding equipment would not be expected to produce regulated air emissions. The tungsten inert gas ( TIG ) welding equipment would
Welding with the thin disc laser: new processing and application potentials
NASA Astrophysics Data System (ADS)
Hügel, H.; Ruβ, A.; Weberpals, J.; Dausinger, F.
2005-09-01
Thin disc lasers represent a new class of welding lasers in that they combine the beneficial characteristics of CO2- and Nd:YAG-lasers. Their good focusability--values of M2 around 20 are typical for devices in the multi kW power range--can be utilized in several ways to improve the welding performance: compared to lamp-pumped Nd:YAG-lasers, the laser power required at the threshold to the deep penetration regime can be reduced, the welding depth can be increased and far higher values of traverse speed are applicable at prescribed welding depths. Alternatively, the high beam quality allows the use of focusing optics with large focal lengths, hence enabling the realization of "remote welding" concepts. At the same time, a wavelength of 1.03 μm (Yb:YAG) provides, in comparison to CO2-lasers, a high absorptivity at metallic workpieces and a low sensitivity against plasma production; both effects contribute to the efficiency, stability and achievable quality of the welding process. Further, beam delivery via flexible glass fibers with core diameters of 100 μm to 150 μm is possible. With these features and an overall (plug) efficiency of more than 20 %, this laser offers a large potential for many applications.
Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel
NASA Astrophysics Data System (ADS)
Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis
2017-10-01
Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang
2018-03-01
The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.
Metallurgy and deformation of electron beam welded similar titanium alloys
NASA Astrophysics Data System (ADS)
Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.
2012-04-01
Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.
2018-01-01
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.
Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium
NASA Astrophysics Data System (ADS)
Malikov, A. G.
2017-12-01
At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.
Laser Powder Welding of a Ti52Al46.8Cr1Si0.2Titanium Aluminide Alloy at Elevated Temperature
NASA Astrophysics Data System (ADS)
Smal, C. A.; Meacock, C. G.; Rossouw, H. J.
2011-04-01
A method for the joining of a Ti52Al46.8Cr1Si0.2Titanium Aluminide alloy by laser powder welding is presented. The technique acts to join materials by consolidating powder with focused laser beam to form weld beads that fill a V joint. In order to avoid the occurrence of residual thermal stresses and hence cracking of the brittle material, the weld plates were heated to a temperature of 1173 K (= 900 °C) by an ohmic heating device, welded and then slowly cooled to produce pore and crack free welds.
Relation between hardness and ultrasonic velocity on pipeline steel welded joints
NASA Astrophysics Data System (ADS)
Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.
2016-04-01
In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.
ManTech Affordability for Defense Weapon Systems
2009-11-01
the Virginia Class Submarine Development of Friction Stir Welding for Navy Expeditionary Fighting Vehicle (EFV) Hull Components Procurement...Tile 2007 – Translational Friction Stir Welding 2006 – Engine Rotor Life Extension 2006 – Uncooled Focal Plane Array Producibility 2005 – Large...DDG 1000 with Hybrid Laser Arc Welding The Problem: T-Beam stiffeners, used extensively for decks, bulkheads, and other ship structures, are being
NASA Astrophysics Data System (ADS)
Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong
2017-06-01
The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.
Evaluation of Rhenium Joining Methods
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Morren, Sybil H.
1995-01-01
Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.
NASA Astrophysics Data System (ADS)
Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin
2006-01-01
The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.
Phenomenological Models and Animations of Welding and their Impact
NASA Astrophysics Data System (ADS)
DebRoy, Tarasankar
Professor Robertson's recognized research on metallurgical thermodynamics and kinetics for over 40 years facilitated the emergence of rigorous quantitative understanding of many complex metallurgical processes. The author had the opportunity to work with Professor Robertson on liquid metals in the 1970s. This paper is intended to review the advances in the quantitative understanding of welding processes and weld metal attributes in recent decades. Over this period, phenomenological models have been developed to better understand and control various welding processes and the structure and properties of welded materials. Numerical models and animations of melting, solidification and the evolution of micro and macro-structural features will be presented to critically examine their impact on the practice of welding and the underlying science.
Van Blarigan, Peter; Haupt, David L.
1982-01-01
A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.
FSW of Aluminum Tailor Welded Blanks across Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair
2015-02-16
Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less
State-of-technology for joining TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Holko, K. H.; Moore, T. J.; Gyorgak, C. A.
1972-01-01
At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding, gas-tungsten arc welding, diffusion welding, resistance spot welding, resistance seam welding, and brazing. The strengths of the welds made by the various processes show considerable variation, especially at elevated temperatures. Most of the fusion welding processes tend to give weak welds at elevated temperatures (with the exception of fusion-type resistance spotwelds). However, solid-state welds have been made with parent metal properties. The process used for a specific application will be dictated by the specific joint requirements. In highly stressed joints at elevated temperatures, one of the solid-state processes, such as DFW, RSW (solid-state or fusion), and RSEW, offer the most promise.
Research on Microstructure and Properties of Welded Joint of High Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai
2018-01-01
BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.
Fiber laser welding of nickel based superalloy Inconel 625
NASA Astrophysics Data System (ADS)
Janicki, Damian M.
2013-01-01
The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.
Hardening Potential of an Al-Cu-Li Friction Stir Weld
NASA Astrophysics Data System (ADS)
Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu
The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.
APPARATUS FOR ELECTRON BEAM HEATING CONTROL
Jones, W.H.; Reece, J.B.
1962-09-18
An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)
Evaluation of consumer monitors to measure particulate matter.
Sousan, Sinan; Koehler, Kirsten; Hallett, Laura; Peters, Thomas M
2017-05-01
Recently, inexpensive (<$300) consumer aerosol monitors (CAMs) targeted for use in homes have become available. We evaluated the accuracy, bias, and precision of three CAMs (Foobot from Airoxlab, Speck from Carnegie Mellon University, and AirBeam from HabitatMap) for measuring mass concentrations in occupational settings. In a laboratory study, PM 2.5 measured with the CAMs and a medium-cost aerosol photometer (personal DataRAM 1500, Thermo Scientific) were compared to that from reference instruments for three aerosols (salt, welding fume, and Arizona road dust, ARD) at concentrations up to 8500 μg/m 3 . Three of each type of CAM were included to estimate precision. Compared to reference instruments, mass concentrations measured with the Foobot (r-value = 0.99) and medium-cost photometer (r-value = 0.99) show strong correlation, whereas those from the Speck (r-value range 0.88 - 0.99) and AirBeam (0.7 - 0.96) were less correlated. The Foobot bias was (-12%) for ARD and measurements were similar to the medium-cost instrument. Foobot bias was (< -46%) for salt and welding fume aerosols. Speck bias was at 18% salt for ARD and -86% for welding fume. AirBeam bias was (-36%) for salt and (-83%) for welding fume. All three photometers had a bias (< -82%) for welding fume. Precision was excellent for the Foobot (coefficient of variation range: 5% to 8%) and AirBeam (2% to 9%), but poorer for the Speck (8% to 25%). These findings suggest that the Foobot, with a linear response to different aerosol types and good precision, can provide reasonable estimates of PM 2.5 in the workplace after site-specific calibration to account for particle size and composition.
GTA welding and heat treating of high purity aluminum. [-452/sup 0/F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, R.C.; Loper, C.R. Jr.
1979-01-01
Gas tungsten arc welding is a suitable way to join high purity aluminum with only small increases in the electrical resistivity at 4.2 K (i.e., -269 C or -452 F) if proper welding procedures are used. High purity aluminum weld zone properties, useful for the design of cryogenic superconducting devices, are now available. The additional electrical resistivity caused by welding is independent of original base metal resistivity and can be decreased significantly by heat treatments as low as 260 C (500 F) for 30 minutes. Tungsten contamination caused from welding is small (on the order of 0.2 ppM) but itmore » is a significant contribution to weld zone resistivity. This suggests that other welding techniques such as laser welding or electron beam welding may be successful alternatives. Additional GTA welding tests for various welding conditions and welding procedures would lead to a greater understanding of the tungsten emission levels during welding. Perturbations during GTA welding such as electrode spitting or electrode contact with the weld metal must be eliminated to successfully weld high purity aluminum. Improper welding techniques causing arc instabilities, for any reason, cause highly resistive welds that must be properly repaired.« less
Technological Advances in Joining
1981-08-01
automotive industry, and similar robots are being equipped to perform many arc welding functions in areas where high production rates must be...nonvacuum electron-beam welding favor the use of this process by the automotive industry. For example, this process has been used to join the component...metal additions were not needed. This process has been also used to weld various assemblies for automotive transmissions (e.g., annulus gear assemblies
Electron beam deflection control system of a welding and surface modification installation
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.
