Sample records for beam power level

  1. Payload system tradeoffs for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  2. Development of beam leaded low power logic circuits

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Malone, F.

    1972-01-01

    The technologies of low power TTL and beam lead processing were merged into a single product family. This family offers the power and thermal advantages of low power(54L), while providing the additional reliability advantages of beam leads. The reduction in the power and heat levels also allows the system designer to take advantage, through beam lead, multichip assemblies, of increased package density to reduce system size and weight.

  3. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  4. Method and apparatus for reading thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1987-01-01

    An apparatus and method for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level nearly constant. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an optical equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminescent phosphors. Also disclosed are preferred signal processing and control circuits.

  5. HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Plum, Michael A; Peters, Charles C

    Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam onmore » target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.« less

  6. High-power beam combining: a step to a future laser weapon system

    NASA Astrophysics Data System (ADS)

    Protz, Rudolf; Zoz, Jürgen; Geidek, Franz; Dietrich, Stephan; Fall, Michael

    2012-11-01

    Due to the enormous progress in the field of high-power fiber lasers during the last years commercial industrial fiber lasers are now available, which deliver a near-diffraction limited beam with power levels up to10kW. For the realization of a future laser weapon system, which can be used for Counter-RAM or similar air defence applications, a laser source with a beam power at the level of 100kW or more is required. At MBDA Germany the concept for a high-energy laser weapon system is investigated, which is based on such existing industrial laser sources as mentioned before. A number of individual high-power fiber laser beams are combined together, using one common beam director telescope. By this "geometric" beam coupling scheme, sufficient laser beam power for an operational laser weapon system can be achieved. The individual beams from the different lasers are steered by servo-loops, using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at the common focal point on a distant target, also allowing fine tracking of target movements and first order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated using several experimental set-ups. Different experiments were performed, to investigate laser beam target interaction and target fine tracking also at large distances. Content and results of these investigations are reported. An example for the lay-out of an Air Defence High Energy Laser Weapon (ADHELW ) is given. It can be concluded, that geometric high-power beam combining is an important step for the realization of a laser weapon system in the near future.

  7. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of componentmore » and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.« less

  8. Apparatuses and methods for laser reading of thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Apparatuses and methods for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level at a desired value or values which can vary with time. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an opitcal equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminscent phosphors. Also disclosed are preferred signal processing and control circuits including one system using a digital computer. Also disclosed are time-profiled laser power cycles for pre-anneal, read and post-anneal treatment of phosphors.

  9. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  10. Remote radiation dosimetry

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  11. Remote radiation dosimetry

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  12. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.; AHRENS,L.A.; MI,J.

    2001-06-18

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beammore » dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful.« less

  13. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  14. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  15. Recent Performance of and Plasma Outage Studies with the SNS H- Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Martin P; Han, Baoxi; Murray Jr, S N

    2016-01-01

    SNS ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised RFQ, which requires higher RF power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ~55-kW 2-MHz plasma pulses reflecting ~90% of the continuous ~300W, 13-MHz power, which was mitigated withmore » a 4-ms filter for the reflected power signal and an outage resistant, slightly-detuned 13-MHz match. Lowering the H2 also increased the H- beam current to ~55 mA, and increased the transmission by ~7%.« less

  16. Sound radiation from randomly vibrating beams of finite circular cross section

    NASA Technical Reports Server (NTRS)

    Sutterlin, M. W.; Pierce, A. D.

    1976-01-01

    The radiation of sound from vibrating cylindrical beams is analyzed based on the frequency of the beam vibrations and the physical characteristics of the beam and its surroundings. A statistical analysis of random beam vibrations allows this result to be independent of the boundary conditions at the ends of the beam. The acoustic power radiated by the beam can be determined from a knowledge of the frequency band vibration data without a knowledge of the individual modal vibration amplitudes. A practical example of the usefulness of this technique is provided by the application of the theoretical calculations to the prediction of the octave band acoustic power output of the picking sticks of an automatic textile loom. Calculations are made of the expected octave band sound pressure levels based on measured acceleration data. These theoretical levels are subsequently compared with actual sound pressure level measurements of loom noise.

  17. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  18. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  19. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  20. Laser beamed power - Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    Feasibility of using a ground-based laser to beam light to the solar arrays of orbiting satellites to a level sufficient to provide the operating power required is discussed. An example case of a GEO communications satellite near the end of life due to radiation damage of the solar arrays or battery failure is considered. It is concluded that the commercial satellite industry should be able to reap significant economic benefits through the use of power beaming which is capable of providing supplemental power for satellites with failing arrays, or primary power for failed batteries.

  1. Thin disk laser with unstable resonator and reduced output coupler

    NASA Astrophysics Data System (ADS)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  2. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW.

    PubMed

    Lei, Chengmin; Gu, Yanran; Chen, Zilun; Wang, Zengfeng; Zhou, Pu; Ma, Yanxing; Xiao, Hu; Leng, Jinyong; Wang, Xiaolin; Hou, Jing; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin

    2018-04-16

    We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M 2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.

  3. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  4. Recent performance of and plasma outage studies with the SNS H{sup −} source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, M. P., E-mail: stockli@ornl.gov; Han, B.; Murray, S. N.

    2016-02-15

    Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H{sup −} beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ∼55-kW 2-MHz plasma pulses reflecting ∼90% of the continuousmore » ∼300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H{sub 2} gas also increased the H{sup −} beam current to ∼55 mA and increased the RFQ transmission by ∼7% (relative)« less

  5. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  6. Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor.

    PubMed

    Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S

    2011-11-07

    We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.

  7. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  8. Solar Power Satellite (SPS) pilot beam and communication link subsystem investigation study, phase 1. [ionospheric propagation, radio frequency interference, and microwave transmission

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.

  9. Methods for slow axis beam quality improvement of high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  10. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  11. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  12. Wide spectral band beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2015-03-01

    The reality in laser beam profiling is that measurements are performed over a wide spectrum of wavelengths and power ranges. Many applications use multiple laser wavelengths with very different power levels, a fact which dictates a need for a better measuring tool. Rapid progress in the fiber laser area has increased the demand for lasers in the wavelength range of 900 - 1030 nm, while the telecommunication market has increased the demand for wavelength range of 1300nm - 1600 nm, on the other hand the silicone chip manufacturing and mass production requirements tend to lower the laser wavelength towards the 190nm region. In many cases there is a need to combine several lasers together in order to perform a specific task. A typical application is to combine one visible laser for pointing, with a different laser for material processing with a very different wavelength and power level. The visible laser enables accurate pointing before the second laser is operated. The beam profile of the intensity distribution is an important parameter that indicates how a laser beam will behave in an application. Currently a lab, where many different lasers are used, will find itself using various laser beam profilers from several vendors with different specifications and accuracies. It is the propose of this article to present a technological breakthrough in the area of detectors, electronics and optics allowing intricate measurements of lasers with different wavelength and with power levels that vary many orders of magnitude by a single beam profiler.

  13. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less

  14. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  15. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    NASA Astrophysics Data System (ADS)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  16. Improved power and efficiency for tapered lasers with optimized photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Shaoyu; Zhou, Xuyan; Lin, Yuzhe; Zheng, Wanhua

    2017-10-01

    High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved. In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.

  17. Thermal dephasing in second-harmonic generation of an amplified copper-vapor laser beam in beta barium borate.

    PubMed

    Prakash, Om; Dixit, Sudhir Kumar; Bhatnagar, Rajiva

    2005-03-20

    The conversion efficiency in second-harmonic generation of an amplified beam in a master-oscillator power amplifier copper-vapor laser (CVL) is lower than that of the oscillator beam alone. This lower efficiency is often vaguely attributed to wave-front degradation in the amplifier. We investigate the role of wave-front degradation and thermal dephasing in the second-harmonic generation of a CVL from a beta-barium borate crystal. Choosing two beams with constant intrapulse divergence, one from a generalized diffraction filtered resonator master oscillator alone and other obtained by amplifying oscillator by use of a power amplifier, we show that at low flux levels the decrease in efficiency is due to wave-front degradation. At a fundamental power above the critical power for thermal dephasing, the decrease is due to increased UV absorption and consequent thermal dephasing. Thermal dephasing is higher for the beam with the lower coherence width.

  18. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  19. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  20. RF extraction issues in the relativistic klystron amplifiers

    NASA Astrophysics Data System (ADS)

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  1. Hyperenergetic manned aerospacecraft propelled by intense pulsed microwave power beam

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1995-09-01

    The objective of this research was to exploit wireless power transmission (microwave/millimeter)--to lower manned space transportation costs by two or three orders of magnitude. Concepts have been developed for lightweight, mass-producible, beam-propelled aerospacecraft called Lightcraft. The vehicles are designed for a 'mass-poor, energy-rich' (i.e. hyper-energentic flight infrastructure which utilizes remote microwave power stations to build an energy-beam highway to space. Although growth in laser power levels has lagged behind expectations, microwave and millimeter-wave source technology now exists for rapid scaling to the megawatt and gigawatt time-average power levels. The design exercise focused on the engine, structure, and receptive optics requirements for a 15 meter diameter, 5 person Earth- to-moon aerospacecraft. Key elements in the airbreathing accelerator propulsion system are: a) a 'flight-weight' 35GHz rectenna electric powerplant, b) microwave-induced 'Air Spike' and perimeter air-plasma generators, and c) MagnetoHydroDynamic-Fanjet engine with its superconducting magnets and external electrodes.

  2. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  3. Dynamic analysis of a buckled asymmetric piezoelectric beam for energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, Louis, E-mail: louis01@umail.ucsb.edu; Moehlis, Jeff

    2016-03-15

    A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.

  4. Numerical investigations of self- and cross-phase modulation effects in high-power fiber amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad

    2017-03-01

    The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.

  5. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer

    2008-02-01

    We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.

  6. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  7. High-energy laser activities at MBDA Germany

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Dietrich, Stephan; Tassini, Leonardo; Protz, Rudolf; Geidek, Franz; Zoz, Jürgen

    2013-05-01

    At MBDA Germany a concept for a high-energy laser weapon system is investigated, which is based on existing industrial laser sources. Due to the enormous progress in the field of high-power fiber lasers, commercial industrial fiber lasers are now available delivering a nearly-diffraction limited beam quality with power levels of up to 10 kW. By using a geometric beam coupling scheme, a number of individual high-power fiber laser beams are combined together using one common beam director telescope. A total laser beam power of more than 100 kW can be achieved, which is sufficient for an operational laser weapon system. The individual beams from the different lasers are steered by servo-loops using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at one common focal point on a distant target, also allowing fine tracking of target movements and first-order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated by using different experimental set-ups. A number of experiments were performed successfully to investigate laser beam target interaction and target fine tracking, also at large distances and at moving targets. Content and results of these investigations are reported, which demonstrate the complete engagement sequence for a C-RAM scenario. This includes subsequent steps of target acquisition by radar and IR optics, followed by large angle coarse tracking, active fine tracking and destruction of the target by the laser system. This successful implementation of geometric beam combining is an important step for the realization of a laser weapon system in the near future.

  8. Power balance on a multibeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  9. Power balance on a multibeam laser

    NASA Astrophysics Data System (ADS)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  10. Power balance on a multibeam laser

    DOE PAGES

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...

    2018-02-15

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  11. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-01-25

    In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

  12. The Improved Power of the Central Lobe in the Beam Combination and High Power Output

    NASA Astrophysics Data System (ADS)

    Liu, Hou-Kang; Xue, Yu-Hao; Li, Zhen; He, Bing; Zhou, Jun; Ding, Ya-Qian; Jiao, Meng-Li; Liu, Chi; Qi, Yun-Feng; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-04-01

    In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.

  13. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.

  14. Free-beam soliton self-compression in air

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  15. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  16. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up tomore » 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.« less

  18. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  19. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOEpatents

    Kellogg, Rick A [Tijeras, NM; Sumali, Hartono [Albuquerque, NM

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  20. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    NASA Astrophysics Data System (ADS)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  1. SSP Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.; Roth, A. (Technical Monitor)

    2000-01-01

    Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.

  2. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  3. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    NASA Astrophysics Data System (ADS)

    Wilkens, V.; Sonntag, S.; Jenderka, K.-V.

    2011-02-01

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  4. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  5. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    NASA Astrophysics Data System (ADS)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  6. RF conditioning and beam experiments on 400 keV RFQ accelerator at BARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shrikrishna; Rao, S.V.L.S.; Kumar, Rajesh, E-mail: sgupta@barc.gov.in

    2014-07-01

    A 400 keV Radio-frequency quadrupole accelerator (RFQ) has been designed, developed and tested at BARC. This will be used as a neutron generator (via D-T reaction). The RFQ operates at a resonant frequency of 350 MHz and needs an RF power of ∼ 60 kW to accelerate the deuteron beam to 400 keV within a length of 1.03 m. Though the RFQ is designed for deuteron beam, it was tested by accelerating both the proton and deuteron beams to their designed values of 200 and 400 keV respectively. The proton and deuteron beam experiments required peak RF power of approx.more » 15 kW and 60 kW respectively at 350 MHz. The RF power from the tetrode amplifier and coaxial transmission lines is coupled to the cavity by a coaxial loop coupler. As the coupler and cavity operated at vacuum of better than 2e-6 torr, extensive RF conditioning of the cavity and coupler was performed to reach at the desired power levels. (author)« less

  7. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  8. High-resolution simulation of deep pencil beam surveys - analysis of quasi-periodicity

    NASA Astrophysics Data System (ADS)

    Weiss, A. G.; Buchert, T.

    1993-07-01

    We carry out pencil beam constructions in a high-resolution simulation of the large-scale structure of galaxies. The initial density fluctuations are taken to have a truncated power spectrum. All the models have {OMEGA} = 1. As an example we present the results for the case of "Hot-Dark-Matter" (HDM) initial conditions with scale-free n = 1 power index on large scales as a representative of models with sufficient large-scale power. We use an analytic approximation for particle trajectories of a self-gravitating dust continuum and apply a local dynamical biasing of volume elements to identify luminous matter in the model. Using this method, we are able to resolve formally a simulation box of 1200h^-1^ Mpc (e.g. for HDM initial conditions) down to the scale of galactic halos using 2160^3^ particles. We consider this as the minimal resolution necessary for a sensible simulation of deep pencil beam data. Pencil beam probes are taken for a given epoch using the parameters of observed beams. In particular, our analysis concentrates on the detection of a quasi-periodicity in the beam probes using several different methods. The resulting beam ensembles are analyzed statistically using number distributions, pair-count histograms, unnormalized pair-counts, power spectrum analysis and trial-period folding. Periodicities are classified according to their significance level in the power spectrum of the beams. The simulation is designed for application to parameter studies which prepare future observational projects. We find that a large percentage of the beams show quasi- periodicities with periods which cluster at a certain length scale. The periods found range between one and eight times the cutoff length in the initial fluctuation spectrum. At significance levels similar to those of the data of Broadhurst et al. (1990), we find about 15% of the pencil beams to show periodicities, about 30% of which are around the mean separation of rich clusters, while the distribution of scales reaches values of more than 200h^-1^ Mpc. The detection of periodicities larger than the typical void size must not be due to missing of "walls" (like the so called "Great Wall" seen in the CfA catalogue of galaxies), but can be due to different clustering properties of galaxies along the beams.

