Sample records for beam pulse shape

  1. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  2. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  3. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-01

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  4. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  5. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America

  6. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  7. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  8. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  9. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  10. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  11. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOEpatents

    Csonka, P.L.

    1992-05-12

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence. 16 figs.

  12. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOEpatents

    Csonka, Paul L.

    1992-01-01

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence.

  13. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  14. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  15. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  16. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE PAGES

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; ...

    2017-10-16

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  17. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  18. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  19. Pulse Shepherding in Nonlinear Fiber Optics

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  20. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  1. Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime

    PubMed Central

    Bulanov, S. S.; Brantov, A.; Bychenkov, V. Yu.; Chvykov, V.; Kalinchenko, G.; Matsuoka, T.; Rousseau, P.; Reed, S.; Yanovsky, V.; Litzenberg, D. W.; Krushelnick, K.; Maksimchuk, A.

    2008-01-01

    We consider the effect of laser beam shaping on proton acceleration in the interaction of a tightly focused pulse with ultrathin double-layer solid targets in the regime of directed Coulomb explosion. In this regime, the heavy ions of the front layer are forced by the laser to expand predominantly in the direction of the pulse propagation, forming a moving longitudinal charge separation electric field, thus increasing the effectiveness of acceleration of second-layer protons. The utilization of beam shaping, namely, the use of flat-top beams, leads to more efficient proton acceleration due to the increase of the longitudinal field. PMID:18850951

  2. Nonlinear effects during interaction of femtosecond doughnut-shaped laser pulses with glasses: overcoming intensity clamping

    NASA Astrophysics Data System (ADS)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.

    2017-05-01

    Interaction of femtosecond laser pulses with a bulk glass (fused silica as an example) has been studied numerically based on non-linear Maxwell's equations supplemented by the hydrodynamics-type equations for free electron plasma for the cases of Gaussian linearly-polarized and doughnut-shaped radially-polarized laser beams. For Gaussian pulses focused inside glass (800 nm wavelength, 45 fs duration, numerical aperture of 0.25), the free electron density in the laser-excited region remains subcritical while the locally absorbed energy density does not exceed 2000 J/cm3 in the range of pulse energies of 200 nJ - 2 μJ. For doughnut-shaped pulses, the initial high-intensity ring of light is shrinking upon focusing. Upon reaching a certain ionization level on its way, the light ring splits into two branches, one of which shrinks swiftly toward the beam axis well before the geometrical focus, leading to generation of supercritical free electron density. The second branch represents the laser light scattered by the electron plasma away from the beam axis. The final laserexcited volume represents a tube of 0.5-1 μm in radius and 10-15 μm long. The local maximum of absorbed energy can be more than 10 times higher compared to the case of Gaussian beams of the same energy. The corresponding pressure levels have been evaluated. It is anticipated that, in the case of doughnut-shaped pulses, the tube-like shape of the deposited energy should lead to implosion of material that can be used for improving the direct writing of high-refractive index optical structures inside glass or for achieving extreme thermodynamic states of matter.

  3. Tailored laser beam shaping for efficient and accurate microstructuring

    NASA Astrophysics Data System (ADS)

    Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.

    2018-02-01

    Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.

  4. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  5. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  6. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.

    PubMed

    Zhuang, Qiao; Müller, Rolf

    2006-11-24

    Horseshoe bats emit their ultrasonic biosonar pulses through nostrils surrounded by intricately shaped protuberances (noseleaves). While these noseleaves have been hypothesized to affect the sonar beam, their physical function has never been analyzed. Using numerical methods, we show that conspicuous furrows in the noseleaf act as resonance cavities shaping the sonar beam. This demonstrates that (a) animals can use resonances in external, half-open cavities to direct sound emissions, (b) structural detail in the faces of bats can have acoustic effects even if it is not adjacent to the emission sites, and (c) specializations in the biosonar system of horseshoe bats allow for differential processing of subbands of the pulse in the acoustic domain.

  7. Generation of programmable temporal pulse shape and applications in micromachining

    NASA Astrophysics Data System (ADS)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  8. Testing low-mode symmetry control with low-adiabat, extended pulse-lengths in BigFoot implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.

    2017-10-01

    The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    DOE PAGES

    Andonian, G.; Barber, S.; O’Shea, F. H.; ...

    2017-02-03

    We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less

  10. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise

    DOE PAGES

    Marinelli, A.; MacArthur, J.; Emma, P.; ...

    2017-10-09

    In this letter, we report the experimental demonstration of single-spike hard-X-ray free-electron laser pulses starting from noise with multi-eV bandwidth. Here, this is accomplished by shaping a low-charge electron beam with a slotted emittance spoiler and by adjusting the transport optics to optimize the beam-shaping accuracy. Based on elementary free-electron laser scaling laws, we estimate the pulse duration to be less than 1 fs full-width at half-maximum.

  11. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, A.; MacArthur, J.; Emma, P.

    In this letter, we report the experimental demonstration of single-spike hard-X-ray free-electron laser pulses starting from noise with multi-eV bandwidth. Here, this is accomplished by shaping a low-charge electron beam with a slotted emittance spoiler and by adjusting the transport optics to optimize the beam-shaping accuracy. Based on elementary free-electron laser scaling laws, we estimate the pulse duration to be less than 1 fs full-width at half-maximum.

  12. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  13. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  14. Beam shaping as an enabler for new applications

    NASA Astrophysics Data System (ADS)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  15. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel

    2011-02-01

    Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.

  16. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  17. ARPA/NRL X-Ray Laser Program - Semiannual Technical Report to Defense Advanced Research Projects Agency

    DTIC Science & Technology

    1975-03-01

    10 J. The beam divergence was 8 mrad. A beam splitter and an S-l response photodlode were used to monitor the laser pulse signal shape and the...laser beams on a cylinder [231] to compress a material to the necessary inversion density will be plagued by the non -uniform gain that these focused...of 30 psec and a good beam divergence can emerge after the non -linear stages as a 1773, 1182, or 887 k pulse still possessing good beam quality

  18. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  19. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; ...

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  20. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  1. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  2. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  3. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  4. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE PAGES

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...

    2018-01-03

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  5. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  6. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  7. Interaction of doughnut-shaped laser pulses with glasses

    DOE PAGES

    Zhukov, Vladimir P.; Rubenchik, Alexander M.; Fedoruk, Mikhail P.; ...

    2017-01-26

    Non-Gaussian laser beams can open new opportunities for microfabrication, including ultrashort laser direct writing. By using a model based on Maxwell’s equations, we investigate the dynamics of doughnut-shaped laser beams focused inside fused silica glass, in comparison with Gaussian pulses of the same energy. The laser propagation dynamics reveals intriguing features of beam splitting and sudden collapse toward the beam axis, overcoming the intensity clamping effect. The resulting structure of light absorption represents a very hot, hollow nanocylinder, which can lead to an implosion process that brings matter to extreme thermodynamic states. Furthermore, by monitoring the simulations of the lasermore » beam scattering we see a considerable difference in both the blueshift and the angular distribution of scattered light for different laser energies, suggesting that investigations of the spectra of scattered radiation can be used as a diagnostic of laser-produced electron plasmas in transparent materials.« less

  8. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.

    PubMed

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P

    2015-04-24

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  9. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  10. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  11. Some interesting aspects of physisorption stay-time measurements obtained using molecular-beam techniques. [on Ni surface

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Fisher, S. S.

    1974-01-01

    Stay-time distributions have been obtained for Xe physisorbing on polycrystalline nickel as a function of the target temperature using a pulsed molecular-beam technique. Some interesting effects due to ion bombardment of the surface using He, Ar, and Xe ions are presented. Measured detector signal shapes are found to deviate from those predicted for first-order desorption with velocities corresponding to Maxwellian effusion at the surface temperature. Evidence is found for interaction between beam pulse adsorption and steady-state adsorption of beam species background atoms.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  13. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  14. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.

  15. Effects of laser fluence on silicon modification by four-beam laser interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Li, Dayou; JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, andmore » the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.« less

  16. Influence of Plasma Unsteadiness on the Spectrum and Shape of Microwave Pulses in a Plasma Relativistic Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.

    2018-02-01

    Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.

  17. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping.

    PubMed

    Hong, Xu; Zhou, Jianbin; Ni, Shijun; Ma, Yingjie; Yao, Jianfeng; Zhou, Wei; Liu, Yi; Wang, Min

    2018-03-01

    High-precision measurement of X-ray spectra is affected by the statistical fluctuation of the X-ray beam under low-counting-rate conditions. It is also limited by counting loss resulting from the dead-time of the system and pile-up pulse effects, especially in a high-counting-rate environment. In this paper a detection system based on a FAST-SDD detector and a new kind of unit impulse pulse-shaping method is presented, for counting-loss correction in X-ray spectroscopy. The unit impulse pulse-shaping method is evolved by inverse deviation of the pulse from a reset-type preamplifier and a C-R shaper. It is applied to obtain the true incoming rate of the system based on a general fast-slow channel processing model. The pulses in the fast channel are shaped to unit impulse pulse shape which possesses small width and no undershoot. The counting rate in the fast channel is corrected by evaluating the dead-time of the fast channel before it is used to correct the counting loss in the slow channel.

  18. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  19. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  20. Compact pulsed high-energy Er:glass laser

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian

    2012-03-01

    Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.

  1. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC) fibers. The comparison between the different fibers will be presented in the conference. Fiber spatial beam shaping Spatial beam shaping (top-hat profile) is mandatory to optimize the energy extraction in free-space amplifier. It would be very interesting to obtain a flat-top beam in an all-fiber way. Accordingly, we have design and realize a large mode area single-mode top-hat fiber able to deliver a coherent top-hat beam. This fiber, with larger MFD adapted to mJ pulse, will be implemented to perform the spatial beam shaping from coherent Gaussian profile to coherent top-hat intensity profile in the mJ range. In conclusion, we will present an all-fiber MOPA built to fulfil stringent requirements for large scale laser facility seeding. We have already achieved 750 µJ with 10 ns square pulses. Transport of high peak power pulses over 17 m in a hollow-core fiber has been achieved and points out FM to AM conversion management issues. Moreover, spatial beam shaping is obtained by using specifically designed single-mode fibers. Various optimizations are currently under progress and will be presented.

  2. Temporal and frequency characteristics of a narrow light beam in sea water.

    PubMed

    Luchinin, Alexander G; Kirillin, Mikhail Yu

    2016-09-20

    The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.

  3. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  4. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  5. Measurement of surface stay times for physical adsorption of gases. Ph.D. Thesis - Va. Univ.; [using molecular beam time of flight technique

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1973-01-01

    A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.

  6. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  7. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation of low-loss optical waveguides over shallow and deep focusing conditions. Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.

  8. Calculation of laser pulse distribution maps for corneal reshaping with a scanning beam

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Shen, Jin-Hui; Soederberg, Per G.; Matsui, Takaaki; Parel, Jean-Marie A.

    1995-05-01

    A method for calculating pulse distribution maps for scanning laser corneal surgery is presented. The accuracy, the smoothness of the corneal shape, and the duration of surgery were evaluated for corrections of myopia by using computer simulations. The accuracy and the number of pulses were computed as a function of the beam diameter, the diameter of the treatment zone, and the amount of attempted flattening. The ablation is smooth when the spot overlap is 80% or more. The accuracy does not depend on the beam diameter or on the diameter of the ablation zone when the ablation zone is larger than 5 mm. With an overlap of 80% and an ablation zone larger than 5 mm, the error is 5% of the attempted flattening, and 610 pulses are needed per Diopter of correction with a beam diameter of 1 mm. Pulse maps for the correction of astigmatism were computed and evaluated. The simulations show that with 60% overlap, a beam diameter of 1 mm, and a 5 mm treatment zone, 6 D of astigmatism can be corrected with an accuracy better than 1.8 D. This study shows that smooth and accurate ablations can be produced with a scanning spot.