2018-03-01
In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.
NASA Technical Reports Server (NTRS)
Martukanitz, R. P.; Lysher, K. G.
1993-01-01
Aluminum-lithium alloys exhibit high strength, high elastic modulus, and low density as well as excellent cryogenic mechanical properties making them ideal material candidates for cryogenic tanks. NASA has proposed the use of 'built-up' structure for panels fabricated into cryogenic tanks replacing current conventional machining. Superplastically formed stiffeners would be joined to sheet (tank skin) that had been roll formed to the radius of the tank in order to produce panels. Aluminum-lithium alloys of interest for producing the built-up structure include alloy 2095-T6 stiffeners to 2095-T8 sheet and alloy 8090-T6 stiffeners to 2090-T83 sheet. Laser welding, with comparable joint properties, offers the following advantages over conventional welding: higher production rates, minimal degradation within the heat affected zones, and full process automation. This study established process parameters for laser beam welding, mechanical property determinations, metallographic characterization, and fabrication of prototype panels. Tensile tests representing partial penetration of the skin alloys provided joint efficiencies between 65 and 77 percent, depending upon alloy and degree of penetration. Results of tension shear tests of lap welds indicated that the combination of 2095-T6 to 2090-T8 exhibited significantly higher weld shear strength at the interface in comparison to welds of 8090-T6 to 2090-T83. The increased shear strength associated with 2095 is believed to be due to the alloy's ability to precipitation strengthening (naturally age) after welding.
Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints
NASA Astrophysics Data System (ADS)
Patterson, Erin E.; Hovanski, Yuri; Field, David P.
2016-06-01
This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.
NASA Astrophysics Data System (ADS)
Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando
2012-12-01
Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.
Study on mechanical and microstructure behavior of submerged arc welding flux using red mud
NASA Astrophysics Data System (ADS)
Dewangan, Rishi; Pandey, Pankaj K.; Upadhyay, Renu
2018-05-01
This paper emphasis on utilization of Red Mud for preparing submerged arc welding flux and study its mechanical and microstructure behavior. Among the six fluxes prepared in the laboratory, Flux no. 1 (basicity 1.106) found to be best due to its running performance, micro hardness and Brinell hardness. The hardness value (HV) of the fluxes was varying from 165.70 to 217.15 at a load of 1000gm respectively. From the micrograph of welded metal, acicular ferrite found to be optimum which helps in increasing the ductility and hardness of the welded material.
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-01-01
Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force. PMID:28788430
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-12-18
Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.
Welding, Bonding and Fastening, 1984
NASA Technical Reports Server (NTRS)
Buckley, J. D. (Editor); Stein, B. A. (Editor)
1985-01-01
A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.
Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.
2017-07-01
In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.
Study of Gravity Effects on Titanium Laser Welding in the Vertical Position
Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo
2017-01-01
To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically. PMID:28885573
Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.
Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo
2017-09-08
To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1998-01-01
As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.
NASA Astrophysics Data System (ADS)
Kono, Naoyuki; Miki, Masahiro; Nakamura, Motoyuki; Ehara, Kazuya
2007-03-01
Phased array techniques are capable of the sensitive detection and precise sizing of flaws or cracks in components of nuclear power plants by using arbitrary focal beams with various depths, positions and angles. Aquantitative investigation of these focal beams is essential for the optimization of array probes, especially for austenitic weld inspection, in order to improve the detectability, sizing accuracy, and signal-to-noise ratio using these beams. In the present work, focal beams generated by phased array probes are calculated based on the Fresnel-Kirchhoff diffraction integral (FKDI) method, and an approximation formula between the actual focal depth and optical focal depth is proposed as an extension of the theory for conventional spherically focusing probes. The validity of the approximation formula for the array probes is confirmed by a comparison with simulation data using the FKDI method, and the experimental data.
Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding
NASA Astrophysics Data System (ADS)
Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio
2017-11-01
The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.
2014-04-01
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.
Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.; Glorioso, S. V.; Medlock, J. D.
1973-01-01
Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.
Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action
NASA Astrophysics Data System (ADS)
Murzin, Serguei P.
2018-01-01
Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.
Method for laser welding ultra-thin metal foils
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-26
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.
Method for laser welding ultra-thin metal foils
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.
Characterization of Plastic flow and Resulting Micro-Textures in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2003-01-01
The mechanically affected zone of a friction stir weld (FSW) cross section exhibits two distinct microstructural regions, possibly the residues of two distinct currents of metal in the FSW flow process. In this study the respective textures of these microstructural regions are investigated using orientation image mapping (OIM).
NASA Astrophysics Data System (ADS)
Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu
2018-05-01
Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.
Cold Spray Repair of Martensitic Stainless Steel Components
NASA Astrophysics Data System (ADS)
Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.
2014-12-01
The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.
Applications of ion beam technology
NASA Technical Reports Server (NTRS)
Gelerinter, E.; Spielberg, N.
1980-01-01
Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.
Laser welding aluminum without filler metal using continuous wave and pulsed Nd:YAG lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bransch, H.N.
1994-12-31
A problem with automotive aluminum tubing applications, particularly for air conditioning heat exchanger assemblies, is terminating the tube reliably and inexpensively. An alternative to upsetting and mchining threads to the tube end is welding a nut (made from a stronger, easily machinable alloy such as Al 5456 or Al 6061) to lengths of tubing (made from a softer alloy such as Al 3003). Laser welding was investigated in order to reduce heat input and increase process speeds copared to brazing or gas metal arc welding (GMAW). Nd:YAG lasers were selected as beam source because of better absorptivity of the wavelengthmore » compared to CO{sub 2} lasers and simplified tooling with fiber optic beam delivery. It wa determined that a pulsed Nd:YAG laser produced 1.0 mm penetration at 0.3 m/min with 400 W average power, and 1.0 mm penetration at 0.75 m/min with 1000 W average power, however, an Al 4047 filler metal was required to eliminate solidification cracking. A 1900 W CW laser could weld the Al 3003 tube to the Al 5456 nut without filler metal, however, there was insufficient penetration (0.25 mm) to meet the mechanical and hermeticity requirements. To enhance penetration, but still reduce the tendency for hot cracking, the 1900 W average power beam was sine wave modulated from 400 W to 3600 W at 250 Hz and usd to weld the Al 3003 directly to the Al 5456. These parameters produced 1.2 mm penetration at 1.2 m/min without significant cracking and without using a filler metal. In addition, the welds passed all hermeticity and tensile strength tests. This combination of materials, joint design, and laser parameters produced tube assemblies that passed a leak check (300 psi nitrogen in 60{degrees}C water for 1 min) and tensile (tube breakage 100 mm from the joint, 5.2 kN tensile strength).« less
Bonding titanium to Rene 41 alloy
NASA Technical Reports Server (NTRS)
Scott, R. W.
1972-01-01
Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.; Klokkehaug, S.
2000-03-01
In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.
NASA Astrophysics Data System (ADS)
Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun
2015-01-01
The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.
High-power industrial pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Levin, G. I.
1983-12-01
The use of a pulsed TEA CO2 laser (with maximum average power 1.0 kW; maximum pulse energy 3.5 J; repetition frequency 400-600 Hz; half-width pulse duration 15 microsec; circular-coupling-aperture beam diameter 6, 8, or 12 mm; and beam divergence 10 mrad) in industrial welding applications is investigated experimentally in carbon and stainless steels, Zr, Ti, and Ni of various thicknesses. The power required to melt the metals is found to be about 120-200 W/sq cm, or 5-6 times less than that for CW lasers. It is shown that deep narrow-seam welds with mechanical properties identical to those of the bulk metal can be obtained with little or no intercrystalline corrosion or thermal distortion of the surrounding area. Disadvantages such as the 65-dB noise level, low welding speed, formation of an overlap at the top and a crater at the bottom of the weld, and root porosity are considered the primary limitations on the applicability of the device tested.
Laser spot size and beam profile studies for tissue welding applications
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Hung, Vincent C.; Walsh, Joseph T., Jr.