  9. Pointing and Jitter Control for the USNA Multi-Beam Combining System

    DTIC Science & Technology

    2013-05-10

    previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state

  10. Investigation of Fiber Optics Based Phased Locked Diode Lasers

    NASA Technical Reports Server (NTRS)

    Burke, Paul D.; Gregory, Don A.

    1997-01-01

    Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.

  11. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  12. On the theory of self-focusing of powerful wave beams in nonhomogeneous media

    NASA Technical Reports Server (NTRS)

    Yerokhin, N. S.; Fadeyev, A. P.

    1983-01-01

    The stationary self-focusing of the Gauss wave beam is considered in a nonhomogeneous medium in the case of local nonlinearity. Equations of the aberrationless approximation for the beam width, the field on the beam axis and the refraction factor are integrated on a computer. Self-focusing in dependence of the nonlinearity level and initial divergence, the dissipation, the length of nonhomogeneity of the dielectric permittivity nondisturbed by a beam, and the diffraction parameter are investigated.

  13. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  14. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  15. High-powered CO2 -lasers and noise control

    NASA Astrophysics Data System (ADS)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  16. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  17. Beam shaping by using small-aperture SLM and DM in a high power laser

    NASA Astrophysics Data System (ADS)

    Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng

    2018-03-01

    High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.

  18. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    PubMed

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  19. Comparisons of selected laser beam power missions to conventionally powered missions

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.

    1993-01-01

    Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, C. C.; Kramer, G. J.; Johnson, E.

    Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations whenmore » the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.« less

  1. Experimental investigation of optimum beam size for FSO uplink

    NASA Astrophysics Data System (ADS)

    Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat

    2017-10-01

    In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.

  2. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whethermore » electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.« less

  3. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  4. Self-compensation of thermal lens in high-power diode pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun

    2010-02-01

    We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.

  5. High-power microwave production by gyroharmonic conversion and co-generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, M.

    1997-03-01

    An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less

  6. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  7. High power long pulse microwave generation from a metamaterial structure with reverse symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.

    2018-02-01

    Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).

  8. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  9. Hard X-ray Wiggler Front End Filter Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte-Schrepping, Horst; Hahn, Ulrich

    2007-01-19

    The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less

  10. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  11. Satellite Power System (SPS) microwave subsystem impacts and benefits

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    The impacts and benefits to society of the microwave subsystem resulting from the developing, construction and operating of a space solar power to earth, electric power delivery system are presented and discussed. The primary benefit (usable energy) is conveyed mainly in the fundamental frequency portion of the RF radiation beam that is intercepted and converted to electric power output. The small fraction of the microwave and other electromagnetic energy that does not end up in the electric utility grid, yields most of the subsystem impacts. The impacts range from harmonics and noise radiated by the transmitting antenna, through potential interference with ionospheric communications and navigation caused by the power beam heating the ionosphere, to the potential large land area requirements for the rectennas and low level microwave radiation around the rectennas. Additional benefits range from a very low level of waste heat liberated and lack of atmospheric emissions including noise while operating to having no residual ionizing radiation from the rectenna when it is deactivated.

  12. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  13. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  14. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, Ricardo; Balascuta, S.; Benson, Stephen V.

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that needmore » to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.« less

  15. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  16. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  17. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  18. Particle-In-Cell (PIC) simulation of long-anode magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rajendra Kumar, E-mail: rajendra.verma89@gmail.com; Maurya, Shivendra; Singh, Vindhyavasini Prasad

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was ‘Virtual Prototyped’ using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were – hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparisonmore » with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.« less

  19. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  20. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  1. Multi-aperture laser transmissometer system for long-path aerosol extinction rate measurement.

    PubMed

    Wu, Chensheng; Rzasa, John R; Ko, Jonathan; Paulson, Daniel A; Coffaro, Joseph; Spychalsky, Jonathan; Crabbs, Robert F; Davis, Christopher C

    2018-01-20

    We present the theory, design, simulation, and experimental evaluations of a new laser transmissometer system for aerosol extinction rate measurement over long paths. The transmitter emits an ON/OFF modulated Gaussian beam that does not require strict collimation. The receiver uses multiple point detectors to sample the sub-aperture irradiance of the arriving beam. The sparse detector arrangement makes our transmissometer system immune to turbulence-induced beam distortion and beam wander caused by the atmospheric channel. Turbulence effects often cause spatial discrepancies in beam propagation and lead to miscalculation of true power loss when using the conventional approach of measuring the total beam power directly with a large-aperture optical concentrator. Our transmissometer system, on the other hand, combines the readouts from distributed detectors to rule out turbulence-induced temporal power fluctuations. As a result, we show through both simulation and field experiments that our transmissometer system works accurately with turbulence strength Cn2 up to 10 -12   m -2/3 over a typical 1-km atmospheric channel. In application, our turbulence- and weather-resistant laser transmissometer system has significant advantages for the measurement and study of aerosol concentration, absorption, and scattering properties, which are crucial for directed energy systems, ground-level free-space optical communication systems, environmental monitoring, and weather forecasting.

  2. Technology achievements and projections for communication satellites of the future

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1986-01-01

    Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.

  3. High throughput laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  4. Microwave system performance for a solar power satellite during startup/shutdown operations

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Berlin, L. A.

    1979-01-01

    The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.

  5. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam.

    PubMed

    Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng

    2018-05-03

    High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.

  6. A high efficiency Ku-band radial line relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a highmore » power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, James N.; Benford, Dominic J., E-mail: jimbenford@gmail.com

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for ourmore » receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.« less

  8. Multimegawatt cyclotron autoresonance accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.

    1996-05-01

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance acceleratormore » (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}« less

  9. Long-pulse power-supply system for EAST neutral-beam injectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team

    2017-05-01

    The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.

  10. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  11. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  12. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  13. Diode lasers optimized in brightness for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  14. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    NASA Astrophysics Data System (ADS)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  15. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  16. A monostable piezoelectric energy harvester for broadband low-level excitations

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Tan, Qinxue; Zhang, Yiwei; Liu, Shaohua; Cai, Meiling; Zhu, Yingmin

    2018-03-01

    This letter presents a monostable piezoelectric energy harvester (PEH) for achieving enhanced energy extraction from low-level excitations. The proposed PEH is realized by introducing symmetric magnetic attraction to a piezoelectric cantilever beam and a pair of stoppers to confine the maximum deflection of the beam. The lumped parameter model of such a system is presented and experimentally validated. Theoretical simulations and experimental measurements demonstrate that the proposed design can bring about a wider operating bandwidth and higher output voltage than the linear PEH. Under a sinusoidal vibration with an amplitude of 3 m/s2, a 54% increase in the operating bandwidth and a 253% increase in the magnitude of output power are achieved compared to its linear counterpart. Moreover, the proposed PEH exhibits rich dynamic features, including the tunable operating bandwidth, adjustable voltage and power levels, and softening hysteresis.

  17. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  18. Beamed microwave power transmitting and receiving subsystems radiation characteristics

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1980-01-01

    Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.

  19. Coherent Structures and Chaos Control in High-Power Microwave and Charged-Particle Beam Devices

    DTIC Science & Technology

    2009-01-31

    34Equilibrium Theory of an Intense Elliptic Beam for High - Power Ribbon-Beam Klystron Applications," Proc. 2007 Part. Accel. Conf. p. 2316. Courant...34Equilibrium Theory of an Intense Elliptic Beam for High - Power Ribbon-Beam Klystron Applications," C. Chen and J. Zhou, Proc. 2007 Part. Accel. Conf. (2007...accelerator focusing systems. Over 600 high - power , high -efficiency klystrons , for example, may be needed to provide rf power for the acceleration

  20. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    NASA Astrophysics Data System (ADS)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  1. Earth to Orbit Beamed Energy Experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  2. Test of an argon cusp plasma for tin LPP power scaling

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2015-03-01

    Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.

  3. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  4. Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)

    NASA Astrophysics Data System (ADS)

    Wadsworth, William J.; Coutts, David W.; Webb, Colin E.

    1999-11-01

    High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.

  5. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  6. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  7. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  8. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.

    PubMed

    Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E

    2003-07-21

    Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.

  9. Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying

    A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less

  10. Ground-Based High Energy Power Beaming in Support of Spacecraft Power Requirements

    DTIC Science & Technology

    2006-06-01

    provide 900 W/m2. As more of the arriving energy is converted to space bus power and less goes into the production of heat , more solar cell output...similar control of peak power levels. Efficiency of power transfer may easily be about 50% as the solar cell experiences less heating effects as the...investigates the feasibility of projecting ground-based laser power to energize a spacecraft electrical bus via the solar panels. The energy is projected

  11. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  12. FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS

    PubMed Central

    Bessonova, O.V.; Khokhlova, V.A.; Bailey, M.R.; Canney, M.S.; Crum, L.A.

    2009-01-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions. PMID:20161349

  13. FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS.

    PubMed

    Bessonova, O V; Khokhlova, V A; Bailey, M R; Canney, M S; Crum, L A

    2009-07-21

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  14. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    NASA Astrophysics Data System (ADS)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  15. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  16. A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak

    NASA Astrophysics Data System (ADS)

    Carnevali, Antonino

    An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.

  17. Design and evaluation of an electromagnetic beam waveguide for measuring electrical properties of materials

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.

  18. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

    DOE PAGES

    Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...

    2017-09-04

    A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less

  19. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  20. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less

  1. Formation of short high-power laser radiation pulses in excimer mediums

    NASA Astrophysics Data System (ADS)

    Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.

    2007-06-01

    Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.

  2. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net; University of Chinese Academy of Sciences, Beijing 100190

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beammore » tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.« less

  3. Ion Diode Experiments on PBFA-X

    NASA Astrophysics Data System (ADS)

    Lockner, Thomas

    1996-05-01

    The PBFA-II pulsed power accelerator at Sandia National Laboratories has been modified to replace the radially focusing ion diode with an extraction ion diode. In the extraction diode mode (PBFA X) the ion beam is generated on the surface of an annular disk and extracted along the cylindrical axis. An additional magnetically insulated transmission line (MITL) has been installed to transmit power from the center to the bottom of the accelerator, where it drives a magnetically insulated extraction ion diode. The modification increases access to the diode and the diagnostics, permitting a higher shot rate, and allows us to study extraction diode technology at a power level near what is required for a high yield facility. The modification also includes reversing the polarity of the top half of the accelerator to permit operation at twice the previous source voltage. In the new configuration the diode could operate at 15 MV and 0.8 MA. This operating point is near the 30 MV, 1.0 MA operating point envisioned for one module of a high yield facility, and will allow the study of intense extraction ion diodes at power levels relevant to such a facility. Experimental results will be presented including MITL coupling studies, beam current density control, discharge cleaning of diode surfaces to reduce the presence of contaminant ions in the source beam, and the effect of anode substrate materials on the purity of the lithium beam. A comparison between predicted and measured radial beam profiles will also be presented, with the predicted profiles obtained from the ATHETA code that solves magnetostatics problems in two dimensions. This work was supported by the US/DOE under contract No. DE-AC04-94AL85000. +In collaboration with R. S. Coats, M. E. Cuneo, M. P. Desjarlias, D. J. Johnson, T. A. Mehlhorn, C. W. Mendel, Jr., P. Menge#, and W. J. Poukey,

  4. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.

  5. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  6. Second Beamed Space-Power Workshop

    NASA Technical Reports Server (NTRS)

    Deyoung, Russell J. (Editor)

    1989-01-01

    Potential missions for microwave and laser power beaming in space are discussed. Power beaming options, millimeter wave technology, laser technology, lunar bases, spacecraft propulsion, and near-Earth applications are covered.

  7. Power beaming research at NASA

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  8. The European scene regarding spallation neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.S.

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled andmore » Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.« less

  9. All-fiber 7x1 signal combiner for incoherent laser beam combining

    NASA Astrophysics Data System (ADS)

    Noordegraaf, D.; Maack, M. D.; Skovgaard, P. M. W.; Johansen, J.; Becker, F.; Belke, S.; Blomqvist, M.; Laegsgaard, J.

    2011-02-01

    We demonstrate an all-fiber 7x1 signal combiner for incoherent laser beam combining. This is a potential key component for reaching several kW of stabile laser output power. The combiner couples the output from 7 single-mode (SM) fiber lasers into a single multi-mode (MM) fiber. The input signal fibers have a core diameter of 17 μm and the output MM fiber has a core diameter of 100 μm. In a tapered section light gradually leaks out of the SM fibers and is captured by a surrounding fluorine-doped cladding. The combiner is tested up to 2.5 kW of combined output power and only a minor increase in device temperature is observed. At an intermediate power level of 600 W a beam parameter product (BPP) of 2.22 mm x mrad is measured, corresponding to an M2 value of 6.5. These values are approaching the theoretical limit dictated by brightness conservation.

  10. History and status of beamed power technology and applications at 2.45 Gigahertz

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1989-01-01

    Various applications of beamed power technology are discussed. An experimental microwave powered helicopter, rectenna technology, the use of the Solar Power Satellite to beam energy to Earth via microwaves, the use of cyclotron resonance devices, microwave powered airships, and electric propulsion are discussed.

  11. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air

  12. Performance of large area xenon ion thrusters for orbit transfer missions

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1989-01-01

    Studies have indicated that xenon ion propulsion systems can enable the use of smaller Earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations has been demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have the potential for growth in thrust and power levels beyond 10 KW.

  13. ATF neutral beam injection: optimization of beam alignment and aperturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.N.; Fowler, R.H.; Rome, J.A.

    1985-12-01

    The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less

  14. Beams 92: Proceedings. Volume 1: Invited papers, pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, D.; Cooperstein, G.

    1993-12-31

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere.

  15. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  16. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.

  17. Agile lensing-based non-contact liquid level optical sensor for extreme environments

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer; Riza, Nabeel A.

    2010-09-01

    To the best of the author's knowledge, demonstrated is the first opto-fluidic technology- based sensor for detection of liquid levels. An opto-fluidic Electronically Controlled Variable Focus Lens (ECVFL) is used to change the spatial intensity profile of the low power optical beam falling on the liquid surface. By observing, tuning and measuring the liquid surface reflected intensity profile to reach its smallest size, the liquid level is determined through a beam spot size versus ECVFL focal length calibration table. Using a 50 μW 632.8 nm laser wavelength liquid illuminating beam, a proof-of-concept sensor is tested using engine oil, vegetable oil, and detergent fluid with measured liquid levels over a 75 cm range. This non-contact Radio Frequency (RF) modulation-free sensor is particularly suited for hazardous fluids in window-accessed sealed containers including liquid carrying vessels in Electromagnetic Interference (EMI) rich environments.