  9. Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutteruf, M. R.; Jones, R. R.

    2010-12-15

    We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be reduced to the point where the duration of the electric-field tuning pulses, and not the motion ofmore » neighboring atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for collisions.« less

  10. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  11. Particle identification using digital pulse shape discrimination in a nTD silicon detector with a 1 GHz sampling digitizer

    NASA Astrophysics Data System (ADS)

    Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.

    2018-06-01

    In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.

  12. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  13. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  14. Entropy analysis of frequency and shape change in horseshoe bat biosonar

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam K.; Webster, Dane; Müller, Rolf

    2018-06-01

    Echolocating bats use ultrasonic pulses to collect information about their environments. Some of this information is encoded at the baffle structures—noseleaves (emission) and pinnae (reception)—that act as interfaces between the bats' biosonar systems and the external world. The baffle beam patterns encode the direction-dependent sensory information as a function of frequency and hence represent a view of the environment. To generate diverse views of the environment, the bats can vary beam patterns by changes to (1) the wavelengths of the pulses or (2) the baffle geometries. Here we compare the variability in sensory information encoded by just the use of frequency or baffle shape dynamics in horseshoe bats. For this, we use digital and physical prototypes of both noseleaf and pinnae. The beam patterns for all prototypes were either measured or numerically predicted. Entropy was used as a measure to compare variability as a measure of sensory information encoding capacity. It was found that new information was acquired as a result of shape dynamics. Furthermore, the overall variability available for information encoding was similar in the case of frequency or shape dynamics. Thus, shape dynamics allows the horseshoe bats to generate diverse views of the environment in the absence of broadband biosonar signals.

  15. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  16. Building achromatic refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Shealy, David

    2014-10-01

    Achromatic beam shapers can provide beam shaping in a certain spectral band and are very important for various laser techniques, such as, applications based on ultra-short pulse lasers with pulse width <100 fs, confocal microscopy, multicolour holography, life sciences fluorescence techniques, where several lasers in spectrum 405-650 nm are used simultaneously, for example 405-650 nm. Conditions of energy re-distribution and zero wave aberration are strictly fulfilled in ordinary plano-aspheric lens pair beam shapers for a definite wavelength only. Hence, these beam shapers work efficiently in relatively narrow, few nm spectrum. To provide acceptable beam quality for refractive beam shaping over a wide spectrum, an achromatizing design condition should be added. Consequently, the typical beam shaper design contains more than two-lenses, to avoid any damaging and other undesirable effects the lenses of beam shaper should be air-spaced. We suggest a two-step method of designing the beam shaper: 1) achromatizing of each plano-aspheric lens using a buried achromatizing surface ("chromatic radius"), then each beam shaper component presents a cemented doublet lens, 2) "splitting" the cemented lenses and realizing air-spaced lens design using optical systems design software. This method allows for using an achromatic design principle during the first step of the design, and then, refining the design by using optimization software. We shall present examples of this design procedure for an achromatic Keplerian beam shaper and for the design of an achromatic Galilean type of beam shaper. Experimental results of operation of refractive beam shapers will be presented as well.

  17. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  18. Two-photon equivalent weighting of spatial excimer laser beam profiles

    NASA Astrophysics Data System (ADS)

    Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.

    2001-04-01

    Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.

  19. Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

    DOE PAGES

    Halavanau, A.; Qiang, G.; Ha, G.; ...

    2017-10-26

    A transversely inhomogeneous laser distribution on the photocathode surface generally produces electron beams with degraded beam quality. In this paper, we explore the use of microlens arrays to dramatically improve the transverse uniformity of an ultraviolet drive-laser pulse used in a photoinjector. Here, we also demonstrate a capability of microlens arrays to generate transversely modulated electron beams and present an application of such a feature to diagnose the properties of a magnetized beam.

  20. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-05-16

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  1. Record fifth-harmonic-generation efficiency producing 211  nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-01-01

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  2. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begishev, I. A.; Bromage, J.; Yang, S. T.

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  3. The new RLA test status

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Mazarakis, M. G.; Skogmo, P.; Bennett, L. F.; Olson, W. R.; George, M.; Harden, M. J.; Turman, B. N.; Moya, S. A.; Henderson, J. L.

    The Recirculating Linear Accelerator (RLA) is returning to operation with a new relativistic electron beam (REB) injector and a modified accelerating cavity. Upon completion of our pulsed-power test program, we will capture the injected beam on an Ion Focussed Regime (IFR) guiding channel in either a spiral or a closed racetrack drift tube. The relativistic beam will recirculate for four passes through two accelerating cavities, in phase with the ringing cavity voltage, and increase to 8--12 MeV before being extracted. We designed the METGLAS ribbon-wound core, inductively isolated, four-stage injector to produce beam parameters of 4 MeV, 10--20 kA, and 40--55 ns FWHM. The three-line radial cavity is being modified to improve the 1-MV accelerating pulse shape while an advanced cavity design study is in progress. This is a continuation of the Sandia National Laboratory program to develop compact, high-voltage gradient, linear induction accelerators. The RLA concept is based on guiding an injected REB with an IFR channel. This channel is formed from a plasma created with a low energy electron beam inside a beam line containing about 2 x 10(exp -4) Torr of argon. The REB is injected onto the IFR channel and is transported down the beamline through a water dielectric accelerating cavity based on the ET-2 design. If the round-tip path of the beam matches the period of the cavity, the REB can be further accelerated by the ringing waveform on every subsequent pass. We have installed the new REB injector because we need a higher amplitude, longer duration, flat-topped pulse shape with a colder beam than that produced by the previous injector. We made extensive use of computer simulations in the form of network solver and electrostatic field stress analysis codes to aid in the design and modifications for the new RLA. The pulsed-power performance of the RLA injector and cavity and the associated driving hardware are discussed.

  4. Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Katz, O.; Natan, A.; Silberberg, Y.; Rosenwaks, S.

    2008-04-01

    We demonstrate a single-beam, standoff (>10m) detection and identification of various materials including minute amounts of explosives under ambient light conditions. This is obtained by multiplex coherent anti-Stokes Raman scattering spectroscopy (CARS) using a single femtosecond phase-shaped laser pulse. We exploit the strong nonresonant background for amplification of the backscattered resonant CARS signals by employing a homodyne detection scheme. The simple and highly sensitive spectroscopic technique has a potential for hazardous materials standoff detection applications.

  5. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  6. Handheld probe for portable high frame photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.

    2013-03-01

    Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.

  7. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  8. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Amore » radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.« less

  9. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  10. Beam engineering for zero conicity cutting and drilling with ultra fast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.

    2017-03-01

    With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.

  11. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  12. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  13. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  14. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  15. Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali

    2017-09-01

    Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.

  16. Method and system for laser-based formation of micro-shapes in surfaces of optical elements

    DOEpatents

    Bass, Isaac Louis; Guss, Gabriel Mark

    2013-03-05

    A method of forming a surface feature extending into a sample includes providing a laser operable to emit an output beam and modulating the output beam to form a pulse train having a plurality of pulses. The method also includes a) directing the pulse train along an optical path intersecting an exposed portion of the sample at a position i and b) focusing a first portion of the plurality of pulses to impinge on the sample at the position i. Each of the plurality of pulses is characterized by a spot size at the sample. The method further includes c) ablating at least a portion of the sample at the position i to form a portion of the surface feature and d) incrementing counter i. The method includes e) repeating steps a) through d) to form the surface feature. The sample is free of a rim surrounding the surface feature.

  17. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  18. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  19. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  20. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  1. ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals

    NASA Astrophysics Data System (ADS)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.

    1985-01-01

    It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.

  2. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  3. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  4. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.

  5. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.

  6. Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying

    A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less

  7. Latest results on solarization of optical glasses with pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Petzold, Uwe

    2017-02-01

    Femtosecond lasers are more and more used for material processing and lithography. Femtosecond laser help to generate three dimensional structures in photoresists without using masks in micro lithography. This technology is of growing importance for the field of backend lithography or advanced packaging. Optical glasses used for beam shaping and inspection tools need to withstand high laser pulse energies. Femtosecond laser radiation in the near UV wavelength range generates solarization effects in optical glasses. In this paper results are shown of femtosecond laser solarization experiments on a broad range of optical glasses from SCHOTT. The measurements have been performed by the Laser Zentrum Hannover in Germany. The results and their impact are discussed in comparison to traditional HOK-4 and UVA-B solarization measurements of the same materials. The target is to provide material selection guidance to the optical designer of beam shaping lens systems.

  8. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  9. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Bing; Liu, Jin-Liang; Zhang, Hong-Bo; Feng, Jia-Huai; Qian, Bao-Liang

    2010-07-01

    The Blumlein pulse forming line (BPFL) consisting of an inner coaxial pulse forming line (PFL) and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA). The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  10. Evidence for free precession in a pulsar

    PubMed

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  11. Laser-excited pulses in a crystallized dusty plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A dusty plasma is an ionized gas containing small particles of solid matter. These particles acquire a large negative electric charge. Polymer microspheres were shaken into a capacitively-coupled parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, arranged in a hexagonal lattice. They were imaged using a video camera, to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. There are several ways these waves can be excited, including applying a force from the radiation pressure of a laser beam. By chopping an argon laser beam that is directed at the lattice, it is possible to launch a pulsed wave in the lattice. We evaluate the pulse's shape and propagation speed, and test whether it has the properties of a shock.

  12. Chevron beam dump for ITER edge Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatsuka, E.; Hatae, T.; Bassan, M.

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due tomore » nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao

    From the interaction between the high-contrast ({approx}more than 10{sup 10}) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of {approx}1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder.more » From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of {approx}10 mrad. The number of protons included in the bunch is >10{sup 6}.« less

  14. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  15. Ultrafast Beam Filamentation: Spatio-Temporal Characterization and Control

    DTIC Science & Technology

    2013-11-01

    measurement of spectral phase[7]. The output of the laser passes through a BK7 plate set at a Brewster angle to clean up the polarization of the beam...at the focus of a lens . In this configuration, the pulse focuses temporally and spatially at the same time. We developed a theory for understanding...focus by shaping only the spatial phase of the starting beam. Finally, we showed for the first time that Kerr- lens modelocking can be achieved in a Ti

  16. Symmetry control in subscale near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.

    2016-05-01

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  17. Investigation of small transverse electric CO/sub 2/ waveguide lasers for fuzing applications. Contractor report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochuli, U.; McGuire, D.

    1982-10-01

    The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.

  18. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.

  19. Observations of a fast transverse instability in the PSR

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Colton, E.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.-S.

    1992-09-01

    A fast instability with beam loss is observed in the Los Alamos Proton Storage Ring (PSR) when the injected beam current exceeds a threshold value, with both bunched and unbunched beams. Large coherent transverse oscillations occur prior to and during beam loss. The threshold depends strongly on rf voltage, beam-pulse shape, beam size, nonlinear fields, and beam environmental. Results of recent observations of the instability are reported; possible causes of the instability are discussed. Recent measurements and calculations indicate that the instability is an "e-p"-type instability, driven by coupled oscillations with electrons trapped within the proton beam. Future experiments toward further understanding of the instability are discussed, and methods of increasing PSR beam storage are suggested.

  20. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    NASA Astrophysics Data System (ADS)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  1. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  2. Power balance on a multibeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  3. Power balance on a multibeam laser

    NASA Astrophysics Data System (ADS)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  4. Power balance on a multibeam laser

    DOE PAGES

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...

    2018-02-15

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  5. Beam shaping by using small-aperture SLM and DM in a high power laser

    NASA Astrophysics Data System (ADS)

    Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng

    2018-03-01

    High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.