1999-06-01
We evaluated the effect of changes in laser spot size and beam profile on the thermal denaturation zone produced during laser skin welding. Our objective was to limit heating of the tissue surface, while creating enough thermal denaturation in the deeper layers of the dermis to produce full-thickness welds. Two-cm-long, full-thickness incisions were made on the backs of guinea pigs, in vivo. India ink was used as an absorber. Continuous-wave, 1.06-μm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. Cooling times of 10.0 s between scans were used. Laser spot diameters of 1, 2, 4, and 6 mm were studied, with powers of 1, 4, 16, and 36 W, respectively. The irradiance remained constant at 127 W/cm2. 1, 2, and 4 mm diameter spots produced thermal denaturation to a depth of 570 +/- 100 μm, 970 +/- 210 μm, and 1470 +/- 190 μm, respectively. The 6-mm- diameter spot produced full-thickness welds (1900 μm), but also burns due to the high incident power. Monte Carlo simulations were also conducted, varying the laser spot diameter and beam profile. The simulations verified that an increase in laser spot diameter result in an increase in the penetration depth of radiation into the tissue.
Al Jabbari, Youssef S; Koutsoukis, Theodoros; Barmpagadaki, Xanthoula; El-Danaf, Ehab A; Fournelle, Raymond A; Zinelis, Spiros
2015-02-01
The effects of voltage and laser beam (spot) diameter on the penetration depth during laser beam welding in a representative nickel-chromium (Ni-Cr) dental alloy were the subject of this study. The cast alloy specimens were butted against each other and laser welded at their interface using various voltages (160-390 V) and spot diameters (0.2-1.8 mm) and a constant pulse duration of 10 ms. After welding, the laser beam penetration depths in the alloy were measured. The results were plotted and were statistically analyzed with a two-way ANOVA, employing voltage and spot diameter as the discriminating variables and using Holm-Sidak post hoc method (a = 0.05). The maximum penetration depth was 4.7 mm. The penetration depth increased as the spot diameter decreased at a fixed voltage and increased as the voltage increased at a fixed spot diameter. Varying the parameters of voltage and laser spot diameter significantly affected the depth of penetration of the dental cast Ni-Cr alloy. The penetration depth of laser-welded Ni-Cr dental alloys can be accurately adjusted based on the aforementioned results, leading to successfully joined/repaired dental restorations, saving manufacturing time, reducing final cost, and enhancing the longevity of dental prostheses.
Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds
NASA Astrophysics Data System (ADS)
Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.
2017-04-01
Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.
Comparison of joining processes for Haynes 230 nickel based super alloy
NASA Astrophysics Data System (ADS)
Williston, David Hugh
Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri
Friction-stir-welding (FSW) is a cost-effective and high quality joining process for aluminum alloys (especially heat-treatable allo ys) that has been applied successfully in the aerospace industry. However, the full potential of FSW on more cost-sensitive applications is still limited by the production rate, namely the welding speed of the process. The majority of literature evaluating FSW of aluminum alloys is based on welds made in the range of welding speeds around hundreds of millimeters per minute, and only a handful are at a moderate speed of 1 m/min. In this study we present a microstructural analysis of friction stir weldedmore » AA7075-T6 blanks with welding speeds up to 3 m/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. Results are coupled with welding parameters to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high speed processing.« less
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Chang, Tao-Chih; Lin, Dong-Yih; Chen, Ming-Che; Wu, Weite
2007-10-01
The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe-Cr-Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.
Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel
NASA Astrophysics Data System (ADS)
Vasantharaja, P.; Vasudevan, M.
2012-02-01
Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.
NASA Astrophysics Data System (ADS)
Evans, William Todd; Neely, Kelsay E.; Strauss, Alvin M.; Cook, George E.
2017-11-01
Friction Stir Welding has been proposed as an efficient and appropriate method for in space welding. It has the potential to serve as a viable option for assembling large scale space structures. These large structures will require the use of natural in space materials such as those available from iron meteorites. Impurities present in most iron meteorites limit its ability to be welded by other space welding techniques such as electron beam laser welding. This study investigates the ability to weld pieces of in situ Campo del Cielo meteorites by Friction Stir Spot Welding. Due to the rarity of the material, low carbon steel was used as a model material to determine welding parameters. Welded samples of low carbon steel, invar, and Campo del Cielo meteorite were compared and found to behave in similar ways. This study shows that meteorites can be Friction Stir Spot Welded and that they exhibit properties analogous to that of FSSW low carbon steel welds. Thus, iron meteorites can be regarded as another viable option for in-space or Martian construction.
NASA Astrophysics Data System (ADS)
Jesudoss Hynes, N. Rajesh; Shenbaga Velu, P.
2018-02-01
In the last two decades, major car manufacturing companies are exploring the possibilities of joining magnesium with aluminium, via friction welding technique for many crucial automotive applications. Our primary objective, is to carry out an experimental investigation in order to study the behaviour of dissimilar joints. The microscopic structure at the welded joint interface was analysed using an optical microscopy and scanning electron microscope. It was found that, by increasing the value of friction time, the value of the tensile strength increases and the result of tensile strength is found to be 120 MPa at a friction time of 10 s. Micro hardness was found to be higher at the interface of the weldment due to the development of a brittle intermetallic compound. Micro structural studies using SEM reveals, distinct zones such as an unaffected parent metal zone, the heat affected zone, a thermo-mechanically affected zone and a fully deformed plasticised zone.
Quality status display for a vibration welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony
A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The methodmore » may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.« less
Power distribution for electron beam welding
NASA Technical Reports Server (NTRS)
Edwards, E.
1980-01-01
The power distribution of an electron seam is analyzed. Digital computer techniques are used to evaluate the radial distribution of power detected by a wire probe circulating through the beam. Results are reported.
Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M
2016-03-01
It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.
Space fabrication: Graphite composite truss welding and cap forming subsystems
NASA Technical Reports Server (NTRS)
Jenkins, L. M.; Browning, D. L.
1980-01-01
An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.
Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.
2018-03-01
This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.
Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R
1997-01-01
This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac
Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was foundmore » to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.« less
Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, A.; Laboratoire de Genie des Materiaux et Procedes Associes; Paillard, P.
At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the producedmore » weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.« less
Thermal Analysis and Microhardness Mapping in Hybrid Laser Welds in a Structural Steel
2003-01-01
conditions. Via the keyhole the laser beam brings about easier ignition of the arc, stabilization of the arc welding process, and penetration of the...with respect to the conventional GMAW or GTAW processes without the need for very close fit-up. This paper will compare an autogenous laser weld to a...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017864 TITLE: Thermal Analysis and Microhardness Mapping in Hybrid Laser
NASA Astrophysics Data System (ADS)
Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan
Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.
Comparing Reactivation Behavior of TIG and Laser Beam Welded Alloy 690
NASA Astrophysics Data System (ADS)
Abraham, Geogy J.; Bhambroo, Rajan; Kain, V.; Dey, G. K.; Raja, V. S.
2013-02-01
The nickel base Alloy 690 was subjected to simulated autogenous welding treatment employing two different techniques, laser beam welding (LBW) and tungsten inert gas (TIG) welding. The resultant weld fusion zone (WFZ) and heat-affected zone (HAZ) were compared by studying the reactivation behavior. The chromium depletion effect was assessed by measuring the degree of sensitization (DOS) from the electrochemical potentiodynamic reactivation (EPR) test. A double-loop EPR test for Alloy 690 was employed to measure the DOS at different regions of weldments by masking the remaining regions. The results clearly demonstrated that Alloy 690 showed no sensitization in the parent material and the WFZ region of both TIG and laser weldments. However, it exhibited reactivation in the HAZ region of both the weldments. The DOS values measured for Alloy 690 were very low for all the regions of the LBW weldment as compared to that in the TIG weldment. The HAZ region of the LBW weldment showed the highest DOS value in any region of the weldment but even this value was quite low indicating absence of sensitization in LBW weldment. The attack along the grain boundaries for the weldments after EPR experiments were studied using optical and scanning electron microscopy.
Fluid Flow Phenomena during Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk
The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.
Electron beam selectively seals porous metal filters
NASA Technical Reports Server (NTRS)
Snyder, J. A.; Tulisiak, G.
1968-01-01
Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.
Multistable wireless micro-actuator based on antagonistic pre-shaped double beams
NASA Astrophysics Data System (ADS)
Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.
2015-07-01
This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.
NASA Astrophysics Data System (ADS)
Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan
2018-01-01
The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.
Seismic Stability of St. Stephen Hydropower Plant, South Carolina
2006-11-01
looking from the fish-lift side ....................................... 9 Figure 1-9. Upstream T- beam connection : shim plates welded to embedded wall (an...Figure 1-10. Downstream T- beam connection : T- beam bearing plate rests on Neoprene pad, bolt through plate with slotted holes (an ideal roller condition...37 Figure 4-1. Beam - column model of the erection bay
NASA Astrophysics Data System (ADS)
Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.
2018-02-01
In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng
2015-11-01
Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor); Stein, Bland A. (Editor)
1986-01-01
A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Gleeson, Sean T.
