Sample records for beam position monitors

  1. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  2. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  3. Beam position monitor for energy recovered linac beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Thomas; Evtushenko, Pavel

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  4. Studies of beam position monitor stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenenbaum, P.

    1998-05-01

    The authors present the results from two studies of the time stability between the mechanical center of a beam position monitor and its electrical/electronic center. In the first study, a group of 93 BPM processors was calibrated via Test Pulse Generator once per hour in order to measure the contribution of the readout electronics to offset drifts. In the second study, a triplet of stripline BPMs in the Final Focus Test Beam, separated only by drift spaces, was read out every 6 minutes during 1 week of beam operation. In both cases offset stability was observed to be on themore » order of microns over time spans ranging from hours to days, although during the beam study much worse performance was also observed. Implications for the beam position monitor system of future linear collider systems are discussed.« less

  5. Beam position monitor engineering

    NASA Astrophysics Data System (ADS)

    Smith, Stephen R.

    1997-01-01

    The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.

  6. Beam position monitor

    DOEpatents

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  7. Beam Position and Phase Monitor - Wire Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less

  8. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    NASA Astrophysics Data System (ADS)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  9. Modified M20 Beam Position Monitor Testing

    NASA Astrophysics Data System (ADS)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  10. Video-based beam position monitoring at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  11. Beam based measurement of beam position monitor electrode gains

    NASA Astrophysics Data System (ADS)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  12. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  13. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar, B.; Graafsma, H.; Potdevin, G.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (beams. We report on tests made at ESRF and DESY using diamond beam position monitors of simple quadrant electrodemore » designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.« less

  14. Noise estimation of beam position monitors at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X.; Bai, M.; Lee, S. Y.

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable opticsmore » measurement and beam dynamics analysis based on turn-by-turn data.« less

  15. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  16. Tevatron beam position monitor upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbers, Stephen; Banerjee, B.; Barker, B.

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiprotonmore » position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.« less

  17. An X-ray beam position monitor based on the photoluminescence of helium gas

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  18. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  19. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  20. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  1. Beam position monitor gate functionality implementation and applications

    DOE PAGES

    Cheng, Weixing; Ha, Kiman; Li, Yongjun; ...

    2018-06-14

    We introduce a novel technique to implement gate functionality for the beam position monitors (BPM) at the National Synchrotron Light Source II (NSLS-II). The functionality, now implemented in FPGA, allows us to acquire two separated bunch-trains’ synchronized turn-by-turn (TBT) data simultaneously with the NSLS-II in-house developed BPM system. The gated position resolution is improved about 3 times by narrowing the sampling width. Experimentally we demonstrated that the machine lattice could be transparently characterized with the gated TBT data of a short diagnostic bunch-train Cheng et al., 2017; Li et al., 2017. Other applications, for example, precisely characterizing storage ring impedance/wake-fieldmore » through recording the beam positions of two separated bunch trains has been experimentally demonstrated.« less

  2. Beam position monitor gate functionality implementation and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing; Ha, Kiman; Li, Yongjun

    We introduce a novel technique to implement gate functionality for the beam position monitors (BPM) at the National Synchrotron Light Source II (NSLS-II). The functionality, now implemented in FPGA, allows us to acquire two separated bunch-trains’ synchronized turn-by-turn (TBT) data simultaneously with the NSLS-II in-house developed BPM system. The gated position resolution is improved about 3 times by narrowing the sampling width. Experimentally we demonstrated that the machine lattice could be transparently characterized with the gated TBT data of a short diagnostic bunch-train Cheng et al., 2017; Li et al., 2017. Other applications, for example, precisely characterizing storage ring impedance/wake-fieldmore » through recording the beam positions of two separated bunch trains has been experimentally demonstrated.« less

  3. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  4. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  5. Performance of a reentrant cavity beam position monitor

    NASA Astrophysics Data System (ADS)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  6. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  7. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  8. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    NASA Astrophysics Data System (ADS)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  9. First demonstration of simultaneous measurement of beam current, beam position, and beam tilt on induction linac using combined B-dot monitor

    NASA Astrophysics Data System (ADS)

    He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong

    2017-06-01

    The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.

  10. Analytical N beam position monitor method

    NASA Astrophysics Data System (ADS)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  11. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  12. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  13. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less

  14. A configurable electronics system for the ESS-Bilbao beam position monitors

    NASA Astrophysics Data System (ADS)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  15. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    NASA Astrophysics Data System (ADS)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  16. Improved design and in-situ measurements of new beam position monitors for Indus-2

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  17. Current Status of the Beam Position Monitoring System at TLS

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  18. Development of an S-band cavity Beam Position Monitor for ATF2

    NASA Astrophysics Data System (ADS)

    Heo, A.; Kim, E.-S.; Kim, H.; Son, D.; Honda, Y.; Tauchi, T.

    2013-04-01

    We have developed an S-band cavity Beam Position Monitor (BPM) in order to measure the position of an electron beam in the final focus area at ATF2, which is the test facility for the final focus design for the International Linear Collider (ILC). The lattice of the ILC Beam Delivery System (BDS) has been modified, requiring a larger physical aperture of 40 mm in the final focus area. The beam orbit measurement in this area is now covered with high resolution S-Band cavity BPMs. In this paper we summarize the design of the cavity BPM and the first experimental results. The calibration slopes were measured as 0.87 counts/μm in the x-coordinate direction and 1.16 counts/μm in the y-coordinate direction.

  19. Current Status of the Beam Position Monitoring System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny

    2006-11-20

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less

  20. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  1. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  2. Development of high resolution linear-cut beam position monitor for heavy-ion synchrotron of KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo

    2017-04-01

    A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).

  3. Improvement of the thermo-mechanical position stability of the beam position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Ha, Taekyun; Hong, Mansu; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-09-01

    In the storage ring of the Pohang Light Source-II (PLS-II), we reduced the mechanical displacement of the electron-beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The BPM pickup itself must be kept stable to sub-micrometer precision in order for a stable photon beam to be provided to beamlines because the orbit feedback system is programmed to make the electron beam pass through the center of the BPM. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by an unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report a thermo-mechanical analysis and displacement measurements for the BPM pickups after improvements.

  4. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  5. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  6. Data analysis of photon beam position at PLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J.; Shin, S., E-mail: tlssh@postech.ac.kr; Huang, Jung-Yun

    In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beammore » position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.« less

  7. Dynamic performance of the beam position monitor support at the SSRF.

    PubMed

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  8. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less

  9. Design study of beam position monitors for measuring second-order moments of charged particle beams

    NASA Astrophysics Data System (ADS)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  10. Statistical analysis of RHIC beam position monitors performance

    NASA Astrophysics Data System (ADS)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  11. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  12. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    NASA Astrophysics Data System (ADS)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  13. New beam-position monitor system for upgraded Photon Factory storage ring.

    PubMed

    Haga, K; Honda, T; Tadano, M; Obina, T; Kasuga, T

    1998-05-01

    Accompanying the brilliance-upgrading project at the Photon Factory storage ring, the beam-position monitor (BPM) system has been renovated. The new system was designed to enable precise and fast measurements to correct the closed-orbit distortion (COD), as well as to feed back the orbit position during user runs. There are 42 BPMs newly installed, amounting to a total of 65 BPMs. All of the BPMs are calibrated on the test bench using a coaxially strung metallic wire. The measured electrical offsets are typically 200 micro m in both directions, which is 1/2-1/3 of those of the old-type BPMs. In the signal-processing system, PIN diode switches are employed in order to improve reliability. In the fastest mode, this system is capable of measuring COD within about 10 ms; this fast acquisition will allow fast suppression of the beam movement for frequencies up to 50 Hz using a global feedback system.

  14. Resolution Studies at Beam Position Monitors at the FLASH Facility at DESY

    NASA Astrophysics Data System (ADS)

    Baboi, N.; Lund-Nielsen, J.; Noelle, D.; Riesch, W.; Traber, T.; Kruse, J.; Wendt, M.

    2006-11-01

    More than 60 beam position monitors (BPM) are installed along about 350m of beamline of the Free Electron LASer in Hamburg (FLASH) at DESY. The room-temperature part of the accelerator is equipped mainly with stripline position monitors. In the accelerating cryo-modules there are cavity and re-entrant cavity BPMs, which will not be discussed here. In the undulator part of the machine button BPMs are used. This area requires a single bunch resolution of 10μm. The electronics is based on the AM/PM normalization principle and is externally triggered. Single-bunch position is measured. This paper presents the methods used to determine the resolution of the BPMs. The results based on correlations between different BPMs along the machine are compared to noise measurements in the RF lab. The performance and difficulties with the BPM design and the current electronics as well as its development are discussed.

  15. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Lee, S.; Westferro, F.

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less

  16. Analysis and control of the photon beam position at PLS-II

    PubMed Central

    Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S.

    2016-01-01

    At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data. PMID:26917132

  17. Beam transport and monitoring for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.

    2012-12-01

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

  18. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  19. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  20. Beam transport and monitoring for laser plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sokollik, T.; Tilborg, J. van

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less

  1. Event-synchronized data acquisition system for the SPring-8 linac beam position monitors

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.

    2005-05-01

    By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.

  2. Analysis of a Novel Diffractive Scanning Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatchyn, Roman; /SLAC

    2011-09-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less

  3. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  4. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  5. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  6. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  7. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michnoff R.; Biscardi, C.; Cerniglia, P.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scannermore » assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.« less

  8. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    NASA Astrophysics Data System (ADS)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  9. Utilizing the N beam position monitor method for turn-by-turn optics measurements

    NASA Astrophysics Data System (ADS)

    Langner, A.; Benedetti, G.; Carlà, M.; Iriso, U.; Martí, Z.; de Portugal, J. Coello; Tomás, R.

    2016-09-01

    The N beam position monitor method (N -BPM) which was recently developed for the LHC has significantly improved the precision of optics measurements that are based on BPM turn-by-turn data. The main improvement is due to the consideration of correlations for statistical and systematic error sources, as well as increasing the amount of BPM combinations which are used to derive the β -function at one location. We present how this technique can be applied at light sources like ALBA, and compare the results with other methods.

  10. A Phase Space Monitoring of Injected Beam of J-PARC MR

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  11. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  12. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    NASA Astrophysics Data System (ADS)

    Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  13. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thieberger, Peter; Gassner, D.; Hulsart, R.

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  14. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE PAGES

    Thieberger, Peter; Gassner, D.; Hulsart, R.; ...

    2018-04-25

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  15. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets.

    PubMed

    Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  16. Some Solved Problems with the SLAC PEP-II B-Factory Beam-Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Ronald G.

    2000-05-05

    The Beam-Position Monitor (BPM) system for the SLAC PEP-II B-Factory has been in operation for over two years. Although the BPM system has met all of its specifications, several problems with the system have been identified and solved. The problems include errors and limitations in both the hardware and software. Solutions of such problems have led to improved performance and reliability. In this paper the authors report on this experience. The process of identifying problems is not at an end and they expect continued improvement of the BPM system.

  17. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  18. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  19. Experimental Test of Data Analysis Methods from Staggered Pair X-ray Beam Position Monitors at Bending Magnet Beamlines

    NASA Astrophysics Data System (ADS)

    Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.

    2013-03-01

    Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed

  20. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  1. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  2. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  3. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient and to monitor alignment of the radiation beam with the patient's anatomy. (b) Classification...

  4. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  5. Real-time beam monitoring in scanned proton therapy

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  6. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  7. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  8. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Seon Yeong; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hwang, Ji-Gwang

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using anmore » oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.« less

  9. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  10. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  11. A prototype scintillating fibre beam profile monitor for Ion Therapy beams

    NASA Astrophysics Data System (ADS)

    Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.

    2018-05-01

    A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.

  12. Calibration of a proton beam energy monitor.

    PubMed

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  13. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  14. Laser beam monitoring system

    DOEpatents

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  15. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  16. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  17. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  18. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.H.; Yang, B.X.; Decker, G.

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulatormore » beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed« less

  19. Progress on the development of the next generation x-ray beam position monitors at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H., E-mail: shlee@aps.anl.gov; Yang, B. X., E-mail: bxyang@aps.anl.gov; Decker, G., E-mail: decker@aps.anl.gov

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generation XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Commissioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separatedmore » by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from the diamond blades placed edge-on to the x-ray beam. A prototype of the Compton scattering XBPM system was installed at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contact resistance of a joint between two solid bodies is also discussed.« less

  20. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less

  1. Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan

    2016-02-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  2. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  3. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  4. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade.

    PubMed

    Lee, S H; Yang, B X; Collins, J T; Ramanathan, M

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  5. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  6. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterhoff, J.; Nakamura, K.; Bakeman, M.

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  7. Study of Anti-Neutrino Beam with Muon Monitor in the T2K experiment

    NASA Astrophysics Data System (ADS)

    Hiraki, Takahiro

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed.

  8. Beam position reconstruction for the g2p experiment in Hall A at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent

    2015-11-03

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. We found that before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve themore » required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. Finally, the calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.« less

  9. New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi

    A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in “de-flattening”more » of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm{sup 2} beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm.« less

  10. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-11-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.

  11. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; ATLAS Collaboration

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  12. A beam monitor based on MPGD detectors for hadron therapy

    NASA Astrophysics Data System (ADS)

    Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.

    2018-02-01

    Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  13. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  14. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  15. A low cost ion beam profile monitor

    NASA Astrophysics Data System (ADS)

    Godfrey, L.; Hoyes, G. G.; Pairsuwan, W.

    1990-09-01

    An intercepting multiwire ion beam profile monitor, of thickness 0.9 cm and active area 5 × 5 cm, has been developed for use with the low-intensity deuteron beamline at the Fast Neutron Research Facility (FNRF), Chiang Mai University. It has been used to optimise the transport of a continuous ion beam of current up to 200 μA and kinetic energy up to 140 keV. The monitor enables the determination of the two-dimensional beam profile using closely-spaced samples at 1.5 mm, and the measurement of relative beam current. The design incorporates low material and labour costs, elimination of the need for commercial vacuum feedthroughs, a minimal amount of devoted electronics with no need for preamplifiers, and permits quick insertion of the monitors, wherever needed along the beamline, with minimum disruption to neighbouring elements.

  16. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  17. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  18. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  19. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  20. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  1. Ultrasound transducer positioning aid for fetal heart rate monitoring.

    PubMed

    Hamelmann, Paul; Kolen, Alex; Schmitt, Lars; Vullings, Rik; van Assen, Hans; Mischi, Massimo; Demi, Libertario; van Laar, Judith; Bergmans, Jan

    2016-08-01

    Fetal heart rate (fHR) monitoring is usually performed by Doppler ultrasound (US) techniques. For reliable fHR measurements it is required that the fetal heart is located within the US beam. In clinical practice, clinicians palpate the maternal abdomen to identify the fetal presentation and then the US transducer is fixated on the maternal abdomen where the best fHR signal can be obtained. Finding the optimal transducer position is done by listening to the strength of the Doppler audio output and relying on a signal quality indicator of the cardiotocographic (CTG) measurement system. Due to displacement of the US transducer or displacement of the fetal heart out of the US beam, the fHR signal may be lost. Therefore, it is often necessary that the obstetrician repeats the tedious procedure of US transducer positioning to avoid long periods of fHR signal loss. An intuitive US transducer positioning aid would be highly desirable to increase the work flow for the clinical staff. In this paper, the possibility to determine the fetal heart location with respect to the transducer by exploiting the received signal power in the transducer elements is shown. A commercially available US transducer used for fHR monitoring is connected to an US open platform, which allows individual driving of the elements and raw US data acquisition. Based on the power of the received Doppler signals in the transducer elements, the fetal heart location can be estimated. A beating fetal heart setup was designed and realized for validation. The experimental results show the feasibility of estimating the fetal heart location with the proposed method. This can be used to support clinicians in finding the optimal transducer position for fHR monitoring more easily.

  2. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Backfish, M.; Moretti, A.

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  3. On-chip beam positioning sensor via frequency locked cascaded ring resonators

    NASA Astrophysics Data System (ADS)

    Naiman, Alex; Stern, Liron; Levy, Uriel

    2018-05-01

    We demonstrate an approach for on-chip beam positioning with a position accuracy of up to 100 nm. This approach is based on tracking the resonance of two adjacent microring resonators that are implemented on a silicon on insulator chip. We demonstrate the functionality of our approach by illuminating the chip through a Near Field Scanning Optical Microscope tip and monitoring the shift of the microring resonances due to the thermo-optic effect. We also discuss the contribution of different effects such as free carrier absorption and dispersion to the resonance shift.

  4. A real-time beam-profile monitor for a PET cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  5. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  6. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  7. Online measurement of fluence and position for protontherapy beams

    NASA Astrophysics Data System (ADS)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  8. Apparatus and method for monitoring the intensities of charged particle beams

    DOEpatents

    Varma, Matesh N.; Baum, John W.

    1982-11-02

    Charged particle beam monitoring means (40) are disposed in the path of a charged particle beam (44) in an experimental device (10). The monitoring means comprise a beam monitoring component (42) which is operable to prevent passage of a portion of beam (44), while concomitantly permitting passage of another portion thereof (46) for incidence in an experimental chamber (18), and providing a signal (I.sub.m) indicative of the intensity of the beam portion which is not passed. Calibration means (36) are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I.sub.f) indicative of the intensity thereof. Means (41 and 43) are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  9. Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcazar, Mario D.; Yonehara, Katsuya

    The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of themore » tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.« less

  10. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  11. Carbon ions beam therapy monitoring with the INSIDE in-beam PET.