  6. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  7. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    NASA Astrophysics Data System (ADS)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  8. The effects of focusing power on TEA CO2 laser-induced gas breakdown and the consequent pulse shaping effects

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Saleheh; Safari, Ebrahim; Majdabadi, Abbas; Silakhori, Kaveh

    2018-02-01

    Transversely Excited Atmospheric (TEA) CO2 laser pulses were used in order to generate an optical breakdown in a variety of mono- and polyatomic molecules using different focusing powers. The dependence of the spark kernel geometry and the transmitted pulse shapes on the focusing power as well as the pressure, molecular weight, and ionization energy of the gases was investigated in detail. Partial removal of the transmitted pulse tail in the 0.05-2.6 μs range together with shortened spikes in the 10-60 ns range has been observed by applying a 2.5 cm focal length lens for all the gases. At higher focal lengths, this effect is only incompletely observed for He gas. Spatial-temporal analyses of the laser beams and the relevant plasma plumes indicate that this behavior is due to the drop in the plasma density below the critical level, before the laser pulse tail is completed.

  9. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  10. Symmetry control in subscale near-vacuum hohlraums

    DOE PAGES

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2016-05-18

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce mostmore » experimental observables, including hot spot shape, for a majority of implosions. In conclusion, specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrak, R.; Wildman, D.

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  12. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  13. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  14. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  15. Hydrographic surveys of rivers and lakes using a multibeam echosounder mapping system

    USGS Publications Warehouse

    Huizinga, Richard J.; Heimann, David C.

    2018-06-12

    A multibeam echosounder is a type of sound navigation and ranging device that uses sound waves to “see” through even murky waters. Unlike a single beam echosounder (also known as a depth sounder or fathometer) that releases a single sound pulse in a single, narrow beam and “listens” for the return echo, a multibeam system emits a multidirectional radial beam to obtain information within a fan-shaped swath. The timing and direction of the returning sound waves provide detailed information on the depth of water and the shape of the river channel, lake bottom, or any underwater features of interest. This information has been used by the U.S. Geological Survey to efficiently generate high-resolution maps of river and lake bottoms.

  16. Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber.

    PubMed

    Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K

    2013-03-11

    Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

  17. Higher Velocity High-Foot Implosions on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, Debra

    2014-10-01

    After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  19. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  20. Laser Pulse Shaping for Low Emittance Photo-Injector

    DTIC Science & Technology

    2012-06-01

    It depends on the product of the beam’s transverse size and angular divergence, , (I.2) where is the standard deviation of the electron...shows the pendulum’s phase velocity as a function of the position θp. As the pendulum oscillates back and forth, its phase, or angular , velocity and...the angular divergence and size of the optical beam. The radius of the optical beam follows the equation 24 To guarantee proper transfer

  1. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    PubMed

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  2. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  3. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    NASA Astrophysics Data System (ADS)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  4. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  5. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  6. Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Qiang, G.; Ha, G.

    2017-07-24

    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the propertiesmore » of a magnetized beam.« less

  7. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE PAGES

    Cao, D.; Boehly, T. R.; Gregor, M. C.; ...

    2018-05-16

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic on OMEGA. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ~ 3) implosions, but agreement degrades for lower-adiabat (α ~ 1) designs. Several possibilities for this difference are studied: errors in placing the target at the center of irradiation (target offset),more » variations in energy between the different incident beams (power imbalance), and errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging can be applied to the pulse shapes used in shock-timing experiments. In conclusion, this will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  8. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  9. Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.

    2018-04-01

    The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.

  10. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  11. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  12. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Speckle suppression using a liquid-crystal cell

    NASA Astrophysics Data System (ADS)

    Andreev, A. L.; Kompanets, I. N.; Minchenko, M. V.; Pozhidaev, E. P.; Andreeva, T. B.

    2008-12-01

    A simple method for suppressing speckles in images produced by laser projectors is proposed. The coherence of the laser beam and, therefore, speckles can be destroyed when the beam passes through an electrooptical cell in which a special ferroelectric liquid crystal is used as a modulating medium. The effect is achieved due to the spatially inhomogeneous phase modulation of light when specially shaped bipolar electric pulses are applied to the cell.

  13. Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, M H; Mackinnon, A J; Patel, P K

    A new technique is described for the isochoric heating (i.e., heating at constant volume) of matter to high energy-density plasma states (>10{sup 5} J/g) on a picosecond timescale (10{sup -12} sec). An intense, collimated, ultrashort-pulse beam of protons--generated by a high-intensity laser pulse--is used to isochorically heat a solid density material to a temperature of several eV. The duration of heating is shorter than the timescale for significant hydrodynamic expansion to occur, hence the material is heated to a solid density warm dense plasma state. Using spherically-shaped laser targets a focused proton beam is produced and used to heat amore » smaller volume to over 20 eV. The technique described of ultrafast proton heating provides a unique method for creating isochorically heated high-energy density plasma states.« less

  14. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  15. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  17. Femtosecond noncollinear SFG dynamics in autocorrelator setup at low level of photons

    NASA Astrophysics Data System (ADS)

    Tenishev, Vladimir P.; Persson, A.; Larsson, J.

    2004-06-01

    We report here the characteristics of noncollinear sum frequency generation in nonlinear KDP crystals by ultrashort (80 fsec) IR pulses irradiated by the intense Ti:Sapphire laser and their behavior in single shot auto-crosscorrelator (ACC) configuration. In particular we study the case where one of the beams is very weak. Our aim is to develop a procedure to provide delay time signal between light pulses for time resolved pump probe experiments based on the extraction of the phase-matched SHG spatial distribution by means of pulse shape analysis technique. We intend to apply these results to synchronize a weak short-pulse source and an intense Ti:Sapphire laser and to measure the pulse time jitter between them.

  18. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  19. Description of high-power laser radiation in the paraxial approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milant'ev, V P; Karnilovich, S P; Shaar, Ya N

    2015-11-30

    We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric Hermite – Gaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the secondorder quantities in the expansion in the small parameter.more » The peculiarities of the description of higher-mode Hermite – Gaussian beams are outlined. (light wave transformation)« less

  20. Interplay of lancet furrows and shape change in the horseshoe bat noseleaf.

    PubMed

    Gupta, Anupam K; Webster, Dane; Müller, Rolf

    2015-11-01

    Horseshoe bats emit biosonar pulses through the nostrils and diffract the outgoing ultrasonic pulses with baffles, so-called "noseleaves," that surround the nostrils. The noseleaves have complex static geometries and can furthermore undergo dynamic shape changes during emission of the biosonar pulses. The posterior noseleaf part, the lancet, has been shown to carry out anterior-posterior flicking motions during biosonar emissions with average lancet tip displacements of about 1 mm. Here, the acoustic effects of the interplay between the lancet furrows and shape change (lancet rotation) on the emission beam were investigated using the animated digital models obtained from the noseleaves of greater horseshoe bats (Rhinolophus ferrumequinum). It was found that forward lancet rotations increase the amount of sound energy allocated to secondary amplitude maxima (sidelobes) in the beampattern, but only in the presence of the furrows. The interaction between static and dynamic features can be readily quantified by roughness (standard deviation about local mean) of the amplitude distribution of the beampatterns. This effect goes beyond the static impact of the furrows on the width of the mainlobe. It could allow the bats to send out their pulses through a sequence of qualitatively different beampatterns.

  1. Raman Amplification and Tunable Pulse Delays in Silicon Waveguides

    NASA Astrophysics Data System (ADS)

    Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.

    2010-10-01

    The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.

  2. The effect of the Gouy phase in optical-pump-THz-probe spectroscopy.

    PubMed

    Ahmed, Saima; Savolainen, Janne; Hamm, Peter

    2014-02-24

    We show theoretically as well as experimentally that the Gouy-phase shift, which depends on the exact positioning of a sample in relation to the focus of a probe beam in a pump-probe experiment, may have a pronounced effect on the shape of the pump-probe signal. The effect occurs only when single-cycle probe pulses are used, i.e. when the slowly varying envelope approximation breaks down, while it disappears for multi-cycle pulses. The effect is thus most relevant in THz time-resolved spectroscopy, where such single cycle pulses are most commonly used, but it should not be overlooked also in other spectral regimes when correspondingly short pulses are involved.

  3. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    NASA Astrophysics Data System (ADS)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  4. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  5. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Hohenberger, M.; Landen, O. L.; Regan, S. P.; Wehrenberg, C. E.; Remington, B. A.

    2015-04-01

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb Heα x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a "prepulse" shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  6. Measurements of Classical Transport of Fast Ions in the LAPD

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Zimmerman, D.; Lenenman, D.; Vincena, S.

    2004-11-01

    To study fast ion transport in a well controlled background plasma, a 3cm diameter RF ion gun launches a pulsed, 400 eV ribbon shape argon ion beam in the LArge Plasma Device (LAPD) at UCLA. The beam velocity distribution is calibrated by Laser Induced Fluorescence (LIF) on the Mirror of UCI and the beam energy is also measured by a two-grid energy analyzer at different axial locations (z=0.3-6.0 m) from the source on LAPD. Slowing down of the ion beam is observed when the beam is launched parallel or at 15 degrees to the 0.85 kG magnetic field. Using Langmuir probe measurements of the plasma parameters, the observed energy deceleration rate is consistent with classical Coulomb scattering theory. The radial beam profile is also measured by the energy analyzer when the beam is launched at 15 degrees to the magnetic field. The beam follows the expected helical trajectory and its contour has the shape predicted by Monte Carlo simulations. The diffusion measurements are performed at different axial locations where the ion beam has the same gyro-phase to eliminate the peristaltic effect. The spatial spreading of the beam is compared with classical scattering and neutral scattering theory.

  7. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  8. Scalable entanglement in trapped ions using optimal control of multimode couplings

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu; Choi, Taeyoung; Manning, T. Andrew; Figgatt, Caroline; Monroe, Chris

    2014-05-01

    We perform high fidelity multipartite entanglement of ion subsets in a chain of five Yb+ qubits using optimal pulse shaping. A focused mode-locked laser beam individually addresses qubits to couple them to multiple collective transverse modes of motion to perform entangling phase gates on pairs of adjacent qubits. Pulse shaping by modulating the amplitude and phase of the laser can drive high fidelity gates for certain pulse solutions that are relatively insensitive to detuning errors. We create entangled states in the GHZ class and witness genuine tripartite entanglement using individual state detection. This method of engineering the evolution of multiple modes scales well for large qubit registers by keeping gate times short. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  9. Multi-Beam Surface Lidar for Lunar and Planetary Mapping

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Garvin, James B.

    1998-01-01

    Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.

  10. Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Wendel, Mark W; Felde, David K

    2010-01-01

    Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incidentmore » proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.« less

  11. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  12. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  13. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE PAGES

    Dorrer, C.; Consentino, A.; Cuffney, R.; ...

    2017-10-18

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  14. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Cuffney, R.

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  15. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  16. Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. D.; Fiorito, R. B.; Corbett, J.

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40–80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as anmore » optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Fiorito, Ralph; Corbett, Jeff

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block outmore » light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less

  19. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    PubMed

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  20. Femtosecond optical injection of intact plant cells using a reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2014-03-01

    The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.

  1. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOEpatents

    Kane, Daniel J.; Trebino, Rick P.

    1998-01-01

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  2. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  3. Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Kalupka, C.; Großmann, D.; Reininghaus, M.

    2017-05-01

    We report on investigations of the energy deposition in the volume of thin glass during an ablation cutting process with pulsed femtosecond laser radiation by time-resolved pump-probe shadowgraphy. For a single laser pulse, the temporal evolution of the transient electronic excitation of the glass volume is imaged up to 10 ps after initial excitation. For an increasing number of laser pulses, the spatial excitation of the glass volume significantly changes compared to single pulse irradiation. Sharp spikes are observed, which reduce the transmission of the illuminating probe pulse. This indicates local maxima of the absorption and, therefore, energy deposition of the pump pulse energy in the glass volume. Furthermore, for an increasing number of pulses, different shapes of the surface ablation crater are observed. To study the correlation between the shape of the surface ablation crater and the energy deposition in the glass volume, simulations of the spatial intensity distribution of the pump pulse are executed by means of linear beam propagation method. We show that the transient excitation spikes observed by pump-probe shadowgraphy can be explained by refraction and diffraction of the laser radiation at the surface ablation crater. Our results provide an experimental validation for the physical reason of an ablation stop for an ablation cutting process. Moreover, the simulations allow for the prediction of damage inside the glass volume.