2014-03-01
Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.
Welding in Space: Lessons Learned for Future In Space Repair Development
NASA Technical Reports Server (NTRS)
Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.
2005-01-01
Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.
NASA Astrophysics Data System (ADS)
Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin
2018-06-01
In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.
NASA Technical Reports Server (NTRS)
Russell, C. K.; Malone, T. W.; Cato, S. N.
2004-01-01
The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated a 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples. This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.
Double fillet lap of laser welding of thin sheet AZ31B Mg alloy
NASA Astrophysics Data System (ADS)
Ishak, Mahadzir; Salleh, M. N. M.
2018-05-01
In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.
Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment
NASA Astrophysics Data System (ADS)
Van den Bosch, J.; Almazouzi, A.
2009-04-01
The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.
NASA Astrophysics Data System (ADS)
Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.
2013-02-01
A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.
State-of-technology for joining TD-NiCr sheet.
NASA Technical Reports Server (NTRS)
Holko, K. H.; Moore, T. J.; Gyorgak, C. A.
1972-01-01
At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding (EBW), gas-tungsten arc welding (GTAW), diffusion welding (DFW), resistance spot welding (RSW), resistance seam welding (RSEW), and brazing. Roll welding (RW) and explosion welding (EXW) have not been developed to the point where they can be used to make sound welds in TD-NiCr. Joining work that has previously been done on TD-NiCr by various organizations, both privately supported and under Air Force and NASA contracts, is described in this summary. Current work is also described that is being done at General Dynamics/Convair (under NASA contract) and at NASA/Lewis to develop and evaluate DFW, RSW, RSEW, and brazing. Preliminary comparisons of joining processes are made for typical applications. A brief description of the manufacture of TD-NiCr sheet by a recently standardized process (under NASA contract) also is given.
Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld
NASA Astrophysics Data System (ADS)
Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis
Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.
Martin, Charles E; Fontaine, Lucien; Gardner, William H
2014-01-21
An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.
1998-01-01
Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.
Production of ozone and reactive oxygen species after welding.
Liu, H H; Wu, Y C; Chen, H L
2007-11-01
Many toxic substances including heavy metals, ozone, carbon monoxide, carbon dioxide, and nitrogen oxides are generated during welding. Ozone (O(3)) is a strong oxidant that generates reactive oxygen species (ROS) in tissue, and ambient ROS exposure associated with particles has been determined to cause DNA damage. Ozone is produced within 30 seconds during welding. However, the length of time that O(3) remains in the air after welding is completed (post-welding) is unknown. The current study aimed to assess the distributions of ambient ROS and O(3) before the start of welding (pre-welding), during welding, and after welding. The highest O(3) levels, equal to 195 parts per billion (ppb), appeared during welding. Ozone levels gradually decreased to 60 ppb 10 minutes after the welding was completed. The highest ROS level was found in samples taken during welding, followed by samples taken after the welding was completed. The lowest ROS level was found in samples taken before the welding had started. Ozone and ROS levels were poorly correlated, but a similar trend was found for O(3) and ROS levels in particles (microM/mg). Although particles were not generated after welding, ROS and O(3) still persisted for more than 10 minutes. Meanwhile, because O(3) continues after welding, how long the occupational protective system should be used depends on the welding materials and the methods used. In addition, the relationship between metal fumes and ROS generation during the welding process should be further investigated.
Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds
NASA Astrophysics Data System (ADS)
Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar
2018-03-01
The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.
NASA Astrophysics Data System (ADS)
Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.
2015-05-01
Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.
1990-09-01
This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less
NASA Astrophysics Data System (ADS)
Kang, Namhyun
The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)
Predicting mesoscale microstructural evolution in electron beam welding
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...
2016-03-16
Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less
Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding
NASA Astrophysics Data System (ADS)
Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira
2003-03-01
Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.
High-precision and high-speed laser microjoining for electronics and microsystems
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri
2006-02-01
The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.
Hybrid laser arc welding: State-of-art review
NASA Astrophysics Data System (ADS)
Acherjee, Bappa
2018-02-01
Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.
The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less
Low distortion laser welding of cylindrical components
NASA Astrophysics Data System (ADS)
Kittel, Sonja
2011-02-01
Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.
NASA Astrophysics Data System (ADS)
Tsirkas, S. A.
2018-03-01
The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.
NASA Astrophysics Data System (ADS)
Neissi, R.; Shamanian, M.; Hajihashemi, M.
2016-05-01
In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.
Welding of Al6061and Al6082-Cu composite by friction stir processing
NASA Astrophysics Data System (ADS)
Iyer, R. B.; Dhabale, R. B.; Jatti, V. S.
2016-09-01
Present study aims at investigating the influence of process parameters on the microstructure and mechanical properties such as tensile strength and hardness of the dissimilar metal without and with copper powder. Before conducting the copper powder experiments, optimum process parameters were obtained by conducting experiments without copper powder. Taguchi's experimental L9 orthogonal design layout was used to carry out the experiments without copper powder. Threaded pin tool geometry was used for conducting the experiments. Based on the experimental results and Taguchi's analysis it was found that maximum tensile strength of 66.06 MPa was obtained at 1400 rpm spindle speed and weld speed of 20 mm/min. Maximum micro hardness (92 HV) was obtained at 1400 rpm spindle speed and weld speed of 16 mm/min. At these optimal setting of process parameters aluminium alloys were welded with the copper powder. Experimental results demonstrated that the tensile strength (96.54 MPa) and micro hardness (105 HV) of FSW was notably affected by the addition of copper powder when compared with FSW joint without copper powder. Tensile failure specimen was analysed using Scanning Electron Microscopy in order to study the failure mechanism.
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
Evaluation and monitoring of UVR in Shield Metal ARC Welding processing.
Peng, Chiung-yu; Liu, Hung-hsin; Chang, Cheng-ping; Shieh, Jeng-yueh; Lan, Cheng-hang
2007-08-01
This study established a comprehensive approach to monitoring UVR magnitude from Shield Metal Arc Welding (SMAW) processing and quantified the effective exposure based on measured data. The irradiances from welding UVR were calculated with biological effective parameter (Slambda) for human exposure assessment. The spectral weighting function for UVR measurement and evaluation followed the American Conference of Governmental Industrial Hygienists (ACGIH) guidelines. Arc welding processing scatters bright light with UVR emission over the full UV spectrum (UVA, UVB, and UVC). The worst case of effective irradiance from a 50 cm distance arc spot with a 200 A electric current and an electrode E6011 (4 mm) is 311.0 microW cm(-2) and has the maximum allowance time (Tmax) of 9.6 s. Distance is an important factor affecting the irradiance intensity. The worst case of the effective irradiance values from arc welding at 100, 200, and 300 cm distances are 76.2, 16.6, and 12.1 microW cm(-2) with Tmax of 39.4, 180.7, and 247.9 s, respectively. Protective materials (glove and mask) were demonstrated to protect workers from hazardous UVR exposure. From this study, the methodology of UVR monitoring in SMAW processing was developed and established. It is recommended that welders should be fitted with appropriate protective materials for protection from UVR emission hazards.
Development and Testing of a Hydropneumatic Suspension System on a USMC AAV7A1
1991-07-30
original material, SAE 4140 steel alloy hardened to 30/34 Rc, has a yield strength of 130,000 psi. All of the ISU’s were disassembled and were reassembled...plugged and welded in place. Aluminum I-beams were welded in place in the water jet tunnels to act as jounce stops for the aft suspension units. The...following Is a tabulation of components attributed to the vehicle: 1000 Hull, Welded & machined 1100 Bow Plane 2000 Powertrain 3000 Transmission 4000
2013-06-01
dispersion strengthened - Eurofer steel ,” J. Nucl. Mater., vol. 416 , pp. 2229, Sep 1, 2011. [10] H. J. K. Lemmen and K. J. Sudmeijer, I, “Laser beam...Reynolds and W. Tang, “Structure, properties, and residual stress of 304L stainless steel friction stir welds,” Scr. Mater., vol. 48, pp. 12891294...OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor
Influence of Joint Configuration on the Strength of Laser Welded Presshardened Steel
NASA Astrophysics Data System (ADS)
Kügler, H.; Mittelstädt, C.; Vollertsen, F.