    PubMed

    Pennazio, Francesco; Battistoni, Giuseppe; Bisogni, Maria Giuseppina; Camarlinghi, Niccolò; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Morrocchi, Matteo; Sala, Paola R; Sportelli, Giancarlo; Wheadon, Richard; Cerello, Piergiorgio

    2018-06-06

    In-vivo range monitoring techniques are necessary in order to fully take advantage of the high dose gradients deliverable in hadrontherapy treatments. Positron Emission Tomography (PET) scanners can be used to monitor beam-induced activation in tissues and hence measure the range. The INSIDE (Innovative Solutions for In-beam DosimEtry in Hadrontherapy) in-beam PET scanner, installed at the Italian National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) synchrotron facility, has already been successfully tested in-vivo during a proton therapy treatment. We discuss here the system performance evaluation with carbon ion beams, in view of future in-vivo tests. The work is focused on the analysis of activity images obtained with therapeutic treatments delivered to polymethyl methacrylate (PMMA) phantoms, as well as on the test of an innovative and robust Monte Carlo simulation technique for the production of reliable prior activity maps. Images are reconstructed using different integration intervals, so as to monitor the activity evolution during and after the treatment. Three procedures to compare activity images are presented, namely Pearson Correlation Coefficient, Beam's Eye View and Overall View. Images of repeated irradiations of the same treatments are compared to assess the integration time necessary to provide reproducible images. The range agreement between simulated and experimental images is also evaluated, so as to validate the simulation capability to provide sound prior information. The results indicate that at treatment end, or at most 20 s afterwards, the range measurement is reliable within 1-2 mm, when comparing both different experimental sessions and data with simulations. In conclusion, this work shows that the INSIDE in-beam PET scanner performance is promising towards its in-vivo test with carbon ions. © 2018 Institute of Physics and Engineering in Medicine.

  12. Development of a Beam Trajectory Monitoring System Using e+/e- Pair Production Events

    NASA Astrophysics Data System (ADS)

    Kimura, Shota; Emoto, Yusaku; Fujihara, Kento; Ito, Hiroshi; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    In particle therapy, it is important to monitor the Bragg-peak position. It was simulated by GEANT4 Monte Carlo Simulation Code that the distribution of secondary generated gamma rays on the carbon beam therapy and the proton beam therapy. This simulation shows that gamma rays whose energy is 10 MeV or more are intensively generated at the Bragg-peak position. We are developing the system to monitor the Bragg-peak position which can measure pair production events occurred in the detector by gamma rays from irradiation points. The momentum direction of the gamma ray can be determined by measuring passing points and energy of e+ and e- generated by pair production. This system has 5 parts. The first is the conversion part. This part consists of several layers. Each layer is composed of a La-GPS ((Gd0.75La0.24Ce0.01)2Si2O7) scintillator plate and wavelength-shifting fibre (WLSF) sheets. The scintillator plate is sandwiched between sheets, where the directions of the sheets are in orthogonally x and y directions. In this part, gamma rays are converted to e+ e- pairs and the position where the conversion occured is determined. The second is the tracking part. This part consists of 2 layers of scintillating fibre tracker. Each layer has 6 scintillating fibre sheets for x, x', u, u', v, and v'. The third is the energy measurement part. It measures the energy of e+ and e- by scintillator array and Silicon Photomultipliers. The fourth is the veto counter for bremsstrahlung gamma rays from e+ and e-. The fifth is the beam monitor. By experiment, the number of photoelectrons of La-GPS with a WLSF (B-3(300)MJ, Kuraray) sheet and scintillating fibre (SCSF-78, Kuraray) when charged particle passed was measured as 9.7 and 7.6 respectively.

  13. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  14. A real-time intercepting beam-profile monitor for a medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  15. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  16. Time resolving beam position measurement and analysis of beam unstable movement in PSR

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. V.

    2000-11-01

    Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.

  17. Design of a new tracking device for on-line beam range monitor in carbon therapy.

    PubMed

    Traini, Giacomo; Battistoni, Giuseppe; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2017-02-01

    Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Peters, Charles C

    2013-01-01

    A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errantmore » Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.« less

  19. A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.

    2018-03-01

    We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.

  20. Laser wakefield accelerated electron beam monitoring and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, J. K.; Mori, M.; Kotaki, H.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  1. Fast Beam-Based BPM Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of themore » gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.« less

  2. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  3. Plastic scintillator block as photon beam monitor for EGRET calibration

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Hofstadter, R.; Nolan, P. L.; Walker, A. H.; Mattox, J. R.; Hughes, E. B.

    1991-01-01

    The EGRET (Energetic Gamma Ray Experiment Telescope) detector has been calibrated at SLAC (Stanford Linear Accelerator) and, to a lesser degree, at the MIT Bates Linear Accelerator Center. To monitor the photon beams for the calibration, a plastic scintillator block, 5 cm x 5 cm in cross section, 15 cm in length, and viewed by a single photomultiplier tube, was used for the entire beam energy range of 15 MeV to 10 GeV. The design operation, and method of analysis of the beam intensity are presented. A mathematical framework has been developed to treat the general case of a beam with multiphoton beam pulses and with a background component. A procedure to deal with the fluctuations of the beam intensity over a data-taking period was also developed. The photon beam monitor is physically sturdy, electronically steady, simple to construct, and easy to operate. Its major merits lie in its sheer simplicity of construction and operation and in the wide energy range it can cover.

  4. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  5. 21 CFR 892.5780 - Light beam patient position indicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Light beam patient position indicator. 892.5780 Section 892.5780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5780 Light beam patient position...

  6. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  7. Neutron beam flux monitors in coaxial and planar geometry for neutron scattering instruments at Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.

    2018-04-01

    Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.

  8. New and improved apparatus and method for monitoring the intensities of charged-particle beams

    DOEpatents

    Varma, M.N.; Baum, J.W.

    1981-01-16

    Charged particle beam monitoring means are disposed in the path of a charged particle beam in an experimental device. The monitoring means comprise a beam monitoring component which is operable to prevent passage of a portion of beam, while concomitantly permitting passage of another portion thereof for incidence in an experimental chamber, and providing a signal (I/sub m/) indicative of the intensity of the beam portion which is not passed. Caibration means are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I/sub f/) indicative of the intensity thereof. Means are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  9. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  10. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.; Fessenden, T.

    1998-08-17

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  11. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y J; Fessenden, T

    1998-09-02

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  12. Diffraction measurements using the LHC Beam Loss Monitoring System

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  13. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    NASA Astrophysics Data System (ADS)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  14. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements.

    PubMed

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  15. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  16. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  17. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE PAGES

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...

    2018-01-23

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  18. A large area diamond-based beam tagging hodoscope for ion therapy monitoring

    NASA Astrophysics Data System (ADS)

    Gallin-Martel, M.-L.; Abbassi, L.; Bes, A.; Bosson, G.; Collot, J.; Crozes, T.; Curtoni, S.; Dauvergne, D.; De Nolf, W.; Fontana, M.; Gallin-Martel, L.; Hostachy, J.-Y.; Krimmer, J.; Lacoste, A.; Marcatili, S.; Morse, J.; Motte, J.-F.; Muraz, J.-F.; Rarbi, F. E.; Rossetto, O.; Salomé, M.; Testa, É.; Vuiart, R.; Yamouni, M.

    2018-01-01

    The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l'hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused ( 1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.

  19. Statistical process control for electron beam monitoring.

    PubMed

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Improving the precision of linear optics measurements based on turn-by-turn beam position monitor data after a pulsed excitation in lepton storage rings

    NASA Astrophysics Data System (ADS)

    Malina, L.; Coello de Portugal, J.; Persson, T.; Skowroński, P. K.; Tomás, R.; Franchi, A.; Liuzzo, S.

    2017-08-01

    Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-by-turn (TbT) beam position monitor (BPM) data are increasingly exploited as they allow for fast and simultaneous measurement of various optics quantities. Nevertheless, so far the best documented uncertainty of measured β -functions is of about 10‰ rms. In this paper we compare the β -functions of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude methods—with the ones inferred from a measurement of the orbit response matrix (ORM). We show how to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly chosen excitation amplitude. The precision of the N-BPM method is further improved by refining the phase advance measurement. This represents a step forward compared to standard TbT measurements. First experimental results showing the precision of β -functions pushed down to 4‰ both in TbT and ORM techniques are reported and commented.

  1. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  2. Comparison of beam position calculation methods for application in digital acquisition systems

    NASA Astrophysics Data System (ADS)

    Reiter, A.; Singh, R.

    2018-05-01

    Different approaches to the data analysis of beam position monitors in hadron accelerators are compared adopting the perspective of an analog-to-digital converter in a sampling acquisition system. Special emphasis is given to position uncertainty and robustness against bias and interference that may be encountered in an accelerator environment. In a time-domain analysis of data in the presence of statistical noise, the position calculation based on the difference-over-sum method with algorithms like signal integral or power can be interpreted as a least-squares analysis of a corresponding fit function. This link to the least-squares method is exploited in the evaluation of analysis properties and in the calculation of position uncertainty. In an analytical model and experimental evaluations the positions derived from a straight line fit or equivalently the standard deviation are found to be the most robust and to offer the least variance. The measured position uncertainty is consistent with the model prediction in our experiment, and the results of tune measurements improve significantly.

  3. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  4. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  5. Apparatus for precision focussing and positioning of a beam waist on a target

    NASA Technical Reports Server (NTRS)

    Lynch, Dana H. (Inventor); Gunter, William D. (Inventor); Mcalister, Kenneth W. (Inventor)

    1991-01-01

    The invention relates to optical focussing apparatus and, more particularly, to optical apparatus for focussing a highly collimated Gaussian beam which provides independent and fine control over the focus waist diameter, the focus position both along the beam axis and transverse to the beam, and the focus angle. A beam focussing and positioning apparatus provides focussing and positioning for the waist of a waisted beam at a desired location on a target such as an optical fiber. The apparatus includes a first lens, having a focal plane f sub 1, disposed in the path of an incoming beam and a second lens, having a focal plane f sub 2 and being spaced downstream from the first lens by a distance at least equal to f sub 1 + 10 f sub 2, which cooperates with the first lens to focus the waist of the beam on the target. A rotatable optical device, disposed upstream of the first lens, adjusts the angular orientation of the beam waist. The transverse position of the first lens relative to the axis of the beam is varied to control the transverse position of the beam waist relative to the target (a fiber optic as shown) while the relative axial positions of the lenses are varied to control the diameter of the beam waist and to control the axial position of the beam waist. Mechanical controllers C sub 1, C sub 2, C sub 3, C sub 4, and C sub 5 control the elements of the optical system. How seven adjustments can be made to correctly couple a laser beam into an optical fiber is illustrated. Prior art systems employing optical techniques to couple a laser beam into an optical fiber or other target simply do not provide the seven necessary adjustments. The closest known prior art, a Newport coupler, provides only two of the seven required adjustments.

  6. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  7. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  8. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  9. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  10. Influence of standing positions and beam projections on effective dose and eye lens dose of anaesthetists in interventional procedures.

    PubMed

    Kong, Y; Struelens, L; Vanhavere, F; Vargas, C S; Schoonjans, W; Zhuo, W H

    2015-02-01

    More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  12. A squid-based beam current monitor for FAIR/CRYRING

    NASA Astrophysics Data System (ADS)

    Geithner, Rene; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul; Stöhlker, Thomas

    2015-11-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring_40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.

  13. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  14. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  15. SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Farrokhkish, M; Norrlinger, B

    2015-06-15

    Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using amore » conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm{sup 2} field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm{sup 2} aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have

  16. Compact laser transmitter delivering a long-range infrared beam aligned with a monitoring visible beam.

    PubMed

    Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin

    2012-06-10

    A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.

  17. Single crystal CVD diamond membranes as Position Sensitive X-ray Detector

    NASA Astrophysics Data System (ADS)

    Desjardins, K.; Menneglier, C.; Pomorski, M.

    2017-12-01

    Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.

  18. Development of the PEFP's beam line BPM

    NASA Astrophysics Data System (ADS)

    Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub

    2013-01-01

    The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.

  19. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  20. Accidental Beam Losses and Protection in the LHC

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  1. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  2. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  3. Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Monaco, V.; Attili, A.; Cartiglia, N.; Donetti, M.; Fadavi Mazinani, M.; Fausti, F.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Cirio, R.; Boscardin, M.; Paternoster, G.; Ficorella, F.

    2017-12-01

    To fully exploit the physics potentials of particle therapy in delivering dose with high accuracy and selectivity, charged particle therapy needs further improvement. To this scope, a multidisciplinary project (MoVeIT) of the Italian National Institute for Nuclear Physics (INFN) aims at translating research in charged particle therapy into clinical outcome. New models in the treatment planning system are being developed and validated, using dedicated devices for beam characterization and monitoring in radiobiological and clinical irradiations. Innovative silicon detectors with internal gain layer (LGAD) represent a promising option, overcoming the limits of currently used ionization chambers. Two devices are being developed: one to directly count individual protons at high rates, exploiting the large signal-to-noise ratio and fast collection time in small thicknesses (1 ns in 50 μm) of LGADs, the second to measure the beam energy with time-of-flight techniques, using LGADs optimized for excellent time resolutions (Ultra Fast Silicon Detectors, UFSDs). The preliminary results of first beam tests with therapeutic beam will be presented and discussed.

  4. Method and system for controlling the position of a beam of light

    DOEpatents

    Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  5. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  6. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  7. Advanced diagnosis of the temporal characteristics of ultra-short electron beams

    NASA Astrophysics Data System (ADS)

    Otake, Yuji

    2011-05-01

    Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.

  8. Leak Rate Test for a Fiber Beam Monitor Contained in a Vacuum for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    O'Mara, Bridget; Lane, Noel; Gross, Eisen; Gray, Frederick; Muon g-2 Collaboration

    2014-09-01

    The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions and have determined the leak rate of the FBMs within the constructed vacuum apparatus. This leak rate will be reported, along with preliminary results from tests of the light output from the scintillating fibers. The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions

  9. Support means for a particle beam position monitor

    DOEpatents

    VanZwienen, W.H.

    1991-01-29

    A support means is disclosed for a plurality of thermally deformable component parts that are concentrically mounted within a thermally expandable housing. The support means includes a plurality of pins that are mounted in relatively fixed or sliding relationship to either one of the concentrically positioned components or to the housing, and the pins are positioned to extend through aligned apertures in the remaining components or the housing in a manner such that the pins are free to slide in a snug relationship relative to the sides of the holes through those components or the housing. The support means enables the concentrically mounted components and the housing to undergo expansion and contraction movement, radially and longitudinally relative to one another, while maintaining concentricity of the components and the housing relative to one another. 3 figures.

  10. Pin diode calibration - beam overlap monitoring for low energy cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  11. TFTR neutral beam control and monitoring for DT operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, T.; Kamperschroer, J.; Chu, J.

    1995-12-31

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were alsomore » added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.« less

  12. Two self-referencing methods for the measurement of beam spot position.

    PubMed

    Nyiri, Balazs J; Smale, Jason R; Gerig, Lee H

    2012-12-01

    Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy∕MU value is measured as a function of collimator rotation, e.g., every 30°. If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements were also performed using the Flexmap

  13. High Intensity Tests of the NuMI Beam Monitoring Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert

    2002-04-01

    The NuMI facility at Fermilab will generate an intense beam of neutrinos directed toward Soudan, MN, 735 km away. Components of the planned beam monitoring system will be exposed to fluences of up to 8 x 10^9 charge particles / cm^2 and 6 x 10^10 neutrons / cm^2 in an 8.6 us beam spill. These fluences will be measured by an array of Helium ionization chambers. We tested a pair of chambers with 8 GeV protons at the Fermilab Booster accelerator, and with high intensity neutron sources at the Texas Experimental Nuclear Facility.

  14. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  15. Two self-referencing methods for the measurement of beam spot position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyiri, Balazs J.; Smale, Jason R.; Gerig, Lee H.

    2012-12-15

    Purpose: Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Methods: Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy/MU value is measured as amore » function of collimator rotation, e.g., every 30 Degree-Sign . If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements

  16. An etched fiber optic vibration sensor to monitor the simply supported beam

    NASA Astrophysics Data System (ADS)

    Putha, Kishore; Dinakar, Dantala; Rao, Pachava V.; Sengupta, Dipankar; Srimannarayana, K.; Sai Shankar, M.

    2012-04-01

    A single mode fiber optic vibration senor is designed and demonstrated to monitor the vibration of a simply supported beam. A rectangular beam (length 30.8 cm, width 2.5cm and thickness 0.5mm) made of spring-steel is arranged as simply supported beam and is made to vibrate periodically. To sense the vibrations a telecommunication fiber is chemically etched such that its diameter reaches 50μm and is glued using an epoxy at the centre of the beam. A broadband light (1550nm) is launched into Fiber Bragg Grating (FBG) through a circulator. The light reflected by the FBG (1540.32nm) is coupled into the centre etched fibre through the circulator and is detected by photodiode connected to a transimpedance amplifier. The electrical signal is logged into the computer through NI-6016 DAQ. The sensor works on transmission power loss due to the mode volume mismatch and flexural strain (field strength) of the fiber due to the bending in the fiber with respect to the bending of the spring-steel beam. The beam is made to vibrate and the corresponding intensity of light is recorded. Fast Fourier transform (FFT) technique is used to measure the frequencies of vibration. The results show that this sensor can sense vibration of low frequency accurately and repeatability is high. The sensor has high linear response to axial displacement of about 0.8 mm with sensitivity of 32mV/10μm strain. This lowcost sensor may find a place in industry to monitor the vibrations of the beam structures and bridges.

  17. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  18. Beam rider for an Articulated Robot Manipulator (ARM) accurate positioning of long flexible manipulators

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.

    1990-01-01

    Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.

  19. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Chao, C; Columbia University, NY, NY

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to

  20. Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers

    NASA Astrophysics Data System (ADS)

    Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.

    2017-10-01

    Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. Themore » system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.« less

  2. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  3. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  4. Axial energy spread measurements of an accelerated positive ion beam

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.; Mondelli, Alfred A.; Stengl, Gerhard

    1997-01-01

    A multicusp ion source has been designed for use in ion projection lithography. Longitudinal energy spreads of the extracted positive hydrogen ion beam have been studied using a retarding field energy analyzer. It has been found that the filament-discharge multicusp ion source can deliver a beam with an energy spread less than 3 eV which is required for the ALG-1000 machine. The multicusp ion source can also deliver the current required for the application.

  5. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  6. Etched optical fiber vibration sensor to monitor health condition of beam like structures

    NASA Astrophysics Data System (ADS)

    Putha, Kishore; Dantala, Dinakar; Kamineni, Srimannarayana; Pachava, Vengal Rao

    2013-06-01

    Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8 mm with a sensitivity of 32 mV/10 μm strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.