  4. Radiating pattern of surge-current-induced THz light in near-field and far-field zone.

    PubMed

    Han, J W; Choi, Y G; Lee, J S

    2018-04-25

    We generate the THz wave on the surface of an unbiased GaAs crystal by illuminating femtosecond laser pulses with a 45° incidence angle, and investigate its propagation properties comprehensively both in a near-field and in a far-field zone by performing a knife-edge scan measurement. In the near-field zone, i.e. 540 μm away from the generation point, we found that the beam simply takes a Gaussian shape of which width follows well a behavior predicted by a paraxial wave equation. In the far-field zone, on the other hand, it takes a highly anisotropic shape; whereas the beam profile maintains a Gaussian shape along the normal to the plane of incidence, it takes satellite peak structures along the direction in parallel to the plane of incidence. From the comparison with simulation results obtained by using a dipole radiation model, we demonstrated that this irregular beam pattern is attributed to the combined effect of the position-dependent phase retardation of the THz waves and the diffraction-limited size of the initial beam which lead to the interference of the waves in the far-field zone. Also, we found that this consideration accounting for a crossover of THz beam profile to the anisotropic non-Gaussian beam in the far-field zone can be applied for a comprehensive understanding of several other THz beam profiles obtained previously in different configurations.

  5. Multiple Filamentation of Laser Pulses in a Glass

    NASA Astrophysics Data System (ADS)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.

    2016-03-01

    Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.

  6. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  7. X-Ray Pulse Selector With 2 ns Lock-in Phase Setting And Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenau, B.; Raebiger, J.; Polachowski, S.

    2004-05-12

    Selector devices, which are based on magnetically suspended, high speed triangular shutter rotors, have been designed and built in cooperation with ESRF, APS, and recently Spring-8 for time resolved studies with isolated x-ray pulses at white beam lines. The x-ray pulse selection is accomplished by means of a beam channel along one of the edges of the triangular rotor, which opens once per revolution. Entrance and exit apertures of the channel can be designed wedge shaped for variable tuning of the channel height between 0.1 mm to 0.9 mm. At the 1 kHz maximum operation frequency of a 220 mmmore » diameter disk with 190 mm channel length, the practicable open times of the channel are demonstrated to range down to 200 ns. The selector drive electronics is directly coupled to the storage ring RF clock for rotational phase control. It allows for continuous selector operation in phase locked mode to the temporal pulse structure of the synchrotron at 2 ns RMS stability. The phase angle between the pulse transmission period and the synchrotron bunch sequence can be adjusted with similar precision for X-ray pulse selection according to the experimental needs. ID09, Michael Wulff ; BioCARS 14-BM, Reinhard Pahl; BL40-XU, Shin-ichi Adachi.« less

  8. Characterization of ParTI Phoswiches Using Charged Pion Beams

    NASA Astrophysics Data System (ADS)

    Churchman, Emily; Zarrella, Andrew; Youngs, Michael; Yennello, Sherry

    2017-09-01

    The Partial Truncated Icosahedron (ParTI) detector array consists of 15 phoswiches. Each phoswich is made of two scintillating components - a thallium-doped cesium iodide (CsI(Tl)) crystal and an EJ-212 scintillating plastic - coupled to a photomultiplier tube. Both materials have different scintillation times and are sensitive to both charged and neutral particles. The type of particle and amount of energy deposited determine the shape of the scintillation pulse as a function of time. By integrating the fast and slow signals of the scintillation pulses, a ``Fast vs. Slow Integration'' plot can be created that produces particle identification lines based on the energy deposited in the scintillating materials. Four of these phoswiches were taken to the Paul Scherrer Institute (PSI) in Switzerland where π + , π-, and proton beams were scattered onto the phoswiches to demonstrate their particle identification (PID) capabilities. Using digitizers to record the detector response waveforms, pions can also be identified by the characteristic decay pulse of the muon daughters.

  9. Preparation of an exponentially rising optical pulse for efficient excitation of single atoms in free space.

    PubMed

    Dao, Hoang Lan; Aljunid, Syed Abdullah; Maslennikov, Gleb; Kurtsiefer, Christian

    2012-08-01

    We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator. The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single (87)Rb atom.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A.; Barnard, J.J.; Briggs, R.J.

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less

  11. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams.

    PubMed

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark

    The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less

  13. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  14. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  15. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  16. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    NASA Astrophysics Data System (ADS)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  17. Separation of gamma-ray and neutron events with CsI(Tl) pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Ashida, Y.; Nagata, H.; Koshio, Y.; Nakaya, T.; Wendell, R.

    2018-04-01

    Fast neutrons are a large background to measurements of gamma-rays emitted from excited nuclei, such that detectors that can efficiently distinguish between the two are essential. In this paper we describe the separation of gamma-rays from neutrons with the pulse shape information of the CsI(Tl) scintillator, using a fast neutron beam and several gamma-ray sources. We find that a figure of merit optimized for this separation takes on large and stable values (nearly 4) between 5 and 10 MeV of electron equivalent deposited energy, the region of most interest to the study of nuclear de-excitation gamma-rays. Accordingly, this work demonstrates the ability of CsI(Tl) scintillators to reject neutron backgrounds to gamma-ray measurements at these energies.

  18. Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U.

    PubMed

    Ishii, K; Shinohara, K; Ishikawa, M; Baba, M; Isobe, M; Okamoto, A; Kitajima, S; Sasao, M

    2010-10-01

    A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.

  19. Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, K.; Okamoto, A.; Kitajima, S.

    2010-10-15

    A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of themore » beam heating phase was negligible compared with the statistical error with 10 ms time resolution.« less

  20. Measuring Flow With Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1988-01-01

    Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.

  1. Cerium-doped scintillating fused-silica fibers

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  2. Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Zuo, Jun-Wei; Guo, Chuan; Xu, Chang; Shen, Yu; Zong, Nan; Bo, Yong; Peng, Qin-Jun; Chen, Hong-Bin; Cui, Da-Fu; Xu, Zu-Yan

    2016-09-01

    We describe the results of our efforts in suppressing spiking of a high power, high beam quality 1319 nm Nd:YAG microsecond-pulse laser with three different intracavity frequency doublers. The 1319 nm laser is generated by a quasi-continuous-wave diode-pumped Nd:YAG ring laser system. One potassium titanyl phosphate (KTP), two KTPs and one lithium triborate (LBO) as frequency doublers are installed in the ring resonator and tested, respectively. At 800 Hz repetition rate, with a pulse width of 100 µs, performances of spiking suppression for each case are observed. The average output power are 23.6 W, 22.7 W and 23.4 W with beam quality factors of M 2  =  2.21, 1.28 and 1.25 for one KTP, two KTPs and one LBO, respectively. The corresponding brightness are 270 MW/(cm2·sr), 780 MW/(cm2·sr) and 860 MW/(cm2·sr). With better beam quality, higher brightness, and easier maintainability, the LBO is the best option of the three. A laser rate equation model including the insertion loss of the doubler is applied for theoretical analysis of the output temporal pulse shape and power, and the simulated results agree well with the experimental data.

  3. Carrier-Envelope Phase Effects in Plasma-Based Electron Acceleration with Few-Cycle Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerush, E. N.; Kostyukov, I. Yu.

    2009-07-17

    Carrier-envelope phase effects during the interaction of relativistically intense few-cycle laser pulses with a plasma are studied in the 'bubble' regime when an electron cavity (bubble) is formed behind the pulse. We show that for few-cycle laser pulses the cavity shape becomes asymmetric and depends strongly on the carrier-envelope phase. The carrier-envelope phase varies when the laser pulse propagates in plasma, which causes transverse oscillations of the cavity. Furthermore, the beam of electrons trapped by the cavity becomes modulated in the polarization plane. To describe these effects we derive an analytical model extended beyond the ponderomotive approximation. The degree ofmore » plasma cavity asymmetry as a function of the laser-plasma parameters is calculated. The obtained results are verified by particle-in-cell simulations.« less

  4. Fiber laser drilling of Ni46Mn27Ga27 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-11-01

    The interest in ferromagnetic shape memory alloys (SMAs), such as NiMnGa, is increasing, thanks to the functional properties of these smart and functional materials. One of the most evident properties of these systems is their brittleness, which makes attractive the study of unconventional manufacturing processes, such as laser machining. In this work the interaction of laser beam, once focalized on the surface of Ni46Mn27Ga27 [at%] alloy, has been studied. The experiments were performed with a single laser pulse, using a 1 kW continuous wave fiber laser. The morphology of the laser machined surfaces was evaluated using scanning electron microscopy, coupled with energetic dispersion spectroscopy for the measurement of the chemical composition. The results showed that the high quality of the laser beam, coupled with great irradiances available, allow for blind or through holes to be machined on 1.8 mm plates with a single pulse in the order of a few ms. Holes were produced with size in the range of 200-300 μm; despite the long pulse duration, low amount of melted material is produced around the hole periphery. No significant variation of the chemical composition has been detected on the entrance surfaces while the exit ones have been characterized by the loss of Ga content, due to its melting point being significantly lower with respect to the other alloying elements.

  5. Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure.

    PubMed

    Han, Weina; Liu, Furong; Yuan, Yanping; Li, Xiaowei; Wang, Qingsong; Wang, Shaojun; Jiang, Lan

    2018-05-04

    In this study, we report polarization-dependent concentric circular periodic surface structures on Si induced by a single shot femtosecond (fs) laser pulse based on pre-processed quasi-plasmonic annular-shaped nanostructure. An abnormal annular-shaped energy deposition of the fundamental fs laser pulse can be found by using dual-wavelength superposition of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of an fs Ti:sapphire laser, which is confirmed by real beam shape detection. Based on the annular-shaped energy distribution of dual-wavelength fs laser, a concentric quasi-plasmonic corral nanostructure can be imprinted on the Au thin film. Surface plasmon polaritons (SPPs) excitations on the planar metallic nanostructures enable the manipulation of light on subwavelength scales. Thus, the pre-processed concentric quasi-plasmonic corral nanostructure can act as a precursor for the subsequent SPPs excitation and propagation by the fs laser irradiation. Using this technique, polarization-dependent semi-circular periodic surface structures on silicon can be found by the irradiation of fs laser pulse with only one shot. This research provides an additional freedom for the laser induced periodic surface structure (LIPSS) modulation based on the modulation of SPPs excitation and propagation, which plays an important role in the formation of LIPSS.

  6. Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure

    NASA Astrophysics Data System (ADS)

    Han, Weina; Liu, Furong; Yuan, Yanping; Li, Xiaowei; Wang, Qingsong; Wang, Shaojun; Jiang, Lan

    2018-07-01

    In this study, we report polarization-dependent concentric circular periodic surface structures on Si induced by a single shot femtosecond (fs) laser pulse based on pre-processed quasi-plasmonic annular-shaped nanostructure. An abnormal annular-shaped energy deposition of the fundamental fs laser pulse can be found by using dual-wavelength superposition of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of an fs Ti:sapphire laser, which is confirmed by real beam shape detection. Based on the annular-shaped energy distribution of dual-wavelength fs laser, a concentric quasi-plasmonic corral nanostructure can be imprinted on the Au thin film. Surface plasmon polaritons (SPPs) excitations on the planar metallic nanostructures enable the manipulation of light on subwavelength scales. Thus, the pre-processed concentric quasi-plasmonic corral nanostructure can act as a precursor for the subsequent SPPs excitation and propagation by the fs laser irradiation. Using this technique, polarization-dependent semi-circular periodic surface structures on silicon can be found by the irradiation of fs laser pulse with only one shot. This research provides an additional freedom for the laser induced periodic surface structure (LIPSS) modulation based on the modulation of SPPs excitation and propagation, which plays an important role in the formation of LIPSS.