Presshardened steel is used in nowadays automotive production. Due to its high strength, sheet thicknesses can be reduced which results in decreasing weight of car body components. However, because of microstructure softening and coating agglomerations in the seam, welding is still a challenge. In this paper laser beam welding of 22MnB5 with varying energy input per irradiated area is presented. It is found that increasing energy input per seam length reduces tensile strength. Using a small spot size of 200 μm, tensile strength of 1434 N/mm2 can be reached in bead on plate welds. In lap welds tensile strength is limited because of coating particles agglomerating at the melt pool border line. However, the resulting strength is higher when using several small weld seams than using one seam with the same total seam width. With three weld seams, each 0.5mm in width, tensile strength of 911N/mm2 is reached in lap welding.
Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review
NASA Astrophysics Data System (ADS)
Zhiyong, Li; Srivatsan, T. S.; Yan, LI; Wenzhao, Zhang
2013-02-01
Hybrid laser arc welding combines the advantages of laser welding and arc welding. Ever since its origination in the late 1970s, this technique has gained gradual attention and progressive use due to a combination of high welding speed, better formation of weld bead, gap tolerance, and increased penetration coupled with less distortion. In hybrid laser arc welding, one of the reasons for the observed improvement is an interaction or coupling effect between the plasma arc, laser beam, droplet transfer, and the weld pool. Few researchers have made an attempt to study different aspects of the process to facilitate a better understanding. It is difficult to get a thorough understanding of the process if only certain information in a certain field is provided. In this article, an attempt to analyze the coupling effect of the process was carried out based on a careful review of the research work that has been done which provides useful information from a different prospective.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
Micro-beam friction liner and method of transferring energy
Mentesana, Charles [Leawood, KS
2007-07-17
A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.
NASA Astrophysics Data System (ADS)
Harooni, Masoud
It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two different methods including focused beam laser welding (FBLW) and defocused beam laser welding (DBLW) are performed. The cross-sections of the welds were studied using an optical microscope, scanning electron microscope (SEM) as well as energy-dispersive X-ray spectroscopy (EDS) to reveal the quality of the obtained dissimilar welds. The mechanical properties of the welds were studied using a tensile test and microhardness testing machines. The results show that the defocused laser welding process could help to achieve a better quality of weld. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao
2017-08-01
In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.
Exposure assessment of aluminum arc welding radiation.
Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong
2007-10-01
The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.
Ferromagnetic laser-welded Fe78Si13B9 and Co71.5Fe2.5SigMn2Mo1B14ils amorphous foils
NASA Astrophysics Data System (ADS)
Pawlak, Ryszard
1997-10-01
In the paper the results of attempts at laser welding of amorphous ferromagnetic foils on the iron and cobalt base have been presented. The usefulness of this technology for making small magnetic circuits of metallic glass has been demonstrated. The action of laser radiation leading to rendering the structure amorphous and the infraction of a laser beam with an amorphous material have been discussed. Finally, the results of pulsed welding of a pack of amorphous foils and some properties of the welds formed have been discussed.
Management of laser welding based on analysis informative signals
NASA Astrophysics Data System (ADS)
Zvezdin, V. V.; Rakhimov, R. R.; Saubanov, Ruz R.; Israfilov, I. H.; Akhtiamov, R. F.
2017-09-01
Features of formation precision weld of metal were presented. It has been shown that the quality of the welding process depends not only on the energy characteristics of the laser processing facility, the temperature of the surface layer, but also on the accuracy of positioning laser focus relative to seam and the workpiece surface. So the laser focus positioning accuracy is an estimate of the quality of the welding process. This approach allows to build a system automated control of the laser technological complex with the stabilization of the setpoint accuracy of of positioning of the laser beam relative to the workpiece surface.
Prospects of very high power CO{sub 2} laser in welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goussain, J.C.; Vire, S.
1996-12-31
A 45 kW laser system was recently installed at Institut de Soudure (IS) in France in order to evaluate the possibilities of such high power beams in welding. Some results of welding various materials (Ta6V, C-steel, Cr-Ni alloys), different thicknesses (>30 mm) and large components (several meters) are presented. Some recent installations of high power laser equipment already integrated into production site or under development in shipbuilding and steel fabrication are described. Finally the objectives of an important R and D program launched recently for exploring the different aspects of laser welding in thick section steel fabrication is outlined.
Modeling aluminum-lithium alloy welding characteristics
NASA Technical Reports Server (NTRS)
Bernstein, Edward L.
1996-01-01
The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.
Weld bead profile of laser welding dissimilar joints stainless steel
NASA Astrophysics Data System (ADS)
Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.
2017-10-01
During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.
Analysis of ripple formation in single crystal spot welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rappaz, M.; Corrigan, D.; Boatner, L.A.
1997-10-01
Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{submore » 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.« less
Cracking in dissimilar laser welding of tantalum to molybdenum
NASA Astrophysics Data System (ADS)
Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua
2018-06-01
Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com
In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases andmore » a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.« less
Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy
NASA Astrophysics Data System (ADS)
Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.
1999-03-01
The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.
Automated data acquisition technology development:Automated modeling and control development
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1995-01-01
This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.
Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Crawford, D.; Edstrom Jr, D.
We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less
Wu, Haishu; Liu, Jihong; Liu, Xuecheng; Li, Changyi; Yu, Zhiwei
2002-07-01
To study micro morphology and element-mixing distribution of different alloys welded in laser and analyze the feasibility of laser welding different alloys. Alloys and titanium were matched into 4 groups: Au-Pt with Ni-Cr; Au-Pt with pure Ti; pure Ti with Ni-Cr; Ni-Cr with Co-Cr. They were welded in laser. Changes in metallography after hybridization of crystalline grain, ranges of heat-affected zone and pores were observed through SEM with ultra-thin windowed X-ray energy atlas. Meanwhile 10 testing points were chosen with area of 300 micro m x 900 micro m along the welding surface from the side A alloy to the side B alloy, than the element mixing distribution and tendency were analyzed with X-ray energy atlas. 1. Hybridization of different alloys: (l) in the group of Au-Pt with Ti, there was titanium element mixing into Au-Pt tissue gradually and evenly on the Au-Pt side of the interface without clear boundary and increasing in size of crystalline grain. However, there was titanium crystalline grain increasing in size, irregular morphology and small sacks on the titanium side with clear boundary. (2) in the group of Ni-Cr with Ti, there was mixing regularly, slow transition and interlocks between crystalline grains on the Ni-Cr side of the in terface. Poor transition, clear boundary and small cracks were observed on titanium side. (3) in the group of Co-Cr with Ni-Cr, there was good transition, obscure boundary on both sides resulting from network, cylinder and branch structure growing. 2. Element-mixing distribution of different alloys. In fusion zone, the metal elements in matched groups mixed well and hybridized into new alloys except titanium blocks. The location of wave peak depended on the composition of alloys. Most of elements were from the alloy far from the fusion zone. The hybridization between pure titanium and any other alloys is not good The effect of laser welding different alloys is ideal except with pure titanium.
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
NASA Astrophysics Data System (ADS)
Leo, P.; D'Ostuni, S.; Casalino, G.
2018-03-01
This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.
Method of automatic measurement and focus of an electron beam and apparatus therefore
Giedt, W.H.; Campiotti, R.
1996-01-09
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.
Method of automatic measurement and focus of an electron beam and apparatus therefor
Giedt, Warren H.; Campiotti, Richard
1996-01-01
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.
Fracture toughness of ultrashort pulse-bonded fused silica
NASA Astrophysics Data System (ADS)
Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.
2016-02-01
We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.
Friction stir welding of Zr-based bulk metallic glass
NASA Astrophysics Data System (ADS)
Ji, Y. S.; Fujii, H.; Maeda, M.; Nakata, K.; Kimura, H.; Inoue, A.; Nogi, K.
2009-05-01
A Zr55Cu30Al10Ni5 bulk metallic glass plate was successfully welded below its crystallization temperature by friction stir welding. The flash formation and heat concentration at the shoulder edge was minimized using a wider tool and the angle of the recessed shoulder surface was 3°. To analyze the crystallization of the base material and stir zone, the microstructure and mechanical properties were analyzed using DSC, XRD, TEM, and micro-hardness. As a result, it was found that the amorphous structure and original mechanical properties were maintained in the whole joints.
Characterization of the Micro Textures in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C.
2004-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.