  18. Linear beam raster magnet driver based on H-bridge technique

    DOEpatents

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  19. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; hide

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  20. On the exploration of effect of critical beam power on the propagation of Gaussian laser beam in collisionless magnetized plasma

    NASA Astrophysics Data System (ADS)

    Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.

    2018-05-01

    It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.

  1. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  2. National Ignition Facility Comes to Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energymore » requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.« less

  3. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  4. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6 T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2 GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and currentmore » are, respectively, 540 kV and 5.8 kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.« less

  5. Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects.

    PubMed

    Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V

    2012-12-21

    We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

  6. Power combining in an array of microwave power rectifiers

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.; Borrego, J. M.

    1979-01-01

    This work analyzes the resultant efficiency degradation when identical rectifiers operate at different RF power levels as caused by the power beam taper. Both a closed-form analytical circuit model and a detailed computer-simulation model are used to obtain the output dc load line of the rectifier. The efficiency degradation is nearly identical with series and parallel combining, and the closed-form analytical model provides results which are similar to the detailed computer-simulation model.

  7. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  8. Multiple scattering corrections to the Beer-Lambert law. 2: Detector with a variable field of view.

    PubMed

    Zardecki, A; Tam, W G

    1982-07-01

    The multiple scattering corrections to the Beer-Lambert law in the case of a detector with a variable field of view are analyzed. We introduce transmission functions relating the received radiant power to reference power levels relevant to two different experimental situations. In the first case, the transmission function relates the received power to a reference power level appropriate to a nonattenuating medium. In the second case, the reference power level is established by bringing the receiver to the close-up position with respect to the source. To examine the effect of the variation of the detector field of view the behavior of the gain factor is studied. Numerical results modeling the laser beam propagation in fog, cloud, and rain are presented.

  9. Method and apparatus for reducing coherence of high-power laser beams

    DOEpatents

    Moncur, Norman K.; Mayer, Frederick J.

    1978-01-01

    Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.

  10. High-Average Power Broadband 18-Beam Klystron Circuit and Collector Designs

    DTIC Science & Technology

    2008-04-01

    high -average power S - band multiple-beam klystron are presented. The klystron will be powered by the recently completed 41.6 A, 42...al., “ High - power Four-cavity S - band multiple-beam klystron design,” IEEE Trans. Plasma Science, vol. 33, pp. 1119-1135, April 2005. [3] D.K Abe, et...APR 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE High -average Power Broadband 18-beam

  11. Manufacturable Tri-Stack AlSb/InAs HEMT Low-Noise Amplifiers Using Wafer-Level-Packaging Technology for Light-Weight and Ultralow-Power Applications

    DTIC Science & Technology

    2009-05-01

    shown in Fig. 1 was grown by molecular - beam epitaxy (MBE) on 3-inch semi-insulating GaAs substrates. AlGaSb was used as a buffer. AlSb was used as... beam epitaxy for low-power applications,” J. Vac. Sci. Technol. B. 24, pp. 2581-2585, 2006. [12] Y. C. Chou, L. J. Lee, J. M. Yang, M. D. Lange, P...passivation AlGaSb buffer Figure 1: Cross section of an AlSb/InAs HEMT device on a 3-inch GaAs substrate. The interface region between the

  12. Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru

    2004-05-01

    The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.

  13. Remotely-interrogated high data rate free space laser communications link

    DOEpatents

    Ruggiero, Anthony J [Livermore, CA

    2007-05-29

    A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

  14. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.

  15. Free-electron laser power beaming to satellites at China Lake, California

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.

    1994-05-01

    Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.

  16. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  17. Self-visualization of transparent microscopic objects in optical glasses under the conditions of the thermal self-action of an illuminating laser beam

    NASA Astrophysics Data System (ADS)

    Bubis, E. L.; Palashov, O. V.; Kuz'min, I. V.; Snetkov, I. L.; Gusev, S. A.

    2017-03-01

    We demonstrate the process of adaptive self-visualization of small-scale transparent objects and structures in weakly absorbing optical glasses (a glass plate made of K8 and an NS-1 neutral density filter) placed in the Fourier plane of the optical system under the conditions of thermal self-action of the illuminating laser beam. The process is based on the ideology of the classical Zernike phase contrast method. The process is implemented at the level of power of radiation of the illuminated object varying from several milliwatts to tens of watts in the visible and IR spectral ranges. The conducted experiments indicate that the visualization takes place in all glasses and optical elements fabricated from them at an appropriate level of the radiation power.

  18. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  19. Red and infrared gas laser beam for therapy

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Ristici, Marin; Ristici, E.; Tivarus, Madalina-Elena

    2000-06-01

    For the low power laser therapy, the experiments show that better results are obtained when the laser beam is an overlapping of two radiations: one in the visible region of the spectrum and the other in IR region. Also, some experiments show that for good results in biostimulation it is important to have a high coherence length of laser beam; this is not the case of the laser diodes The He-Ne laser has the best coherence, being able to generate laser radiations in visible and IR. It has tow strong laser lines: 633 nm and 1.15 micrometers . Although their gains are about the same, the available power of the red radiation is 3-4 times higher because of its larger width, when they oscillate separately. Using special dichroic mirrors for simultaneous reflection of the both liens, the laser beam will consist of the two radiations, each of them having good coherence . A 420 mm active length, 1.8 mm inner diameter He-Ne laser tube and a special designed resonator has been developed. The mirrors reflect both radiations as follows: one reflects 99.9 percent and the other, the output mirror, reflects 98 percent. There is a competition between them because these lines have a common lower level. The output power of the laser beam as 6 mW for 633 nm and 4 mW for 1.15 micrometers , respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M.; Janyani, Vijay

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The presentmore » paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.« less

  1. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  2. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less

  3. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  4. High-power beam steering using phase conjugation through Brillouin-induced four-wave mixing.

    PubMed

    Jones, D C; Cook, G; Ridley, K D; Scott, A M

    1991-10-15

    We report an experimental demonstration of a beam-steering concept. A high-reflectivity phase-conjugate mirror is used to steer a high-power phase-conjugate beam using a low-power signal beam. The high reflectivity phase conjugation is achieved using Brillouin-induced four-wave mixing in a cell containing carbon disulfide.

  5. The output power improvement and durability with different shape of MEMS piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Chen, C. T.; Fu, Y. H.; Tang, W. H.; Lin, S. C.; Wu, W. J.

    2018-03-01

    MEMS piezoelectric energy harvester (PEH) has been widely designed in cantilever beam style because of ease of fabrication and effective to generate large strain and output power. There are already several studies on tapered beam shapes to improve the overall performance of energy harvested. In this paper, we investigate cantilever beam type PEH in rectangular, trapezoidal and triangle shapes, and the devices are limited to the area smaller than 1cm × 1 cm for better flexibility in applications. The power output and the life time of each shape of devices are fabricated and characterized. The output power are tested with optimal resistance loads, and the output power are 145.3 μW, 125.3 μW and 107.8 μW for triangle, trapezoidal and rectangular shapes of devices respectively under excitation of 0.5g acceleration vibration level in the resonant frequency of the transducer. The tip displacements of the 3 devices are 3.05 mm, 2.66 mm, and 2.44 mm for triangular, trapezoidal and rectangular shape devices, respectively. To study the lifetime and durability issue, triangular and rectangular devices are excited under 0.2g to 1g for 24 hours. The resonant frequency shifting, tip displacement and open circuit voltage changing are monitored will be detailed in the paper.

  6. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths resultsmore » in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER operation. The gas profile and the magnetic field distribution for each scenario has been considered in these evaluations. The worst case power loads and power densities for each surface have been used to study their thermo-mechanical behaviour and manufacturing feasibility. The details of these calculations and results obtained are presented and discussed.« less

  7. Scientific program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerich, C.

    1983-01-01

    The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.

  8. High power ring methods and accelerator driven subcritical reactor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahar, Malek Haj

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g.,more » PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.« less

  9. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  10. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  11. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.

  12. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  13. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  14. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  15. Fine-tuning to minimize emittances of J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2016-02-15

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about one year. By the world’s brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. In order to minimize the transverse emittances, the rod-filter-field (RFF) was optimized by changing the triple-gap-lengths of each of pairing five piece rod-filter-magnets. The larger emittance degradation seems to be caused by impurity-gases than the RFF. The smaller beam-hole-diameter of the extraction electrode caused the more than expected improvements on not only the emittances but also the peak beam intensity.

  16. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  17. Phase I Development of Neutral Beam Injector Solid-State Power System

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth

    2017-10-01

    Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.

  18. Welding of Vanadium, Tantalum, 304L and 21-6-9 Stainless Steels, and Titanium Alloys at Lawrence Livermore National Laboratory using a Fiber Delivered 2.2 kW Diode Pumped CW Nd:YAG Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T; Elmer, J; Pong, R

    This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less

  19. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  20. Electrode structure of a compact microwave driven capacitively coupled atomic beam source

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi

    2018-01-01

    A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.

  1. Laser power beaming applications and technology

    NASA Astrophysics Data System (ADS)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  2. High Power Mid Wave Infrared Semiconductor Lasers

    DTIC Science & Technology

    2006-06-15

    resonance and the gain spectrum. The devices were grown using solid source molecular beam epitaxy (MBE) in a V80 reactor. Two side polished, undoped...verify the inherent low activation energy. N-type and P-type AISb, and various compositions of InxAl 1xSb, were grown by solid-source molecular beam ...level monitoring. Advances in epitaxial growth of semiconductor materials have allowed the development of Arsenic- free optically-pumped MWIR lasers on

  3. Experimental investigation of the transverse modal instabilities onset in high power fully-aperiodic-large-pitch fiber lasers

    NASA Astrophysics Data System (ADS)

    Malleville, Marie-Alicia; Benoît, Aurélien; Dauliat, Romain; Leconte, Baptiste; Darwich, Dia; du Jeu, Rémi; Jamier, Raphaël.; Schwuchow, Anka; Schuster, Kay; Roy, Philippe

    2018-02-01

    Over the last decade, significant work has been carried out in order to increase the energy/peak power provided by fiber lasers. Indeed, new microstructured fibers with large (or very large) mode area cores (LMA) such as Distributed Mode Filtering (DMF) fibers and Large-Pitch Fibers (LPF) have been developed to address this concern. These technologies have allowed diffraction-limited emission with core diameters higher than 80 μm, and have state-of-the-art performances in terms of pulse energy or peak power while keeping an excellent spatial beam quality. Although these fibers were designed to reach high power levels while maintaining a single transverse mode propagation, power scaling becomes quickly limited by the onset of transverse modal instabilities (TMI). This effect suddenly arises when a certain average power threshold is exceeded, drastically degrading the emitted beam quality. In this work, we investigate the influence of the core dimensions and the refractive index mismatch between the active core and the background cladding material, on the TMI power threshold in rod-type Fully-Aperiodic-LPF. This fiber structure was specifically designed to enhance the higher-order modes (HOMs) delocalization out of the gain region and thus push further the onset of modal instabilities. Using a 400W pump diode at 976 nm, the power scaling, as well as the spatial beam quality and its temporal behavior were investigated in laser configuration, which theoretically provides a lower TMI power threshold than the amplifier one due to the lack of selective excitation of the fundamental mode.

  4. Preliminary Modelling of Radiation Levels at the Fermilab PIP-II Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lari, L.; Cerutti, F.; Esposito, L. S.

    PIP-II is the Fermilab's flagship project for providing powerful, high-intensity proton beams to the laboratory's experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.

  5. A solar simulator-pumped gas laser for the direct conversion of solar energy

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  6. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  7. Modeling of a Compact Terahertz Source based on the Two-Stream Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svimonishvili, Tengiz

    2016-05-17

    THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less

  8. Ring Laser Gyro Resonator Design

    DTIC Science & Technology

    1994-06-20

    vibration environment could cause errors in measured RLG rotation rates due to vibration (tilt) of the resonator mirrors . Vibration-induced mirror tilt...the RLG resonator design theoretically and calculated pertinent parameters such as the beam diameter at the aperture, cavity mirror alignment...sensitivities, and power loss due to aperture occlusion. The mirror vibration levels required to significantly affect the laser power were then calculated for

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abudureyimu, Reheman; Huang, Chunning; Liu, Yun

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  10. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  11. A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Ludewigt, B.

    2011-06-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  12. 2.1 μm high-power laser diode beam combining(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel

    2016-10-01

    Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation lenses used in the experiment. We evaluated two broadband (1.8 - 3 µm) AR coated Geltech aspheric lenses with focal lengths of 1.87 mm and 4 mm, with numerical apertures of 0.85 and 0.56, respectively, as an initial collimation lens, followed by an additional cylindrical lens of focal length 100 mm for fully collimating the slow axis. Using D-shaped gold-coated mirrors, multiple single emitter beams are stacked in the fast axis direction with the objective that the combined beam has a beam propagation factor in the stacking direction close to the beam propagation factor of the slow axis of a single emitter, e.g. M2 of 20 to 25 in both axes. We further found that the output beam of a single emitter is highly linearly polarized along the slow axis, making it feasible to implement polarization beam combining techniques to increase the beam power by a factor two while maintaining the same beam quality. Along with full beam characterization, a power scaling strategy towards a multi-watt output power beam combining laser system will be presented.

  13. An analysis of power beaming for the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.

    1992-01-01

    Operations on the surface of the Moon and Mars will depend on a reliable source of electrical power. At NASA Lewis Research Center, the feasibility of powering lunar and Martian surface sites by power beaming was studied. Constellations of nuclear or solar powered satellites using microwave or laser transmitters were designed to power an equatorial surface base. Additional surface assets, such as rovers, can also be powered from the same orbiting satellites, requiring only the additional mass of a receiver. However, the actual mass and power capabilities of the system are dependent on the location of the surface receiver. The masses of the beam power systems can be reduced by up to 50 percent, by using the power source of an electric propulsion vehicle to power the beam system. The important analyses results and any additional issues that remain unresolved are discussed.

  14. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  15. Pre-conditioning procedure suitable for internal-RF-antenna of J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H{sup −} ion source has been successfully operated for about 1 yr. By the world brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. Although no internal-RF-antenna failure, except for the once caused by an excess cesium due to a misoperation, occurred in the operation, many antennas failed in pre-conditionings for the first hundred days. The antenna failure rate was drastically decreased by using an antenna with coating thicker than a standard value and the pre-conditioning procedure repeating 15 min 25 kW RF-power operation and impurity-gasmore » evacuation a few times, before the full power (50 kW) operation.« less

  16. Concepts for laser beam parameter monitoring during industrial mass production

    NASA Astrophysics Data System (ADS)

    Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard

    2017-02-01

    In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.

  17. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mmmore » to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.« less

  18. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  19. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    NASA Astrophysics Data System (ADS)

    McLinko, Ryan M.; Sagar, Basant V.