  7. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  8. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of amore » beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.« less

  9. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  10. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, D.; Boehly, T. R.; Gregor, M. C.

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (alpha ~ 3) implosions, but agreement degrades for lower-adiabat (alpha ~ 1)more » designs. Several possibilities for this difference are studied: (1) errors in placing the target at the center of irradiation (target offset), (2) variations in energy between the different incident beams (power imbalance), and (3) errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments. This will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  11. Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan

    2017-02-01

    We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.

  12. Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses

    NASA Astrophysics Data System (ADS)

    Villalba-Chávez, S.; Podszus, T.; Müller, C.

    2017-06-01

    Hypothetical oscillations of probe photons into axion-like particles might be revealed by exploiting the strong fields of high-intensity laser pulses. Considering an arbitrary plane-wave background, we determine the polarization tensor induced by the quantum fluctuations of the axion field and use it to calculate how the polarimetric properties of an initially linear-polarized probe beam are modified. We find that various experimental setups based on contemporary facilities and instrumentation might lead to new exclusion bounds on the parameter space of these particle candidates. The impact of the pulse shape on the discovery potential is studied via a comparison between the cases in which the wave is modulated by a Gaussian envelope and a sin2 profile. This analysis shows that the upper limits resulting from the ellipticity are relatively insensitive to this change, whereas those arising from the rotation of the polarization plane turn out to be more dependent on the field shape.

  13. Optical Forging of Graphene into Three-Dimensional Shapes.

    PubMed

    Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika

    2017-10-11

    Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

  14. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  15. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  16. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  17. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  18. New longitudinal mode and compression of pair ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com; Tsintsadze, N. L.

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density ofmore » pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A; Barnard, J J; Briggs, R J

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energymore » (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less

  20. Ferroelectric Plasma Sources for Ion Beam Neutralization

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L. R.; Davidson, R. C.

    2014-10-01

    A 40 keV Ar+ beam with a dimensionless perveance of 4 ×10-4 is propagated through a Ferroelectric Plasma Source (FEPS) to determine the effects of charge neutralization on the transverse beam profile. Neutralization is established 5 μs after the FEPS is triggered, and lasts between 10 and 35 μs. When the beam is fully neutralized, the profile has a Gaussian shape with a half-angle divergence of 0.87°, which is attributed to ion optics. The effects of the resistance and capacitance in the pulser circuit on the FEPS discharge are studied. The electron current emitted by the FEPS is calculated from measurements of the forward and return currents in the circuit. Electron emission typically begins 0.5 μs after the driving pulse, lasting for tens of μs, which is similar to the duration of ion beam neutralization. The total emitted charge does not depend significantly on the resistance, but depends strongly on the storage capacitance. Lowering the capacitance from 141 nF to 47 nF results in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse is as high as when high-density plasma is produced. Overall, the data suggest that ferroelectric effects are significant in the physics of the FEPS discharge.

  1. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  2. Nonstationary plasma-thermo-fluid dynamics and transition in processes of deep penetration laser beam-matter interaction

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.

    1994-09-01

    A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.

  3. Multistage coupling of independent laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-02-01

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam.more » To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. In this work, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius-by a discharge capillary-based active plasma lens-into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.« less

  4. AOM optimization with ultra stable high power CO2 lasers for fast laser engraving

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus

    2015-05-01

    A new ultra stable CO2 laser in carbon fibre resonator technology with an average power of more than 600W has been developed especially as basis for the use with AOMs. Stability of linear polarisation and beam pointing stability are important issues as well as appropriate shaping of the incident beam. AOMs are tested close to the laser-induced damage threshold with pulses on demand close to one megahertz. Transversal and rotational optimization of the AOMs benefits from the parallel-kinematic principle of a hexapod used for this research.

  5. Modeling of a UV laser beam—silicon nitride interaction

    NASA Astrophysics Data System (ADS)

    Dgheim, J. A.

    2016-11-01

    A numerical model is developed to study heat and radiation transfers during the interaction between a UV laser beam and silicon nitride. The laser beam has temporal Gaussian or Gate shapes of a wavelength of 247 nm, with pulse duration of 27 ns. The mathematical model is based on the heat equation coupled to Lambert-Beer relationship by taking into account the conduction, convection and radiation phenomena. The resulting equations are schemed by the finite element method. Comparison with the literature shows qualitative and quantitative agreements. The investigated parameters are the temperature, the timing of the melting process and the melting phase thickness. The effects of the laser fluences, ranging from 500 to 16 000 J.m-2, the Gaussian and Gate shapes on the heat transfer, and the melting phenomenon are studied.

  6. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    PubMed

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  7. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE PAGES

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; ...

    2016-06-06

    Here, we have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improvedmore » spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  8. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  9. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-06-15

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectralmore » resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.« less

  10. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    PubMed

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  12. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  13. Giant narrowband twin-beam generation along the pump-energy propagation direction

    NASA Astrophysics Data System (ADS)

    Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.

    2015-07-01

    Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

  14. Photovoltaic cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  15. Laser-excited pulse propagation in a crystallized complex plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.

  16. Free electron laser with masked chicane

    DOEpatents

    Nguyen, Dinh C.; Carlsten, Bruce E.

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  17. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  18. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  19. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  20. Strong terahertz emission by optical rectification of shaped laser pulse in transversely magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.

    2017-07-01

    This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.

  1. Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment

    NASA Astrophysics Data System (ADS)

    Boulanger, Joan; Charette, André

    2005-03-01

    This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.

  2. Electron Lenses for the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less

  3. A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope

    NASA Astrophysics Data System (ADS)

    Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark J.; McGregor, Douglas S.; Roberts, Jeremy A.

    2018-05-01

    The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminate background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Moreover, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.

  4. A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope

    DOE PAGES

    Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark; ...

    2018-02-05

    The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less

  5. Pulsed electric discharge laser technology. Electron beam window foil material

    NASA Astrophysics Data System (ADS)

    McGeoch, M. W.; Defuria, A. J.; Pike, C. T.

    1984-01-01

    An experimental and theoretical study of titanium alloy foil windows is described. The alloys considered are Ti 15-3-3-3, Ti 3-2.5, and CP Ti(4). The foil thickness ranges from 0.5 mil to 1.0 mil. Tensile strength data is presented for 75 F and 600 F. High-cycle (10 to the 7th power) fatigue data is presented to Ti 15-3-3-3 and Ti 3-2.5 at 75 F and 600 F. Crystal structures are shown for all the alloys. Measurements of the biaxial, or membrane, strength of the alloys is presented. A simulation of laser pulsed overpressure conditions is described, and the foil fatigue under these conditions is documented. The stresses in pressure loaded foil windows were calculated by the finite element method, both for static and dynamic loading. The shape of the foil support rib was optimized to minimize the foil stresses. A correlation was performed between the computed stress cycling under pulsed loading and the measured fatigue strength in uniaxial tension. As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which allows measurement of the movement of unpolished foil surfaces is described.

  6. Double-pulse digital speckle pattern interferometry for vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing

    2014-12-01

    The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .

  7. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  8. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  9. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.

    PubMed

    Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming

    2009-09-14

    The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

  10. Pulse Shaping a High-Current Relativistic Electron Beam in Vacuum

    DTIC Science & Technology

    1990-06-28

    for cathode explosive field-emission initiation at the typical value of 200 kV/cm. The anode is 2.7 cm downstream from the cathode with an aperture of...R42 (J. Choe) I Attn: Dr. D. Prosnitz 1 R42 K. Boulais) 1 Dr. F. W. Chambers 1 R42 (J. Miller) 15 Dr. T. Orzechowski 1 R42 CD. Weidman) I P.O. Box

  11. LLE Review Quarterly Report (January-March 1999). Volume 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, Sean P.

    1999-03-01

    This volume of the LLE Review, covering the period January-March 1999, features two articles concerning issues relevant to 2-D SSD laser-beam smoothing on OMEGA. In the first article J. D. Zuegel and J. A. Marozas present the design of an efficient, bulk phase modulator operating at approximately 10.5 GHz, which can produce substantial phase-modulated bandwidth with modest microwave drive power. This modulator is the cornerstone of the 1-THz UV bandwidth operation planned for OMEGA this year. In the second article J. A. Marozas and J. H. Kelly describe a recently developed code -- Waasese -- that simulates the collective behaviormore » of the optical components in the SSD driver line. The measurable signatures predicted by the code greatly enhance the diagnostic capability of the SSD driver line. Other articles in this volume are titled: Hollow-Shell Implosion Studies on the 60-Beam, UC OMEGA Laser System; Simultaneous Measurements of Fuel Areal Density, Shell Areal Density, and Fuel Temperature in D 3He-Filled Imploding Capsules; The Design of Optical Pulse Shapes with an Aperture-Coupled-Stripline Pulse-Shaping System; Measurement Technique for Characterization of Rapidly Time- and Frequency-Varying Electronic Devices; and, Damage to Fused-Silica, Spatial-Filter Lenses on the OMEGA Laser System.« less

  12. Bats adjust their mouth gape to zoom their biosonar field of view.

    PubMed

    Kounitsky, Pavel; Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J; Yovel, Yossi

    2015-05-26

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming--the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat's control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture--the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system.

  13. Bats adjust their mouth gape to zoom their biosonar field of view

    PubMed Central

    Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J.; Yovel, Yossi

    2015-01-01

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming—the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat’s control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture—the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system. PMID:25941395

  14. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less

  15. Femtosecond response time measurements of a Cs2Te photocathode

    NASA Astrophysics Data System (ADS)

    Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.

  16. 3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

    DOE PAGES

    Lewis, Brett B.; Winkler, Robert; Sang, Xiahan; ...

    2017-04-07

    Here, we investigate the growth, purity, grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration and a coalescence of the otherwise Pt–C nanogranular material, 2) a slight enhancement in the deposit resolution and 3) a 100-fold improvement in the conductivity of suspended nanowires grown with the in situ photothermal assist process, while retaining a high degree of shape fidelity.

  17. Spatiotemporal behaviour of isodiffracting hollow Gaussian pulsed beams

    NASA Astrophysics Data System (ADS)

    Xu, Yanbing; Lü, Baida

    2007-05-01

    A model of isodiffracting hollow Gaussian pulsed beams (HGPBs) is presented. Based on the Fourier transform method, an analytical formula for the HGPBs propagating in free space is derived, which enables us to study the spatiotemporal behaviour of the ultrashort pulsed beams. Some interesting phenomena of ultrashort pulsed beams, such as the symmetrical temporal profiles, the dark rings, etc, are discussed in detail and illustrated numerically.

  18. Experimental room temperature hohlraum performance study on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-01

    Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  19. Laser diode stack beam shaping for efficient and compact long-range laser illuminator design

    NASA Astrophysics Data System (ADS)

    Lutz, Y.; Poyet, J. M.

    2014-04-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is best suited for long-range image recording. Even when the laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) micro-lenses, their beam parameter products BPP are not compatible with direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long-range applications. A solution to overcome these difficulties is to enhance the poor slow-axis BPP by virtually restacking the laser diode stack. We present a beam shaping and homogenization method that is low-cost and efficient and has low alignment sensitivity. After conducting simulations, we have realized and characterized the illuminator. A compact long-range laser illuminator has been set up with a divergence of 3.5×2.6 mrad and a global efficiency of 81%. Here, a projection lens with a clear aperture of 62 mm and a focal length of 571 mm was used.