  7. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have beenmore » identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.« less

  8. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  9. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  10. Point Positioning Service for Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2014-12-01

    In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales

  11. Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2006-01-01

    An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so

  12. Summary of the 2014 Beam-Halo Monitoring Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurementsmore » with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.« less

  13. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 27.1395 Section 27.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  14. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  15. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 29.1395 Section 29.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  16. SU-F-T-551: Beam Hardening and Attenuation of Photon Beams Using Integral Quality Monitor in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casar, B; Carot, I Mendez; Peterlin, P

    2016-06-15

    Purpose: Aim of the multi-centre study was to analyse beam hardening effect of the Integral Quality Monitor (IQM) for high energy photon beams used in radiotherapy with linear accelerators. Generic values for attenuation coefficient k(IQM) of IQM system were additionally investigated. Methods: Beam hardening effect of the IQM system was studied for a set of standard nominal photon energies (6 MV–18 MV) and two flattening filter free (FFF) energies (6 MV FFF and 10 MV FFF). PDD curves were measured and analysed for various square radiation fields, with and without IQM in place. Differences between PDD curves were statistically analysedmore » through comparison of respective PDD-20,10 values. Attenuation coefficients k(IQM) were determined for the same range of photon energies. Results: Statistically significant differences in beam qualities for all evaluated high energy photon beams were found, comparing PDD-20,10 values derived from PDD curves with and without IQM in place. Significance of beam hardening effect was statistically proven with high confidence (p < 0,01) for all analysed photon beams except for 15 MV (p = 0,078), although relative differences in beam qualities were minimal, ranging from 0,1 % to 0,5 %. Attenuation of the IQM system showed negligible dependence on radiation field size. However, clinically important dependence of kIQM versus TPRs20,10 was found: 0,941 for 6 MV photon beams, to 0,959 for 18 MV photon beams, with highest uncertainty below 0,006. k(IQM) versus TPRs were tabulated and polynomial equation for the determination of k(IQM) is suggested for clinical use. Conclusion: There was no clinically relevant beam hardening, when IQM system was on linear accelerators. Consequently, no additional commissioning is needed for the IQM system regarding the determination of beam qualities. Generic values for k(IQM) are proposed and can be used as tray factors for complete range of examined photon beam energies.« less

  17. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  18. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan B.

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  19. Endobiliary Stent Position Changes during External-beam Radiotherapy

    PubMed Central

    Chu, Kwun-Ye; Eccles, Cynthia L.; Brunner, Thomas B.

    2015-01-01

    Purpose Endobiliary stents can be used as surrogates for pancreatic localization when using cone-beam computed tomography (CBCT) during external-beam radiotherapy (EBRT). This work reports on interfraction stent position changes during EBRT for locally advanced pancreatic cancer (LAPC). Materials and Methods Six patients with endobiliary stents who underwent EBRT for LAPC were assessed. Measurements from the most superior aspect of the stent (sup stent) and the most inferior aspect of the stent (inf stent) to the most inferior, posterior aspect of the L1 vertebra central spinous process were determined from daily treatment CBCTs and compared with those determined from the planning computed tomography (CT) scan. Changes in stent-L1 measurements were interpreted as changes in relative stent position. Results Three patients showed mean interfraction stent position changes of ≥1 cm when treatment measurements were compared with planning measurements. The sup stent for patient A moved to the right (2.66 ± 2.77 cm) and inferiorly (3.0 ± 3.12 cm), and the inf stent moved to the right (1.92 ± 2.02 cm) inferiorly (3.23 ± 3.34 cm) and posteriorly (1.41 ± 1.43 cm). The inf stent for patient B moved superiorly (2.23 ± 0.49 cm) and posteriorly (1.72 ± 0.59 cm). The sup and inf stent for patient F moved inferiorly (0.98 ± 0.35 cm and 1.21 ± 0.38 cm, respectively). The remaining three patients C, D, and E showed interfraction position changes of <1 cm. Conclusion Endobiliary stent migration and deformation were observed in a small subset of patients. Further investigation is required before confirming their use as surrogates for LAPC target localization during image-guided EBRT. PMID:26090069

  20. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  1. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  2. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  3. Prone position craniotomy in pregnancy without fetal heart rate monitoring.

    PubMed

    Jacob, Jean; Alexander, Ashish; Philip, Shoba; Thomas, Anoop

    2016-09-01

    A pregnant patient in second trimester scheduled for posterior fossa craniotomy in prone position is a challenge for the anesthesiologist. Things to consider are physiological changes during pregnancy, non-obstetric surgery in pregnant patients, neuroanesthetic principles, effects of prone positioning, and need for fetal heart rate (FHR) monitoring. We have described the anesthetic management of this case and discussed intra-operative FHR monitoring including controversies about its role, indications, and various options available as per fetal gestational age. In our case we attempted intermittent intra-operative FHR monitoring to optimize maternal positioning and fetal oxygenation even though the fetus was pre-viable. However the attempt was abandoned due to practical difficulties with prone positioning. Patient made good neurological recovery following the procedure and delivered a healthy term baby 4 months later. Decisions regarding fetal monitoring should be individualized based on viability of the fetus and feasibility of emergency cesarean delivery. Good communication between a multidisciplinary team involving neurosurgeon, anesthesiologist, obstetrician, and neonatologist is important for a successful outcome for mother and fetus. We conclude that prone position neurosurgery can safely be carried out in a pregnant patient with pre-viable fetus without FHR monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach.

    PubMed

    Sharpe, M B; Miller, B M; Yan, D; Wong, J W

    2000-12-01

    Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.

  5. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  6. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  7. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  8. Development of a beam line for radio-isotope production at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2016-09-01

    A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.

  9. The American Society of Neurophysiological Monitoring position statements project.

    PubMed

    Morledge, David E; Stecker, Mark

    2006-02-01

    The American Society of Neurophysiological Monitoring (ASNM) is developing position statements aimed at assisting practitioners and others in making decisions regarding neurophysiological monitoring practice. This paper describes the procedures used in drafting these documents.

  10. SU-F-J-25: Position Monitoring for Intracranial SRS Using BrainLAB ExacTrac Snap Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, S; McCaw, T; Huq, M

    2016-06-15

    Purpose: To determine the accuracy of position monitoring with BrainLAB ExacTrac snap verification following couch rotations during intracranial SRS. Methods: A CT scan of an anthropomorphic head phantom was acquired using 1.25mm slices. The isocenter was positioned near the centroid of the frontal lobe. The head phantom was initially aligned on the treatment couch using cone-beam CT, then repositioned using ExacTrac x-ray verification with residual errors less than 0.2mm and 0.2°. Snap verification was performed over the full range of couch angles in 15° increments with known positioning offsets of 0–3mm applied to the phantom along each axis. At eachmore » couch angle, the smallest tolerance was determined for which no positioning deviation was detected. Results: For couch angles 30°–60° from the center position, where the longitudinal axis of the phantom is approximately aligned with the beam axis of one x-ray tube, snap verification consistently detected positioning errors exceeding the maximum 8mm tolerance. Defining localization error as the difference between the known offset and the minimum tolerance for which no deviation was detected, the RMS error is mostly less than 1mm outside of couch angles 30°–60° from the central couch position. Given separate measurements of patient position from the two imagers, whether to proceed with treatment can be determined by the criterion of a reading within tolerance from just one (OR criterion) or both (AND criterion) imagers. Using a positioning tolerance of 1.5mm, snap verification has sensitivity and specificity of 94% and 75%, respectively, with the AND criterion, and 67% and 93%, respectively, with the OR criterion. If readings exceeding maximum tolerance are excluded, the sensitivity and specificity are 88% and 86%, respectively, with the AND criterion. Conclusion: With a positioning tolerance of 1.5mm, ExacTrac snap verification can be used during intracranial SRS with sensitivity and specificity

  11. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  12. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  13. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Bellini, F.; Bini, F.; Collamati, F.; Collini, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Frallicciardi, P. M.; La Tessa, C.; Marafini, M.; Mattei, I.; Miraglia, F.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Schuy, C.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Vanstalle, M.; Voena, C.

    2015-02-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50-300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented.

  14. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  15. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  16. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A, Popescu I; Lobo, J; Sawkey, D

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the

  17. Characteristics of flattening filter free beams at low monitor unit settings.

    PubMed

    Akino, Yuichi; Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu; Sumida, Iori; Yoshioka, Yasuo; Isohashi, Fumiaki; Ogawa, Kazuhiko

    2013-11-01

    Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams. A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm(2) field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm(2) beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software. The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ≥ 2 MU and improved with increasing MU. The variations in flatness of FFF beams ≥ 2 MU were ± 5%. The standard deviation

  18. SU-E-T-110: An Investigation On Monitor Unit Threshold and Effects On IMPT Delivery in Proton Pencil Beam Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Ding, X; Syh, J

    2015-06-15

    Purpose: An approved proton pencil beam scanning (PBS) treatment plan might not be able to deliver because of existed extremely low monitor unit per beam spot. A dual hybrid plan with higher efficiency of higher spot monitor unit and the efficacy of less number of energy layers were searched and optimized. The range of monitor unit threshold setting was investigated and the plan quality was evaluated by target dose conformity. Methods: Certain limitations and requirements need to be checks and tested before a nominal proton PBS treatment plan can be delivered. The plan needs to be met the machine characterization,more » specification in record and verification to deliver the beams. Minimal threshold of monitor unit, e.g. 0.02, per spot was set to filter the low counts and plan was re-computed. Further MU threshold increment was tested in sequence without sacrificing the plan quality. The number of energy layer was also alternated due to elimination of low count layer(s). Results: Minimal MU/spot threshold, spot spacing in each energy layer and total number of energy layer and the MU weighting of beam spots of each beam were evaluated. Plan optimization between increases of the spot MU (efficiency) and less energy layers of delivery (efficacy) was adjusted. 5% weighting limit of total monitor unit per beam was feasible. Scarce spreading of beam spots was not discouraging as long as target dose conformity within 3% criteria. Conclusion: Each spot size is equivalent to the relative dose in the beam delivery system. The energy layer is associated with the depth of the targeting tumor. Our work is crucial to maintain the best possible quality plan. To keep integrity of all intrinsic elements such as spot size, spot number, layer number and the carried weighting of spots in each layer is important in this study.« less

  19. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  20. Grafted Polystyrene Monolayer Brush as Both Negative and Positive Tone Electron Beam Resist.

    PubMed

    Aydinoglu, Ferhat; Yamada, Hirotaka; Dey, Ripon K; Cui, Bo

    2017-05-23

    Although spin coating is the most widely used electron-beam resist coating technique in nanolithography, it cannot typically be applied for nonflat or irregular surfaces. Here, we demonstrate that monolayer polystyrene brush can be grafted on substrates and used as both positive and negative electron-beam resist, which can be applied for such unconventional surfaces. Polystyrene is a popular negative resist when using solvent developer but solvent cannot be used for grafted polystyrene brush that is firmly bonded to the substrate. Instead, we employed two unconventional development methods to lead polystyrene brush to positive or negative tone behavior. Negative tone was achieved by thermal development at 300 °C because exposed thus cross-linked polystyrene brush is more thermally stable against vaporization than unexposed linear one. Surprisingly, positive tone behavior occurred when the brush was grafted onto an aluminum (Al) layer and the film stack was developed using diluted hydrofluoric acid (HF) that etched the underlying Al layer. By transferring the patterns into the silicon (Si) substrates using the thin Al layer as a sacrificial hard mask for dry etch, well-defined structures in Si were obtained in two different electron-beam resist tones as well as in nonflat surfaces.

  1. Microwave Tower Deflection Monitor

    NASA Astrophysics Data System (ADS)

    Truax, Bruce E.

    1980-10-01

    This paper describes an instrument which is capable of monitoring both the twist and lateral motion of a microwave tower. The Microwave Tower Deflection Monitor (MTDM) gives designers the capability of evaluating towers, both for troubleshooting purposes and comparison with design theory. The MTDM has been designed to operate on a broad range of tower structures in a variety of weather conditions. The instrument measures tower motion by monitoring the position of two retroreflectors mounted on the top of the tower. The two retroreflectors are located by scanning a laser beam in a raster pattern in the vicinity of the reflector. When a retroreflector is struck its position is read by a microprocessor and stored on a magnetic tape. Position resolution of better than .5 cm at 200 ft. has been observed in actual tests.

  2. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2018-01-01

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155

  3. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    PubMed

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  4. Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.

    Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less

  5. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    DOE PAGES

    Du, Zhijia; Janke, C. J.; Li, Jianlin; ...

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less

  6. Flexural properties of glued-laminated Southern pine beams with laminations positioned by visual-stiffness criteria

    Treesearch

    R. C. Moody; Billy Bohannan

    1970-01-01

    To establish the effect of using modulus elasticity in addition to visual grade as criteria for the positioning of laminations in laminated beams, an experimental study on southern pine members was conducted. The beams were manufactured in accordance with current specifications for glued-laminated southern pine timber, except that (a) minimum-quality tension...

  7. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing.

    PubMed

    Weng, Yuyan; Li, Zhiyun; Peng, Lun; Zhang, Weidong; Chen, Gaojian

    2017-12-14

    Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.

  8. Mechanical design control and implementation of a new movable intensity profile beamline monitor for the TRIUMF parity experiment 497

    NASA Astrophysics Data System (ADS)

    Ries, Thomas C.

    1995-05-01

    Two new movable beam intensity profile monitors have been installed into the TRIUMF Parity Experiment 497 Beamlines. Each unit serves two functions. Firstly, the beam median position, in a plane normal to the beam, is detected by split plate Secondary Emission Monitors. This information is used to lock the beam into the position of the movable monitor to within a few μm's via high band width ferrite core steering magnets operating in tandem in a closed loop servo feedback control system. Secondly, the beam profile and intensity is detected via a multi-wire secondary emission non-movable monitor, where the data provides high precision values regarding centroidal positions and profiles. The centroid position of the beam is statistically determined to an accuracy of ±10 μm from a data record length of 1 second. The design of each device adheres to strict standards of mechanically rigid construction. The split plate SEM accuracy and repeatability is better than 15 μm with an absolute resolution limit of 0.4 μm. Maximum travel is 2 inches in the vertical plane. Since the device is mechanically modular and both degrees of freedom are combined into a single mechanical unit, fast and easy handling is possible for maintenance in radioactive areas. The actuators are dc servo motors with tachometers driven by linear servo power amplifiers. These amplifiers are used in lieu of pulse width modulated amps to eliminate noise produced by the switching circuits. Position sensing is done by variable reluctance type absolute rotary encoders providing 16 bit resolution over the full range of travel. Positioning is done manually using a self centring potentiometer on the control panel that provides a ± velocity command signal to the power amplifiers. This configuration ensures good controllability over a very large range of positioning speeds hence making 0.4 μm incremental positioning possible, as well as, fast relocations over large relative distances. The precision movement

  9. Four-quadrant silicon and silicon carbide photodiodes for beam position monitor applications: electrical characterization and electron irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Godignon, P.; Quirion, D.; Hidalgo, S.; Matilla, O.; Fontserè, A.; Molas, B.; Takakura, K.; Tsunoda, I.; Yoneoka, M.; Pothin, D.; Fajardo, P.

    2018-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines, as well as other astronomy and space applications. Owing to their lower susceptibility to variable temperature and illumination conditions, there is also special interest in silicon carbide devices for some of these applications. Moreover, radiation hardness of the involved technologies is a major concern for high-energy physics and space applications. This work presents four-quadrant photodiodes produced on ultrathin (10 μm) and bulk Si, as well as on SiC epilayer substrates. An extensive electrical characterization has been carried out by using current-voltage (I-V) and capacitance-voltage (C-V) techniques. The impact of different temperature (from -50oC to 175oC) and visible light conditions on the electrical characteristics of the devices has been evaluated. Radiation effects caused by 2 MeV electron irradiation up to 1×1014, 1×1015 and 1×1016 e/cm2 fluences have been studied. Special attention has been devoted to the study of charge build-up in diode interquadrant isolation, as well as its impact on interquadrant resistance. The study of these electrical properties and its radiation-induced degradation should be taken into account for device applications.

  10. Laser-Beam-Absorption Chemical-Species Monitor

    NASA Technical Reports Server (NTRS)

    Gersh, Michael; Goldstein, Neil; Lee, Jamine; Bien, Fritz; Richtsmeier, Steven

    1996-01-01

    Apparatus measures concentration of chemical species in fluid medium (e.g., gaseous industrial process stream). Directs laser beam through medium, and measures intensity of beam after passage through medium. Relative amount of beam power absorbed in medium indicative of concentration of chemical species; laser wavelength chosen to be one at which species of interest absorbs.

  11. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  12. Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam.

    PubMed

    Zhang, Yuxiang; Planès, Thomas; Larose, Eric; Obermann, Anne; Rospars, Claude; Moreau, Gautier

    2016-04-01

    This paper describes the use of an ultrasonic imaging technique (Locadiff) for the Non-Destructive Testing & Evaluation of a concrete structure. By combining coda wave interferometry and a sensitivity kernel for diffuse waves, Locadiff can monitor the elastic and structural properties of a heterogeneous material with a high sensitivity, and can map changes of these properties over time when a perturbation occurs in the bulk of the material. The applicability of the technique to life-size concrete structures is demonstrated through the monitoring of a 15-ton reinforced concrete beam subject to a four-point bending test causing cracking. The experimental results show that Locadiff achieved to (1) detect and locate the cracking zones in the core of the concrete beam at an early stage by mapping the changes in the concrete's micro-structure; (2) monitor the internal stress level in both temporal and spatial domains by mapping the variation in velocity caused by the acousto-elastic effect. The mechanical behavior of the concrete structure is also studied using conventional techniques such as acoustic emission, vibrating wire extensometers, and digital image correlation. The performances of the Locadiff technique in the detection of early stage cracking are assessed and discussed.

  13. Global positioning system (GPS) civil monitoring performance specification.

    DOT National Transportation Integrated Search

    2009-04-30

    This Civil Monitoring Performance Specification (CMPS) is published and maintained at : the direction of the Program Manager for Civil Applications, Global Positioning Systems : Wing (GPSW). The purpose of this document is to provide a comprehensive ...

  14. APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON

    DOEpatents

    Lawrence, E.O.

    1958-01-01

    ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.