    2009-12-01

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages. The only satellites that are constrained to a significant mass are the beam-down satellites, which still require significant transmission arrays to sufficiently focus the beams targeting corresponding ground stations. With robust design and inherent redundancy built-in, power generation and transmission will not be interrupted in the event of mishaps like space debris collision. Furthermore, the "plug and play" nature of this system significantly reduces the cost, complexity, and risk of upgrading the system. The distributed nature of smallsat clusters maximizes the use of economies of scale. This approach retains some problems of older designs and introduces additional ones. Mitigations will be explored further. For example, the distributed nature of the system requires very precise coordination between and among satellites and a mature attitude control and determination system. Such a design incorporates multiple beaming stages, which has the potential to reduce overall system efficiency. Although this design eliminates the need for space assembly, it retains the challenge of significant on-orbit deployment of solar and transmission arrays. Space power "beaming" is a three step process that involves: 1) conversion of dc power generated by solar cells on the satellite into an electromagnetic wave of suitable frequency, 2) transmission of that wave to power stations on ground, and 3) conversion of the radio waves back into dc power. A great deal of research has been done on the use of microwaves for this purpose. Various factors that affect efficient power generation and transmission will be analyzed in this paper. Based on relevant theory and performance and optimization models, the paper proposes solutions that will help make space-based solar power generation a practical and viable option for addressing the world's growing energy needs.

  20. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    NASA Astrophysics Data System (ADS)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  1. Improving the beam quality of high-power laser diodes by introducing lateral periodicity into waveguides

    NASA Astrophysics Data System (ADS)

    Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej

    2013-01-01

    Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.

  2. Sensitivity Testing of the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Anderson, John; Brophy, John

    2007-01-01

    During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.

  3. Histological and ultrastructural effect of an Nd:YAG pulsed laser beam on dental hard tissue and pulp

    NASA Astrophysics Data System (ADS)

    Vignato, Costantino; Vignato, Giuseppe; Nardelli, Antonella; Baldan, Arianna; Mason, Pier N.

    1994-09-01

    The purpose of this study was to determine histological and ultrastructural modifications produced by an Nd:YAG pulsed laser beam after an in vivo exposure of human molars. Using a Nd:YAG pulsed laser beam delivered by a 600 micrometers optical fiber and concurrent air and water cooling spray, 14 human third molars with artificial first class cavities were exposed at different power levels (6, 7, and 8 W). All the teeth were extracted at different time periods between 10 and 25 days and prepared for histological examination. The results of the histological examination showed no evidence of degeneration or necrosis of the pulpar tissue. Analysis of the dentinal surfaces after exposure demonstrated that the dentinal tubules are completely closed due to the melted dentin. In conclusion a Nd:YAG pulsed laser beam with an air and water cooling spray is safe for treatments of class I decay and no necrosis or degeneration of the pulp was found for laser powers of 6, 7, and 8 W.

  4. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    PubMed

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  5. Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao

    2013-08-01

    We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.

  6. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  7. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    PubMed

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  8. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing concerns. We present a theoretical analysis for the beam-wave interactions in the MFM's input and output cavities. We show the conditions required for successful frequency multiplication inside the output cavity. Computer simulations using the plasma physics code MAGIC show that 100 kW of Ka-band (32-GHz) output power can be produced using an 80-kW X-band (8-GHz) signal at the MFM's input. The associated MFM efficiency - from beam power to Ka-band power - is 83 percent. Thus, the overall klystron-MFM efficiency is 42 percent - assuming that a klystron with an efficiency of 50 percent delivers the input signal.

  9. Signal acquisition and scale calibration for beam power density distribution of electron beam welding

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong

    2017-06-01

    The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.

  10. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  11. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Fawley, W. M.; Esarey, E.

    2003-07-01

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuations reach a minimum.

  12. System and method for laser-based, non-evaporative repair of damage sites in the surfaces of fused silica optics

    DOEpatents

    Adams, John J.; Bolourchi, Masoud; Bude, Jeffrey D.; Guss, Gabriel M.; Jarboe, Jeffery A.; Matthews, Manyalibo J.; Nostrand, Michael C; Wegner, Paul J.

    2016-09-06

    A method for repairing a damage site on a surface of an optical material is disclosed. The method may involve focusing an Infrared (IR) laser beam having a predetermined wavelength, with a predetermined beam power, to a predetermined full width ("F/W") 1/e.sup.2 diameter spot on the damage site. The focused IR laser beam is maintained on the damage site for a predetermined exposure period corresponding to a predetermined acceptable level of downstream intensification. The focused IR laser beam heats the damage site to a predetermined peak temperature, which melts and reflows material at the damage site of the optical material to create a mitigated site.

  13. Evaluating the beam quality of double-cladding fiber lasers in applications.

    PubMed

    Yan, Ping; Wang, Xuejiao; Gong, Mali; Xiao, Qirong

    2016-08-10

    We put forward a new βFL factor, which is used exclusively in fiber lasers and is suitable to assess beam quality and choose the LP01 mode as the new suitable ideal beam. We present a new simple measurement method and verify the reasonability of the βFL factor in experiment in a 20/400 μm fiber laser. Furthermore, we use the βFL factor to evaluate the beam quality of a 3-kW-level fiber laser. It can be concluded that βFL is a key factor not only for assessing the performance of the high-power fiber laser that is our main focus, but also for the simple measurement.

  14. SU-F-J-193: Efficient Dose Extinction Method for Water Equivalent Path Length (WEPL) of Real Tissue Samples for Validation of CT HU to Stopping Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Baer, E; Jee, K

    Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiatemore » the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.« less

  15. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  16. Earth-to-Orbit Beamed Energy eXperiment (EBEX)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are 1) large area, low mass spacecraft and 2) efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. A more detailed investigation of accessing LightSail-2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, it is a first step toward that goal.

  17. Large-Signal Code TESLA: Current Status and Recent Development

    DTIC Science & Technology

    2008-04-01

    K.Eppley, J.J.Petillo, “ High - power four cavity S - band multiple- beam klystron design”, IEEE Trans. Plasma Sci. , vol. 32, pp. 1119-1135, June 2004. 4...advances in the development of the large-signal code TESLA, mainly used for the modeling of high - power single- beam and multiple-beam klystron ...amplifiers. Keywords: large-signal code; multiple-beam klystrons ; serial and parallel versions. Introduction The optimization and design of new high power

  18. Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; Nusbaum, D.

    2018-05-01

    The original SARAF 3.8 m long 4-rod Radio Frequency Quadrupole (RFQ) has been successful in acceleration of 4 mA Continuous Wave (CW) proton beam and pulsed deuteron beam to 1.5 MeV/u. However, conditions for running CW deuteron beam have not been achieved in the original design. A new 4-rod structure has been designed and implemented, with the goal of reducing the RF power required for CW deuteron operation while slightly compromising the RFQ exit energy to 1.27 MeV/u. The new 4-rod structure was manufactured, and installed in place of the old rod electrodes. Superior field homogeneity was achieved. The RFQ was successfully conditioned to the RF power 200 kW required for CW deuteron operation, with sufficient power margin. The commissioning with proton and deuteron beams showed that most of beam parameters are close to the designed specifications. The first operation with CW RF power of 5 mA deuteron beam was demonstrated. In addition, a 1.1 mA CW deuteron beam was transported through the superconducting module. The future scope of RFQ improvements is discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Gu, Chun; Xu, Lixin, E-mail: xulixin@ustc.edu.cn

    The self-adapting algorithms are improved to optimize a beam configuration in the direct drive laser fusion system with the solid state lasers. A configuration of 32 laser beams is proposed for achieving a high uniformity illumination, with a root-mean-square deviation at 10{sup −4} level. In our optimization, the parameters such as beam number, beam arrangement, and beam intensity profile are taken into account. The illumination uniformity robustness versus the parameters such as intensity profile deviations, power imbalance, intensity profile noise, the pointing error, and the target position error is also discussed. In this study, the model is assumed a solid-spheremore » illumination, and refraction effects of incident light on the corona are not considered. Our results may have a potential application in the design of the direct-drive laser fusion of the Shen Guang-II Upgrading facility (SG-II-U, China).« less

  20. A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai

    2018-03-01

    With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.

  1. New generation of compact high power disk lasers

    NASA Astrophysics Data System (ADS)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  2. Advanced control of neutral beam injected power in DIII-D

    DOE PAGES

    Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...

    2017-03-23

    In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less

  3. Purity of Vector Vortex Beams through a Birefringent Amplifier

    NASA Astrophysics Data System (ADS)

    Sroor, Hend; Lisa, Nyameko; Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2018-04-01

    Creating high-quality vector vortex (VV) beams is possible with a myriad of techniques at low power, and while a few studies have produced such beams at high power, none have considered the impact of amplification on the vector purity. Here we employ tools to study the amplification of VV beams and, in particular, the purity of such modes. We outline a versatile toolbox for such investigations and demonstrate its use in the general case of VV beams through a birefringent gain medium. Intriguingly, we show that it is possible to enhance the purity of such beams during amplification, paving the way for high-brightness VV beams, a requirement for their use in high-power applications such as optical communication and laser-enabled manufacturing.

  4. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  5. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less

  6. Combination free electron and gaseous laser

    DOEpatents

    Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  7. {omega} meson production in pp collisions with a polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanyam, J.; Venkataraya,; Ramachandran, G.

    2008-07-15

    Model independent formulas are derived for the beam analyzing power A{sub y} and beam to meson spin transfers in pp{yields}pp{omega}, taking into consideration all six threshold partial wave amplitudes f{sub 1},...,f{sub 6} covering the Ss, Sp, and Ps channels. It is shown that the lowest three partial wave amplitudes f{sub 1},f{sub 2},f{sub 3} can be determined empirically without any discrete ambiguities. Partial information with regard to the amplitudes f{sub 4},f{sub 5},f{sub 6} covering the Ps channel may be extracted, if the measurements are carried through at the double differential level.

  8. Study of a high power hydrogen beam diagnostic based on secondary electron emission.

    PubMed

    Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  9. Reduction of toroidal rotation by fast wave power in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassie, J.S. de; Baker, D.R.; Burrell, K.H.

    1997-04-01

    The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less

  10. 1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki

    2012-11-01

    We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.

  11. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  13. Power-Scalable Blue-Green Bessel Beams

    DTIC Science & Technology

    2016-02-23

    19b. TELEPHONE NUMBER (Include area code) 02/23/2016 Final Technical JAN 2011 - DEC 2013 Power-Scalable Blue -Green Bessel Beams Siddharth Ramachandran...fiber lasers, non-traditional emission wavelengths, high-power blue -green tunabel lasers U U U SAR 11 Siddharth Ramachandran 617-353-9811 1 Power...Scalable Blue -Green Bessel Beams Siddharth Ramachandran Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215 phone: (617) 353

  14. Coherent Structures and Chaos Control in High-Power Microwave Devices

    DTIC Science & Technology

    2006-06-29

    Theory of Multiresonator Cylindrical Magnetrons 2. High - Power Klystron Research 9 2.1. Determination of the Current Limit on the Confinement of Finite...Size Bunched Pencil Beams in High - Power Relativistic Klystrons 2.2. Exploration of the Possibility of Magnetic Cusp Formation in Highly Bunched...Annular Beams in High - Power Relativistic Klystrons 3. Development of Ellipse-Shaped Ribbon-Beam Theory for HPM Device Applications 12 3.1. Theory of

  15. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  16. Optical computing research

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    1987-10-01

    Work Accomplished: OPTICAL INTERCONNECTIONS - the powerful interconnect abilities of optical beams have led much optimism about the possible roles for optics in solving interconnect problems at various levels of computer architecture. Examined were the powerful requirements of optical interconnects at the gate-to-gate and chip-to-chip levels. OPTICAL NEUTRAL NETWORKS - basic studies of the convergence properties on the Holfield model, based on mathematical approach - graph theory. OPTICS AND ARTIFICIAL INTELLIGENCE - review the field of optical processing and artificial intelligence, with the aim of finding areas that might be particularly attractive for future investigation(s).

  17. A study of the vibrational energies of two coupled beams by finite element and green function (receptance) methods

    NASA Astrophysics Data System (ADS)

    Shankar, K.; Keane, A. J.

    1995-04-01

    The behaviour of two hinged-hinged beams, point coupled by springs (translational, rotary and a combination of both) with weak to strong coupling is studied from the point of view of vibrational energies, input power and power transferred through the coupling. Two configurations are studied: in the first case the beams are placed parallel to each other and only the transverse, Euler-Bernoulli modes are considered; the second configuration is more complicated with the beams placed perpendicular to each other, executing axial as well as transverse vibrations. These models are studied by using a finite element analysis (FEA) package and, alternatively, via the modally derived Green functions of the uncoupled subsystems. In both cases the beams are given proportional damping and one of the beams is driven by a point harmonic force. The effects of coupling stiffness and modal summation bandwidth are studied. It is shown that there is good agreement between the FEA and the Green function approach over a range of coupling strengths, but that at higher strengths the number of uncoupled modes used significantly affects the accuracy of the Green function method used here. The beams in the second configuration are then further studied from the point of view of SEA coupling loss factors. The frequency averaged coupling loss factors are calculated for weak and strong coupling, first by using a power injection method, where the power balance equations are formed on the assumption of only direct coupling loss factors. Then, the entire matrix of direct and indirect coupling loss factors is derived by using a deterministic modal approach. These are compared and the indirect coupling loss factors are found to be significant in magnitude in respect to the direct coupling loss factors. Several cases are studied in which the coupling powers and energy levels are predicted by using only the direct coupling loss factors and compared with the exact results obtained by using both direct and indirect factors. These agree only under certain conditions for weak coupling and show rather poorer agreement in the case of strong coupling. This behaviour demonstrates the importance of taking into account indirect coupling loss factors in SEA models having several subsystems.

  18. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    PubMed

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  19. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.

  20. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai

    2018-01-01

    Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.

  1. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less

  2. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  3. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  4. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  5. Apparatus for generating quasi-free-space microwave-driven plasmas

    NASA Astrophysics Data System (ADS)

    Hoff, Brad W.; French, David M.; Reid, Remington R.; Lawrance, Julie E.; Lepell, P. David; Maestas, Sabrina S.

    2016-03-01

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ˜5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  6. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  7. Apparatus for generating quasi-free-space microwave-driven plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Brad W.; French, David M.; Reid, Remington R.

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  8. Apparatus for generating quasi-free-space microwave-driven plasmas.

    PubMed

    Hoff, Brad W; French, David M; Reid, Remington R; Lawrance, Julie E; Lepell, P David; Maestas, Sabrina S

    2016-03-01

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  9. Combined Euler column vibration isolation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  10. POwer WithOut Wire (POWOW): A SEP Concept for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; ONeill, Mark

    2000-01-01

    Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 demonstrated electric propulsion as a primary propulsion source for a spacecraft. The POwer WithOut Wires (POWOW) concept has been developed as a solar electric propelled spacecraft that would travel to Mars, for example, enter selenosynchronous orbit and then use lasers to beam power to surface installations. This concept has been developed with industrial expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The paper will present the latest version of the spacecraft, the technologies involved, possible missions and trip times to Mars and laser beaming options. The POWOW spacecraft is a general purpose solar electric propulsion system that includes technologies that are directly applicable to commercial and government spacecraft with power levels ranging from 4 kW in Low Earth Orbits (LEO) to about 1 MW. The system is modular and expandable. Learning curve costing methodologies are used to demonstrate cost effectiveness of a modular system.