  20. 100J Pulsed Laser Shock Driver for Dynamic Compression Research

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.

  1. Beams 92: Proceedings. Volume 1: Invited papers, pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, D.; Cooperstein, G.

    1993-12-31

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere.

  2. Beamlet diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theys, M.

    1994-05-06

    Beamlet is a high power laser currently being built at Lawrence Livermore National Lab as a proof of concept for the National Ignition Facility (NIF). Beamlet is testing several areas of laser advancements, such as a 37cm Pockels cell, square amplifier, and propagation of a square beam. The diagnostics on beamlet tell the operators how much energy the beam has in different locations, the pulse shape, the energy distribution, and other important information regarding the beam. This information is being used to evaluate new amplifier designs, and extrapolate performance to the NIF laser. In my term at Lawrence Livermore Nationalmore » Laboratory I have designed and built a diagnostic, calibrated instruments used on diagnostics, setup instruments, hooked up communication lines to the instruments, and setup computers to control specific diagnostics.« less

  3. System Modeling of kJ-class Petawatt Lasers at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shverdin, M Y; Rushford, M; Henesian, M A

    2010-04-14

    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG)more » stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.« less

  4. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  5. Laser beam delivery at ELI-NP

    DOE PAGES

    Ursescu, Daniel; Cheriaux, G.; Audebert, P.; ...

    2017-01-01

    The Laser Beam Delivery (LBD) system technical design report covers the interface between the High Power Laser System (HPLS) and the experiments, together with the pulse quality management. Here, the laser transport part of the LBD has a number of subsystems as follows: the beam transport lines for the six main outputs of HPLS, the additional short and long pulses and the synchronization system including the timing of the laser pulses with the Gamma Beam System (GBS) and the experiments on femtosecond timescale. Pulse quality management, discussed further here, consist in the generation and delivery of multiple HPLS pulses, coherentmore » combining of the HPLS arms, laser pulse diagnostics on target, laser beam dumps, shutters and output energy adaption.« less

  6. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE PAGES

    Ekdahl, Carl

    2017-05-01

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  7. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  8. Interactions between butterfly-shaped pulses in the inhomogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Jun; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Huang, Long-Gang

    2014-10-15

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.

  9. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  10. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  11. The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions

    NASA Astrophysics Data System (ADS)

    Djoko, Martin; Kofane, T. C.

    2018-06-01

    We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. We have used the variational method to find a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically by the means of the fourth-order Runge-Kutta (RK4) method, which also allows us to investigate the evolution of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the results with those obtained, using the variational approach. A good agreement between analytical and numerical methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named the total energy Q, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets, 3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial input condition (symmetric or elliptic).

  12. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    NASA Astrophysics Data System (ADS)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  13. Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Guzeeva, Tatiana

    2017-01-01

    This paper presents the results of the experimental investigation of plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam (TEA-500 pulsed electron accelerator) with the following characteristics: 400-450 keV electron energy, 60 ns pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. Experiments were conducted on the effect of the pulsed electron beam on SF6 and on mixtures of SF6 with O2, Ar, or N2. For the mixture of SF6 and oxygen, the results indicated chemical reactions involving the formation of a number of products of which one is sulphur, confirming the Wray - Fluorescence Analysis. The plasma chemical conversion of SF6 initiated by the pulsed electron beam was not detected when SF6 was mixed with Ar or N2, suggesting a possible mechanism for the reaction of SF6 in the presence of O2.

  14. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  15. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  16. Comment on “Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping”

    DOE PAGES

    Terzic, Balsa; Krafft, Geoffrey A.

    2016-09-08

    Rykovanov, Geddes, Schroeder, Esarey and Leemans [Phys. Rev. Accel. Beams 19, 030701 (2016); hereafter RGSEL] have recently reported on the analytic derivation for the laser pulse frequency modulation (chirping) which controls spectrum broadening for high laser pulse intensities. We demonstrate here that their results are the same as the exact solutions reported in Terzic, Deitrick, Hofler and Krafft [Phys. Rev. Lett. 112, 074801 (2014); hereafter TDHK]. While the two papers deal with circularly and linearly polarized laser pulses, respectively, the difference in expressions for the two is just the usual factor of 1/2 present from going from circular to linearmore » polarization. Additionally, we note the authors used an approximation to the number of subsidiary peaks in the unchirped spectrum when a better solution is given in TDHK.« less

  17. Bunch modulation in LWFA blowout regime

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg

    2015-05-01

    Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.

  18. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  19. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment

    NASA Astrophysics Data System (ADS)

    Oh, Harim; Lee, Jeeyoung; Lee, Myeongkyu

    2018-01-01

    We comparatively study the morphological evolutions of silver nanowires under nanosecond-pulsed laser irradiation and thermal treatment in ambient air. While single-crystalline, pure Ag nanospheres could be produced by laser-driven Rayleigh instability, the particles produced by heat treatment were subject to oxidation and exhibited polyhedron shapes. The different results are attributed to the significantly different time scales of the two processes. In this article, we also show that bimetallic Ag-Au nanospheres can be synthesized by irradiating Ag nanowires coated with a thin Au film using a pulsed laser beam. This may provide a facile route to tune the plasmonic behavior of metal nanoparticles.

  20. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  1. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.

  2. Novel applications of photonic signal processing: Temporal cloaking and biphoton pulse shaping

    NASA Astrophysics Data System (ADS)

    Lukens, Joseph M.

    We experimentally demonstrate two innovative applications of photonic technologies previously solidified in the field of classical optical communications. In the first application, we exploit electro-optic modulator technology to develop a novel "time cloak,'' a device which hides events in time by manipulating the flow of a probing light beam. Our temporal cloak is capable of masking high-speed optical data from a receiver, greatly improving the feasibility of time cloaking and bringing such exotic concepts to the verge of practical application. In the second specialization, high-resolution Fourier-transform pulse shaping---perfected for multi-wavelength telecom networks---is applied to shape the correlations of entangled photon pairs, states which have received considerable attention in nonlocal tests of quantum theory and in quantum key distribution. Using nonlinear waveguides fabricated out of periodically poled lithium niobate, we are able to demonstrate ultrafast coincidence detection with record-high efficiency, which coupled with our pulse shaper allows us to realize for the first time several capabilities in biphoton control, including high-order dispersion cancellation, orthogonal spectral coding, correlation train generation, and tunable delay control. Each of these experiments represents an important advance in quantum state manipulation, with the potential to impact developments in quantum information. And more generally, our work introducing telecommunication technology into both temporal cloaking and biphoton control highlights the potential of such tools in more nascent outgrowths of classical and quantum optics.

  3. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.

  4. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  5. New opportunities in quasi elastic neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Mezei, F.; Russina, M.

    2001-07-01

    The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.

  6. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  7. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  8. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  9. Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.

  10. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measuredmore » by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.« less

  11. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  12. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  13. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  14. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  15. Transient development of Zeeman electromagnetically induced transparency during propagation of Raman-Ramsey pulses through Rb buffer gas cell

    NASA Astrophysics Data System (ADS)

    Nikolić, S. N.; Radonjić, M.; Lučić, N. M.; Krmpot, A. J.; Jelenković, B. M.

    2015-02-01

    We investigate, experimentally and theoretically, time development of Zeeman electromagnetically induced transparency (EIT) during propagation of two time separated polarization laser pulses, preparatory and probe, through Rb vapour. The pulses were produced by modifying laser intensity and degree of elliptical polarization. The frequency of the single laser beam is locked to the hyperfine {{F}g}=2\\to {{F}e}=1 transition of the D1 line in 87Rb. Transients in the intensity of {{σ }-} component of the transmitted light are measured or calculated at different values of the external magnetic field, during both preparatory and probe pulse. Zeeman EIT resonances at particular time instants of the pulse propagation are reconstructed by appropriate sampling of the transients. We observe how laser intensity, Ramsey sequence and the Rb cell temperature affect the time dependence of EIT line shapes, amplitudes and linewidths. We show that at early times of the probe pulse propagation, several Ramsey fringes are present in EIT resonances, while at later moments a single narrow peak prevails. Time development of EIT amplitudes are determined by the transmitted intensity of the {{σ }-} component during the pulse propagation.

  16. Fabrication of low loss waveguide using fundamental light of Yb-based femtosecond laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.

    2017-03-01

    Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)

  17. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  18. Absorber for wakefield interference management at the entrance of the wiggler of a free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchlik, Matthew; Biallas, George Herman

    A method for managing the broad band microwave and TeraHertz (THz) radiation in a free electron laser (FEL) having a wiggler producing power in the electromagnetic spectrum. The method includes placement of broadband microwave and TeraHertz (THz) radiation absorbers on the upstream end of the wiggler. The absorbers dampen the bounced back, broad band microwave and THz radiation returning from the surfaces outside the nose of the cookie-cutter and thus preventing broadening of the electron beam pulse's narrow longitudinal energy distribution. Broadening diminishes the ultimate laser power from the wiggler. The broadband microwave and THz radiation absorbers are placed onmore » either side of the slot in the cookie-cutter that shapes the wake field wave of the electron pulse to the slot shape of the wiggler chamber aperture. The broad band microwave and THz radiation absorber is preferably a non-porous pyrolytic grade of graphite with small grain size.« less

  19. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  20. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  1. Low energy, high power hydrogen neutral beam for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less

  2. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  3. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  4. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  5. Transient Infrared Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.

  6. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  7. Investigation of the LMJ ignition target sensitivity to the laser pulse shape with 2D integrated calculations

    NASA Astrophysics Data System (ADS)

    Cherfils, Catherine; Malinie, Guy; Boniface, Claude; Gauthier, Pascal; Laffite, Stephane; Loiseau, Pascal

    2010-11-01

    The A943 cryogenic target in a Rugby hohlraum is our current nominal design for ignition with 160 beams on the Laser MegaJoule (Laffite et al 2007, 49th Annual Meeting of the Division of Plasma Physics, Loiseau et al 2010, 40th Annual Anomalous Absorption Conference). In this study we redesign the laser pulse of the target under the form of a sum of six supergaussians, which is more amenable to a sensitivity study : four supergaussians are used to launch the four main shocks in the capsule, and two additional supergaussians are used first to remove the LEH windows and then to control the acceleration of the first shock, respectively. We use our 2D FCI2 code to compare the radiation hydro of the capsule, obtained with this new pulse, to what was previously obtained. We investigate the sensitivity of the yield on some parameters, which are the maximum powers and respective timings of the different components of the laser pulse.

  8. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  9. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  10. Effect of quench on alpha/beta pulse shape discrimination of liquid scintillation cocktails.

    PubMed

    DeVol, Timothy A; Theisen, Christopher D; DiPrete, David P

    2007-05-01

    The objectives of this paper are (1) to illustrate that knowledge of the external quench parameter is insufficient to properly setup a pulse shape discriminating liquid scintillation counter (LSC) for quantitative measurement, (2) to illustrate dependence on pulse shape discrimination on the radionuclide (more than just radiation and energy), and (3) to compare the pulse shape discrimination (PSD) of two commercial instruments. The effects various quenching agents, liquid scintillation cocktails, radionuclides, and LSCs have on alpha/beta pulse shape discriminating liquid scintillation counting were quantified. Alpha emitting radionuclides (239)Pu and (241)Am and beta emitter (90)Sr/(90)Y were investigated to quantify the nuclide dependence on alpha/beta pulse shape discrimination. Also, chemical and color quenching agents, nitromethane, nitric acid, and yellow dye impact on alpha/beta pulse shape discrimination using PerkinElmer Optiphase "HiSafe" 2 and 3, and Ultima Gold AB liquid scintillation cocktails were determined. The prepared samples were counted on the PerkinElmer Wallac WinSpectral 1414 alpha/beta pulse shape discriminating LSC. It was found that for the same level of quench, as measured by the external quench parameter, different quench agents influenced the pulse shape discrimination and the pulse shape discrimination parameters differently. The radionuclide also affects alpha/beta pulse shape discrimination. By comparison with the PerkinElmer Tri-carb 3150 TR/AB, the Wallac 1414 exhibited better pulse shape discrimination capability under the same experimental conditions.