  15. Positive and negative generation effects in source monitoring.

    PubMed

    Riefer, David M; Chien, Yuchin; Reimer, Jason F

    2007-10-01

    Research is mixed as to whether self-generation improves memory for the source of information. We propose the hypothesis that positive generation effects (better source memory for self-generated information) occur in reality-monitoring paradigms, while negative generation effects (better source memory for externally presented information) tend to occur in external source-monitoring paradigms. This hypothesis was tested in an experiment in which participants read or generated words, followed by a memory test for the source of each word (read or generated) and the word's colour. Meiser and Bröder's (2002) multinomial model for crossed source dimensions was used to analyse the data, showing that source memory for generation (reality monitoring) was superior for the generated words, while source memory for word colour (external source monitoring) was superior for the read words. The model also revealed the influence of strong response biases in the data, demonstrating the usefulness of formal modelling when examining generation effects in source monitoring.

  16. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, Marc; Görtz, Björn; Ristau, Detlev

    2006-03-01

    Methods for the manufacture of rugate filters by the ion-beam-sputtering process are presented. The first approach gives an example of a digitized version of a continuous-layer notch filter. This method allows the comparison of the basic theory of interference coatings containing thin layers with practical results. For the other methods, a movable zone target is employed to fabricate graded and gradual rugate filters. The examples demonstrate the potential of broadband optical monitoring in conjunction with the ion-beam-sputtering process. First-characterization results indicate that these types of filter may exhibit higher laser-induced damage-threshold values than those of classical filters.

  17. Coexistence of negative and positive polarity electrostatic solitary waves in ultradense relativistic negative-ion-beam permeated plasmas

    NASA Astrophysics Data System (ADS)

    Elkamash, I. S.; Kourakis, I.

    2018-05-01

    The criteria for occurrence and the dynamical features of electrostatic solitary waves in a homogeneous, unmagnetized ultradense plasma penetrated by a negative ion beam are investigated, relying on a quantum hydrodynamic model. The ionic components are modeled as inertial fluids, while the relativistic electrons obey Fermi-Dirac statistics. A new set of exact analytical conditions for localized solitary pulses to exist is obtained, in terms of plasma density. The algebraic analysis reveals that these depend sensitively on the negative ion beam characteristics, that is, the beam velocity and density. Particular attention is paid to the simultaneous occurrence of positive and negative potential pulses, identified by their respective distinct ambipolar electric field structure forms. It is shown that the coexistence of positive and negative potential pulses occurs in a certain interval of parameter values, where the ion beam inertia becomes significant.

  18. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  19. Design of laser monitoring and sound localization system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang

    2013-08-01

    In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.

  20. Energy spectrum and dose enhancement due to the depth of the Lipiodol position using flattened and unflattened beams.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Saito, Akito; Kimura, Tomoki; Suzuki, Tatsuhiko; Tsuneda, Masato; Tanaka, Sodai; Hioki, Kazunari; Nakashima, Takeo; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi

    2018-01-01

    Lipiodol was used for stereotactic body radiotherapy combining trans arterial chemoembolization. Lipiodol used for tumour seeking in trans arterial chemoembolization remains in stereotactic body radiation therapy. In our previous study, we reported the dose enhancement effect in Lipiodol with 10× flattening-filter-free (FFF). The objective of our study was to evaluate the dose enhancement and energy spectrum of photons and electrons due to the Lipiodol depth with flattened (FF) and FFF beams. FF and FFF for 6 MV beams from TrueBeam were used in this study. The Lipiodol (3 × 3 × 3 cm 3 ) was located at depths of 1, 3, 5, 10, 20, and 30 cm in water. The dose enhancement factor (DEF) and the energy fluence were obtained by Monte Carlo calculations of the particle and heavy ion transport code system (PHITS). The DEFs at the centre of Lipiodol with the FF beam were 6.8, 7.3, 7.6, 7.2, 6.1, and 5.7% and those with the FFF beam were 20.6, 22.0, 21.9, 20.0, 12.3, and 12.1% at depths of 1, 3, 5, 10, 20, and 30 cm, respectively, where Lipiodol was located in water. Moreover, spectrum results showed that more low-energy photons and electrons were present at shallow depth where Lipiodol was located in water. The variation in the low-energy spectrum due to the depth of the Lipiodol position was more explicit with the FFF beam than that with the FF beam. The current study revealed variations in the DEF and energy spectrum due to the depth of the Lipiodol position with the FF and FFF beams. Although the FF beam could reduce the effect of energy dependence due to the depth of the Lipiodol position, the dose enhancement was overall small. To cause a large dose enhancement, the FFF beam with the distance of the patient surface to Lipiodol within 10 cm should be used.

  1. Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs.

    PubMed

    Gil-Rostra, Jorge; Ferrer, Francisco J; Espinós, Juan Pedro; González-Elipe, Agustín R; Yubero, Francisco

    2017-05-17

    A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.

  2. SU-E-T-571: Newly Emerging Integrated Transmission Detector Systems Provide Online Quality Assurance of External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D; Chung, E; Hess, C

    2015-06-15

    Purpose: Two newly emerging transmission detectors positioned upstream from the patient have been evaluated for online quality assurance of external beam radiotherapy. The prototype for the Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area ion chamber mounted on the linac accessory tray to monitor photon fluence, energy, beam shape, and gantry position during treatment. The ion chamber utilizes a thickness gradient which records variable response dependent on beam position. The prototype of Delta4 Discover™, developed by ScandiDos (Uppsala, Sweden) is a linac accessory tray mounted 4040 diode array that measures photon fluence during patientmore » treatment. Both systems are employable for patient specific QA prior to treatment delivery. Methods: Our institution evaluated the reproducibility of measurements using various beam types, including VMAT treatment plans with both the IQM ion chamber and the Delta4 Discover diode array. Additionally, the IQM’s effect on photon fluence, dose response, simulated beam error detection, and the accuracy of the integrated barometer, thermometer, and inclinometer were characterized. The evaluated photon beam errors are based on the annual tolerances specified in AAPM TG-142. Results: Repeated VMAT treatments were measured with 0.16% reproducibility by the IQM and 0.55% reproducibility by the Delta4 Discover. The IQM attenuated 6, 10, and 15 MV photon beams by 5.43±0.02%, 4.60±0.02%, and 4.21±0.03% respectively. Photon beam profiles were affected <1.5% in the non-penumbra regions. The IQM’s ion chamber’s dose response was linear and the thermometer, barometer, and inclinometer agreed with other calibrated devices. The device detected variations in monitor units delivered (1%), field position (3mm), single MLC leaf positions (13mm), and photon energy. Conclusion: We have characterized two new transmissions detector systems designed to provide in-vivo like measurements

  3. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance ofmore » the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.« less

  4. Acquisition and Initial Analysis of H+- and H--Beam Centroid Jitter at LANSCE

    NASA Astrophysics Data System (ADS)

    Gilpatrick, J. D.; Bitteker, L.; Gulley, M. S.; Kerstiens, D.; Oothoudt, M.; Pillai, C.; Power, J.; Shelley, F.

    2006-11-01

    During the 2005 Los Alamos Neutron Science Center (LANSCE) beam runs, beam current and centroid-jitter data were observed, acquired, analyzed, and documented for both the LANSCE H+ and H- beams. These data were acquired using three beam position monitors (BPMs) from the 100-MeV Isotope Production Facility (IPF) beam line and three BPMs from the Switchyard transport line at the end of the LANSCE 800-MeV linac. The two types of data acquired, intermacropulse and intramacropulse, were analyzed for statistical and frequency characteristics as well as various other correlations including comparing their phase-space like characteristics in a coordinate system of transverse angle versus transverse position. This paper will briefly describe the measurements required to acquire these data, the initial analysis of these jitter data, and some interesting dilemmas these data presented.

  5. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  6. Global Positioning System (GPS) civil signal monitoring (CSM) trade study report

    DOT National Transportation Integrated Search

    2014-03-07

    This GPS Civil Signal Monitoring (CSM) Trade Study has been performed at the direction of DOT/FAA Navigation Programs as the agency of reference for consolidating civil monitoring requirements on the Global Positioning System (GPS). The objective of ...

  7. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  8. Concepts for laser beam parameter monitoring during industrial mass production

    NASA Astrophysics Data System (ADS)

    Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard

    2017-02-01

    In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.

  9. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy.

    PubMed

    Mirandola, Alfredo; Molinelli, S; Vilches Freixas, G; Mairani, A; Gallio, E; Panizza, D; Russo, S; Ciocca, M; Donetti, M; Magro, G; Giordanengo, S; Orecchia, R

    2015-09-01

    To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. fluka Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ± 1 mm over the whole 20 × 20 cm(2) scan field; homogeneity in a uniform squared field was within ± 5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. After successful dosimetric beam commissioning, quality assurance measurements performed during a 24-month period show

  10. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  11. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: christopher.kurz@physik.uni-muenchen.de; Bauer, Julia; Unholtz, Daniel

    2016-02-15

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolvedmore » (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  12. First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy.

    PubMed

    Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi

    2012-09-01

    Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.

  13. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring.

    PubMed

    Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G

    2014-12-01

    The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.

  14. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    NASA Astrophysics Data System (ADS)

    Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G. V.; Carraresi, L.

    2015-01-01

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1-6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements.

  15. Operation of the CESR-TA vertical beam size monitor at Eb = 4 GeV

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Conolly, C.; Edwards, E.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2015-10-01

    We describe operation of the CESR-TA vertical beam size monitor (xBSM) with e± beams with Eb=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs photodiodes with 50 μm pitch. The device has previously been successfully used to measure vertical beam sizes of 10-100 μm on a bunch-by-bunch, turn-by-turn basis at e± beam energies of ~2 GeV and source magnetic fields below 2.8 kG, for which the detector required calibration for incident x-rays of 1-5 keV. At Eb = 4.0 GeV and B=4.5 kG, however, the incident synchrotron radiation spectrum extends to ~20 keV, requiring calibration of detector response in that regime. Such a calibration is described and then used to analyze data taken with several different thicknesses of filters in front of the detector. We obtain a relative precision of better than 4% on beam size measurement from 15 to 100 μm over several different ranges of x-ray energy, including both 1-12 keV and 6-17 keV. The response of an identical detector, but tilted vertically by 60° in order to increase magnification without a longer beamline, is measured and shown to improve x-ray detection above 4 keV without compromising sensitivity to beam size. We also investigate operation of a coded aperture using gold masking backed by synthetic diamond.

  16. Investigation of beam self-polarization in the future e+e- circular collider

    NASA Astrophysics Data System (ADS)

    Gianfelice-Wendt, E.

    2016-10-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e+e- Future Circular Collider (FCC-e+e-) for Z and W W physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e+e- ring are presented.

  17. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  18. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  19. Analytical and numerical studies of positive ion beam expansion for surface treatment applications

    NASA Astrophysics Data System (ADS)

    Lounes-Mahloul, Soumya; Bendib, Abderrezeg; Oudini, Noureddine

    2018-01-01

    The aim of this work is to study the expansion in vacuum, of a positive ion beam with the use of one dimensional (1D) analytic model and a two dimensional Particle-In-Cell (2D-PIC) simulation. The ion beam is extracted and accelerated from preformed plasma by an extraction system composed of two polarized parallel perforated grids. The results obtained with both approaches reveal the presence of a potential barrier downstream the extraction system which tends to reflect the ion flux. The dependence of the critical distance for which all extracted ions are reflected, is investigated as a function of the extracted ion beam current density. In particular, it is shown that the 1D model recovers the well-known Child-Langmuir law and that the 2D simulation presents a significant discrepancy with respect to the 1D prediction. Indeed, for a given value of current density, the transverse effects lead to a greater critical distance.

  20. Optical monitor for observing turbulent flow

    DOEpatents

    Albrecht, Georg F.; Moore, Thomas R.

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  1. Deflection monitoring for a box girder based on a modified conjugate beam method

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  2. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  3. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  4. Characterization of the Goubau line for testing beam diagnostic instruments

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  5. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout

    NASA Astrophysics Data System (ADS)

    Basile, E.; Carloni, A.; Castelluccio, D. M.; Cisbani, E.; Colilli, S.; De Angelis, G.; Fratoni, R.; Frullani, S.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Vacca, G.

    2012-03-01

    A unique compact LINAC accelerator for proton therapy is under development in Italy within the TOP-IMPLART project. The proton beam will reach the kinetic energy of 230 MeV, it will have a widely variable current intensity (0.1-10 μA, with average up to 3.5 nA) associated with a high pulse repetition frequency (1-3.5 μs long pulses at 10-100 Hz). The TOP-IMPLART system will provide a fully active 3+1D dose delivery, that is longitudinal (energy modulation), transverse active spot scanning, and current intensity modulation. These accelerator features will permit a highly conformational dose distribution, which therefore requires an effective, online, beam monitor system with wide dynamic range, good sensitivity, adequate spatial resolution and rapid response. In order to fulfill these requisites a new device is under development for the monitoring of the beam intensity profile, its centroid and direction; it is based on transmission, segmented, ionization chambers with typical active area of 100 × 100 mm2. Micro pattern x/y pad like design has been used for the readout plane in order to maximize the field uniformity, reduce the chamber thickness and obtain both beam coordinates on a single chamber. The chamber prototype operates in ionization region to minimize saturation and discharge effects. Simulations (based on FLUKA) have been carried on to study the perturbation of the chamber on the beam parameters and the effects on the delivered dose (on a water phantom). The charge collected in each channel is integrated by dedicated auto-ranging readout electronics: an original scheme has been developed in order to have an input dynamic range greater than 104 with sensitivity better than 3%. This is achieved by a dynamical adjustment of the integrating capacitance to the signal intensity.

  6. Accurate electron gun-positioning mechanism for electron beam-mapping of large cross-section magnetic surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, F. S. B.; Middleton, F.; Colchin, R. J.; Million, D.

    1989-04-01

    A method of accurately supporting and positioning an electron source inside a large cross-sectional area magnetic field which provides very low electron beam occlusion is reported. The application of electrical discharge machining to the fabrication of a 1-m truss support structure has provided an extremely long, rigid and mechanically strong electron gun support. Reproducible electron gun positioning to within 1 mm has been achieved at any location within a 1×0.6-m2 area. The extremely thin sections of the support truss (≤1.5 mm) have kept the electron beam occlusion to less than 3 mm. The support and drive mechanism have been designed and fabricated at the University of Wisconsin for application to the mapping of the magnetic surface structure of the Advanced Toroidal Facility torsatron1 at the Oak Ridge National Laboratory.

  7. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    NASA Astrophysics Data System (ADS)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  8. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less

  9. Investigation of beam self-polarization in the future e + e - circular collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, E.

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  10. Investigation of beam self-polarization in the future e + e - circular collider

    DOE PAGES

    Gianfelice-Wendt, E.

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  11. [Partial delegation to radiation therapists of the control by cone beam CT of prostate positioning].

    PubMed

    Benhaïm, C; Loos, G; Achard, J L; Berger, L; Caillé, C; Frédéric-Moreau, T; Biau, J; Lapeyre, M

    2017-02-01

    Intensity modulated radiotherapy for prostate cancer involves daily monitoring of the positioning of the prostate, possible with cone beam CT (CBCT). It allows increased accuracy compared to readjustments but induces an increase in the time dedicated to these medical checks. The aim of the study was to evaluate the possibility of delegation of this task to the radiation therapists by comparing their readjustments to the doctors. Five consecutive patients treated with radiation for prostate cancer (76Gy) were analysed. All had a daily CBCT for position control. The movements of the prostate relative to the bony part, the positional variations of the prostate measured by the radiation therapists and the doctors and medical time required to analyse imagery (filling of the rectum and bladder and perform a recalibration) were measured. One hundred seventy-six CBCT were analysed or 980 steps in the three axes. The movements of the prostate relative to bony part were respectively at least 5mm in 19%, 7% and 3% in the anterior-posterior, upper-lower and right-left axes. Changes readjustments between radiation therapists and doctors were in 95% of cases at the most 4mm in the anterior-posterior and upper-lower axis, and 3mm in the left-right axis. The time for medical use of the CBCT averaged 8min 40 [4 to 22min]. The daily readjustment on the prostate using CBCT may be delegated to radiation therapists with acceptable concordance of less than 4mm for 95% of measurements. An initial and ongoing training will ensure treatment safety. Copyright © 2017. Published by Elsevier SAS.

  12. Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Menk, R. H.; Cucini, R.; Biasiol, G.

    2015-09-01

    Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 μm.

  13. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  14. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  15. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are nearmore » critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.« less

  16. Spatial resolution test of a beam diagnostic system for DESIREE

    NASA Astrophysics Data System (ADS)

    Das, Susanta; Kallberg, A.

    2010-11-01

    A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).

  17. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here.more » Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.« less

  18. HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Plum, Michael A; Peters, Charles C

    Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam onmore » target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.« less

  19. Portable Electron-Beam Free-Form Fabrication System

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.

    2005-01-01

    A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber

  20. Beam production of a laser ion source with a rotating hollow cylinder target for low energy positive and negative ions

    NASA Astrophysics Data System (ADS)

    Saquilayan, G. Q.; Wada, M.

    2017-08-01

    A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.

  1. Automatic control of positioning along the joint during EBW in conditions of action of magnetic fields

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.

    2016-11-01

    Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.

  2. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed; Kubo, Nobuaki

    2017-05-01

    Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.

  3. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration.

    PubMed

    Brüllmann, Gregor; Fritsch, Karsten; Thurnheer, Robert; Bloch, Konrad E

    2010-01-01

    Portable respiratory inductive plethysmography (RIP) is promising for noninvasive monitoring of breathing patterns in unrestrained subjects. However, its use has been hampered by requiring recalibration after changes in body position. To facilitate RIP application in unrestrained subjects, we developed a technique for adjustment of RIP calibration using position sensor feedback. Five healthy subjects and 12 patients with lung disease were monitored by portable RIP with sensors incorporated within a body garment. Unrestrained individuals were studied during 40-60 min while supine, sitting and upright/walking. Position was changed repeatedly every 5-10 min. Initial qualitative diagnostic calibration followed by volume scaling in absolute units during 20 breaths in different positions by flow meter provided position-specific volume-motion coefficients for RIP. These were applied during subsequent monitoring in corresponding positions according to feedback from 4 accelerometers placed at the chest and thigh. Accuracy of RIP was evaluated by face mask pneumotachography. Position sensor feedback allowed accurate adjustment of RIP calibration during repeated position changes in subjects and patients as reflected in a minor mean difference (bias) in breath-by-breath tidal volumes estimated by RIP and flow meter of 0.02 liters (not significant) and limits of agreement (+/-2 SD) of +/-19% (2,917 comparisons). An average of 10 breaths improved precision of RIP (limits of agreement +/-14%). RIP calibration incorporating position sensor feedback greatly enhances the application of RIP as a valuable, unobtrusive tool to investigate respiratory physiology and ventilatory limitation in unrestrained healthy subjects and patients with lung disease during everyday activities including position changes. Copyright 2009 S. Karger AG, Basel.