  11. Introduction of argon beam coagulation functionality to robotic procedures using the ABC D-Flex probe: equivalency to an existing laparoscopic instrument

    NASA Astrophysics Data System (ADS)

    Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.

  12. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  13. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    PubMed

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  14. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE PAGES

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.; ...

    2017-06-13

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  15. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  16. High Current Density Scandate Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    of Technology HFSS Ansoft Corporation’s High Frequency Structure Simulator TWT Traveling Wave Tube - device for generating high levels of RF power ...cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a tungsten matrix impregnated with a mixture of barium oxide...electron beam with the largest possible diameter, consistent with high gain, bandwidth, and efficiency at W- Band . The research concentrated on photonic

  17. Meteorological effects on laser propagation for power transmission

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1982-01-01

    An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.

  18. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    DOE PAGES

    Pace, D. C.; Collins, C. S.; Crowley, B.; ...

    2016-09-28

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less

  19. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C.; Collins, C. S.; Crowley, B.

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less

  20. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team

    2017-01-01

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.

  1. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  2. The effects of induced heat loads on the propagation of Ince-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Nadgaran, H.; Servatkhah, M.

    2011-10-01

    Thermal effects are very much influential in high power beam generators. Their impacts on special types of beams such as Helmholtz-Gauss beams have attracted special attentions. This work reports thermal effects on the generation and propagation of Ince-Gaussian beams. The results show considerable beam spot size variations for near fields under various induced heat loads. As Ince-Gaussian beams are directly related to cavity symmetry breaking, the results can greatly help system designers for circumventing these types of symmetry breaks usually encountered in high power lasers.

  3. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  4. Design Considerations of a Novel Two-Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Luginsland, John William

    This thesis reports the design study of a new type of charged particle accelerator called the Twobetron. The accelerator consists of two beams of electrons traveling through a series of pillbox cavities. The power of a high current annular beam excites an electromagnetic mode in the cavities, which, in turn, drives a low current on-axis pencil beam to high energy. We focus on the design considerations that would make use of existing pulsed power systems, for a proof-of-principle experiment. Potential applications of this new device include radiotherapy, materials processing, and high energy accelerators. The first phase of the research involves analytic description of the accelerating process. This reveals the problem of phase slippage. Derbenev's proposed cure of beam radius modulation is analyzed. Further studies include the effect of initial phase and secondary beam loading. Scaling laws to characterize the Twobetron's performance are derived. Computer simulation is performed to produce a self-consistent analysis of the dynamics of the space charge and its interaction with the accelerator structure. Particle -in-cell simulations answer several questions concerning beam stability, cavity modes, and the nature of the structure. Specifically, current modulation on the primary beam is preserved in the simulations. However, these simulations also revealed that mode competition and significant cavity coupling are serious issues that need to be addressed. Also considered is non-axisymmetric instability on the driver beam of the Twobetron, in particular, the beam breakup instability (BBU), which is known to pose a serious threat to linear accelerators in general. We extend the classical analysis of BBU to annular beams. The effect of higher order non-axisymmetric modes is also examined. It is shown that annular beams are more stable than pencil beams to BBU in general. Our analysis also reveals that the rf magnetic field is more important than the rf electric field in contributing to BBU growth. We next address the issue of primary beam modulation. Both particle-in-cell and analytic investigation showed that the usual relativistic klystron amplifiers (RKA) mechanism cannot provide full beam modulation at convenient levels of external rf drive. However, the recent discovery at the Air Force Phillips Laboratory of the injection locked relativistic klystron oscillator suggests that electromagnetic feedback between the driver cavity and the booster cavity might significantly enhance the current modulation. A simple model is constructed to analyze this cavity coupling and its mutual interaction with the primary beam. Quantitative agreement is found between our model and the Phillips Laboratory experiments. This analysis suggests that significant current modulation on the primary beam may be achieved with low level external rf drive.

  5. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Powers, T.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  6. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Maser, J.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  7. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam steering for microwave power transmission (the ability to accurately track a moving receiver) has been demonstrated at Texas A&M. It is proposed that the next step in development of this concept is a modest scale up from 25 elements to 435 followed by a further scale up using such 435 element arrays as subarrays for a still larger retrodirective system. Ultimately, transmit antenna sizes on the order of 100 meters are envisioned permitting transfer levels on the order of 30 kW to aerial vehicles up to 20 km.

  8. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun

    2017-06-01

    The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.

  9. Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)

    1992-01-01

    Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.

  10. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  11. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less

  12. Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Clauson, S. L.

    1990-05-01

    Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.

  13. Power distribution for electron beam welding

    NASA Technical Reports Server (NTRS)

    Edwards, E.

    1980-01-01

    The power distribution of an electron seam is analyzed. Digital computer techniques are used to evaluate the radial distribution of power detected by a wire probe circulating through the beam. Results are reported.

  14. Energy Beam Highways Through the Skies

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.

    1996-01-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  15. Research on Vacuum Laser Accelerator and Proof-of Principle Experiment

    NASA Astrophysics Data System (ADS)

    Shao, Lei

    This thesis discovers a proof-of-principle theory of Vacuum Laser Acceleration (VLA) and proposes a new acceleration mechanism---Capture and Acceleration Scenario (CAS) in our far-field laser acceleration research, which is a promising new scheme in advanced acceleration field. In this thesis, I studied electrons' dynamic behaviors while interacting with intense laser beam. There are two kinds of dynamics trajectories, namely IS (Inelastic Scattering) and CAS. In CAS, electrons can be captured and moving along the laser beam for a long time and receive considerable energy exchange from the laser field, rather than quickly expelled from the intense field region of the laser as predicted by the conventional Ponderomotive Potential Model (PPM). This thesis shows the research on most parameters of both laser beam and electron beam which will affect this VLA scheme. One of the primary factors is the laser intensity. Relatively high laser intensity is critically required for VLA, and there are thresholds of intensity a0( th) for CAS occurrence; the thresholds are different under different laser beam waist widths which is also a very important parameter of laser beam. Laser intensity is still a big obstacle nowadays. In the last decade there are only a few laboratories have the laser power to ˜1019 W/cm2 and above. Our simulation shows that laser intensity threshold of CAS is around a0 = 5˜8, in correspondence to laser power around 1019˜1022 W/cm 2 depending on different wave length and waist width. The interaction is also sensitive to various electron beam parameters, such as the optimal initial electron energy falls in the range of 4--15 MeV, electron incident angle and position, and so on. At last the thesis presents out experimental work on this new VLA scheme. The collaboration is between our UCLA group and Brookhaven National Lab - Accelerator Test Facility (BNL-ATF). At BNL-ATF, they have both intense laser beam and high quality electron beam. The characters of BNL-ATF fit our project very well. The laser system at ATF is a short pulse CO2 laser. Under present ATF condition, the peak power of the CO2 laser is around 5J with pulse duration 5ps. Therefore the maximum laser intensity can reach a 0 ≈ 1.0. Such level of laser intensity is not sufficient to perform violent electron acceleration-CAS according to the threshold we defined. However this level intensity is already high enough to see basic proof-of-principle signal based on our extensive simulations with exact practical ATF experimental conditions. Another important factor is the electron beam condition. ATF uses photoinjector Radio Frequency (RF) gun system for electron beam. The working frequency is at constant level 2856MHz. Generally the electron beam deliver energy around 40MeV˜60MeV to the transport beam line. However as we mentioned before with relatively low laser intensity the electron initial energy is required to be lower as well correspondently. We tried best to tuned ATF electron beam energy down to 15MeV. With laser intensity around a 0 ≈ 1.0 and electron beam 15MeV, our simulation indicates to see energy spread expansion after interaction, and this effect increases while the laser intensity increases (even slightly change from a 0 ≈ 0.9 to 2.2). The experiment design is completed based on ATF beam line condition. The design and layout are presented. All the optical devices are acquired and machined. Installation and alignment have been done a few times for testing. (Abstract shortened by UMI.)

  16. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  17. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less

  18. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  19. Development of high-power dye laser chain

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  20. Solid state RF power: The route to 1W per euro cent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heid, Oliver

    2013-04-19

    In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.

  1. Accelerators for E-beam and X-ray processing

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.

  2. High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo

    2014-11-01

    A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.

  3. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  4. On the Possibility of Creating a Point-Like Neutron Source

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Razin, S. V.; Shaposhnikov, R. A.; Lapin, R. L.; Bokhanov, A. F.; Kazakov, M. Yu.

    2018-03-01

    We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s-1 on the basis of a deuterium-deuterium fusion reaction (or 1012 s-1 on the basis of a deuterium-tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.

  5. Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO₄ microchip laser.

    PubMed

    Jacquin, Olivier; Lacot, Eric; Glastre, Wilfried; Hugon, Olivier; Guillet de Chatellus, Hugues

    2011-08-01

    Using an Nd:YVO₄ microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performance than heterodyne interferometry for a wide range of laser powers and detection levels of noise. The experimental results are in good agreement with the theoretical predictions.

  6. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  7. Development of new S-band SLED for PAL-XFEL Linac

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  8. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  9. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  10. A quantitative evaluation of the L.B.W. efficiency on AISI 304 bead on plates welded under different focusing and tilted laser beam conditions

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Lugara, M. P.; De Filippis, L. A. C.; Spera, A. M.; Rocco, S.

    2005-03-01

    The aim of this search is to evaluate the WE (Welding Efficiency) of each beads versus the different positions of the laser beam optical focus (positive or negative or zero values) respect to the work-piece surface and also versus different laser beam incidence angles (80° and 70°) by using two laser power levels (2 and 2.5 KW) and two welding speeds (3 and 6 m/min). The WE values have been reported on two DA.LU. method plots and the relate evaluations regarding the same ones as well as the recorded best parameters have been evidenced.

  11. Coherent combining of a 4 kW, eight-element fiber amplifier array.

    PubMed

    Yu, C X; Augst, S J; Redmond, S M; Goldizen, K C; Murphy, D V; Sanchez, A; Fan, T Y

    2011-07-15

    Commercial 0.5 kW Yb-doped fiber amplifiers have been characterized and found to be suitable for coherent beam combining. Eight such fiber amplifiers have been coherently combined in a tiled-aperture configuration with 78% combining efficiency and total output power of 4 kW. The power-in-the-bucket vertical beam quality of the combined output is 1.25 times diffraction limited at full power. The beam-combining performance is independent of output power. © 2011 Optical Society of America

  12. High current/high power beam experiments from the space station

    NASA Technical Reports Server (NTRS)

    Cohen, Herbert A.

    1986-01-01

    In this overview, on the possible uses of high power beams aboard the space station, the advantages of the space station as compared to previous space vehicles are considered along with the kind of intense beams that could be generated, the possible scientific uses of these beams and associated problems. This order was delibrately chosen to emphasize that the means, that is, the high power particle ejection devices, will lead towards the possible ends, scientific measurements in the Earth's upper atmosphere using large fluxes of energetic particles.

  13. SPS phase control system performance via analytical simulation

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.

    1979-01-01

    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.

  14. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  15. High-Q plasmas in the TFTR tokamak

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Barnes, C. W.; Bell, M. G.; Bitter, M.; Boivin, R.; Bretz, N. L.; Budny, R. V.; Bush, C. E.; Dylla, H. F.; Efthimion, P. C.; Fredrickson, E. D.; Hawryluk, R. J.; Hill, K. W.; Hosea, J.; Hsuan, H.; Janos, A. C.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S. J.; LaMarche, P. H.; LeBlanc, B.; Mansfield, D. K.; Marmar, E. S.; McCune, D. C.; McGuire, K. M.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Owens, D. K.; Park, H. K.; Paul, S. F.; Pitcher, S.; Ramsey, A. T.; Redi, M. H.; Sabbagh, S. A.; Scott, S. D.; Snipes, J.; Stevens, J.; Strachan, J. D.; Stratton, B. C.; Synakowski, E. J.; Taylor, G.; Terry, J. L.; Timberlake, J. R.; Towner, H. H.; Ulrickson, M.; von Goeler, S.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K.-L.; Young, K. M.; Zarnstorff, M. C.; Zweben, S. J.

    1991-08-01

    In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D-D fusion power gain QDD are realized in the neutral-beam-fueled and heated ``supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ``carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/] during the beam pulse. To date, the best fusion results are Sn=5×1016 n/sec, QDD=1.85×10-3, and neutron yield=4.0×1016 n/pulse, obtained at Ip=1.6-1.9 MA and beam energy Eb=95-103 keV, with nearly balanced co- and counter-injected beam power. Computer simulations of supershot plasmas show that typically 50%-60% of Sn arises from beam-target reactions, with the remainder divided between beam-beam and thermonuclear reactions, the thermonuclear fraction increasing with Pb. The simulations predict that QDT=0.3-0.4 would be obtained for the best present plasma conditions, if half the deuterium neutral beams were to be replaced by tritium beams. Somewhat higher values are calculated if D beams are injected into a predominantly tritium target plasma. The projected central beta of fusion alphas is 0.4%-0.6%, a level sufficient for the study of alpha-induced collective effects.

  16. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    NASA Astrophysics Data System (ADS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  17. High Current Density Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a

  18. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    PubMed

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  19. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2011-10-01

    The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.

  20. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  1. With a laser beam centered on its panel of photovoltaic cells, a model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    With a laser beam centered on its panel of photovoltaic cells, a lightweight model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall Space Flight Center.

  2. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  3. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  4. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  5. An energy harvesting solution based on the post-buckling response of non-prismatic slender beams

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Alavi, Amir H.; Lajnef, Nizar

    2017-04-01

    Systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting thanks to their efficiency enhancement. The post-buckling snap- through behavior of bilaterally constrained beams has been used to create an efficient energy harvesting mechanism under quasi-static excitations. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy can be generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism's efficiency. This study aims to maximize the levels of the harvestable power by controlling the location of the snapping point along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometry properties of a uniform cross-section beam, non-uniform cross sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-uniform cross-section beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. Experimentally validated results show that changing the shape and geometry dimensions of non- uniform cross-section beams allows for the accurate control of the snap-through location at different buckling transitions. A 78.59% increase in harvested energy levels is achieved by optimizing the beam's shape.

  6. Negative ion beam development at Cadarache (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonin, A.; Bucalossi, J.; Desgranges, C.