  11. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  12. High beam quality and high energy short-pulse laser with MOPA

    NASA Astrophysics Data System (ADS)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  13. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  14. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  15. Experimental and simulated ultrasonic characterization of complex damage in fused silica.

    PubMed

    Martin, L Peter; Chambers, David H; Thomas, Graham H

    2002-02-01

    The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.

  16. An automatic tooth preparation technique: A preliminary study

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Wang, Yong; Zhang, Yaopeng; Sun, Yuchun; Wang, Dangxiao; Lyu, Peijun

    2016-04-01

    The aim of this study is to validate the feasibility and accuracy of a new automatic tooth preparation technique in dental healthcare. An automatic tooth preparation robotic device with three-dimensional motion planning software was developed, which controlled an ultra-short pulse laser (USPL) beam (wavelength 1,064 nm, pulse width 15 ps, output power 30 W, and repeat frequency rate 100 kHz) to complete the tooth preparation process. A total of 15 freshly extracted human intact first molars were collected and fixed into a phantom head, and the target preparation shapes of these molars were designed using customised computer-aided design (CAD) software. The accuracy of tooth preparation was evaluated using the Geomagic Studio and Imageware software, and the preparing time of each tooth was recorded. Compared with the target preparation shape, the average shape error of the 15 prepared molars was 0.05-0.17 mm, the preparation depth error of the occlusal surface was approximately 0.097 mm, and the error of the convergence angle was approximately 1.0°. The average preparation time was 17 minutes. These results validated the accuracy and feasibility of the automatic tooth preparation technique.

  17. An automatic tooth preparation technique: A preliminary study.

    PubMed

    Yuan, Fusong; Wang, Yong; Zhang, Yaopeng; Sun, Yuchun; Wang, Dangxiao; Lyu, Peijun

    2016-04-29

    The aim of this study is to validate the feasibility and accuracy of a new automatic tooth preparation technique in dental healthcare. An automatic tooth preparation robotic device with three-dimensional motion planning software was developed, which controlled an ultra-short pulse laser (USPL) beam (wavelength 1,064 nm, pulse width 15 ps, output power 30 W, and repeat frequency rate 100 kHz) to complete the tooth preparation process. A total of 15 freshly extracted human intact first molars were collected and fixed into a phantom head, and the target preparation shapes of these molars were designed using customised computer-aided design (CAD) software. The accuracy of tooth preparation was evaluated using the Geomagic Studio and Imageware software, and the preparing time of each tooth was recorded. Compared with the target preparation shape, the average shape error of the 15 prepared molars was 0.05-0.17 mm, the preparation depth error of the occlusal surface was approximately 0.097 mm, and the error of the convergence angle was approximately 1.0°. The average preparation time was 17 minutes. These results validated the accuracy and feasibility of the automatic tooth preparation technique.

  18. Waveform synthesizer

    DOEpatents

    Franks, L.A.; Nelson, M.A.

    1979-12-07

    The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.

  19. Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Monoszlai, B.; Arisholm, G.; Hauri, C. P.

    2015-09-01

    Infrared pulses with large spectral width extending from 1.2 to 3.4 μm are generated in the organic crystal DAST (4-N, N-dimethylamino-4‧-N‧-methylstilbazolium tosylate). The input pulse has a central wavelength of 1.5 μm and 65 fs duration. With 2.8 mJ input energy we obtained up to 700 μJ in the broadened spectrum. The output can be easily scaled up in energy by increasing the crystal size together with the energy and the beam size of the pump. The ultra-broad spectrum is ascribed to cascaded second order processes mediated by the exceptionally large effective χ 2 nonlinearity of DAST, but the shape of the spectrum indicates that a delayed χ 3 process may also be involved. Numerical simulations reproduce the experimental results qualitatively and provide an insight in the mechanisms underlying the asymmetric spectral broadening.

  20. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  1. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  2. Orientation and Polarisation Effects in Reactive Collisions

    DTIC Science & Technology

    1989-01-01

    18 To clock the reaction, an ultrashort laser pulse initiates the experiment by photodis- sociating the HI, ejecting a translationally hot H atom in...the chamber and travels down; the pulsed , linearly polarized u.v. laser beam passes from right to left, going through a polarization rotator before... pulsed beam valve above the chamber; the pulsed linearly polarized laser beam passes through a polarization rotator before entering the chamber. Two

  3. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  4. Methods and apparatus for altering material using ion beams

    DOEpatents

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  5. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

  6. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  7. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  8. Investigation of Fiber Waviness in a Thick Glass Composite Beam Using THz NDE

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.

    2008-01-01

    Fiber waviness in laminated composite material is introduced during manufacture because of uneven curing, resin shrinkage, or ply buckling caused by bending the composite lay-up into its final shape prior to curing. The resulting waviness has a detrimental effect on mechanical properties, therefore this condition is important to detect and characterize. Ultrasonic characterization methods are difficult to interpret because elastic wave propagation is highly dependent on ply orientation and material stresses. By comparison, the pulsed terahertz response of the composite is shown to provide clear indications of the fiber waviness. Pulsed Terahertz NDE is an electromagnetic inspection method that operates in the frequency range between 300 GHz and 3 THz. Its propagation is influenced by refractive index variations and interfaces. This work applies pulsed Terahertz NDE to the inspection of a thick composite beam with fiber waviness. The sample is a laminated glass composite material approximately 15mm thick with a 90-degree bend. Terahertz response from the planar section, away from the bend, is indicative of a homogeneous material with no major reflections from internal plies, while the multiple reflections at the bend area correspond to the fiber waviness. Results of these measurements are presented for the planar and bend areas.

  9. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  10. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  11. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  12. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  13. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  14. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  15. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  16. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  17. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  18. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  19. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  20. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  1. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  2. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources.

    PubMed

    Pincelli, T; Petrov, V N; Brajnik, G; Ciprian, R; Lollobrigida, V; Torelli, P; Krizmancic, D; Salvador, F; De Luisa, A; Sergo, R; Gubertini, A; Cautero, G; Carrato, S; Rossi, G; Panaccione, G

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  3. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    NASA Astrophysics Data System (ADS)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  4. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G.; Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric andmore » magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).« less

  5. Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Ališauskas, S.; Butkus, R.; Pyragaitė, V.; Smilgevičius, V.; Stabinis, A.; Piskarskas, A.

    2010-04-01

    We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.

  6. Experimental room temperature hohlraum performance study on the National Ignition Facility [Experimental evidence for improved performance in room temperature hohlraums on the National Ignition Facility

    DOE PAGES

    Ralph, J. E.; Strozzi, D.; Ma, T.; ...

    2016-12-29

    Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less

  7. Experimental room temperature hohlraum performance study on the National Ignition Facility [Experimental evidence for improved performance in room temperature hohlraums on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph, J. E.; Strozzi, D.; Ma, T.

    Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less

  8. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  9. Experiments Investigating the Generation and Transport of 10--12 MeV, 30-kA, mm-size Electron Beams with Linear Inductive Voltage Adders.

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.

    1997-05-01

    We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.

  10. Acoustic time-of-flight for proton range verification in water.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen

    2016-09-01

    Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.

  11. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  12. Different approaches to modeling the LANSCE H{sup −} ion source filament performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draganic, I. N., E-mail: draganic@lanl.gov; O’Hara, J. F.; Rybarcyk, L. J.

    2016-02-15

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H{sup −} surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K–2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model,more » a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz–120 Hz.« less

  13. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.

  14. Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system.

    PubMed

    Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao

    2010-03-01

    We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.

  15. Design of the new couplers for C-ADS RFQ

    NASA Astrophysics Data System (ADS)

    Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin

    2015-04-01

    A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)

  16. Different approaches to modeling the LANSCE H- ion source filament performance

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.

    2016-02-01

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz.

  17. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  18. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, Leland G [Livermore, CA

    1979-07-24

    Apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired.

  19. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  20. Note: Voltage and intensity dependence of the saturation curves of free-air ionization chambers irradiated with chopped synchrotron radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyama, Nobuteru

    2012-01-15

    Current saturation characteristics of free-air ionization chambers with electrode gaps of 4.2 and 8.4 mm were investigated using pulsed photon beam obtained by periodically interrupting synchrotron radiation beams with a chopper. Pulsed photon beams of 10 and 15 keV with pulse duration of 2.5 {mu}s and a frequency of 230 Hz were produced by chopping the beam. The measured recombination rate was found to be proportional to the intensity and inversely proportional to the applied voltage.

  1. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  2. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  3. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  4. Investigation of fundamental limits to beam brightness available from photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazarov, Ivan

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces inmore » the immediate vicinity to the cathode via 3D laser pulse shaping.« less

  5. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE PAGES

    Li, S.; Alverson, S.; Bohler, D.; ...

    2017-08-17

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  6. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Alverson, S.; Bohler, D.

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  7. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    NASA Astrophysics Data System (ADS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  8. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )<0.2 ] and low-energy laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  9. Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Bagmut, Aleksandr

    2018-06-01

    An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.

  10. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  11. Shaping charge excitations in chiral edge states with a time-dependent gate voltage

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Fève, Gwendal; Splettstoesser, Janine

    2018-02-01

    We study a coherent conductor supporting a single edge channel in which alternating current pulses are created by local time-dependent gating and sent on a beam-splitter realized by a quantum point contact. The current response to the gate voltage in this setup is intrinsically linear. Based on a fully self-consistent treatment employing a Floquet scattering theory, we analyze the effect of different voltage shapes and frequencies, as well as the role of the gate geometry on the injected signal. In particular, we highlight the impact of frequency-dependent screening on the process of shaping the current signal. The feasibility of creating true single-particle excitations with this method is confirmed by investigating the suppression of excess noise, which is otherwise created by additional electron-hole pair excitations in the current signal.

  12. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  13. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    NASA Astrophysics Data System (ADS)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  14. Coherent control of plasma dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.

  15. Comparison of three methods reducing the beam parameter product of a laser diode stack for long range laser illumination applications

    NASA Astrophysics Data System (ADS)

    Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas

    2013-10-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.

  16. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  17. Heat transfer modelling of pulsed laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  18. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  19. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  20. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  1. Radiation from long pulse train electron beams in space plasmas

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Banks, P. M.

    1985-01-01

    A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.

  2. Construction of the Helsinki University of Technology (HUT) pulsed positron beam

    NASA Astrophysics Data System (ADS)

    Fallström, K.; Laine, T.

    1999-08-01

    We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.

  3. Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.

    2007-04-01

    In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique

  4. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  5. Continuous single pulse resolved measurement of beam diameters at 200 kHz using optical transmission filters

    NASA Astrophysics Data System (ADS)

    Fruechtenicht, Johannes; Letsch, Andreas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2012-02-01

    We present a novel laser beam measurement setup which allows the determination of the beam diameter for each single pulse of a pulsed laser beam at repetition rates of up to 200 kHz. This is useful for online process-parameter control e.g. in micromachining or for laser source characterization. Basically, the developed instrument combines spatial transmission filters specially designed for instantaneous optical determination of the second order moments of the lateral intensity distribution of the light beam and photodiodes coupled to customized electronics. The acquisition is computer-based, enabling real-time operation for online monitoring or control. It also allows data storage for a later analysis and visualization of the measurement results. The single-pulse resolved beam diameter can be measured and recorded without any interruption for an unlimited number of pulses. It is only limited by the capacity of the data storage means. In our setup a standard PC and hard-disk provided 2 hours uninterrupted operation and recording of varying beam diameters at 200 kHz. This is about three orders of magnitude faster than other systems. To calibrate our device we performed experiments in cw and pulsed regimes and the obtained results were compared to those obtained with a commercial camera based system. Only minor deviations of the beam diameter values between the two instruments were observed, proving the reliability of our approach.