  4. Recombination monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.; Blaskiewicz, M.

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au 78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au 78+ beam from the Au 79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au 78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machinemore » operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.« less

  5. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    PubMed

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  6. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    PubMed Central

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  7. Efficacy of monitoring patient's position during neurosurgical procedures: introduction of real-time display and record.

    PubMed

    Hasegawa, Mitsuhiro; Nouri, Mohsen; Fujisawa, Hironori; Hayashi, Yutaka; Inamasu, Joji; Hirose, Yuichi; Yamashita, Junkoh

    2015-01-01

    There are many reports on position-related complications in neurosurgical literature but so far, continuous quantification of the patient's position during the surgery has not been reported. This study aims to explore the utility of a new surgical table system and its software in displaying the patient's body positions during surgery on real-time basis. More than 200 neurosurgical cases were monitored for their positions intra-operatively. The position was digitally recorded and could be seen by all the members in the operating team. It also displayed the three-dimensional relationship between the head and the heart positions. No position-related complications were observed during the study. The system was able to serve as an excellent indicator for monitoring the patient's position. The recordings were analyzed and even used to reproduce or improve the position in the subsequent operations. The novel technique of monitoring the position of the head and the heart of the patients and the operating table planes are considered to be useful during delicate neurosurgical procedures thereby, preventing inadvertent procedural errors. This can be used to quantify various surgical positions in the future and define safety measures accordingly.

  8. Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, M.; Barlow, D.; Fortgang, C.

    1994-07-01

    The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less

  9. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    PubMed Central

    Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  10. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  11. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  12. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    NASA Astrophysics Data System (ADS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  13. Beam Stability R&D for the APS MBA Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sereno, Nicholas S.; Arnold, Ned D.; Bui, Hanh D.

    2015-01-01

    Beam diagnostics required for the APS Multi-bend acromat (MBA) are driven by ambitious beam stability requirements. The major AC stability challenge is to correct rms beam motion to 10% the rms beam size at the insertion device source points from0.01 to 1000 Hz. The vertical plane represents the biggest challenge forAC stability, which is required to be 400 nm rms for a 4-micron vertical beam size. In addition to AC stability, long-term drift over a period of seven days is required to be 1 micron or less. Major diagnostics R&D components include improved rf beam position processing using commercially availablemore » FPGA-based BPM processors, new X-ray beam position monitors based on hard X-ray fluorescence from copper and Compton scattering off diamond, mechanical motion sensing to detect and correct long-term vacuum chamber drift, a new feedback system featuring a tenfold increase in sampling rate, and a several-fold increase in the number of fast correctors and BPMs in the feedback algorithm. Feedback system development represents a major effort, and we are pursuing development of a novel algorithm that integrates orbit correction for both slow and fast correctors down to DC simultaneously. Finally, a new data acquisition system (DAQ) is being developed to simultaneously acquire streaming data from all diagnostics as well as the feedback processors for commissioning and fault diagnosis. Results of studies and the design effort are reported.« less

  14. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  15. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak.

    PubMed

    Hojo, Hidehiro; Dohmae, Takeshi; Hotta, Kenji; Kohno, Ryosuke; Motegi, Atsushi; Yagishita, Atsushi; Makinoshima, Hideki; Tsuchihara, Katsuya; Akimoto, Tetsuo

    2017-07-03

    Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE 10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines.

  16. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  17. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  18. Two-dimensional beam profiles and one-dimensional projections

    NASA Astrophysics Data System (ADS)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  19. Susceptibility of interstitial continuous glucose monitor performance to sleeping position.

    PubMed

    Mensh, Brett D; Wisniewski, Natalie A; Neil, Brian M; Burnett, Daniel R

    2013-07-01

    Developing a round-the-clock artificial pancreas requires accurate and stable continuous glucose monitoring. The most widely used continuous glucose monitors (CGMs) are percutaneous, with the sensor residing in the interstitial space. Inaccuracies in percutaneous CGM readings during periods of lying on the devices (e.g., in various sleeping positions) have been anecdotally reported but not systematically studied. In order to assess the impact of sleep and sleep position on CGM performance, we conducted a study in human subjects in which we measured the variability of interstitial CGM data at night as a function of sleeping position. Commercially available sensors were placed for 4 days in the abdominal subcutaneous tissue in healthy, nondiabetic volunteers (four sensors per person, two per side). Nocturnal sleeping position was determined from video recordings and correlated to sensor data. We observed that, although the median of the four sensor readings was typically 70-110 mg/dl during sleep, individual sensors intermittently exhibited aberrant glucose readings (>25 mg/dl away from median) and that these aberrant readings were strongly correlated with subjects lying on the sensors. We expected and observed that most of these aberrant sleep-position-related CGM readings were sudden decreases in reported glucose values, presumably due to local blood-flow decreases caused by tissue compression. Curiously, in rare cases, the aberrant CGM readings were elevated values. These findings highlight limitations in our understanding of interstitial fluid physiology in the subcutaneous space and have significant implications for the utilization of sensors in the construction of an artificial pancreas. © 2013 Diabetes Technology Society.

  20. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study.

    PubMed

    Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G

    2018-05-07

    Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Overnight non-contact continuous vital signs monitoring using an intelligent automatic beam-steering Doppler sensor at 2.4 GHz.

    PubMed

    Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C

    2017-07-01

    Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.

  2. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, W.L.; Renzi, R.F.

    1998-07-07

    The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.

  3. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, William L.; Renzi, Ronald F.

    1998-07-07

    The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.

  4. MO-F-CAMPUS-T-05: Design of An Innovative Beam Monitor for Particle Therapy for the Simultaneous Measurement of Beam Fluence and Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, R; Guarachi, L Fanola; Monaco, V

    2015-06-15

    Purpose: Monitoring the prescribed dose in particle therapy is typically carried out by using parallel plate ionization chambers working in transmission mode. The use of gas detectors has several drawbacks: they need to be calibrated daily against standard dosimeters and their dependence on beam quality factors need to be fully characterized and controlled with high accuracy. A detector capable of single particle counting is proposed which would overcome all these limitations. Combined with a gas ionization chamber, it will allow determining the average particle stopping power, thus providing an effective method for the online verification of the selected particle energymore » and range. Methods: Low-Gain Avalanche Detectors (LGADs) are innovative n-in-p silicon sensors with moderate internal charge multiplication occurring in the strong field generated by an additional p+ doping layer implanted at a depth of a few µm in the bulk of the sensor. The increased signal-to-noise ratio allows designing very thin, few tens of microns, segmented LGADs, called Ultra Fast Silicon Detectors (UFSD), optimized for very fast signal, which would be suitable for charged particle counting at high rates. A prototype UFSD is being designed for this purpose. Results: Different LGAD diodes have been characterized both in laboratory and beam tests, and the results compared both with those obtained with similar diodes without the gain layer and with a program simulating the signal in the sensors. The signal is found to be enhanced in LGADs, while the leakage current and the noise is not affected by the gain. Possible alternative designs and implementations are also presented and discussed. Conclusion: Thanks to their excellent counting capabilities, UFSD detectors are a promising technology for future beam monitor devices in hadron-therapy applications. Studies are ongoing to better understand their properties and optimize the design in view of this application.« less

  5. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    NASA Astrophysics Data System (ADS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  6. Efficacy of Monitoring Patient’s Position during Neurosurgical Procedures: Introduction of Real-time Display and Record

    PubMed Central

    HASEGAWA, Mitsuhiro; NOURI, Mohsen; FUJISAWA, Hironori; HAYASHI, Yutaka; INAMASU, Joji; HIROSE, Yuichi; YAMASHITA, Junkoh

    2015-01-01

    There are many reports on position-related complications in neurosurgical literature but so far, continuous quantification of the patient’s position during the surgery has not been reported. This study aims to explore the utility of a new surgical table system and its software in displaying the patient’s body positions during surgery on real-time basis. More than 200 neurosurgical cases were monitored for their positions intra-operatively. The position was digitally recorded and could be seen by all the members in the operating team. It also displayed the three-dimensional relationship between the head and the heart positions. No position-related complications were observed during the study. The system was able to serve as an excellent indicator for monitoring the patient’s position. The recordings were analyzed and even used to reproduce or improve the position in the subsequent operations. The novel technique of monitoring the position of the head and the heart of the patients and the operating table planes are considered to be useful during delicate neurosurgical procedures thereby, preventing inadvertent procedural errors. This can be used to quantify various surgical positions in the future and define safety measures accordingly. PMID:25797776

  7. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  8. An acoustical guidance and position monitoring system for endotracheal tubes.

    PubMed

    Mansfield, J P; Lyle, R P; Voorhees, W D; Wodicka, G R

    1993-12-01

    A prototype instrument to guide the placement and continuously monitor the position of an endotracheal tube (ETT) was developed. An incident audible sound pulse is introduced into the proximal ETT and detected as it travels down the ETT via a miniature microphone located in the wall. This pulse is then emitted from the tube tip into the airways and the reflected signal from the airways is detected by the microphone. A well defined reflection arises from the point where the total cross sectional area of the airways increases rapidly, and the difference in timing between detection of the incident pulse and this reflection is used to determine ETT position or movement. This reflection is not observed if the ETT is erroneously placed in the esophagus. The amplitude and polarity of an additional reflection that occurs at the ETT tip is used to estimate the cross-sectional area of the airway in which the ETT is placed. This combined information allows discrimination between tracheal and bronchial intubation and can be used to insure an adequate fit between the ETT and trachea. The instrument has proven extremely reliable in multiple intubations in eight canines and offers the potential to noninvasively and inexpensively monitor ETT position in a continuous manner.

  9. Realization of a CORDIC-Based Plug-In Accelerometer Module for PSG System in Head Position Monitoring for OSAS Patients

    PubMed Central

    Chou, Wen-Cheng; Shiao, Tsu-Hui; Shiao, Guang-Ming; Luo, Chin-Shan

    2017-01-01

    Overnight polysomnography (PSG) is currently the standard diagnostic procedure for obstructive sleep apnea (OSA). It has been known that monitoring of head position in sleep is crucial not only for the diagnosis (positional sleep apnea) but also for the management of OSA (positional therapy). However, there are no sensor systems available clinically to hook up with PSG for accurate head position monitoring. In this paper, an accelerometer-based sensing system for accurate head position monitoring is developed and realized. The core CORDIC- (COordinate Rotation DIgital Computer-) based tilting sensing algorithm is realized in the system to quickly and accurately convert accelerometer raw data into the desired head position tilting angles. The system can hook up with PSG devices for diagnosis to have head position information integrated with other PSG-monitored signals. It has been applied in an IRB test in Taipei Veterans General Hospital and has been proved that it can meet the medical needs of accurate head position monitoring for PSG diagnosis. PMID:29065608

  10. Method and apparatus for real time weld monitoring

    DOEpatents

    Leong, Keng H.; Hunter, Boyd V.

    1997-01-01

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  11. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    NASA Astrophysics Data System (ADS)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  12. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    PubMed

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  13. Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision

    NASA Astrophysics Data System (ADS)

    Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.

    2017-09-01

    To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.

  14. Does patient position influence the reading of the bispectral index monitor?

    PubMed

    Kaki, Abdullah M; Almarakbi, Waleed A

    2009-12-01

    Bispectral index (BIS) was developed to monitor patients' level of consciousness under general anesthesia. Several factors have been found to alter BIS readings without affecting the depth of anesthesia. We conducted a study to assess the impact of changing patients' position on BIS readings. General anesthesia was administered to 40 patients undergoing minor surgeries. Patients were kept in neutral position (supine) for 15 min and BIS readings, mean arterial blood pressure, heart rate, end-tidal carbon dioxide, and end-tidal isoflurane were recorded. Patients were then shifted to head-down position (30 degrees), neutral position, and lastly head-up position (30 degrees) each of 15-min duration and the data were recorded. There was a significant increase in BIS values in head-down position (median 47 vs 40) compared with neutral position, whereas head-up position significantly decreased BIS (39 vs 41) compared with neutral position (P < 0.05). Changing a patient's position significantly affects the BIS values, which might affect the interpretation of anesthetic depth.

  15. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Sajaev, V.

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016more » and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.« less

  16. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update.

    PubMed

    2015-10-01

    The following statement was prepared by the Special Committee to Revise the Joint American Association of Endodontists/American Academy of Oral and Maxillofacial Radiology Position on Cone Beam Computed Tomography, and approved by the AAE Board of Directors and AAOMR Executive Council in May 2015. AAE members may reprint this position statement for distribution to patients or referring dentists. Copyright © 2015 American Academy of Oral and Maxillofacial Radiology and American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Beam diagnostics at high-intensity storage rings

    NASA Astrophysics Data System (ADS)

    Plum, Mike

    1994-10-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  18. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  19. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  20. Design of the low energy beam transport line for the China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hai; Ouyang, Hua-Fu; Fu, Shi-Nian; Zhang, Hua-Shun; He, Wei

    2008-03-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper. The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  1. The NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Bernstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A. B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O`Connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlović, Ž.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfützner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2016-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  2. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  3. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.

    PubMed

    Pshenichnov, Igor; Larionov, Alexei; Mishustin, Igor; Greiner, Walter

    2007-12-21

    We study the spatial distributions of beta(+)-activity produced by therapeutic beams of (3)He and (12)C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for heavy-ion therapy (MCHIT) based on the GEANT4 toolkit. The contributions from positron-emitting nuclei with T(1/2) > 10 s, namely (10,11)C, (13)N, (14,15)O, (17,18)F and (30)P, were calculated and compared with experimental data obtained during and after irradiation, where available. Positron-emitting nuclei are created by a (12)C beam in fragmentation reactions of projectile and target nuclei. This leads to a beta(+)-activity profile characterized by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. This can be used for dose monitoring in carbon-ion therapy of cancer. In contrast, as most of the positron-emitting nuclei are produced by a (3)He beam in target fragmentation reactions, the calculated total beta(+)-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the presence of (13)N, (14)O, (17,18)F created in charge-transfer reactions by low-energy (3)He ions close to the end of their range in several tissue-like media. The time evolution of beta(+)-activity profiles was investigated for both kinds of beams. We found that due to the production of (18)F nuclides the beta(+)-activity profile measured 2 or 3 h after irradiation with (3)He ions will have a distinct peak correlated with the maximum of depth-dose distribution. We also found certain advantages of low-energy (3)He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow-located tumours. In this case the distal edge of beta(+)-activity distribution from (17)F nuclei clearly marks the range of (3)He in tissues.

  4. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  5. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  6. Influence of the Integral Quality Monitor transmission detector on high energy photon beams: A multi-centre study.

    PubMed

    Casar, Bozidar; Pasler, Marlies; Wegener, Sonja; Hoffman, David; Talamonti, Cinzia; Qian, Jianguo; Mendez, Ignasi; Brojan, Denis; Perrin, Bruce; Kusters, Martijn; Canters, Richard; Pallotta, Stefania; Peterlin, Primoz

    2017-09-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1×1cm 2 to 20×20cm 2 , the effect of IQM on beam quality was assessed from the PDD 20,10 values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4×4cm 2 to 20×20cm 2 . The transmission factor was calculated by means of measured absorbed dose at 10cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (p<0.01) for all photon energies except for 18MV. The change in surface dose was smaller than 3.3% in all cases except for the 20×20cm 2 field and 10MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6MV to 0.9578 for 18MV and 0.9440 for 6MV FFF; 0.9533 for 10MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice. Copyright © 2017. Published by Elsevier GmbH.

  7. Ecofriendly ethanol-developable processes for electron beam lithography using positive-tone dextrin resist material

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sugino, Naoto; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2017-07-01

    From the viewpoints of the utilization of agricultural resources and advanced use of biomass, this study is aimed at expanding the resolution limits of ecofriendly ethanol-developable processes for electron-beam lithography using a positive-tone dextrin resist material with high hydrophilicity on a cellulose-based underlayer. The images of 20-nm-hole and 40-nm-line patterns with an exposure dose of approximately 1800 µC/cm2 were provided by ecofriendly ethanol-developable processes instead of the common development processes using tetramethylammonium hydroxide and organic solvents. The CF4 etching selectivity of the positive-tone dextrin resist material was approximately 10% lower than that of the polymethyl methacrylate used as a reference resist material.

  8. A wearable textile for respiratory monitoring: Feasibility assessment and analysis of sensors position on system response.

    PubMed

    Lo Presti, D; Massaroni, C; Saccomandi, P; Caponero, M A; Formica, D; Schena, E

    2017-07-01

    The interest on wearable textiles to monitor vital signs is growing in the research field and clinical scenario related to the increasing demands of long-term monitoring. Despite several smart textile-based solutions have been proposed for assessing the respiratory status, only a limited number of devices allow the respiratory monitoring in a harsh environment or in different positions of the human body. In this paper, we investigated the performances of a smart textile for respiratory rate monitoring characterized by 12 fiber optic sensors (i.e., fiber Bragg grating) placed on specific landmarks for compartmental analysis of the chest wall movements during quiet breathing. We focused on the analysis of the influence of sensor position on both peak-to-peak amplitude of sensors output and accuracy of respiratory rate measurements. This analysis was performed on two participants, who wore the textile in two positions (i.e., standing and supine). Bland-Altman analysis on respiratory rate showed promising results (better than 0.3 breaths per minute). Referring to the peak-to-peak output amplitude, the abdomen compartment showed the highest excursions in both the enrolled participants and positions. Our findings open up new approaches to design and develop smart textile for respiratory rate monitoring.

  9. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less

  10. The NuMI neutrino beam

    DOE PAGES

    Adamson, P.; Anderson, K.; Andrews, M.; ...

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  11. Monitoring volatilization products using Residual Gas Analyzers during MeV ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Kriewaldt, K.; Taylor, L. A.; McSween, H. Y.; Sickafus, K. E.