    1996-03-01

    Neutral beam injection (NBI) is one of the candidates for plasma heating and current drive in the new generation of large magnetic fusion devices (ITER). In order to produce the required deuterium atom beams with energies of 1 MeV and powers of tens of MW, negative D{sup {minus}} ion beams are required. For this purpose, multiampere D{sup {minus}} beam production and 1 MeV electrostatic acceleration is being studied at Cadarache. The SINGAP experiment, a 1 MeV 0.1 A D{sup {minus}} multisecond beam accelerator facility, has recently started operation. It is equipped with a Pagoda ion source, a multiaperture 60 keVmore » preaccelerator and a 1 MV 120 mA power supply. The particular feature of SINGAP is that the postaccelerator merges the 60 keV beamlets, aiming at accelerating the whole beam to 1 MeV in a single gap. The 1 MV level was obtained in less than 2 weeks, the accumulated voltage on-time of being {approximately}22 min. A second test bed MANTIS, is devoted to the development of multiampere D{sup {minus}} sources. It is capable of driving discharges with current up to 2500 A at arc voltages up to 150 V. A large multicusp source has been tested in pure volume and cesiated operation. With cesium seeding, an accelerated D{sup {minus}} beam current density of up to 5.2 mA/cm{sup 2} (2 A of D{sup {minus}}) was obtained. A modification of the extractor is underway in order to improve this performance. A 3D Monte Carlo code has been developed to simulate the negative ion transport in magnetized plasma sources and optimize magnetic field configuration of the large area D{sup {minus}} sources. {copyright} {ital 1996 American Institute of Physics.}« less

  7. Diode amplifier of modulated optical beam power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'yachkov, N V; Bogatov, A P; Gushchik, T I

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  8. Real-time edge-enhanced optical correlator

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi (Inventor); Cheng, Li-Jen (Inventor)

    1992-01-01

    Edge enhancement of an input image by four-wave mixing a first write beam with a second write beam in a photorefractive crystal, GaAs, was achieved for VanderLugt optical correlation with an edge enhanced reference image by optimizing the power ratio of a second write beam to the first write beam (70:1) and optimizing the power ratio of a read beam, which carries the reference image to the first write beam (100:701). Liquid crystal TV panels are employed as spatial light modulators to change the input and reference images in real time.

  9. Accelerator driven sub-critical core

    DOEpatents

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  10. Fabrication of the polarization independent spectral beam combining grating

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang

    2016-03-01

    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.

  11. Supplying the power requirements to a sensor network using radio frequency power transfer.

    PubMed

    Percy, Steven; Knight, Chris; Cooray, Francis; Smart, Ken

    2012-01-01

    Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system's base station monitors the node's energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of -31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.

  12. A model for chorus associated electrostatic bursts

    NASA Technical Reports Server (NTRS)

    Grabbe, C. L.

    1984-01-01

    The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832

  13. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  14. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  15. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  16. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  17. RF beam center location method and apparatus for power transmission system

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    The receiving element in wireless power transmission systems intercepts the greatest possible portion of the transmitted energy beam. Summing the output energy of all receivers in a planar array makes it possible to determine the location of the center of energy of the incident beam on a receiving array of antenna elements so that the incident beam is in the microwave region.

  18. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    PubMed Central

    Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843

  19. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  20. Comparison of Sheath Power Transmission Factor for Neutral Beam Injection and Electron Cyclotron Heated Discharges in DIII-D

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Buchenauer, D. A.; Watkins, J. G.; Leonard, A. W.; Lasnier, C. J.; Stangeby, P. C.

    2011-10-01

    The sheath power transmission factor (SPTF) is examined in DIII-D with a new IR camera, a more thermally robust Langmuir probe array, fast thermocouples, and a unique probe configuration on the Divertor Materials Evaluation System (DiMES). Past data collected from the fixed Langmuir Probes and Infrared Camera on DIII-D have indicated a SPTF near 1 at the strike point. Theory indicates that the SPTF should be approximately 7 and cannot be less than 5. SPTF values are calculated using independent measurements from the IR camera and fast thermocouples. Experiments have been performed with varying levels of electron cyclotron heating and neutral beam power. The ECH power does not involve fast ions, so the SPTF can be calculated and compared to previous experiments to determine the extent to which fast ions may be influencing the SPTF measurements, and potentially offer insight into the disagreement with the theory. Work supported in part by US DOE under DE-AC04-94AL85000, DE-FC02-04ER54698, and DE-AC52-07NA27344.

  1. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  2. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  3. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    DTIC Science & Technology

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  4. Role of laser beam radiance in different ceramic processing: A two wavelengths comparison

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Lawrence, Jonathan

    2013-12-01

    Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.

  5. A transportronic solution to the problem of interorbital transportation

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1992-01-01

    An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.

  6. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    NASA Astrophysics Data System (ADS)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  7. Development of a 20 mA negative hydrogen ion source for cyclotrons

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.

    2017-08-01

    A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).

  8. Surface hardening of steels with a strip-shaped beam of a high-power CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovskii, P.E.; Kovsh, I.B.; Strekalova, M.S.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO{sub 2} laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section. 6 refs., 5 figs.

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Surface hardening of steels with a strip-shaped beam of a high-power CO2 laser

    NASA Astrophysics Data System (ADS)

    Dubovskii, P. E.; Kovsh, Ivan B.; Strekalova, M. S.; Sisakyan, I. N.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO2 laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section.

  10. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible effect on beam line pressure. The flow and results of the evaluation in this analysis would provide a good indication for both the verification of the existing beam dumps, and the design of beam dumps in new accelerators with higher intensity beam.

  11. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  12. Sci-Thur AM: YIS – 04: Stopping power-to-Cherenkov power ratios and beam quality specification for clinical Cherenkov emission dosimetry of electrons: beam-specific effects and experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Yana; Seuntjens, Jan; El Naqa, Issam

    Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD.more » A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.« less

  13. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vauzour, B.; Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau; Debayle, A.

    2014-03-15

    We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub α} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, 〈j{submore » h}〉∼8×10{sup 10} A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5 keV/μm and 0.8 keV/μm, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1 keV/μm and 0.6 keV/μm. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}∼10{sup 12} A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14} A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ∼1 keV/μm.« less

  14. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  15. A spin-modulated telescope for measurement of cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Staren, John William

    The measurement of anisotropy in the Cosmic Microwave Background (CMB) advances our knowledge of the early Universe from which the radiation originated. The angular power spectrum of CMB anisotropy at sub-degree scales depends heavily on comsological parameters such as Ob, O 0 and H0. In pursuit of critical power spectrum measurements over a range of angular scales, a spin-modulated telescope with a single cryogenic amplifier used in a total power radiometer is designed, built and tested. The new technique of spin-modulation with a spinning flat mirror canted 2.5° relative to its spin axis modulates the beam in a 10° oval pattern on the sky at 2.5 Hz. This rapid two-dimensional modulation of the beam is tested at balloon altitudes to minimize the atmospheric offset and determine the efficacy of the scan and telescope design. Maps of over 600 and 400 square degrees are made of regions observed using the spin-modulation and a 20° azimuth scan. These maps yield a 95% confidence level flat band power upper limit of DeltaTℓ = Tcmb(ℓ(ℓ + 1)Cℓ/2pi)0.5 < 77 muK at ℓ = 38 and are free of systematics effects and striping due to long-term drifts in our amplifier to the levels tested here. Planning for the next telescope, with multiple amplifiers, is performed to ensure its success.

  16. Plasma fluctuations in a Kaufman thruster. [root mean square magnitude, spectra and cross correlation

    NASA Technical Reports Server (NTRS)

    Serafini, J. S.; Terdan, F. F.

    1973-01-01

    Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.

  17. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  18. Orbital Space Solar Power Option for a Lunar Village

    NASA Technical Reports Server (NTRS)

    Johnson, L.

    2017-01-01

    The international community is increasingly interested in returning humans to the Moon and this time establishing a permanent lunar base. There are several system level constraints that will drive the location for the base, chief among which are the need for continuous power and communications with the Earth. The NASA George C. Marshall Space Flight Center (MSFC) performed a study of placing an operational space based solar power station in lunar orbit to beam energy to the lunar base, or village, eliminating the need for the base to be located at the south pole or for it to be equipped with a fission power source.

  19. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  20. High-power industrial pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Levin, G. I.

    1983-12-01

    The use of a pulsed TEA CO2 laser (with maximum average power 1.0 kW; maximum pulse energy 3.5 J; repetition frequency 400-600 Hz; half-width pulse duration 15 microsec; circular-coupling-aperture beam diameter 6, 8, or 12 mm; and beam divergence 10 mrad) in industrial welding applications is investigated experimentally in carbon and stainless steels, Zr, Ti, and Ni of various thicknesses. The power required to melt the metals is found to be about 120-200 W/sq cm, or 5-6 times less than that for CW lasers. It is shown that deep narrow-seam welds with mechanical properties identical to those of the bulk metal can be obtained with little or no intercrystalline corrosion or thermal distortion of the surrounding area. Disadvantages such as the 65-dB noise level, low welding speed, formation of an overlap at the top and a crater at the bottom of the weld, and root porosity are considered the primary limitations on the applicability of the device tested.

  1. High power far-infrared optical parametric oscillator with high beam quality

    NASA Astrophysics Data System (ADS)

    Qian, Chuan-Peng; Shen, Ying-Jie; Dai, Tong-Yu; Duan, Xiao-Ming; Yao, Bao-Quan

    2016-11-01

    A high power ZnGeP2 (ZGP) optical parametric oscillator (OPO) with good beam quality pumped by a Q-switched Ho:YAG laser was demonstrated. The maximum output power of the ZGP OPO with a four-mirror ring cavity was about 5.04 W around 8.1 μm with 83.9 W Ho incident pump power, corresponding to a slope efficiency of 9.2 %. The ZGP OPO produced 36.0 ns far-IR pulse laser in the 8.0-8.3 μm spectral regions. The beam quality was measured to be M2 1.6 at the highest output power.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less

  3. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  4. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  5. Observations of vertical velocities in the tropical upper troposphere and lower stratosphere using the Arecibo 430-MHz radar

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1988-01-01

    The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.

  6. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  7. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    NASA Astrophysics Data System (ADS)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  8. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  9. Experimental observation of sub-terahertz backward-wave amplification in a multi-level microfabricated slow-wave circuit

    NASA Astrophysics Data System (ADS)

    Baik, Chan-Wook; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.; Kim, Jong Min; Hwang, Sungwoo

    2015-11-01

    In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.

  10. Replacing The Engine In Your Car While You Are Still Driving It [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorklund, Eric A.

    The scope of the project included the following: install new network backbone, replace 201 MHz rf tubes, replace low-level rf system, replace timing system, replace industrial I/O system, replace beam synchronous data acquisition system, replace fast protect reporting system, new wire scanner hardware, and new beam position/phase monitor hardware--all of this to be done while continuing to deliver beam to users. Lessons learned, for anyone contemplating a similarly ambitious upgrade: You can’t replace the whole system at once. Some compatibility must be maintained between the old and new systems. Always have a way to fall back. Have sympathy for themore » operations staff. You will be surprised.« less

  11. Experimental observation of sub-terahertz backward-wave amplification in a multi-level microfabricated slow-wave circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung

    2015-11-09

    In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.

  12. Ground-Based and Space-Based Laser Beam Power Applications

    NASA Technical Reports Server (NTRS)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  13. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  14. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  15. Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, M.; Barlow, D.; Fortgang, C.

    1994-07-01

    The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less

  16. Collapse events of two-color optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhinin, Alexey; Aceves, Alejandro B.; Diels, Jean-Claude

    2017-03-08

    Here in this work, we study optical self-focusing that leads to collapse events for the time-independent model of copropagating beams with different wavelengths. We show that collapse events depend on the combined critical power of two beams for fundamental, vortex, and mixed configurations as well as on the ratio of their individual powers.

  17. Power transmission by laser beam from lunar-synchronous satellite

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  18. Pulsed beam tests at the SANAEM RFQ beamline

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  19. Current and prospective safety issues at the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, P.R.

    The Brookhaven High Flux Beam Reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated and reflected by heavy water and uses MTR-ETR type fuel elements containing enriched uranium. The reactor power when operation began in 19965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time safety questions have been raised which resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper will discuss the principle safety issues, plans for theirmore » resolution and return to 60 MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its affect on the life of the facility will be briefly discussed.« less

  20. Current and prospective safety issues at the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, P.R.

    The Brookhaven high-flux beam reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated, and reflected by heavy water and uses materials test reactor and engineering test reactor type of fuel elements containing enriched uranium. The reactor power when operation began in 1965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time, safety questions have been raised that resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper discusses the principalmore » safety issues and plans for their resolution and return to 60-MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its effect on the life of the facility are briefly discussed.« less

  1. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  2. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  3. Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi

    2018-06-01

    A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.

  4. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  5. Electrode Coverage Optimization for Piezoelectric Energy Harvesting from Tip Excitation

    PubMed Central

    Chen, Guangzhu; Bai, Nan

    2018-01-01

    Piezoelectric energy harvesting using cantilever-type structures has been extensively investigated due to its potential application in providing power supplies for wireless sensor networks, but the low output power has been a bottleneck for its further commercialization. To improve the power conversion capability, a piezoelectric beam with different electrode coverage ratios is studied theoretically and experimentally in this paper. A distributed-parameter theoretical model is established for a bimorph piezoelectric beam with the consideration of the electrode coverage area. The impact of the electrode coverage on the capacitance, the output power and the optimal load resistance are analyzed, showing that the piezoelectric beam has the best performance with an electrode coverage of 66.1%. An experimental study was then carried out to validate the theoretical results using a piezoelectric beam fabricated with segmented electrodes. The experimental results fit well with the theoretical model. A 12% improvement on the Root-Mean-Square (RMS) output power was achieved with the optimized electrode converge ratio (66.1%). This work provides a simple approach to utilizing piezoelectric beams in a more efficient way. PMID:29518934

  6. Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser

    NASA Astrophysics Data System (ADS)

    Abel, W.; Wallter, B.

    1984-03-01

    The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.

  7. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  8. Spectrum and power allocation in cognitive multi-beam satellite communications with flexible satellite payloads

    NASA Astrophysics Data System (ADS)

    Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan

    2018-02-01

    In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.

  9. The effects of TGG crystal length on output power and beam quality of a unidirectional ring Nd:YVO4 laser with and without second harmonic generation

    NASA Astrophysics Data System (ADS)

    Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.

    2018-04-01

    The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.

  10. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  11. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  12. Powered by a laser beam directed at it from a pedestal, a model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    Powered by a laser beam directed at it from a center pedestal, a lightweight model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA's Marshall Space Flight Center.

  13. Experimental demonstration of beaconless beam displacement tracking for an orbital angular momentum multiplexed free-space optical link.

    PubMed

    Li, Long; Zhang, Runzhou; Xie, Guodong; Ren, Yongxiong; Zhao, Zhe; Wang, Zhe; Liu, Cong; Song, Haoqian; Pang, Kai; Bock, Robert; Tur, Moshe; Willner, Alan E

    2018-05-15

    In this Letter, we experimentally demonstrate beaconless beam displacement tracking for free-space optical communication link multiplexing multiple orbital angular momentum (OAM) beams, where the data-carrying OAM beams are used for position detection. 400 Gbit/s data transmission is demonstrated under emulated lateral displacement of up to ±10  mm with power penalties of less than 3 dB for all channels. Channel crosstalk is reduced by the beam tracking system to below -18  dB. Moreover, we investigate using a Gaussian beacon for beam displacement tracking, and achieve similar channel crosstalk and power penalties, compared with using the beaconless beam tracking.