NASA Astrophysics Data System (ADS)
Mostaan, Hossein; Safari, Mehdi; Bakhtiari, Arash
2018-04-01
In this study, the effect of friction stir welding of AISI 430 (X6Cr17, material number 1.4016) ferritic stainless steel is examined. Two thin sheets with dimensions of 0.4 × 50 × 200 mm3 are joined in lap configuration. Optical microscopy and field emission electron microscopy were used in order to microstructural evaluations and fracture analysis, respectively. Tensile test and microhardness measurements are employed in order to study the mechanical behaviors of welds. Also, vibrational sample magnetometry (VSM) is employed for characterizing magnetic properties of welded samples. Texture analysis is carried out in order to clarify the change mechanism of magnetic properties in the welded area. The results show that AISI 430 sheets are successfully joined considering both, the appearance of the welding bead and the strength of the welded joint. It is found that by friction stir welding of AISI 430 sheets, texture components with easy axes magnetization have been replaced by texture components with harder magnetization axes. VSM analysis showed that friction stir welding leads to increase in residual induction (Br) and coercivity (Hc). This increase is attributed to the grain refining due the friction stir welding and formation of texture components with harder axes of magnetizations.
Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.
Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.
Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints
NASA Astrophysics Data System (ADS)
Schmalen, Pascal; Plapper, Peter
The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.
Laser sealed vacuum insulation window
Benson, David K.; Tracy, C. Edwin
1987-01-01
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
Laser sealed vacuum insulating window
Benson, D.K.; Tracy, C.E.
1985-08-19
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
Characterization of inhomogeneous and anisotropic steel welds by ultrasonic array measurements
NASA Astrophysics Data System (ADS)
Fan, Z.; Lowe, M. J. S.
2013-01-01
Austenitic welds are difficult to inspect non-destructively by ultrasound due to the anisotropic and inhomogeneous material in the weld, which causes spatial deviation of ultrasonic beams. A common way to describe such material is to consider it as transversely isotropic, in which the plane perpendicular to the direction of the grain growth is considered to be isotropic. Therefore a weld performance map which indicates the orientation of the grain growth can be used to describe the material properties in the weld. In our work, we have chosen a weld map based on the parameters of the MINA model which uses the information of the welding procedure and rules for crystalline growth to predict the orientations, and thus has a good physical foundation. We have compared the measured grain orientations for a realistic weld with the predictions from the model. With this model, only a small number of parameters are used to describe the weld properties, therefore enabling the possibility of a well conditioned refining process to determine the weld map from ultrasonic measurements. We have demonstrated the feasibility of doing this, using a ray tracing model, and both simulated and experimental measurements.
Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M
2007-04-01
This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.
NASA Astrophysics Data System (ADS)
Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.
2012-01-01
Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.
Laser beam-plasma plume interaction during laser welding
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt
2003-10-01
Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.
Development of automatic pre-tracking system for fillet weld based on laser trigonometry
NASA Astrophysics Data System (ADS)
Shen, Xiaoqin; Yu, Fusheng
2005-01-01
In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.
Laser beam joining of optical fibers in silicon V-grooves
NASA Astrophysics Data System (ADS)
Kaufmann, Stefan; Otto, Andreas; Luz, Gerhard
2000-06-01
The increasing use of optical data transmission systems and the development of new optical components require adjustment-insensitive and reliable joining and assembling techniques. The state of the art includes the utilization of silicon submounts with anisotropically etched V-grooves. Several glass fibers are fixed in these V-grooves with adhesive. Adhesive bonds tend towards degradation under the influence of temperature and moisture. For this reason, the alternative joining processes laser beam welding and laser beam soldering are relevant. The goal is a reliable joining of optical fibers in V-grooves without damage to the fibers or the silicon submount. Because of the anomaly of silicon during phase transformation, a positive joining can be realized by laser beam welding. A melt pool is created through the energy of a Nd:YAG-laser pulse. During solidification, the volume of silicon increases and a bump is formed in the center. Experiments have shown that this phenomenon can be used for joining optical fibers in silicon-V-grooves. With suitable parameters the silicon flows half around the fiber during solidification. For each fiber, several welding points are necessary. Another promising joining method is laser bema soldering. In this case, a second silicon sheet with a solder deposit is placed on the fibers which lie in the V-grooves of the metallized silicon submount. The laser heats the upper silicon until the solder metals by heat conduction.
Process control of laser conduction welding by thermal imaging measurement with a color camera.
Bardin, Fabrice; Morgan, Stephen; Williams, Stewart; McBride, Roy; Moore, Andrew J; Jones, Julian D C; Hand, Duncan P
2005-11-10
Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking. The maximum penetration is obtained when the surface temperature is just below the boiling point, and so we normally wish to maintain the temperature at this level. We describe a two-color optical system that we have developed for real-time temperature profile measurement of the conduction weld pool. The key feature of the system is the use of a complementary metal-oxide semiconductor standard color camera leading to a simplified low-cost optical setup. We present and discuss the real-time temperature measurement and control performance of the system when a defocused beam from a high power Nd:YAG laser is used on 5 mm thick stainless steel workpieces.
Modeling of laser transmission contour welding process using FEA and DoE
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-07-01
In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS® multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection-radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable.
NASA Astrophysics Data System (ADS)
Li, Shichun; Chen, Genyu; Katayama, Seiji; Zhang, Yi
2014-06-01
The spatter and the molten pool behavior, which were the important phenomena concerned with the welding quality, were observed and studied by using the high-speed camera and the X-ray transmission imaging system during laser welding under different welding parameters. The formation mechanism of spatter and the corresponding relationships between the spatter and molten pool behavior were investigated. The increase of laser power could cause more intense evaporation and lead to more spatter. When the focal position of laser beam was changed, different forms of spatter were generated, as well as the flow trends of molten metal on the front keyhole wall and at the rear molten pool were changed. The results revealed that the behavior of molten pool, which could be affected by the absorbed energy distribution in the keyhole, was the key factor to determine the spatter formation during laser welding. The relatively sound weld seam could be obtained during laser welding with the focal position located inside the metal.
Limit load solution for electron beam welded joints with single edge weld center crack in tension
NASA Astrophysics Data System (ADS)
Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping
2012-05-01
Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
NASA Technical Reports Server (NTRS)
Horton, Karla Renee
2011-01-01
Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Zettler, R.; Blanco, A. C.; dos Santos, J. F.; Marya, S.
An increase in the use of magnesium (Mg) in the car manufacturing industry has raised questions concerning its weldability. Friction Stir Welding (FSW) has the advantage of achieving metallic bonding below that of the melting point of the base material thus avoiding many of the metallurgical problems associated with the solidification process. The present study presents the results of a development program carried out to investigate the response of Mg alloys AZ31 and AZ61 to different FSW tool geometries and process parameters. Temperature development across the weld zone was monitored and the produced welds have been subjected to microstructural analysis and mechanical testing. Defect free welds have been produced with optimised FSW-tool and parameters. The micro structure of the welded joint resulted in similar ductility and hardness levels as compared to that of the base material. The results also demonstrated that tool geometry plays a fundamental role in the response of the investigated alloys to the FSW process.
Friction Stir Welding of ODS and RAFM Steels
Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...
2015-09-14
Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Gas Shielding Technology for Welding and Brazing
NASA Technical Reports Server (NTRS)
Nunes, Arthur J.; Gradl, Paul R.
2012-01-01
Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."
The use of conduction model in laser weld profile computation
NASA Astrophysics Data System (ADS)
Grabas, Bogusław
2007-02-01
Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.
The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding
NASA Astrophysics Data System (ADS)
Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.
The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.
NASA Astrophysics Data System (ADS)
Nagy, M.; Behúlová, M.
2017-11-01
Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.
Hybrid Welding of 45 mm High Strength Steel Sections
NASA Astrophysics Data System (ADS)
Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.
Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.
Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate
NASA Technical Reports Server (NTRS)
Gold, R. E.; Kesterson, R. L.
1973-01-01
Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.
Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-01
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743
Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-22
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.
Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel
NASA Astrophysics Data System (ADS)
Rozenak, P.; Unigovski, Ya.; Shneck, R.
The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.
M551 metals melting experiment
NASA Technical Reports Server (NTRS)
Busch, G.
1977-01-01
Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered.
Fusion welding of a modern borated stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, C.V.; Cieslak, M.J.
1997-01-01
Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less
NASA Astrophysics Data System (ADS)
Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan
2016-08-01
Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.
Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu
2018-01-05
Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing
2016-03-01
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
NASA Astrophysics Data System (ADS)
Hu, Haoyue; Eberhard, Peter
2017-10-01
Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.
NASA Astrophysics Data System (ADS)
Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra
2016-07-01
Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.
Rowbottoma, Carl G; Jaffray, David A
2004-03-01
The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 degrees of rotation in the axial plane to the micro-MOSFET was +/-2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams.
Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results
NASA Technical Reports Server (NTRS)
1980-01-01
The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.