    2018-03-01

    The use of Residual Gas Analyzers (RGAs) during irradiation experiments can provide valuable information when incorporated into experimental end-stations. The instruments can track the volatilization products of beam-sensitive materials, which may ultimately aid researchers in selecting appropriate flux values for conducting experiments. Furthermore, the type of gaseous species released during an irradiation can be monitored directly, which may lead to new insights into the radiolysis and/or heating mechanisms responsible for gas evolution. A survey of several classes of materials exposed to extremes in particle flux is presented to show how RGA instrumentation can be incorporated to qualitatively assess ion-solid interactions in a variety of fields.

  12. [Research and design for optimal position of electrocardio-electrodes in monitoring clothing for men].

    PubMed

    Liang, Lijun; Hu, Yao; Liu, Hao; Li, Xiaojiu; Li, Jin; He, Yin

    2017-04-01

    In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.

  13. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  14. Automated beam monitoring and diagnosis for CO2 lasers

    NASA Astrophysics Data System (ADS)

    Mann, Stefan; Boeske, Lars; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2002-06-01

    The usage of a quality management, in combination with a standard certification, is nearly inevitable for today's industrial manufacturing. In laser materials processing, a periodical beam diagnosis is to be executed as a quality-maintaining measure with any change of the workpiece geometry to guarantee an unambiguous allocation of the beam quality factors. Otherwise changes in the beam quality, caused by pollution, aging or defect of the optical components, remain unidentified for a long time, leading to impairments of the treatment quality or even costly down-times. As a solution a diagnosis system is integrated into a laser system. Data sources like measuring instruments, sensors and laser control transmit the diagnosis data to a diagnosis PC. A user-friendly software, based on Fuzzy algorithms, enables the operator to retrace changes in the beam quality to failures of the laser system. All diagnosis data are getting archived in a databank. The access to the archived data through the World Wide Web allows remote diagnoses. With the help of the beam diagnosis system failures can be discovered in advance, and losses of production can be avoided. The gained transparency of the beam characteristic values facilitates the integration of the laser system in the quality management. A prototype installation has been realized and latest results will be demonstrated.

  15. Effect of the focal plane position on CO2 laser beam cutting of injection molded polycarbonate sheets

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2016-11-01

    In the present research, the effect of laser beam focal plane position (FPP) on the kerf quality of the polycarbonate laser cutting is investigated. Low power CO2 laser is used as the heat source of the cutting runs. In the experiments, FPP is varied from 0 to -4mm while other processing parameters (i.e. laser power, cutting speed and gas pressure) are considered constant. Upper and lower kerf width, kerf taper, upper heat affected zone and surface roughness of the kerf wall are also considered as the responses. Observations signified that reducing the position of the laser beam focal point from zero to - 3mm reduces the upper and lower kerf width. However reducing FPP below -3mm leads to an increase in the kerf width. Results also reveals that upper heat affected zone value reduces by reduction in FPP. Moreover the best kerf wall surface roughness occurred at FPP= -3mm.

  16. X-ray beam method for displacement measurement in hostile environments

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale

    1989-01-01

    A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.

  17. Target and orbit feedback simulations of a muSR beam line at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKay, W.; Blaskiewicz, M.; Fischer, W.

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ + should be about 40 kHz/mm 2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss themore » desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.« less

  18. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  19. E-beam column monitoring for improved CD SEM stability and tool matching

    NASA Astrophysics Data System (ADS)

    Hayes, Timothy S.; Henninger, Randall S.

    2000-06-01

    Tool matching is an important metric for in-line semiconductor metrology systems. The ability to obtain the same measurement results on two or more systems allows a semiconductor fabrication facility (fab) to deploy product in an efficient manner improving overall equipment efficiency (OEE). Many parameters on the critical dimension scanning electron microscopes (CDSEMs) can affect the long-term precision component to the tool-matching metric. One such class of parameters is related to the electron beam column stability. The alignment and condition of the gun and apertures, as well as astigmatism correction, have all been found to affect the overall measurements of the CDSEM. These effects are now becoming dominant factors in sub-3nm tool-matching criteria. This paper discusses the methodologies of column parameter monitoring and actions and controls for improving overall stability. Results have shown that column instabilities caused by contamination, gun fluctuations, component failures, detector efficiency, and external issues can be identified through parameter monitoring. The Applied Materials (AMAT) 7830 Series CDSEMs evaluated at IBM's Burlington, Vermont manufacturing facility have demonstrated 5 nm tool matching across 11 systems, which has resulted in non-dedicated product deployment and has significantly reduced cost of ownership.

  20. Walking-Beam Solar-Cell Conveyor

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  1. Position and mode dependent optical detection back-action in cantilever beam resonators

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.

    2017-03-01

    Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.

  2. Precise Control of Vertical-Cavity Surface-Emitting Laser Structural Growth Using Molecular Beam Epitaxy In Situ Reflectance Monitor

    NASA Astrophysics Data System (ADS)

    Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro

    2006-04-01

    A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.

  3. Real-time monitoring of thermal and mechanical tissue response to modulated phased-array HIFU beams in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.

    2012-10-01

    An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.

  4. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  5. Beam wander of dark hollow, flat-topped and annular beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, H. T.; Çil, C. Z.

    2008-11-01

    Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.

  6. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  7. SU-E-T-665: Radiochromic Film Quenching Effect Reduction for Proton Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldelaijan, S; Alzorkany, F; Moftah, B

    2015-06-15

    Purpose: Depending on the useful dose range in which radiochromic films operate, number of different radiochromic film models have been designed. The impact of different film models on quenching effect for percent depth dose (PDD) measurements in proton beams has been investigated. Methods: Calibrated PTW Markus ionization chamber was used to measure PDD and beam output for 26.5 MeV protons produced by CS30 cyclotron. An aluminum cylinder was added in front of the beam exit serving as a radiation shutter. The measured signal was normalized to a monitor chamber reading and subsequently scaled by ratio of water-to-air stopping powers atmore » given depth, while the effective depth of measurements was scaled by ratios of material-to-water physical densities and CSDA ranges. Output was measured in water at 2.1 mm reference-depth in the plateau upstream from the Bragg peak. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water. Three radiochromic film models (EBT, EBT3 and HD-V2) were calibrated within Lexan phantom positioned at the same water-equivalent depth. Thicknesses of films sensitive layers were 34 µm, 30 µm and 8 µm, respectively. Small film pieces (1 x 2 cm{sup 2}) were positioned within polyethylene phantom along the beam central axis with an angulation of 5° for PDD measurements. Results: While the output of the proton beam was found to be around 7 Gy/sec, the actual value of the output per monitor chamber reading (2.32 Gy/nC) was used for reference-dose irradiations during film calibration. Dose ratios at the Bragg peak relative to the reference-depth were 3.88, 2.52, 2.19, and 2.02 for the Markus chamber, HD-V2, EBT3, and EBT film models, respectively. Conclusion: Results at hand suggest that quenching effect is reduced when a radiochromic film model with smaller sensitive layer thickness is used for PDD measurements in proton beams. David Lewis is the owner of RCF Consulting, LLC.« less

  8. WE-EF-303-08: Proton Radiography Using Pencil Beam Scanning and Novel Micromegas Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolney, D; Lustig, R; Teo, B

    Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues. Proton radiography is one approach to reduce the beam range uncertainty, thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as wide dynamic rangemore » for dosimetry. In this work, proton radiographs were obtained using Micromegas 2D planes positioned downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Radiography with Micromegas detectors and actively scanned beams provide spatial resolution of up to 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness), with the dose delivered to the patient kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. Using the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving sub-mm spatial resolution, by relatively simple instrumentation upgrades and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.« less

  9. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoni, V.; Agostinetti, P.; Brombin, M.

    2015-04-08

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less

  10. Assessment of a Neck-Based Treatment and Monitoring Device for Positional Obstructive Sleep Apnea

    PubMed Central

    Levendowski, Daniel J.; Seagraves, Sean; Popovic, Djordje; Westbrook, Philip R.

    2014-01-01

    Study Objectives: A majority of patients diagnosed with obstructive sleep apnea are position dependent whereby they are at least twice as severe when sleeping supine (POSA). This study evaluated the accuracy and efficacy of a neck-worn device designed to limit supine sleep. The study included nightly measurements of snoring, sleep/wake, time supine, and the frequency and duration of feedback to monitor compliance. Methods: Thirty patients between ages 18 and 75 years, BMI ≤ 35 with an overall apnea-hypopnea index (AHI) ≥ 5 and an overall AHI ≥ 1.5 times the non-supine AHI, and an Epworth score ≥ 5 were prospectively studied. Subjective reports and polysomnography were used to assess efficacy resulting from 4 weeks of in-home supine-avoidance therapy and to measure device accuracy. From 363 polysomnography reports, 209 provided sufficient positional data to estimate one site's prevalence of positional OSA. Results: In 83% of participants exhibiting > 50% reduction in overall AHI, the mean and median reductions were 69% and 79%. Significant reductions in the overall and supine AHI, apnea index, percent time SpO2 < 90%, and snoring contributed to significant improvements in stage N1 and N2 sleep, reductions in cortical arousals and awakenings, and improved depression scores. Supine position was under-detected by > 5% in 3% of cases. Sleep efficiency by neck actigraphy was within 10% of polysomnography in 87% of the studies when position feedback was delivered. The prevalence of POSA was consistently > 70% when the overall AHI was < 60. Conclusions: The neck position therapy device is accurate and effective in restricting supine sleep, improving AHI, sleep architecture and continuity, and monitoring treatment outcomes. Citation: Levendowski DJ, Seagraves S, Popovic D, Westbrook PR. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med 2014;10(8):863-871. PMID:25126032

  11. Avatar - a multi-sensory system for real time body position monitoring.

    PubMed

    Jovanov, E; Hanish, N; Courson, V; Stidham, J; Stinson, H; Webb, C; Denny, K

    2009-01-01

    Virtual reality and computer assisted physical rehabilitation applications require an unobtrusive and inexpensive real time monitoring systems. Existing systems are usually complex and expensive and based on infrared monitoring. In this paper we propose Avatar, a hybrid system consisting of off-the-shelf components and sensors. Absolute positioning of a few reference points is determined using infrared diode on subject's body and a set of Wii Remotes as optical sensors. Individual body segments are monitored by intelligent inertial sensor nodes iSense. A network of inertial nodes is controlled by a master node that serves as a gateway for communication with a capture device. Each sensor features a 3D accelerometer and a 2 axis gyroscope. Avatar system is used for control of avatars in Virtual Reality applications, but could be used in a variety of augmented reality, gaming, and computer assisted physical rehabilitation applications.

  12. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serpa, Marco; University Clinic for Radiotherapy and Radio-Oncology, Landeskrankenhaus Salzburg, Paracelsus Medical University Clinics, 5020 Salzburg; Department of Physics and Astronomy, University of Canterbury, Christchurch 8140

    2014-03-15

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authorsmore » define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions

  13. Improved Beam Diagnostic Spatial Calibration Using In-Situ Measurements of Beam Emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.; Pablant, N. A.

    2014-10-01

    A new technique has been developed for determining the measurement geometry of the charge exchange recombination spectroscopy diagnostic (CER) on DIII-D. This technique removes uncertainty in the measurement geometry related to the position of the neutral beams when they are injecting power. This has been accomplished by combining standard measurements that use in-vessel calibration targets with spectroscopic measurements of Doppler shifted and Stark split beam emission to fully describe the neutral beam positions and CER views. A least squares fitting routine determines the measurement geometry consistent with all the calibration data. The use of beam emission measurements allows the position of the neutral beams to be determined in-situ by the same views that makeup the CER diagnostic. Results indicate that changes in the measurement geometry are required to create a consistent set of calibration measurements. However, changes in quantities derived from the geometry, e.g. ion temperature gradient and poloidal rotation, are small. Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC02-09H11466.

  14. ACCELERATORS: Beam based alignment of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  15. A contactless positioning system for monitoring discontinuities in three dimensions with geological and geotechnical applications

    NASA Astrophysics Data System (ADS)

    Rinaldi-Montes, Natalia; Rowberry, Matt; Frontera, Carlos; BaroÅ, Ivo; Garcés, Javier; Blahůt, Jan; Pérez-López, Raúl; Pennos, Christos; Martí, Xavi

    2017-07-01

    In this paper, a contactless positioning system is presented which has been designed to monitor the kinematic behavior of mechanical discontinuities in three dimensions. The positioning system comprises a neodymium magnet, fixed on one side of a discontinuity, and a magnetoresistive sensing array, fixed on the opposing side. Each of the anisotropic magnetoresistive sensors in the sensing array records the magnetic field along three orthogonal directions. The positioning system intrinsically generates compact data packages which are transmitted effectively using a range of standard wireless telecommunication technologies. These data are then modeled using a global least squares fitting procedure in which the adjustable parameters are represented by the position and orientation of the neodymium magnet. The instrumental resolution of the positioning system can be tuned depending on the strength of the magnetic field generated by the neodymium magnet and the distance between the neodymium magnet and the magnetoresistive sensing array. For a typical installation, the displacement resolution is shown to be circa 10 μm while the rotation resolution is circa 0.1°. The first permanently deployed positioning system was established in June 2016 to monitor the behavior of an N-S trending fault located at the contact between the eastern Alps and the Vienna Basin. The robust design of the positioning system is demonstrated by the fact that no interruptions in the broadcasted data streams have occurred since its installation. It has a range of potential applications in many areas of basic and applied research including geology, geotechnical engineering, and structural health monitoring.

  16. Carbon-Ion Pencil Beam Scanning Treatment With Gated Markerless Tumor Tracking: An Analysis of Positional Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro, E-mail: shinshin@nirs.go.jp; Karube, Masataka; Shirai, Toshiyuki

    Purpose: Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. Methods and Materials: A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected inmore » real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. Results: The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Conclusions: Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI.« less

  17. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2012-11-01

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) - P(θi) · (aR(ti) + bR(ti - τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been

  18. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  19. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  20. SU-F-T-330: Characterization of the Clinically Released ScandiDos Discover Diode Array for In-Vivo Dose Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, D; Gutierrez, A

    Purpose: The ScandiDos Discover has obtained FDA clearance and is now clinically released. We studied the essential attenuation and beam hardening components as well as tested the diode array’s ability to detect changes in absolute dose and MLC leaf positions. Methods: The ScandiDos Discover was mounted on the heads of an Elekta VersaHD and a Varian 23EX. Beam attenuation measurements were made at 10 cm depth for 6 MV and 18 MV beam energies. The PDD(10) was measured as a metric for the effect on beam quality. Next, a plan consisting of two orthogonal 10 × 10 cm2 fields wasmore » used to adjust the dose per fraction by scaling monitor units to test the absolute dose detection sensitivity of the Discover. A second plan (conformal arc) was then delivered several times independently on the Elekta VersaHD. Artificially introduced MLC position errors in the four central leaves were then added. The errors were incrementally increased from 1 mm to 4 mm and back across seven control points. Results: The absolute dose measured at 10 cm depth decreased by 1.2% and 0.7% for 6 MV and 18 MV beam with the Discover, respectively. Attenuation depended slightly on the field size but only changed the attenuation by 0.1% across 5 × 5 cm{sup 2} and 20 − 20 cm{sup 2} fields. The change in PDD(10) for a 10 − 10 cm{sup 2} field was +0.1% and +0.6% for 6 MV and 18 MV, respectively. Changes in monitor units from −5.0% to 5.0% were faithfully detected. Detected leaf errors were within 1.0 mm of intended errors. Conclusion: A novel in-vivo dosimeter monitoring the radiation beam during treatment was examined through its attenuation and beam hardening characteristics. The device tracked with changes in absolute dose as well as introduced leaf position deviations.« less

  1. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  2. A comparison of methods for monitoring photon beam energy constancy.

    PubMed

    Gao, Song; Balter, Peter A; Rose, Mark; Simon, William E

    2016-11-08

    In extension of a previous study, we compared several photon beam energy metrics to determine which was the most sensitive to energy change; in addition to those, we accounted for both the sensitivity of each metric and the uncertainty in determining that metric for both traditional flattening filter (FF) beams (4, 6, 8, and 10 MV) and for flattening filter-free (FFF) beams (6 and 10 MV) on a Varian TrueBeam. We examined changes in these energy metrics when photon energies were changed to ± 5% and ± 10% from their nominal energies: 1) an attenuation-based metric (the percent depth dose at 10 cm depth, PDD(10)) and, 2) profile-based metrics, including flatness (Flat) and off-axis ratios (OARs) measured on the orthogonal axes or on the diagonals (diagonal normalized flatness, FDN). Profile-based metrics were measured near dmax and also near 10 cm depth in water (using a 3D scanner) and with ioniza-tion chamber array (ICA). PDD(10) was measured only in water. Changes in PDD, OAR, and FDN were nearly linear to the changes in the bend magnet current (BMI) over the range from -10% to +10% for both FF and FFF beams: a ± 10% change in energy resulted in a ± 1.5% change in PDD(10) for both FF and FFF beams, and changes in OAR and FDN were > 3.0% for FF beams and > 2.2% for FFF beams. The uncertainty in determining PDD(10) was estimated to be 0.15% and that for OAR and FDN about 0.07%. This resulted in minimally detectable changes in energy of 2.5% for PDD(10) and 0.5% for OAR and FDN. We found that the OAR- or FDN- based metrics were the best for detecting energy changes for both FF and FFF beams. The ability of the OAR-based metrics determined with a water scanner to detect energy changes was equivalent to that using an ionization chamber array. We recommend that OAR be measured either on the orthogonal axes or the diagonals, using an ionization chamber array near the depth of maximum dose, as a sensitive and efficient way to confirm stability of photon beam energy.

  3. The vertical monitor position for presbyopic computer users with progressive lenses: how to reach clear vision and comfortable head posture.

    PubMed

    Weidling, Patrick; Jaschinski, Wolfgang

    2015-01-01

    When presbyopic employees are wearing general-purpose progressive lenses, they have clear vision only with a lower gaze inclination to the computer monitor, given the head assumes a comfortable inclination. Therefore, in the present intervention field study the monitor position was lowered, also with the aim to reduce musculoskeletal symptoms. A comparison group comprised users of lenses that do not restrict the field of clear vision. The lower monitor positions led the participants to lower their head inclination, which was linearly associated with a significant reduction in musculoskeletal symptoms. However, for progressive lenses a lower head inclination means a lower zone of clear vision, so that clear vision of the complete monitor was not achieved, rather the monitor should have been placed even lower. The procedures of this study may be useful for optimising the individual monitor position depending on the comfortable head and gaze inclination and the vertical zone of clear vision of progressive lenses. For users of general-purpose progressive lenses, it is suggested that low monitor positions allow for clear vision at the monitor and for a physiologically favourable head inclination. Employees may improve their workplace using a flyer providing ergonomic-optometric information.