  14. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    NASA Astrophysics Data System (ADS)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  15. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    NASA Astrophysics Data System (ADS)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  16. R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor

    NASA Astrophysics Data System (ADS)

    Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.

    2015-11-01

    Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η  >  60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.

  17. Ion source development for a photoneutralization based NBI system for fusion reactors

    NASA Astrophysics Data System (ADS)

    Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  18. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  19. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  20. Grazing incidence beam expander

    NASA Astrophysics Data System (ADS)

    Akkapeddi, P. R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V. K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  1. Grazing incidence beam expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, wouldmore » allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.« less

  2. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    NASA Astrophysics Data System (ADS)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  3. Novel high-brightness fiber coupled diode laser device

    NASA Astrophysics Data System (ADS)

    Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas

    2007-02-01

    High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.

  4. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  5. Space-Based Solar Power Conversion and Delivery Systems Study. Volume 3: Microwave Power Transmission Studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Microwave Fower Beam Ionosphere effects and critical interfaces between th Microwave Power Transmission System (MPTS) and the Satellite were studied as part of the NASA/MSFC continuing research on the feasibility of power transmission from geosynchronous orbit. Theoretical predications of ionospheric modifications produced by the direct interaction of the MPTS on the earth's upper atmosphere are used to determine their impact on the performance of the Microwave Power Beam and Pilot Beam System as well as on other RF systems effected by the ionosphere. A technology program to quantitatively define these interactions is developed. Critical interface areas between the MPTS and the satellite which could have a major impact on cost and performance of the power system are idenfified and analyzed. The areas selected include: use of either a 20 kV versus 40 kV Amplitron, thermal blockage effects of Amplitron heat radiation by the satellite structure, effect of dielectric carry-through structure on power beam, and effect of material sublimation on performance of the Amplitron in Geosynchronous Orbit.

  6. Demonstration of the High RF Power Production Feasibility in the CLIC Power Extraction and Transfer Structure (PETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelletti, A.; /CERN; Dolgashev, V.

    A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less

  7. Beam alignment based on two-dimensional power spectral density of a near-field image.

    PubMed

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  8. ORNL Neutron Sciences Annual Report for 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with themore » reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.« less

  9. Beamed-Energy Propulsion (BEP) Study

    NASA Technical Reports Server (NTRS)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  10. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  11. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  12. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  13. Innovative Advances in HPM: From Metamaterials to Buridan’s Ass

    DTIC Science & Technology

    2014-07-17

    beam kinetic energy into electromagnetic radiation. The output can be from S - to X- band microwave frequencies with powers over 100 MW. These...Modulator Symposium and High Voltage Workshop (San Diego, CA, June 3-7, 2012), p. 752-755. 12. A. Elfrgani, M. Fuks, S . Prasad, and E. Schamiloglu, “X- band ...field in the device and they weigh about 250 lbs for an S - band source [13]. Output power levels up to 1 GW are feasible. Pulse repetition rate and

  14. Final Environmental Assessment: Columbus Air Force Base Digital Airport Surveillance Radar

    DTIC Science & Technology

    2003-02-03

    a human - health hazard. Specifically, no conclusive and consistent evidence shows that exposures to residential electric and magnetic fields produce...1,000 mW/cm2 peak pulse power density. The NCRP also published guidelines for human exposure . For RFR at ASR-11 frequency, the MPE for occupational...occupational exposure to RFR in the ASR- 11 frequency band, the FCC MPE is the same as the NCRP guideline level. The power density of the ASR-11 beam varies

  15. Channel Characterization for Free-Space Optical Communications

    DTIC Science & Technology

    2012-07-01

    parameters. From the path- average parameters, a 2nC profile model, called the HAP model, was constructed so that the entire channel from air to ground...SR), both of which are required to estimate the Power in the Bucket (PIB) and Power in the Fiber (PIF) associated with the FOENEX data beam. UCF was...of the path-average values of 2nC , the resulting HAP 2nC profile model led to values of ground level 2 nC that compared very well with actual

  16. Gyrotron collector systems: Types and capabilities

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Morozkin, M. V.; Luksha, O. I.; Glyavin, M. Yu

    2018-06-01

    A classification and a comparative analysis of the collector systems of gyrotrons of different frequency ranges and power levels are presented. Both the classical schemes of gyrotron collectors with an adiabatic magnetic field and new ones, including the systems with dynamic scanning of the electron beam, collectors with a highly nonuniform field, as well as multistage recovery schemes, are considered. Recommendations on the use of this or that type of collectors, depending on the output power of the device and the pulse width, are given.

  17. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  18. External-cavity beam combining of 4-channel quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.

  19. Beam optical design of in-flight fragment separator for high-power heavy ion beam

    NASA Astrophysics Data System (ADS)

    Yun, C. C.; Kim, Mi-Jung; Kim, D. G.; Song, J. S.; Kim, Myeong-Jin; Kim, J. W.; Kim, J. R.; Wan, W.

    2013-12-01

    An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is 238U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.

  20. System analysis of wavelength beam combining of high-power diode lasers for photoacoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep B.; Sánchez, Miguel; Rodriguez, Sergio; Osiński, Marek; Sacher, Joachim; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    This paper, originally published on 27 April 2016, was replaced with a corrected/revised version on 8 June 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The purpose of wavelength-beam combining (WBC) is to improve the output power of a multi-wavelength laser system while maintaining the quality of the combined beam. This technique has been primarily proposed for industrial applications, such as metal cutting and soldering, which require optical peak power between kilowatts and megawatts. In order to replace the bulkier solid-state lasers, we propose to use the WBC technique for photoacoustic (PA) applications, where a multi-wavelength focused beam with optical peak power between hundreds of watts up to several kilowatts is necessary to penetrate deeply into biological tissues. In this work we present an analytical study about the coupling of light beams emitted by diode laser bars at 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm into a < 600-μm core-diameter optical fiber for PA endoscopy. In order to achieve an efficient coupling it is necessary to collimate the beams in both fast and slow axes by means of cylindrical lenses and to use partial reflection mirrors at 45° tilt. We show an example of beam collimation using cylindrical lenses in both fast and slow axes. In a real PA scenario, the resulting beam should have a sufficient peak power to generate significant PA signals from a turbid tissue>.

  1. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Bailey, M; Shipley, D; Al-Sulaiti, L; Cirrone, P; Romano, F; Kacperek, A; Bertrand, D; Vynckier, S

    2012-06-01

    The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q 0 . To decrease this uncertainty, a quantification of kQ,Q 0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q 0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program of the Wallon Government. © 2012 American Association of Physicists in Medicine.

  2. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  3. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  4. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  5. Pink-beam focusing with a one-dimensional compound refractive lens

    DOE PAGES

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...

    2016-07-28

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

  6. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  7. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  8. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    PubMed Central

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-01-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011

  9. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.

    PubMed

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-12-23

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.

  10. Microwave Power Combiners for Signals of Arbitrary Amplitude

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce; Hoppe, Daniel

    2009-01-01

    Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.

  11. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  12. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  13. Self-focusing Distance of Very High Power Laser Pulses

    NASA Astrophysics Data System (ADS)

    Fibich, Gadi; Eisenmann, Shmuel; Ilan, Boaz; Erlich, Yossi; Fraenkel, Moshe; Henis, Zohar; Gaeta, Alexander L.; Zigler, Arie

    2005-07-01

    We show numerically for continuous-wave beams and experimentally for femtosecond pulses propagating in air, that the collapse distance of intense laser beams in a bulk Kerr medium scales as 1/P^1/2 for input powers P that are moderately above the critical power for self focusing, but that at higher powers the collapse distance scales as 1/P.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  15. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam

    NASA Astrophysics Data System (ADS)

    Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.

  16. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, C.

    1996-04-01

    First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  17. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam.

    PubMed

    Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon

    2018-05-04

    We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.

  18. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  19. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  20. Modeling of static and flowing-gas diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman

    2016-03-01

    Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.

  1. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Sun, Jun; Chen, Changhua; Shao, Hao

    2013-07-01

    This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC) simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  2. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  3. Damage behavior of Nd:glass of high-power disk amplifier medium in ICF Facility

    NASA Astrophysics Data System (ADS)

    He, Shaobo; Chen, Lin; Yuan, Xiaodong; Chen, Yuanbin; Cheng, Xiaofeng; Xie, Xudong; Wang, Wenyi; Zu, Xiaotao

    2016-12-01

    Large aperture Nd:glass disk is often used as the amplifier medium in the inertial confinement fusion (ICF) facilities. The typical size of Nd:glass is up to 810mm×460mm×40mm and more than 3,000 Nd:glass components are needed in the ICF facility. At present, the 3ω fused silica glass and DKDP crystal are mainly responsible for the damage of driver used for ICF. However, with the enlargement of the facility and increase of laser shot number, the laser damage of Nd:glass at 1ω waveband is still an important problem to limit the stable operation of facility and improvement of laser beam quality. In this work, the influence of Nd:glass material itself, mechanical processing, service environment, and laser beam quality on its damage behavior is investigated experimentally and theoretically. The results and conclusions can be summarized as follows: (1) It is very important to control the concentration of platinum impurity particles during melting and the sputtering effect of the cladding materials. (2) The number and length of fractural and brittle scratches should be strictly suppressed during mechanical processing of Nd:glass. (3) The B-integral of high power laser beam should be rigorously controlled. Particularly, the top shape of pulses must be well controlled when operating at high peak laser power. (4) The service environment should be well managed to make sure the cleanness of the surface of Nd:glass better than 100/A level during mounting and running. (5) The service environment and beam quality should be monitored during operation.

  4. Magnetic Frequency Response of HL-LHC Beam Screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrone, M.; Martino, M.; De Maria, R.

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained.more » Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.« less

  5. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.

  6. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester are determined. It is shown that, in addition to efficiently control the oscillating amplitudes of the primary structure, broadband resonance regions can take place and hence high levels of the harvested power are obtained.

  7. Performance Characteristics of the NEXT Long-Duration Test After 16,550 h and 337 kg of Xenon Processed

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Herman, Daniel A.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg from mission analyses conducted utilizing the NEXT propulsion system. The LDT is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. This paper presents the performance of the NEXT LDT to date with emphasis on performance variations following throttling of the thruster to the new operating condition and comparison of performance to the NSTAR extended life test.

  8. Target-in-the-loop high-power adaptive phase-locked fiber laser array using single-frequency dithering technique

    NASA Astrophysics Data System (ADS)

    Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.

    2011-11-01

    We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.

  9. Effect of volatile compounds on excimer laser power delivery.

    PubMed

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  10. Optimal Discrete Spatial Compression for Beamspace Massive MIMO Signals

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zhou, Sheng; Niu, Zhisheng

    2018-05-01

    Deploying massive number of antennas at the base station side can boost the cellular system performance dramatically. Meanwhile, it however involves significant additional radio-frequency (RF) front-end complexity, hardware cost and power consumption. To address this issue, the beamspace-multiple-input-multiple-output (beamspace-MIMO) based approach is considered as a promising solution. In this paper, we first show that the traditional beamspace-MIMO suffers from spatial power leakage and imperfect channel statistics estimation. A beam combination module is hence proposed, which consists of a small number (compared with the number of antenna elements) of low-resolution (possibly one-bit) digital (discrete) phase shifters after the beamspace transformation to further compress the beamspace signal dimensionality, such that the number of RF chains can be reduced beyond beamspace transformation and beam selection. The optimum discrete beam combination weights for the uplink are obtained based on the branch-and-bound (BB) approach. The key to the BB-based solution is to solve the embodied sub-problem, whose solution is derived in a closed-form. Based on the solution, a sequential greedy beam combination scheme with linear-complexity (w.r.t. the number of beams in the beamspace) is proposed. Link-level simulation results based on realistic channel models and long-term-evolution (LTE) parameters are presented which show that the proposed schemes can reduce the number of RF chains by up to $25\\%$ with a one-bit digital phase-shifter-network.

  11. High Power Particle Beams and Pulsed Power for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz

    2002-12-01

    Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.

  12. The invisible extension cord

    NASA Astrophysics Data System (ADS)

    Gunn, Stanley V.

    1998-01-01

    The term, ``power beaming'', creates an image of a beam of focused electromagnetic radiation, possessing good transmission characteristics and sufficient intensity to effect the delivery of meaningful amounts of power to a designated receiver. High power, free-electron lasers are well suited for long range transmission of their laser beam to designated space receivers because their selective near infrared wave length can be adjusted to match the absorption characteristics of the receiver's photo voltaic cells. The typical system envisioned is comprised of a 200 kw free electron laser, possessing an over-all efficiency of 10%, and an optical beam director system equipped with appropriate tracking and atmospheric compensation capabilities. Such an installation located at four to five appropriate locations around the earth could provide remarkable benefits to the projected power demands for transfer and maneuvering into orbit and for operating future fleets of satellites.

  13. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers

    PubMed Central

    Ansari, MH; Karami, M Amin

    2018-01-01

    A miniature nonlinear piezoelectric energy harvester is developed to power state of the art leadless cardiac pacemakers from cardiac motions. The energy harvester is integrated in the leadless pacemaker and is connected to the myocardium. The energy harvester converts myocardial motions to electricity to power leadless pacemakers. The energy is stored in a battery or supercapacitor and is used for pacing. The device is composed of a bimorph piezoelectric beam confined in a gray iron frame. The system is assembled at high temperature and operated at the body temperature. The mismatch in the coefficients of thermal expansion of the beam and the frame causes the beam to buckle in body temperature. This intentional buckling makes the beam unstable and improves the power production and robustness of the device. Having high natural frequency is a major problem in microelectromechanical systems energy harvesters. Considering the small size of the energy harvester, 0.5 cm3, the natural frequency is expected to be high. In our design, the natural frequency is lowered significantly using a buckled beam and a proof mass. Since the beam is buckled, the design is bistable and nonlinear, which could increase the output power. In this article, the device is analytically modeled, and the natural frequencies and mode shapes of the energy harvester are analytically derived. The terms corresponding to geometric nonlinearities are included in the electromechanical coupled governing equations. The simulations show that the device generates sufficient electricity to power leadless pacemakers. PMID:29674842

  14. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post-buckling response of the bilaterally constrained beam subjected to axial loading is investigated experimentally, numerically, and theoretically. The capability of the system to generate electric energy under quasi-static excitation is also assessed experimentally. The post-buckling behavior is reproducible under cyclic loadings and independent of the input loading frequency. The static and dynamic response of the beam is theoretically studied using an energy method. The model adequately predicts the beam geometry at every loading stage, including the flattening behavior just before the snap buckling transitions, the mode transition events and the released kinetic energy as well as accelerations of the beam during transitions. The buckling transitions generate high kinetic energy and acceleration spikes. However, the location of the maximum acceleration differs from one transition to another. Tuning the parameters of the system affects dramatically the accelerations generated during snap-through transitions. However, it does not affect the number and spacing between these events. To achieve better control of the system, multiple slender beams with different geometric and material properties are stacked in parallel configurations. The system allows then to control the spacing between energy bursts and reduce the energy leakage in electronic circuits. As an application example, the mechanical energy concentrators and triggers were integrated with a piezo-floating gate events sensor. This allowed for harvesting and recording of bursts and impulses of released energy at very low frequencies. The system can be calibrated to determine the number of times the magnitude of the input signal exceeded a mechanical threshold. The mechanism allows for frequency up-conversion from the low input frequency (in the order of mHz) to the natural frequency of the piezoelectric scavenger.