A Fundamental Investigation into the Joining of Advanced Light Materials
1991-11-25
discontinuities), the evolution and nature of the metallurgical structure and correspondingly the joint mechanical properties must be developed. In...metallurgical phenomena associated with formation of the weld structure and its corresponding influence on mechanical properties . During the course of...temperature mechanical properties . Work by the same authors on GTA and electron-beam weld fusion zone structures in 2 090-T8 determined strengthening
On the Mechanisms for Martensite Formation in YAG Laser Welded Austenitic NiTi
NASA Astrophysics Data System (ADS)
Oliveira, J. P.; Braz Fernandes, F. M.; Miranda, R. M.; Schell, N.
2016-03-01
Extensive work has been reported on the microstructure of laser-welded NiTi alloys either superelastic or with shape memory effect, motivated by the fact that the microstructure affects the functional properties. However, some effects of laser beam/material interaction with these alloys have not yet been discussed. This paper aims to discuss the mechanisms for the occurrence of martensite in the heat-affected zone and in the fusion zone at room temperature, while the base material is fully austenitic. For this purpose, synchrotron radiation was used together with a simple thermal analytic mathematical model. Two distinct mechanisms are proposed for the presence of martensite in different zones of a weld, which affects the mechanical and functional behavior of a welded component.
Simulation and characterization of a laterally-driven inertial micro-switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenguo; Wang, Yang; Wang, Huiying
2015-04-15
A laterally-driven inertial micro-switch was designed and fabricated using surface micromachining technology. The dynamic response process was simulated by ANSYS software, which revealed the vibration process of movable electrode when the proof mass is shocked by acceleration in sensitive direction. The test results of fabricated inertial micro-switches with and without anti-shock beams indicated that the contact process of micro-switch with anti-shock beams is more reliable than the one without anti-shock beams. The test results indicated that three contact signals had been observed in the contact process of the inertial switch without anti-shock beams, and only one contact signal in themore » inertial switch with anti-shock beams, which demonstrated that the anti-shock beams can effectively constrain the vibration in non-sensitive direction.« less
Quality improvement of polymer parts by laser welding
NASA Astrophysics Data System (ADS)
Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd
1994-09-01
The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1983-01-01
A tentative mathematical computer model of the microfissuring process during electron beam welding of Inconel 718 has been constructed. Predictions of the model are compatible with microfissuring tests on eight 0.25-in. thick test plates. The model takes into account weld power and speed, weld loss (efficiency), parameters and material characteristics. Besides the usual material characteristics (thermal and strength properties), a temperature and grain size dependent critical fracture strain is required by the model. The model is based upon fundamental physical theory (i.e., it is not a mere data interpolation system), and can be extended to other metals by suitable parameter changes.
NASA Astrophysics Data System (ADS)
Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds
NASA Astrophysics Data System (ADS)
Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali
2017-05-01
The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.
Accurate modelling of anisotropic effects in austenitic stainless steel welds
NASA Astrophysics Data System (ADS)
Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.
2014-02-01
The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a `steering' of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.
Micro-unmanned aerodynamic vehicle
Reuel, Nigel [Rio Rancho, NM; Lionberger, Troy A [Ann Arbor, MI; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM; Baker, Michael S [Albuquerque, NM
2008-03-11
A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.
Numerical model of the plasma formation at electron beam welding
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Mladenov, G. M.
2015-01-01
The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.
Next generation diode lasers with enhanced brightness
NASA Astrophysics Data System (ADS)
Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.
2018-02-01
High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).
Detection and monitoring of surface micro-cracks by PPP-BOTDA.
Meng, Dewei; Ansari, Farhad; Feng, Xin
2015-06-01
Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.
[INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects
NASA Astrophysics Data System (ADS)
Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan
2016-09-01
We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.
Neutron diffraction studies of laser welding residual stresses
NASA Astrophysics Data System (ADS)
Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.
2016-01-01
The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.
NASA Astrophysics Data System (ADS)
Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.
2015-07-01
This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.
Real-time monitoring of the laser hot-wire welding process
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan
2014-04-01
The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.
NASA Astrophysics Data System (ADS)
Pugacheva, N. B.; Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Mali, V. I.; Senaeva, E. I.
2017-10-01
Production of welded bimetallic structures of titanium and steel using a laser beam is a very urgent and important task in the shipbuilding, airspace and power engineering. Laser welding using an intermediate insert is one of the ways to solve this problem. In this paper, we present the results of experimental studies of formation of the structure and properties of composite insert, obtained by explosion welding, after its application at laser welding steel with titanium. A study of a four-layer composite insert obtained by explosion welding showed that it has no brittle intermetallic phases and defects in the form of cracks and pores. The boundaries between the plates to be welded in the composite insert have a characteristic wavy structure with narrow zones of mutual diffusion penetration of elements of the adjacent metals. It is established that the strength of the composite insert is comparable with the maximum strength of Grade 4 alloy, and the destruction of the product during the tensile tests in most cases occurred along the weakest component of the composite insert, i.e. the copper layer, whose strength was significantly increased due to the hardening that took place in the explosion welding.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
NASA Astrophysics Data System (ADS)
Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran
2018-04-01
Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.
NASA Astrophysics Data System (ADS)
Li, Ci; Yuan, Xinjian; Wu, Kanglong; Wang, Haodong; Hu, Zhan; Pan, Xueyu
2017-05-01
Resistance spot welded joints in different configurations of DP600 and DC54D were investigated to elucidate the nugget formation process and mechanical properties of the resultant joints. Results show that, when the welding time was less than 4 cycles, the fusion zone (FZ) was not formed, but the heat-affected zone (HAZ) occurred with a "butterfly" shape. In 4 cycles, the FZ in dissimilar sheets occurred with an "abnormal butterfly" shape because of nugget shift. When the welding time increased to 14 cycles, the FZ exhibited a "bread loaf" shape and the weld shifted to "dog bones." The nugget can be divided into three regions, namely, FZ, HAZ1, and HAZ2, and the FZ consisted of lath martensite. The micro hardness of DP600 FZ was lower than that of HAZ because of the dilution of DC54D. The failure mode of B changed from interfacial failure to plug failure during the nugget formation process. The tensile-shear load of sound weld is 6.375, 6.016, and 19.131 kN.
Microstructural analysis of the 2195 aluminum-lithium alloy welds
NASA Technical Reports Server (NTRS)
Talia, George E.
1993-01-01
The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.
NASA Astrophysics Data System (ADS)
Pan, Yi; Lados, Diana A.
2017-04-01
Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.
Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao
2015-01-01
Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484
NASA Astrophysics Data System (ADS)
Stavinoha, Joe N.
The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al-4V alloy substrates. Cylindrical weld metal deposits were built by employing an automatic wire feeder, turntable positioner, and vertical torch positioner. A total of four cylindrical weld metal specimens were built with various combinations of essential plasma arc welding process parameters. The temperature of the weld metal deposit was taken with a thermocouple after allowing a specified amount of time to pass before depositing the next weld track. An analytical heat flow model was created that estimated the temperature of the weld metal deposit in relation to the number of tracks deposited. The analytical heat flow model was adjusted to match the experimental data that was obtained and revealed that the rate of production could be increased if the rate of thermal energy losses from the deposit were increased. Cross-sections of the weld metal deposits were examined to observe the effects of thermal energy input on the weld metal macrostructure, microstructure, and grain size. Results from the metallographic inspections revealed an increase in grain size and coarsening of the structure as the number of weld tracks in the deposit increased.
Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication
NASA Astrophysics Data System (ADS)
Lopez, M. J.; Caballero, D.; Campo, E. M.; Perez-Castillejos, R.; Errachid, A.; Esteve, J.; Plaza, J. A.
2008-07-01
Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.
NASA Astrophysics Data System (ADS)
Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.
2017-10-01
The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion zones with different widths (from 5 to 40 μm) and element concentrations are formed. The hardness in the boundary diffusion zones is higher than in the connected metals, which is due to the diffusion interaction of the materials adjacent to each other. It has been established that the tensile strength of the composite insert is comparable to the maximum strength of Grade 4 alloy (456-511 MPa), and the failure in most cases occurred over the least durable component of the composite material, which is the copper plate, whose strength was significantly increased by cold hardening during explosion welding and diffusion of elements of the contacting plates.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-04-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-07-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method
NASA Astrophysics Data System (ADS)
Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth
2015-02-01
Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.
NASA Astrophysics Data System (ADS)
Liu, Liming; Hao, Xinfeng
2008-10-01
In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.
ERIC Educational Resources Information Center
John H. Hinds Area Vocational School, Elwood, IN.