  4. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  5. Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.

    1999-08-01

    The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.

  6. Video image position determination

    DOEpatents

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  7. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    PubMed

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  8. Design of a tracking device for on-line dose monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.

    2017-02-01

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project [1], capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution.

  9. S3 targets monitoring with an electron gun

    NASA Astrophysics Data System (ADS)

    Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.

    2018-05-01

    The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.

  10. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less

  11. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator.

    PubMed

    Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A

    2012-04-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics

  12. Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-03-01

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  13. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  14. Applications in bridge structure health monitoring using distributed fiber sensing

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Zheng, Huan; Ge, Huiliang

    2017-10-01

    In this paper, Brillouin Optical Time Domain Analysis (BOTDA) is proposed to solve the problem that the traditional point sensor is difficult to realize the comprehensive safety monitoring of bridges and so on. This technology not only breaks through the bottleneck of traditional monitoring point sensor, realize the distributed measurement of temperature and strain on a transmission path; can also be used for bridge and other structures of the damage identification, fracture positioning, settlement monitoring. The effectiveness and frontier of the technology are proved by comparing the test of the indoor model beam and the external field bridge, and the significance of the distributed optical fiber sensing technology to the monitoring of the important structure of the bridge is fully explained.

  15. A beam current density monitor for intense electron beams

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.

    1983-12-01

    The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.

  16. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  17. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  18. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  19. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    NASA Astrophysics Data System (ADS)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  20. Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L.

    2016-05-15

    Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmablemore » translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system

  1. Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C

    NASA Astrophysics Data System (ADS)

    Faulkner, Adam; I&C Group Collaboration

    2013-10-01

    Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.

  2. An all-diamond X-ray position and flux monitor using nitrogen-incorporated ultra-nanocrystalline diamond contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi

    Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less

  3. Hankel-Bessel laser beams.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Soifer, Victor A

    2012-05-01

    An analytical solution of the scalar Helmholtz equation to describe the propagation of a laser light beam in the positive direction of the optical axis is derived. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The focusing of the HB beams is studied. © 2012 Optical Society of America

  4. Laser Beam Shaping

    NASA Astrophysics Data System (ADS)

    Aït-Ameur, Kamel; Passilly, Nicolas; de Saint Denis, R.; Fromager, Michaël

    2008-09-01

    We consider the promising properties of very simple Diffractive Optical Elements (DOE) for reshaping the intensity profile of a laser beam. The first type of DOE that we have considered is a phase aperture which consists in a transparent plate with a circular relief introducing a π phase shift in the central region of the incident beam. The phase aperture is able to convert a Gaussian beam into a super-Gaussian, a ring-shaped or a doughnut profile. The second DOE that has been considered is an adjustable axicon able to transform a Gaussian laser beam into a dark hollow beam or a Bessel-Gauss beam. The desired conical geometry is obtained from a deformable mirror formed by a 2 inches, 0.25mm thick silicon wafer supported by a standard 2 inches optical mount. To achieve the adequate deformation a small metallic ball pushes the back of the mirror wafer. The realized shape is monitored with a Shack-Hartmann wave-front sensor and it is shown that conical shape cannot be achieved. Nevertheless, recorded wave fronts exhibit important third order spherical aberration able to achieve beam profile transformation as conical lenses.

  5. Dual-beam skin friction interferometer

    NASA Technical Reports Server (NTRS)

    Monson, D. J. (Inventor)

    1981-01-01

    A portable dual-laser beam interferometer is described that nonintrusively measures skin friction by monitoring the thickness change of an oil film at two locations while said oil film is subjected to shear stress. An interferometer flat is utilized to develop the two beams. Light detectors sense the beam reflections from the oil film and the surface thereunder. The signals from the detectors are recorded so that the number of interference fringes produced over a given time span may be counted.

  6. A tritium activity monitor for the KATRIN Experiment

    NASA Astrophysics Data System (ADS)

    Schmitt, Udo

    2008-06-01

    The KArlsruhe TRItium Neutrino experiment KATRIN is designed to measure the absolute neutrino mass scale by analyzing the endpoint region of the tritium beta-decay spectrum with a sensitivity of 0.2 eV/c2 (90 % C.L.). A high-luminous windowless gaseous tritium source with an activity of 1.7 · 1011 Bq will produce the decay electrons, their energy spectrum will be analyzed by a combination of two electrostatic retarding spectrometers with magnetic adiabatic collimation (MAC-E-filter). Fluctuations of the source column density and inelastic scattering processes within the source affect the energy distribution of the decay electrons. Hence, a precise and continuous monitoring of the source activity is necessary to correct the data taken by the main detector. A prototype of the beam monitor detector, based on a silicon drift diode, has been developed to measure an expected counting rate in the range of 106/(s · mm2). The detector element shall be moveable across the complete beam in a magnetic field of 0.8 T, resulting in a beam diameter of 20 cm. A precise sensor positioning device has been designed and built to be compatible with the primary beamline vacuum of 10-11 mbar.

  7. Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraj, J.; Thurman-Keup, R.; Ruan, J.

    2012-04-15

    A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less

  8. Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD

    PubMed Central

    2012-01-01

    In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs. PMID:22650991

  9. Crack classification in concrete beams using AE parameters

    NASA Astrophysics Data System (ADS)

    Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.

    2017-11-01

    The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.

  10. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  11. Numerical study on the selective excitation of Helmholtz-Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping

    NASA Astrophysics Data System (ADS)

    Tsai, Ko-Fan; Chu, Shu-Chun

    2018-03-01

    This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.

  12. Beam Extinction Monitoring in the Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prebys, Eric; Bartoszek, Larry; Gaponenko, Andrei

    The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. Themore » precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.« less

  13. The University of Maryland Electron Ring: A Model Recirculator for Intense Beam Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, S.; Li, H.; Cui, Y.

    2004-12-07

    The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. Low energy, high intensity electron beams provide an excellent model system for experimental studies with relevance to all areas that require high quality, intense charged-particle beams. In addition, UMER constitutes an important tool for benchmarking of computer codes. When completed, the UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5-m circumference. Current studies in UMER over about 2/3 of the ring include beam-envelope matching, halo formation, asymmetrical focusing, and longitudinal dynamics (beam bunch erosionmore » and wave propagation.) Near future, multi-turn operation of the ring will allow us to address important additional issues such as resonance-traversal, energy spread and others. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 200 bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. The range of beam currents used corresponds to space charge tune depressions from 0.2 to 0.8, which is unprecedented for a circular machine.« less

  14. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring.

    PubMed

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J

    2012-11-21

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(t(i)) and the projected marker positions p(x(p), y(p); t(i)) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(x(p), y(p); t(i)) - P(θ(i)) · (aR(t(i)) + bR(t(i) - τ) + c)‖(2) with the projection operator P(θ(i)). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory

  15. New beam monitoring tool for radiobiology experiments at the cyclotron ARRONAX.

    PubMed

    Schwob, L; Koumeir, C; Servagent, N; Cherel, M; Guertin, A; Haddad, F; Métivier, V; Michel, N; Poirier, F; Rahmani, A; Varmenot, N

    2015-09-01

    The ARRONAX cyclotron is able to deliver alpha particles at 68 MeV. In the frame of radiological research, a new method is studied to infer in situ the deposited dose: it is based on the online measurement of the bremsstrahlung (>1 keV) produced by the interaction of the incident particle with the medium. Experiments are made using bombarded poly(methyl methacrylate) (PMMA)-equivalent water targets in order to characterise this continuous X-ray spectrum. The intensity of the bremsstrahlung spectrum allows for the beam monitoring. A simulation code of the bremsstrahlung has been built, and a good agreement is found with the experimental spectra. With this simulation, it is possible to predict the sensibility of this method: it varies with the target thickness, showing a good sensibility for thin target (<1000 µm) and saturation for thicker ones. Bremsstrahlung spectrum also shows a sensibility on the target's chemical composition. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Investigation of the silicon ion density during molecular beam epitaxy growth

    NASA Astrophysics Data System (ADS)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  17. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  18. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  19. Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams.

    PubMed

    Barnes, Michael P; Greer, Peter B

    2017-01-01

    Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam performance. The MPC beam constancy checks test the beam output, uniformity, and beam center against the user defined baseline. MPC was run daily over a period of 5 months (n = 115) in parallel with the Daily QA3 device. Additionally, IC Profiler, in-house EPID tests, and ion chamber measurements were performed biweekly and results presented in a form directly comparable to MPC. The sensitivity of MPC was investigated using controlled adjustments of output, beam angle, and beam position steering. Over the period, MPC output agreed with ion chamber to within 0.6%. For an output adjustment of 1.2%, MPC was found to agree with ion chamber to within 0.17%. MPC beam center was found to agree with the in-house EPID method within 0.1 mm. A focal spot position adjustment of 0.4 mm (at isocenter) was measured with MPC beam center to within 0.01 mm. An average systematic offset of 0.5% was measured in the MPC uniformity and agreement of MPC uniformity with symmetry measurements was found to be within 0.9% for all beams. MPC uniformity detected a change in beam symmetry of 1.5% to within 0.3% and 0.9% of IC Profiler for flattened and FFF beams, respectively. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  1. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  2. Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates.

    PubMed

    Nickenig, Hans-Joachim; Eitner, Stephan

    2007-01-01

    We assessed the reliability of implant placement after virtual planning of implant positions using cone-beam CT data and surgical guide templates. A total of 102 patients (250 implants, 55.4% mandibular; mean patient age, 40.4 years) who had undergone implant treatment therapy in an armed forces dental clinic (Cologne, Germany) between July 1, 2005 and December 1, 2005. They were treated with a system that allows transfer of virtual planning to surgical guide templates. Only in eight cases the surgical guides were not used because a delayed implant placement was necessary. In four posterior mandibular cases, handling was limited because of reduced interocclusal distance, requiring 50% shortening of the drill guides. The predictability of implant size was high: only one implant was changed to a smaller diameter (because of insufficient bone). In all cases, critical anatomical structures were protected and no complications were detected in postoperative panoramic radiographs. In 58.1% (147) of the 250 implants, a flapless surgery plan was realized. Implant placement after virtual planning of implant positions using cone beam CT data and surgical templates can be reliable for preoperative assessment of implant size, position, and anatomical complications. It is also indicative of cases amenable to flapless surgery.

  3. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Armstrong, Gary A

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to themore » threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results« less

  4. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  5. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target.

    PubMed

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from

  6. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature

  7. PARTICLE BEAM TRACKING CIRCUIT

    DOEpatents

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  8. On the effectiveness of ion range determination from in-beam PET data

    NASA Astrophysics Data System (ADS)

    Fiedler, Fine; Shakirin, Georgy; Skowron, Judith; Braess, Henning; Crespo, Paulo; Kunath, Daniela; Pawelke, Jörg; Pönisch, Falk; Enghardt, Wolfgang

    2010-04-01

    At present, in-beam positron emission tomography (PET) is the only method for in vivo and in situ range verification in ion therapy. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI) Darmstadt, Germany, a unique in-beam PET installation has been operated from 1997 until the shut down of the carbon ion therapy facility in 2008. Therapeutic irradiation by means of 12C ion beams of more than 400 patients have been monitored. In this paper a first quantitative study on the accuracy of the in-beam PET method to detect range deviations between planned and applied treatment in clinically relevant situations using simulations based on clinical data is presented. Patient treatment plans were used for performing simulations of positron emitter distributions. For each patient a range difference of ± 6 mm in water was applied and compared to simulations without any changes. The comparisons were performed manually by six experienced evaluators for data of 81 patients. The number of patients required for the study was calculated using the outcome of a pilot study. The results indicate a sensitivity of (91 ± 3)% and a specificity of (96 ± 2)% for detecting an overrange, a reduced range is recognized with a sensitivity of (92 ± 3)% and a specificity of (96 ± 2)%. The positive and the negative predictive value of this method are 94% and 87%, respectively. The interobserver coefficient of variation is between 3 and 8%. The in-beam PET method demonstrated a high sensitivity and specificity for the detection of range deviations. As the range is a most indicative factor of deviations in the dose delivery, the promising results shown in this paper confirm the in-beam PET method as an appropriate tool for monitoring ion therapy.

  9. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    NASA Astrophysics Data System (ADS)

    Correll, Francis D.; Edsall, Douglas W.; DePooter, Katherine A.; Maskell, Nicholas D.; Vanhoy, Jeffrey R.

    2011-06-01

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  10. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  11. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks.

    PubMed

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-21

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u -1 . The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm -3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was

  12. Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution

    DOEpatents

    Parham, Christopher A; Zhong, Zhong; Pisano, Etta; Connor, Jr., Dean M

    2015-03-03

    Systems and methods for detecting an image of an object using a multi-beam imaging system from an x-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a plurality of monochromator crystals in a predetermined position to directly intercept the first X-ray beam such that a plurality of second X-ray beams having predetermined energy levels are produced. Further, an object can be positioned in the path of the second X-ray beams for transmission of the second X-ray beams through the object and emission from the object as transmitted X-ray beams. The transmitted X-ray beams can each be directed at an angle of incidence upon one or more crystal analyzers. Further, an image of the object can be detected from the beams diffracted from the analyzer crystals.

  13. Comparison of different coil positions for ventilation monitoring with contact-less magnetic impedance measurements

    NASA Astrophysics Data System (ADS)

    Cordes, A.; Pollig, D.; Leonhardt, S.

    2010-04-01

    For monitoring the health status of individuals, proper monitoring of ventilation is desirable. Therefore, a continuous measurement technique is an advantage for many patients since it allows personal home care scenarios. As an example, monitoring of elderly people at home could enable them to live in their familiar environment on their own with the safety of a continuous monitoring. Therefore, a measurement technique without the restriction of mobility is required. Since it is possible to monitor ventilation with magnetic impedance measurements without conductive contact, this technique is well suited for the mentioned scenario. Integrated in a chair, a person's health state could be monitored in many situations, e.g. during meals, while watching TV or reading a book. In this paper, we compare different positions of coil arrays for a magnetic impedance measurement system integrated in a chair in order to monitor ventilation continuously. For limiting the costs and technical complexity of the magnetic impedance measurement system, we have a focus on coil configurations with one RF channel. To limit the needed space and thickness of the array in the backrest, planar gradiometer coil setups are investigated. All measurements will be performed with a new developed portable magnetic impedance measurement system and a standard office chair.

  14. Analytical beam-width characteristics of distorted cat-eye reflected beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  15. Tests of positive ion beams from a microwave ion source for AMS

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.

    2000-10-01

    A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.

  16. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea.

    PubMed

    Levendowski, Daniel J; Seagraves, Sean; Popovic, Djordje; Westbrook, Philip R

    2014-08-15

    A majority of patients diagnosed with obstructive sleep apnea are position dependent whereby they are at least twice as severe when sleeping supine (POSA). This study evaluated the accuracy and efficacy of a neck-worn device designed to limit supine sleep. The study included nightly measurements of snoring, sleep/wake, time supine, and the frequency and duration of feedback to monitor compliance. Thirty patients between ages 18 and 75 years, BMI ≤ 35 with an overall apnea-hypopnea index (AHI) ≥ 5 and an overall AHI ≥ 1.5 times the non-supine AHI, and an Epworth score ≥ 5 were prospectively studied. Subjective reports and polysomnography were used to assess efficacy resulting from 4 weeks of in-home supine-avoidance therapy and to measure device accuracy. From 363 polysomnography reports, 209 provided sufficient positional data to estimate one site's prevalence of positional OSA. In 83% of participants exhibiting > 50% reduction in overall AHI, the mean and median reductions were 69% and 79%. Significant reductions in the overall and supine AHI, apnea index, percent time SpO2 < 90%, and snoring contributed to significant improvements in stage N1 and N2 sleep, reductions in cortical arousals and awakenings, and improved depression scores. Supine position was under-detected by > 5% in 3% of cases. Sleep efficiency by neck actigraphy was within 10% of polysomnography in 87% of the studies when position feedback was delivered. The prevalence of POSA was consistently > 70% when the overall AHI was < 60. The neck position therapy device is accurate and effective in restricting supine sleep, improving AHI, sleep architecture and continuity, and monitoring treatment outcomes.

  17. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.

    PubMed

    Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude

    2018-02-01

    The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring

  18. Non-perturbative measurement of low-intensity charged particle beams

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  19. Monitoring of intracranial compliance: correction for a change in body position.

    PubMed

    Raabe, A; Czosnyka, M; Piper, I; Seifert, V

    1999-01-01

    The objectives of our study were 1. to investigate whether the intracranial compliance changes with body position; 2. to test if the pressure-volume index (PVI) calculation is affected by different body positions; 3. to define the optimal parameter to correct PVI for changes in body position and 4. to investigate the physiological meaning of the constant term (P0) in the model of the intracranial volume-pressure relationship. Thirteen patients were included in this study. All patients were subjected to 2 to 3 different body positions. In each position, either classic bolus injection was performed for measurement of intracranial compliance and calculation of PVI or the new Spiegelberg compliance monitor was used to calculate PVI continuously. Four different models were used for calculating the constant pressure term P0 and the P0 corrected PVI values. Pressure volume index not corrected for the constant term P0 significantly decreased with elevating the patients head (r = 0.70, p < 0.0001). In contrast, volume-pressure response and ICP pulse amplitude did not change with position. Using the constant term P0 to correct the PVI we found no changes between the different body positions. Our results suggest that during the variation in body position there is no change in intracranial compliance but a change in hydrostatic offset pressure which causes a shifting of the volume-pressure curve along the pressure axis without its shape being affected. PVI measurements should either be performed only with the patient in the 0 degree recumbent position or that the PVI calculation should be corrected for the hydrostatic difference between the level of the ICP transducer and the hydrostatic indifference point of the craniospinal system close to the third thoracic vertebra.