  15. Strangeness Nuclear Physics at J-PARC

    NASA Astrophysics Data System (ADS)

    Nagae, Tomofumi

    2013-08-01

    After the big earthquake in the east part of Japan on March 11, 2011, the beams in the hadron experimental hall at J-PARC have been successfully recovered in February, 2012. The experimental program using pion beams is now on-going with the primary proton beam power of ~5 kW. Before a long summer shutdown scheduled in 2013, several experiments in strangeness nuclear physics are going to take data. In this period, we anticipate the beam power would exceed 10 kW and the experiments to use K - beams will start. The experimental program is explained briefly.

  16. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  17. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  18. Generation of high power sub millimeter radiation using free electron laser

    NASA Astrophysics Data System (ADS)

    Panwar, J.; Sharma, S. C.; Malik, P.; Yadav, M.; Sharma, R.

    2018-03-01

    We have developed an analytical formalism to study the emission of high power radiation lying in the sub millimetre range. A relativistic electron beam (REB) is velocity modulated by the pondermotive force exerted by the laser beams. After passing through the drift space, the beam gets density modulated which further interacts with the strong field wiggler and acquires a transverse velocity that couples with the modulated density of the beam in the presence of ion channel which contribute to the non-linear current density which further leads to the emission of the radiation. The output radiation can be modified by changing the wiggler parameters and the energy of the electron beam. The power of the output radiation is found to increase with the modulation. The obtained radiation can be employed for various applications.

  19. Solid core dipoles and switching power supplies: lower cost light sources?

    NASA Astrophysics Data System (ADS)

    Benesch, J.; Philip, S.

    2015-05-01

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. For light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings. The work may also be used to guide retrofit of existing machines to reduce the level of ripple in the particle beam path.

  20. Relativistic-electron-beam/target interaction in plasma channels

    NASA Astrophysics Data System (ADS)

    Halbleib, J. A., Sr.; Wright, T. P.

    1980-08-01

    A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.

  1. Design and development of compact pulsed power driver for electron beam experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Pankaj; Sharma, S.K.; Adhikary, B.

    2014-07-01

    Pulsed electron beam generation requires high power pulses of fast rise, short duration pulse with flat top. With this objective we have designed a low cost compact pulsed power driver based on water dielectric transmission line. The paper describes the design aspects and construction of the pulse power driver and its experimental results. The pulsed power driver consist of a capacitor bank and its charging power supply, high voltage generator, high voltage switch and pulse compression system. (author)

  2. Wavefront optimized nonlinear microscopy of ex vivo human retinas

    NASA Astrophysics Data System (ADS)

    Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo

    2010-03-01

    A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M., E-mail: okamura@bnl.gov; Nishina Center for Accelerator-Based Science, RIKEN, Saitama; Palm, K.

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create lowmore » charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less

  4. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  5. Calcium and lithium ion production for laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M.; Palm, K.; Stifler, C.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-statemore » Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less

  6. CO2 laser ablation of external genital lesions with a SwiftLase flashscanner: treatment of extramammary Paget's disease of the vulva, penile condylomata, and other lesions

    NASA Astrophysics Data System (ADS)

    Sacknoff, Eric J.; Schweitzer, Jay; Slatkine, Michael; Mead, Douglass S.

    1995-05-01

    The ability to vaporize extremely thin layers of epithelial tissue without any char and with minimal thermal necrosis is extremely advantageous in the treatment of superficial lesions of the external genitalia. We present a novel CO2 laser `SwiftLase' flashscan technology capable of providing char free ablation of 3 mm diameter lesions with only 150 micron residual thermal necrosis depth at power level as low as 10 watts. These power levels are achievable with a small transportable CO2 laser. The SwiftLaser is a miniature opto- mechanical scanner which homogeneously covers a 3 mm diameter surface with a 0.1 mm spot size focused beam within 0.1 seconds. The instantaneous beam's dwelling time is 1 millisecond. The instantaneous power density level at the focal point is higher than the threshold for char free ablation, thus providing a large char free ablation crater. Since depth of each ablated layer is 0.1 mm, the depth of treatment can be precisely controlled. The SwiftLaser technology has extensively and successfully been used in the last two years for the treatment of HPV in female lower tracts (Vulvectomy). The same technique may be performed with extramammary Paget's disease of the vulva, penile condylomata, and other epithelial disorders of the external genitalia without damage to surrounding healthy tissue. Technique and clinical results will be discussed.

  7. Design of the Readout Electronics for the BGO Calorimeter of DAMPE Mission

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Zhang, Deliang; Zhang, Junbin; Gao, Shanshan; Yang, Di; Zhang, Yunlong; Zhang, Zhiyong; Liu, Shubin; An, Qi

    2015-12-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles in the near future. The BGO (Bismuth Germanate Oxide) Calorimeter, which consists of 616 PMTs (photomultiplier tubes) and 1848 dynode signals, is a crucial part of the DAMPE payload for measuring the energy of cosmic ray particles, distinguishing interesting particles from background, and providing trigger information. An electronics system, which consists of 16 FEE (Front End Electronics) modules with a total power consumption of about 26 W, has been developed. Its main functions are based on the low power, 32-channel VA160 and VATA160 ASICs (Application Specific Integrated Circuits) for precisely measuring the charge of PMT signals and providing“hit”signals as well. To assure the long-term reliability in harsh space environment, a series of critical issues such as the radiation hardness, thermal design, components and board level quality control, etc., are taken into consideration. Test result showed that the system level ENC (equivalent noise charge) for each channel is about 10 fC in RMS (root mean square), and the timing uncertainty of the hit signals is about 300 ns, both of which satisfy the physics requirements of the detector. Experiments with 60Co radioactive source proved that 20 krad(Si) TID (Total Ionizing Dose) level is achieved, while the heavy ion beam and laser beam tests indicated that its SEL (Single Event Latch-up) and SEU (Single Event Upset) performance in orbit will be acceptable by taking some hardness measures. All the readout modules successfully passed the board-level screening, the sub-system level and finally the satellite system level environmental tests, and behave well in the beam test at CERN (European Organisation for Nuclear Research).

  8. Energy scavenging sensors for ultra-low power sensor networks

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  9. Integrated 220 GHz Source Development

    DTIC Science & Technology

    2014-05-27

    placement of the anode far enough from the emitter to prevent the deposi- tion of sputtered anode particles. Fully-Integrated High Power Amplifier The...waveguide circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output...circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output powers up

  10. The robustness of truncated Airy beam in PT Gaussian potentials media

    NASA Astrophysics Data System (ADS)

    Wang, Xianni; Fu, Xiquan; Huang, Xianwei; Yang, Yijun; Bai, Yanfeng

    2018-03-01

    The robustness of truncated Airy beam in parity-time (PT) symmetric Gaussian potentials media is numerically investigated. A high-peak power beam sheds from the Airy beam due to the media modulation while the Airy wavefront still retain its self-bending and non-diffraction characteristics under the influence of modulation parameters. Increasing the modulation factor results in the smaller value of maximum power of the center beam, and the opposite trend occurs with the increment of the modulation depth. However, the parabolic trajectory of the Airy wavefront does not be influenced. By utilizing the unique features, the Airy beam can be used as a long distance transmission source under the PT symmetric Gaussian potentials medium.

  11. Beamed energy for space craft propulsion - Conceptual status and development potential

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Frisbee, Robert H.

    1987-01-01

    This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.

  12. Modeling of the laser beam shape for high-power applications

    NASA Astrophysics Data System (ADS)

    Jabczyński, Jan K.; Kaskow, Mateusz; Gorajek, Lukasz; Kopczyński, Krzysztof; Zendzian, Waldemar

    2018-04-01

    Aperture losses and thermo-optic effects (TOE) inside optics as well as the effective beam width in far field should be taken into account in the analysis of the most appropriate laser beam profile for high-power applications. We have theoretically analyzed such a problem for a group of super-Gaussian beams taking first only diffraction limitations. Furthermore, we have investigated TOE on far-field parameters of such beams to determine the influence of absorption in optical elements on beam quality degradation. The best compromise gives the super-Gaussian profile of index p = 5, for which beam quality does not decrease noticeably and the thermo-optic higher order aberrations are compensated. The simplified formulas were derived for beam quality metrics (parameter M2 and Strehl ratio), which enable estimation of the influence of heat deposited in optics on degradation of beam quality. The method of dynamic compensation of such effect was proposed.

  13. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    NASA Astrophysics Data System (ADS)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  14. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  15. High-power direct diode laser output by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  16. Update on developments at SNIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.

    The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less

  17. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  18. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  19. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  20. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio, from which the beam velocity spreads are estimated. A preliminary test of the mode converter shows that the radiation from the dimpled wall launcher is a Gaussian-like beam. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald Martin

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less

  2. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  3. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhang, Jun; Ju, Jinchuan; Zhong, Huihuang

    2017-03-01

    We report on a radial-line relativistic klystron oscillator (RL-RKO), which is physically designed to generate gigawatt-level high power microwaves (HPMs) at Ku-band. The 3π/4 mode of a four-gap buncher is selected to highly modulate the radially propagating intense relativistic electron beam (IREB). A three-gap extractor operating at the π mode is employed to extract the radio-frequency energy efficiently. The Ku-band RL-RKO is investigated experimentally on an intense-current electron beam accelerator. The radially propagating IREB is well focused with an axial-width of 2 mm by a radial magnetic field of 0.4 T. Microwaves with a frequency of 14.86 GHz and a power of 1.5 GW are generated, corresponding to an efficiency of 24%, which indicates a significant advance for the research of radial-line HPM sources.

  4. Extremely high-brightness kW-class fiber coupled diode lasers with wavelength stabilization

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-06-01

    TeraDiode has produced ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Higher brightness fiber-coupled diode lasers, including a module with 418 W of power coupled to a 100 μm, 0.15 NA fiber, have also been demonstrated.

  5. Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Burnett, J.; Sagar, J.; Kennedy, O. W.; Warburton, P. A.; Fenton, J. C.

    2017-07-01

    We present low-temperature measurements of low-loss superconducting nanowire-embedded resonators in the low-power limit relevant for quantum circuits. The superconducting resonators are embedded with superconducting nanowires with widths down to 20 nm using a neon focused ion beam. In the low-power limit, we demonstrate an internal quality factor up to 3.9 ×105 at 300 mK [implying a two-level-system-limited quality factor up to 2 ×105 at 10 mK], not only significantly higher than in similar devices but also matching the state of the art of conventional Josephson-junction-embedded resonators. We also show a high sensitivity of the nanowire to stray infrared photons, which is controllable by suitable precautions to minimize stray photons in the sample environment. Our results suggest that there are excellent prospects for superconducting-nanowire-based quantum circuits.

  6. Integrated multispectral high-power laser platform for the defeat of heat-seeking missiles

    NASA Astrophysics Data System (ADS)

    Tadjikov, Boris; Tsekoun, Alexei; Lyakh, Arkadiy; Maulini, Richard; Barron, Rodolfo; Patel, C. Kumar N.

    2011-06-01

    Quantum cascade lasers are finding rapid acceptance in many defense and security applications. Our new multispectral laser platform providing watt-level outputs near 2.0 μm, 4.0 μm and 4.6 μm in continuous wave regime at room temperature. Individual lasers are spectrally beam combined into a single output beam with excellent quality. Our rugged, compact (11 × 10 × 6.5 inches), and highly reliable, air-cooled multispectral laser platform is already finding acceptance at system level. Our uncooled devices produce > 2W at 4.6 μm and >1.5W at 4.0 μm at room temperature, and maintain watt-level output at 67°C with real wallplug efficiencies >10%. Finally, all of our QCLs undergo 100-hour pre-delivery burn-in and pass shock, vibration, and temperature testing according to MIL-STD-810G.

  7. Enhanced coherent terahertz beam with a photoconductive antenna containing a chaotic shape electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Dong Ho; Kim, Christopher; Graber, Benjamin

    2014-03-01

    Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.

  8. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    NASA Astrophysics Data System (ADS)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  9. Experimental investigation of a diode-pumped powerful continuous-wave dual-wavelength Nd:YAG laser at 946 and 938.6 nm

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.

    2013-05-01

    In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.

  10. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  11. Low-loss VIS/IR-XUV beam splitter for high-power applications.

    PubMed

    Pupeza, Ioachim; Fill, Ernst E; Krausz, Ferenc

    2011-06-20

    We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster's angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1-0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.

  12. Starship Sails Propelled by Cost-Optimized Directed Energy

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  13. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Pinero, Luis; Schneidegger, Robert; Dunning, John; Birchenough, Art

    2012-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hours and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hours of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  14. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Scheidegger, Robert J.; Pinero, Luis R.; Birchenough, Arthur J.; Dunning, John W.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hr and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location-the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hr of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  15. Enhanced Compton Backscattering in a Periodic Mirror System for Polarized Positron Beam Generation

    NASA Astrophysics Data System (ADS)

    Miyahara, Yoshikazu

    2002-05-01

    By colliding a circularly polarized high power laser beam with a high-energy electron beam, intense circularly polarized γ-rays can be generated, which in turn can be used to produce a longitudinally polarized positron beam for a linear collider. In the present paper, an optical mirror system with periodic focal points is considered to generate intense polarized γ-rays. A CO2 laser beam propagates back and forth in a series of holed mirrors in a straight line. The diffraction loss through the holes is negligibly small, so that the laser beam can be used repeatedly for the collision. The beam size is reduced to 22 μm at a minimum and kept the same in 20 unit cells, ten of which are combined in series. A 5.8 GeV electron beam is focused to 30 μm at a minimum in a series of triplets of permanent quadrupole magnets to generate γ-rays of 60 MeV at a maximum. A γ-ray yield required for a positron beam in a linear collider can be obtained by 10 laser sources with a power of 3.1 kW each, which is considerably lower than the total power assumed in a previous proposal.

  16. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.

  17. Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator.

    PubMed

    Kapur, A; Ma, C M

    1999-09-01

    Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.

  18. WISPER: Wirless Space Power Experiment

    NASA Technical Reports Server (NTRS)

    Hawkins, Joseph

    1993-01-01

    The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.

  19. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

Top