This book contains a task inventory, a task analysis of 150 tasks from that inventory, and a tool list for performance-based welding courses in the state of Indiana. The task inventory and tool list reflect 28 job titles found in Indiana. In the first part of the guide, tasks are listed by these domains: carbon-arc, electron beam, G.M.A.W., gas…
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-12-01
Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.
10-kW-class YAG laser application for heavy components
NASA Astrophysics Data System (ADS)
Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.
2000-02-01
The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.
Design of a welded joint for robotic, on-orbit assembly of space trusses
NASA Astrophysics Data System (ADS)
Rule, William K.
1992-12-01
In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station.
Operational test of micro-oven for 48Ca beam
NASA Astrophysics Data System (ADS)
Ozeki, K.; Kageyama, T.; Kidera, M.; Higurashi, Y.; Nakagawa, T.
2014-02-01
In order to supply a high-intensity and stable 48Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we are conducting operational tests of a micro-oven. A mixture of CaO and Al powders is placed into the crucible of the micro-oven and heated to produce metallic calcium by a reductive reaction. The successful production of a calcium beam was confirmed. In addition, we reduced the material consumption rate by using a so-called "hot liner," and we enhanced the beam intensity by applying a negative voltage bias to the micro-oven, the effect of which is similar to the effect of a "biased disk."
Targets and methods for target preparation for radionuclide production
Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C
2012-10-16
The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.
1974-01-01
Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.
NASA Astrophysics Data System (ADS)
Ryabkin, Dmitrii I.
2018-04-01
Connection is not strong enough In case of insufficient or excessive temperature of the laser welding. As a result, the temperature measurement in laser welding is an important problem. Measurement area surface is small (3.12 mm2) and measurements shall be carried out by a Non-contact method, which makes them challenging. Method of temperature measurement by an infrared sensor in two positions has been offered. This method allows you to measure the temperature at a distance of up to 5 cm from the measured area with an accuracy of 8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn
2014-11-15
The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L,more » the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.« less
Thermal Stir Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2008-01-01
Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.
Fine-Scale Mechanical Properties of Sliding Solids.
1987-02-28
experiments to be described, the tip was prepared by chemical polishing or electropolishing and welded to a loop of wire that could be resistively heated in...attach the sample to a wire mesh that could be resistively heated itself to high temperatures. Where neither of these methods were appropriate...section welded to the tip wire . The reflected beam is focussed onto an optical detector (also outside the chamber) which is sensitive to small changes
Tan, Wensheng; Wang, Xiao
2017-01-01
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367
NASA Astrophysics Data System (ADS)
Hoseini-Athar, M. M.; Tolaminejad, B.
2016-07-01
Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.
Lack of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Adams, Glynn P.
2000-01-01
This presentation reviews the issue of lack of penetration (LOP) in Friction Stir Welding and the feasibility of using non-destructive tests to detect . Friction Stir Welding takes place in the solid phase below the melting point of the materials to be joined. It thus gives the ability to join materials which are difficult to fusion weld, for example 2000 and 7000 aluminium alloys. This process though can result in a lack of penetration, due to an incomplete penetration of the DXZ. This is frequently referred to as a "kissing bond", which requires micro examination to detect. The presentation then discusses the surface crack tension tests. It then reviews the simulated service test and results. It then discusses the feasibility of using non-destructive examination to detect LOP, the forms of test which can be used, and the results the tests.
Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun
2013-08-26
Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.
Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao
2017-12-26
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.
NASA Astrophysics Data System (ADS)
Weidinger, Peter; Günther, Kay; Fitzel, Martin; Logvinov, Ruslan; Ilin, Alexander; Ploshikhin, Vasily; Hugger, Florian; Mann, Vincent; Roth, Stephan; Schmidt, Michael
The necessity for weight reduction in motor vehicles in order to save fuel consumption pushes automotive suppliers to use materials of higher strength. Due to their excellent crash behavior high strength steels are increasingly applied in various structures. In this paper some predevelopment steps for a material change from a micro alloyed to dual phase and complex phase steels of a T-joint assembly are displayed. Initially the general weldability of the materials regarding pore formation, hardening in the heat affected zone and hot cracking susceptibility is discussed. After this basic investigation, the computer aided design optimization of a clamping device is shown, in which influences of the clamping jaw, the welding position and the clamping forces upon weld quality are presented. Finally experimental results of the welding process are displayed, which validate the numerical simulation.
Flaws detection and localization in weld structure using the topological energy method
NASA Astrophysics Data System (ADS)
Lubeigt, Emma; Mensah, Serge; Rakotonarivo, Sandrine; Chaix, Jean-François; Gobillot, Gilles; Baqué, François
2017-02-01
The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity and safety of critical structures in a nuclear reactor. The bedspring and the deck are complex welded structures of very restricted access; the ability to reliably detect and locate defects like cracks is therefore a difficult challenge. Ultrasonic testing is a well-recognized non-invasive technique which exhibits high characterization performances in homogeneous media (steel). However, its capabilities are hampered when operating in heterogeneous and anisotropic austenitic welds because of deviation and splitting of the ultrasonic beam. In order to rise to this important challenge, a model-based method is proposed, which takes into account a prior knowledge corresponding to the welding procedure specifications that condition the austenitic grains orientation within the weld and thus the wave propagation. The topological imaging method implemented is a differential approach which, compares signals from the reference defect-free medium to the inspected medium. It relies on combinations of two computed ultrasonic fields, one forward and one adjoint. Numerical simulations and experiments have been carried out to validate the practical relevance of this approach to detect and locate a flaw in a weld.
Accurate modelling of anisotropic effects in austenitic stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.
2014-02-18
The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterersmore » are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.« less
Welding Behavior of Free Machining Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.
2000-07-24
The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less
Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa
2013-10-14
Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachmentmore » properties.« less
2015-06-18
platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam
Fiber laser welding of austenitic steel and commercially pure copper butt joint
NASA Astrophysics Data System (ADS)
Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.
2017-03-01
The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.
NASA Technical Reports Server (NTRS)
Arcella, F. G.
1974-01-01
Arc cast W, CVD W, CVD Re, and powder metallurgy Re materials were hot isostatically pressure welded to ten different refractory metals and alloys (Cb, Cb-1Zr, Ta, Ta-10W, T-111, ASTAR-811C, W-25Re, Mo-50Re, W-30Re-20Mo, ect.) and thermally aged at 10 to the minus 8th power torr at 1200, 1500, 1630, 1800, and 2000 C for 100 to 2000 hours. Electron beam microprobe analysis was used to characterize the interdiffusion zone width of each couple system as a function of age time and temperature. Extrapolations of interdiffusion zone thickness to 10,000 hours were made. Classic interdiffusion analysis was performed for several of the systems by Boltzmann-Matano analysis. A method of inhibiting Kirkendall voids from forming during thermal ageing of dissimilar metal junctions was devised and experimentally demonstrated. An electron beam weld study of Cb-1Zr to Re and W-25Re demonstrated the limited acceptability of these welds.
Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
NASA Astrophysics Data System (ADS)
Sommer, Silke
2010-06-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding
NASA Astrophysics Data System (ADS)
Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han
2016-11-01
The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.
NASA Astrophysics Data System (ADS)
Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei
2017-02-01
The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.
Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array
NASA Astrophysics Data System (ADS)
Hashiba, Kunio; Masuzawa, Hiroshi
2003-05-01
The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.
Eccentric superconducting RF cavity separator structure
Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.
1976-01-01
Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.
NASA Technical Reports Server (NTRS)
Talia, George E.
1996-01-01
Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.
NASA Astrophysics Data System (ADS)
Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu
2014-06-01
2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.
Numerical model of the plasma formation at electron beam welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru; The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990; Mladenov, G. M., E-mail: gmmladenov@abv.bg
2015-01-07
The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondarymore » and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.« less
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.
1989-01-01
Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.
NASA Technical Reports Server (NTRS)
Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.
1991-01-01
The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.
Vacuum injection of hydrogen micro-sphere beams
NASA Astrophysics Data System (ADS)
Trostell, Bertil
1995-02-01
The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.
Use of schlieren methods to study gas flow in laser technology
NASA Astrophysics Data System (ADS)
Mrňa, Libor; Pavelka, Jan; Horník, Petr; Hrabovský, Jozef
2016-11-01
Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flow is critical for the quality of the resulting edge of the cut. Schlieren method was used to study gas flow under the nozzle and then under the material being cut. This actually creates another slot nozzle. Due to the very low speed of flow below the material the schleiren method is already at the limit of its sensitivity. Therefore, it is necessary to apply a differential technique to increase the contrast. Distinctive widening of the flow shaped by the kerf was observed.
Multi-focus beam shaping of high power multimode lasers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei
2017-08-01
Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.