  20. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  1. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  2. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  3. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    NASA Astrophysics Data System (ADS)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  4. WE-D-17A-03: Improvement of Accuracy of Spot-Scanning Proton Beam Delivery for Liver Tumor by Real-Time Tumor-Monitoring and Gating System: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, T; Shimizu, S; Miyamoto, N

    2014-06-15

    Purpose: To improve the accuracy of spot-scanning proton beam delivery for target in motion, a real-time tumor-monitoring and gating system using fluoroscopy images was developed. This study investigates the efficacy of this method for treatment of liver tumors using simulation. Methods: Three-dimensional position of a fiducial marker inserted close to the tumor is calculated in real time and proton beam is gated according to the marker's distance from the planned position (Shirato, 2012). The efficient beam delivery is realized even for the irregular and sporadic motion signals, by employing the multiple-gated irradiations per operation cycle (Umezawa, 2012). For each ofmore » two breath-hold CTs (CTV=14.6cc, 63.1cc), dose distributions were calculated with internal margins corresponding to freebreathing (FB) and real-time gating (RG) with a 2-mm gating window. We applied 8 trajectories of liver tumor recorded during the treatment of RTRT in X-ray therapy and 6 initial timings. Dmax/Dmin in CTV, mean liver dose (MLD), and irradiation time to administer 3 Gy (RBE) dose were estimated assuming rigid motion of targets by using in-house simulation tools and VQA treatment planning system (Hitachi, Ltd., Tokyo). Results: Dmax/Dmin was degraded by less than 5% compared to the prescribed dose with all motion parameters for smaller CTV and less than 7% for larger CTV with one exception. Irradiation time showed only a modest increase if RG was used instead of FB; the average value over motion parameters was 113 (FB) and 138 s (RG) for smaller CTV and 120 (FB) and 207 s (RG) for larger CTV. In RG, it was within 5 min for all but one trajectory. MLD was markedly decreased by 14% and 5–6% for smaller and larger CTVs respectively, if RG was applied. Conclusions: Spot-scanning proton beam was shown to be delivered successfully to liver tumor without much lengthening of treatment time. This research was supported by the Cabinet Office, Government of Japan and the Japan

  5. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  6. Definitive treatment of androgen receptor-positive salivary duct carcinoma with androgen deprivation therapy and external beam radiotherapy.

    PubMed

    Soper, Margaret S; Iganej, Shawn; Thompson, Lester D R

    2014-01-01

    Salivary duct carcinoma (SDC) is an aggressive malignancy with high recurrence rates. Standard management includes surgical resection followed by adjuvant radiation. Androgen receptor positivity has been described to be present in 40% to 90% of SDCs, and a recent case series showed a benefit to androgen deprivation therapy (ADT) in recurrent or metastatic disease. We present the case of an 87-year-old woman with a locally advanced androgen receptor-positive parotid SDC treated definitively with ADT and external beam radiotherapy, a regimen modeled after the treatment of prostate cancer. She had a complete response on positron emission tomography (PET)/CT scan and had no evidence of disease 24 months after the completion of treatment. To our knowledge, this case report is the first to describe the use of ADT plus radiation to definitively treat SDC. This regimen could be considered in patients with androgen receptor-positive SDCs who are considered unresectable or who refuse surgery. Copyright © 2013 Wiley Periodicals, Inc.

  7. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    NASA Astrophysics Data System (ADS)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  8. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  9. A microbeam slit system for high beam currents

    NASA Astrophysics Data System (ADS)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  10. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  11. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less

  12. Beam characteristics of energy-matched flattening filter free beams.

    PubMed

    Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I

    2014-05-01

    Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed

  13. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  14. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faddegon, Bruce A.; Wu, Vincent; Pouliot, Jean

    2008-12-15

    Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the developmentmore » of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.« less

  15. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  16. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOEpatents

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  17. Seabed sediment classification for monitoring underwater nourishments using time series of multi-beam echo-soundings

    NASA Astrophysics Data System (ADS)

    Gaida, T. C.; Snellen, M.; van Dijk, T. A. G. P.; Simons, D. G.

    2017-12-01

    Coastal erosion induced by natural processes, such as wind, waves, tidal currents, or human interferences endangers human beings, infrastructure, fauna and flora at the oceans and rivers all over the world. In The Netherlands, in particular the North Sea islands are strongly affected by sediment erosion. To protect and stabilize the coastline, beach and shoreface nourishments are frequently performed. Thereby, sediment reservoirs are created that replace the eroded sediments. Increasing the long-term efficiency of coastal protection requires monitoring of the temporal and spatial development of the coastal nourishments. Multi-beam echo-sounders (MBES) allow for detailed and comprehensive investigations of the seabed composition and structure. To investigate the potential of using MBES for monitoring nourishments in a tidal inlet, four MBES surveys per year are carried out at the Dutch Wadden island Ameland. A pre-nourishment MBES survey was performed in April 2017 and the subsequent post-nourishment survey will take place in September 2017. Both surveys are equipped with a Kongsberg EM 2040C dual-head MBES and are supported with extensive grab sampling. In this study the use of MBES backscatter and bathymetry data are considered as an approach for monitoring coastal nourishments. The aim is to develop a monitoring procedure that allows for comparing MBES data taken during different surveys, i.e., with variations in environmental conditions, MBES characteristics and acquisition procedures. Different unsupervised and supervised acoustic seafloor classification techniques are applied to the processed MBES data to classify the seabed sediments. The analysis of the pre-nourishment MBES data indicates that the backscatter and consequently the classification are highly driven by the abundancy of shell fragments. These results will be used as a baseline to investigate the accumulation of the underwater nourishments. Independent grab samples will be used to select the

  18. The Equilibrium State of Colliding Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnock, R

    2003-12-12

    We study a nonlinear integral equation that is a necessary condition on the equilibrium phase space distribution function of stored, colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in one degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, asmore » would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.« less

  19. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafalskyi, Dmytro, E-mail: dmytro.rafalskyi@lpp.polytechnique.fr; Popelier, Lara; Aanesland, Ane

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition,more » and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the

  20. Condylar positional changes in rapid maxillary expansion assessed with cone-beam computer tomography.

    PubMed

    McLeod, Lauren; Hernández, Ivonne A; Heo, Giseon; Lagravère, Manuel O

    2016-09-01

    The aim of this study was to determine the presence of condylar spatial changes in patients having rapid maxillary expansion treatments compared to a control group. Thirty-seven patients with maxillary transverse deficiency (11-17 years old) were randomly allocated into two groups (one treatment group - tooth borne expander [hyrax] - and one control group). Cone-beam computer tomographies (CBCT) were obtained from each patient at two time points (initial T1 and at removal of appliance at 6 months T2). CBCTs were analyzed using AVIZO software and landmarks were placed on the upper first molars and premolars, cranial base, condyles and glenoid fossa. Descriptive statistics, intraclass correlation coefficients and one-way Anova analysis were used to determine if there was a change in condyle position with respect to the glenoid fossa and cranial base and if there was a statistically significant difference between groups. Descriptive statistics show that changes in the condyle position with respect to the glenoid fossa were minor in both groups (<1.9mm average for both groups). The largest difference in both groups was found when measuring the distance between the left and right condyle heads. When comparing changes between both groups, no statistically significant difference was found between changes in the condyles (P<0.05). Rapid maxillary expansion treatments present mild effects/changes on the condylar position. Nevertheless, these changes do not present a significant difference with controls, thus not constituting a limitation for applying this treatment. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  1. Simulator for beam-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  2. Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2017-01-01

    A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.

  3. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  4. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    PubMed

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Local correction of quadrupole errors at LHC interaction regions using action and phase jump analysis on turn-by-turn beam position data

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando; García Bonilla, Alba Carolina; Tomás García, Rogelio

    2017-11-01

    This article shows that the effect of all quadrupole errors present in an interaction region with low β * can be modeled by an equivalent magnetic kick, which can be estimated from action and phase jumps found on beam position data. This equivalent kick is used to find the strengths that certain normal and skew quadrupoles located on the IR must have to make an effective correction in that region. Additionally, averaging techniques to reduce noise on beam position data, which allows precise estimates of equivalent kicks, are presented and mathematically justified. The complete procedure is tested with simulated data obtained from madx and 2015-LHC experimental data. The analyses performed in the experimental data indicate that the strengths of the IR skew quadrupole correctors and normal quadrupole correctors can be estimated within a 10% uncertainty. Finally, the effect of IR corrections in the β* is studied, and a correction scheme that returns this parameter to its designed value is proposed.

  6. Shot-Noise-Limited Dual-Beam Detector for Atmospheric Trace-Gas Monitoring with Near-Infrared Diode Lasers

    NASA Astrophysics Data System (ADS)

    Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard

    2000-10-01

    A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.

  7. Positioning apparatus

    DOEpatents

    Vogel, M.A.; Alter, P.

    1983-07-07

    An apparatus is provided for precisely adjusting the position of an article relative to a beam emerging from a neutron source disposed in a housing. The apparatus includes a support pivotably mounted on a movable base plate and freely suspended therefrom. The support is gravity biased toward the housing and carries an article holder movable in a first direction longitudinally of the axis of said beam and normally urged into engagement against said housing. Means are provided for moving the base plate in two directions to effect movement of the suspended holder in two mutually perpendicular directions, respectively, normal to the axis of the beam.

  8. SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J S; Eldib, A; Ma, C

    2014-06-15

    Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cmmore » depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.« less

  9. Electronics and Algorithms for HOM Based Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee

    2006-11-01

    The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.

  10. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  11. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  12. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.

    2018-06-01

    We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.

  13. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    DOE PAGES

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...

    2018-06-04

    Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less

  14. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  15. Sampling theorem for geometric moment determination and its application to a laser beam position detector.

    PubMed

    Loce, R P; Jodoin, R E

    1990-09-10

    Using the tools of Fourier analysis, a sampling requirement is derived that assures that sufficient information is contained within the samples of a distribution to calculate accurately geometric moments of that distribution. The derivation follows the standard textbook derivation of the Whittaker-Shannon sampling theorem, which is used for reconstruction, but further insight leads to a coarser minimum sampling interval for moment determination. The need for fewer samples to determine moments agrees with intuition since less information should be required to determine a characteristic of a distribution compared with that required to construct the distribution. A formula for calculation of the moments from these samples is also derived. A numerical analysis is performed to quantify the accuracy of the calculated first moment for practical nonideal sampling conditions. The theory is applied to a high speed laser beam position detector, which uses the normalized first moment to measure raster line positional accuracy in a laser printer. The effects of the laser irradiance profile, sampling aperture, number of samples acquired, quantization, and noise are taken into account.

  16. Tracking rare-isotope beams with microchannel plates

    DOE PAGES

    Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.; ...

    2015-06-06

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival Limes of ions at the reaction target. Furthermore, the current design is an adaptation of an assembly used for low-energy beams (~1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon 56Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of ~1 mm formore » beam intensities up to 5 x 10 5 pps.« less

  17. Tracking rare-isotope beams with microchannel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival Limes of ions at the reaction target. Furthermore, the current design is an adaptation of an assembly used for low-energy beams (~1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon 56Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of ~1 mm formore » beam intensities up to 5 x 10 5 pps.« less

  18. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  19. Beam measurements using visible synchrotron light at NSLS2 storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less

  20. Imaging and characterization of primary and secondary radiation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus

    2016-07-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  1. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators

  2. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  3. Reference Cross Sections for Charged-particle Monitor Reactions

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  4. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  5. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  6. The importance of clinical monitoring for compliance with Continuous Positive Airway Pressure.

    PubMed

    Pelosi, Lucas B; Silveira, Mariana L C; Eckeli, Alan L; Chayamiti, Emilia M P C; Almeida, Leila A; Sander, Heidi H; Küpper, Daniel S; Valera, Fabiana C P

    Obstructive sleep apnea syndrome is currently a public health problem of great importance. When misdiagnosed or improperly treated, it can lead to serious consequences on patients' quality of life. The gold standard treatment for cases of obstructive sleep apnea syndrome, especially in mild to severe and symptomatic cases, is continuous positive airway pressure therapy. Compliance with continuous positive airway pressure therapy is directly dependent on the active participation of the patient, which can be influenced by several factors. The objective of this study is to describe the factors related to compliance with continuous positive airway pressure therapy, and to analyze which associated factors directly influence the efficiency of the treatment. Patients who received continuous positive airway pressure therapy through the Municipal Health Department of the city of Ribeirão Preto were recruited. A structured questionnaire was administered to the patients. Compliance with continuous positive airway pressure therapy was assessed by average hours of continuous positive airway pressure therapy usage per night. Patients with good compliance (patients using continuous positive airway pressure therapy ≥4h/night) were compared to those with poor compliance (patients using <4h/night). 138 patients were analyzed: 77 (55.8%) were considered compliant while 61 (44.2%) were non-compliant. The comparison between the two groups showed that regular monitoring by a specialist considerably improved compliance with continuous positive airway pressure therapy (odds ratio, OR=2.62). Compliance with continuous positive airway pressure therapy is related to educational components, which can be enhanced with continuous and individualized care to patients with obstructive sleep apnea syndrome. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Aoki, S.; Ariga, A.; Ariga, T.; Bay, F.; Bronner, C.; Ereditato, A.; Friend, M.; Hartz, M.; Hiraki, T.; Ichikawa, A. K.; Ishida, T.; Ishii, T.; Juget, F.; Kikawa, T.; Kobayashi, T.; Kubo, H.; Matsuoka, K.; Maruyama, T.; Minamino, A.; Murakami, A.; Nakadaira, T.; Nakaya, T.; Nakayoshi, K.; Otani, M.; Oyama, Y.; Patel, N.; Pistillo, C.; Sakashita, K.; Sekiguchi, T.; Suzuki, S. Y.; Tada, S.; Yamada, Y.; Yamamoto, K.; Yokoyama, M.

    2015-05-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced in conjunction with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06± 0.05± 0.10)× 10^4cm^{-2} normalized with 4× 10^{11} protons on target with 250 kA horn operation. The result is in agreement with the prediction, which is corrected based on hadron production data.

  8. Design and construction of shoulder recesses into the beam aperture shields for improved patient positioning at the FiR 1 BNCT facility.

    PubMed

    Auterinen, I; Kotiluoto, P; Hippeläinen, E; Kortesniemi, M; Seppälä, T; Serén, T; Mannila, V; Pöyry, P; Kankaanranta, L; Collan, J; Kouri, M; Joensuu, H; Savolainen, S

    2004-11-01

    Improvements have been made at the FiR 1 BNCT facility to ease the positioning of the patient with a tumor in the head and neck region into a lateral neutron beam. Shoulder recesses were constructed horizontally on both sides of the beam aperture. When shoulder recesses are not needed, they are filled with neutron attenuating filling blocks. MCNP simulations using an anthropomorphic human model BOMAB phantom showed that the main contribution to the increase in the effective dose to the patient's body due to the shoulder recesses was from the neutron dose of the arm. In a position when one arm is inside the shoulder recess, the maximal effective dose of the patient was estimated to be 0.7Sv/h. Dose measurements using the twin ionization chamber technique showed that the neutron dose increased on the sides as predicted by the MCNP model but there was no noticeable change in the gamma doses. When making the recesses into the lithium containing neutron shield material tritium contamination was confined using an underpressurized glove box and machine tools with local exhaust. The shoulder recesses give space for more flexible patient positioning and can be considered as a significant improvement of the Finnish BNCT facility.

  9. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Morgan, J.; Lee, S.H.

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less

  10. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasmamore » density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.« less

  11. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  12. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  13. First Operation of the Abort Gap Monitor for LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefevre, Thibaut; /CERN; Bart Pedersen, Stephane

    2012-07-06

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly.more » This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.« less

  14. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  15. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  16. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...

    2016-01-05

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less

  17. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing

    DOE PAGES

    Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...

    2017-03-03

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less

  18. Monitoring of body position and motion in children with severe cerebral palsy for 24 hours.

    PubMed

    Sato, Haruhiko; Iwasaki, Toshiyuki; Yokoyama, Misako; Inoue, Takenobu

    2014-01-01

    To investigate differences in position and body movements between children with severe cerebral palsy (CP) and children with typical development (TD) during the daytime and while asleep at night. Fifteen children with severe quadriplegic CP living at home (GMFCS level V, 7 males, 8 females; mean age 8 years 3 months; range 3-20 years) and 15 children with TD (6 males, 9 females; mean age 8 years 7 months; range 1-16 years) participated. Body position and movements were recorded for 24 h by a body position monitor and a physical activity monitor, respectively. The amount of time spent in one position and the durations of inactive periods during the daytime and during night-time sleep were computed and analyzed for group differences. In children with CP, the mean longest time spent in one position was longer than that in children with TD during night-time sleep (5.6 ± 3.5 h versus 1.6 ± 1.2 h). In contrast, no significant differences were found between the groups during the daytime (1.9 ± 1.1 h versus 1.6 ± 0.7 h). The mean longest time the body remained inactive was longer in the children with CP during both daytime and nighttime sleep (0.6 ± 0.3 h versus 0.3 ± 0.3 h for daytime, 1.4 ± 0.8 h versus 0.7 ± 0.3 h for nighttime). Children with severe CP living at home showed prolonged immobilized posture during night-time sleep when their caregivers would be likely to also be asleep. This may suggest that these children should receive postural care assistance at night.

  19. Development of the beam extraction synchronization system at the Fermilab Booster

    NASA Astrophysics Data System (ADS)

    Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.

    2015-11-01

    The new beam extraction synchronization control system called "Magnetic Cogging" was developed at the Fermilab Booster and it replaces a system called "RF Cogging" as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.

  20. Basic research for development of the beam profile monitor based on a Faraday cup array system

    NASA Astrophysics Data System (ADS)

    Park, Mook-Kwang

    2015-10-01

    The basic design used to develop a beam profile monitor based on a Faraday cup array (FCA), which has the advantages of high robustness, reliability, and long-term stability, along with the ability to measure the ion current over a wide dynamic range, was developed. The total system is divided into three parts: i.e., a faraday cup, measuring electronics, and a display program part. The FCA was considered to consist of a collimator, suppressor, insulator frame, and 64 (8 × 8 array) tiny Faraday cups (FC). An electronic circuit using a multiplexer was applied to effectively address many signal lines and the printed circuit board (PCB) was designed to be divided into three parts, i.e., an electrode PCB (ELEC PCB), capacitance PCB (CAP PCB), and control PCB (CON PCB).