  6. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  7. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  8. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  9. Dual sub-picosecond and sub-nanosecond laser system

    NASA Astrophysics Data System (ADS)

    Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi

    2003-11-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  10. Design and development of compact pulsed power driver for electron beam experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Pankaj; Sharma, S.K.; Adhikary, B.

    2014-07-01

    Pulsed electron beam generation requires high power pulses of fast rise, short duration pulse with flat top. With this objective we have designed a low cost compact pulsed power driver based on water dielectric transmission line. The paper describes the design aspects and construction of the pulse power driver and its experimental results. The pulsed power driver consist of a capacitor bank and its charging power supply, high voltage generator, high voltage switch and pulse compression system. (author)

  11. Simulation results of corkscrew motion in DARHT-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less

  12. Improved Timing Scheme for Spaceborne Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Fischman, Mark

    2004-01-01

    An improved timing scheme has been conceived for operation of a scanning satellite-borne rain-measuring radar system. The scheme allows a real-time-generated solution, which is required for auto targeting. The current timing scheme used in radar satellites involves pre-computing a solution that allows the instrument to catch all transmitted pulses without transmitting and receiving at the same time. Satellite altitude requires many pulses in flight at any time, and the timing solution to prevent transmit and receive operations from colliding is usually found iteratively. The proposed satellite has a large number of scanning beams each with a different range to target and few pulses per beam. Furthermore, the satellite will be self-targeting, so the selection of which beams are used will change from sweep to sweep. The proposed timing solution guarantees no echo collisions, can be generated using simple FPGA-based hardware in real time, and can be mathematically shown to deliver the maximum number of pulses per second, given the timing constraints. The timing solution is computed every sweep, and consists of three phases: (1) a build-up phase, (2) a feedback phase, and (3) a build-down phase. Before the build-up phase can begin, the beams to be transmitted are sorted in numerical order. The numerical order of the beams is also the order from shortest range to longest range. Sorting the list guarantees no pulse collisions. The build-up phase begins by transmitting the first pulse from the first beam on the list. Transmission of this pulse starts a delay counter, which stores the beam number and the time delay to the beginning of the receive window for that beam. The timing generator waits just long enough to complete the transmit pulse plus one receive window, then sends out the second pulse. The second pulse starts a second delay counter, which stores its beam number and time delay. This process continues until an output from the first timer indicates there is less than one transmit pulse width until the start of the next receive event. This blocks future transmit pulses in the build-up phase. The feedback phase begins with the first timer paying off and starting the first receive window. When the first receive window is complete, the timing generator transmits the next beam from the list. When the second timer pays off, the second receive event is started. Following the second receive event, the timing generator will transmit the next beam on the list and start an additional timer. The timers work in a circular buffer fashion so there only need to be enough to cover the maximum number of echoes in flight.

  13. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  14. Compact 1 mJ fiber MOPA for space-based laser-ablation resonant ionization mass spectrometry (LARIMS)

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott

    2018-02-01

    A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.

  15. Method and apparatus for measuring frequency and phase difference

    NASA Technical Reports Server (NTRS)

    Shores, Paul (Inventor); Lichtenberg, Christopher (Inventor); Kobayashi, Herbert S. (Inventor); Cunningham, Allen R. (Inventor)

    1986-01-01

    The present invention is a system for deriving direct digital indications of frequency and phase difference between two incoming pulse trains adaptable for collision avoidance systems or the like. A pair of radar beams are directed toward a target and corresponding beams returning therefrom are detected. A digital difference circuit forms a pulse train from the Doppler shift frequencies of each beam pair having a repetition rate functionally related to the difference in magnitude of the shift frequencies. Pulses from the pulse train are counted as a function of time. Visual indications thereof on display are correlative to target position relative to beams.

  16. Effect of idler absorption in pulsed optical parametric oscillators.

    PubMed

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  17. Long-pulse power-supply system for EAST neutral-beam injectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team

    2017-05-01

    The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.

  18. Pulsed beam of extremely large helium droplets

    NASA Astrophysics Data System (ADS)

    Kuma, Susumu; Azuma, Toshiyuki

    2017-12-01

    We generated a pulsed helium droplet beam with average droplet diameters of up to 2 μ m using a solenoid pulsed valve operated at temperatures as low as 7 K. The droplet diameter was controllable over two orders of magnitude, or six orders of the number of atoms per droplet, by lowering the valve temperature from 21 to 7 K. A sudden droplet size change attributed to the so-called ;supercritical expansion; was firstly observed in pulsed mode, which is necessary to obtain the micrometer-scale droplets. This beam source is beneficial for experiments that require extremely large helium droplets in intense, pulsed form.

  19. Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers.

    PubMed

    Landgraf, Björn; Hoffmann, Andreas; Kartashov, Daniil; Gärtner, Felix; Samsonova, Zhanna; Polynkin, Pavel; Jacoby, Joachim; Kühl, Thomas; Spielmann, Christian

    2015-03-23

    The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.

  20. Incorporation of fiber optic beam shaping into a laparoscopic probe for laser stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.

  1. MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Lamey, M; Anderson, R

    Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of anmore » electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.« less

  2. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  3. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Cao, D.; Boehly, T. R.; Gregor, M. C.; Polsin, D. N.; Davis, A. K.; Radha, P. B.; Regan, S. P.; Goncharov, V. N.

    2018-05-01

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the velocity interferometry system for any reflector diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ˜ 3) implosions, but agreement degrades for lower-adiabat (α ˜ 1) designs. Simulation results indicate that the shock timing discrepancy is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to the target offset and beam power imbalance. To aid in verifying the coronal profile's influence, a new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments.

  4. New tuning method of the low-mode asymmetry for ignition capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry;more » while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.« less

  5. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  6. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  7. Pulsed laser interactions with space debris: Target shape effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  8. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  9. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  10. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  11. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  12. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    DOE PAGES

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; ...

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 10 5 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-protonmore » beam events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.« less

  13. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  14. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.

    PubMed

    Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude

    2018-02-01

    The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.

  15. Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide

    NASA Astrophysics Data System (ADS)

    Geints, Yu E.; Zemlyanov, A. A.

    2017-10-01

    Self-action in air of a high-power femtosecond laser pulse with the spatial form of a ring-Gaussian beam (‘dressed’ beam) is studied theoretically. Pulse self-focusing and filamentation is analyzed in detail through the numerical solution of the spectral propagation equation, taking into account medium optical nonlinearity and plasma generation. Pulse propagation dynamics and energy fluxes inside the beam are visualized by means of averaged diffraction ray tracing. We clearly show that, in terms of diffraction optics, the outer ring forms a specific nonmaterial diffractive waveguide, favoring long-range self-channeling of the central part of a beam by delivering optical energy to a filament. The spatial robustness and stability of such diffractive waveguides strongly depends on the energy stored in the ring, as well as on its position relative to the beam axis. The striking advantage of such ‘dressed’ beams is their reduced angular divergence during plasma-free (post-filamentation) evolution.

  16. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  17. Retarding field energy analyzer for high energy pulsed electron beam measurements.

    PubMed

    Hu, Jing; Rovey, Joshua L; Zhao, Wansheng

    2017-01-01

    A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.

  18. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  19. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.

  20. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  1. Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere.

    PubMed

    Zhang, Yuqiu; Ji, Xiaoling; Zhang, Hao; Li, Xiaoqing; Wang, Tao; Wang, Huan; Deng, Yu

    2018-05-28

    We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M 2 -factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M 2 -factor is less than 1.6.

  2. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  3. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  4. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  5. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs.

    PubMed

    Lam, Jessica; Rennick, Christopher J; Softley, Timothy P

    2015-05-01

    A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.

  6. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  7. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less

  8. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  9. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  10. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    DOE PAGES

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; ...

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incomingmore » dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.« less

  11. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors

    NASA Astrophysics Data System (ADS)

    Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi

    2002-12-01

    We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.

  12. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  13. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  14. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  15. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  16. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  17. Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport

    NASA Astrophysics Data System (ADS)

    Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.

    2017-10-01

    Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.

  18. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  19. WE-D-17A-06: Optically Stimulated Luminescence Detectors as ‘LET-Meters’ in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granville, D; Sahoo, N; Sawakuchi, GO

    Purpose: To demonstrate and evaluate the potential of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of linear energy transfer (LET) in therapeutic proton beams. Methods: Batches of Al2O2:C OSLDs were irradiated with an absorbed dose of 0.2 Gy in un-modulated proton beams of varying LET (0.67 keV/μm to 2.58 keV/μm). The OSLDs were read using continuous wave (CW-OSL) and pulsed (P-OSL) stimulation modes. We parameterized and calibrated three characteristics of the OSL signals as functions of LET: CW-OSL curve shape, P-OSL curve shape and the ratio of the two OSL emission band intensities (ultraviolet/blue ratio). Calibration curves were createdmore » for each of these characteristics to describe their behaviors as functions of LET. The true LET values were determined using a validated Monte Carlo model of the proton therapy nozzle used to irradiate the OSLDs. We then irradiated batches of OSLDs with an absorbed dose of 0.2 Gy at various depths in two modulated proton beams (140 MeV, 4 cm wide spread-out Bragg peak (SOBP) and 250 MeV, 10 cm wide SOBP). The LET values were calculated using the OSL response and the calibration curves. Finally, measured LET values were compared to the true values determined using Monte Carlo simulations. Results: The CW-OSL curve shape, P-OSL curve shape and the ultraviolet/blue-ratio provided proton LET estimates within 12.4%, 5.7% and 30.9% of the true values, respectively. Conclusion: We have demonstrated that LET can be measured within 5.7% using Al2O3:C OSLDs in the therapeutic proton beams used in this investigation. From a single OSLD readout, it is possible to measure both the absorbed dose and LET. This has potential future applications in proton therapy quality assurance, particularly for treatment plans based on optimization of LET distributions. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.« less

  20. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.

    PubMed

    Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L

    2015-07-27

    The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.

  1. Linear Rogowski coil

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  2. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  3. Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.

    2017-01-01

    Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.

  4. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    NASA Astrophysics Data System (ADS)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  5. Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.

    2017-10-01

    Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  6. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, Miriam; Stancari, Giulio; Valishev, Alexander

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine developmentmore » MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.« less

  7. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    DOE PAGES

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; ...

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲10 14 W cm –2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10 16 W cm –2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He + and H + were routinely produced,more » whilst for shorter gradients (≲20 μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less

  8. Neutron emission in 19F-induced reactions

    NASA Astrophysics Data System (ADS)

    Acharya, Jaimin; Mukherjee, S.; Chatterjee, A.; Singh, N. L.; Ramachandran, K.; Rout, P. C.; Mahata, K.; Desai, Vishal; Mirgule, E. T.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Steyn, G. F.

    2018-03-01

    We measured neutron emission spectra for 19F-induced reactions on 181Ta, 89Y, and 51V at beam energies of 130, 140, 145, and 150 MeV. Measurements were made using liquid scintillator detectors at eight angles in the range of 25∘-143∘ using time-of-flight and pulse-shape discrimination. A comparison has been made with alice2014 and pace4 calculations to understand the role of incomplete fusion and pre-equilibrium effects. Global predictions with alice2014 without parameter adjustment gives a fair agreement with the measured data.

  9. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  10. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  11. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  12. A pulse-shape discrimination method for improving Gamma-ray spectrometry based on a new digital shaping filter

    NASA Astrophysics Data System (ADS)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan

    2018-04-01

    It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.

  13. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  14. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  15. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Peters, Charles C

    2013-01-01

    A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errantmore » Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.« less

  16. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  17. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less

  18. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  19. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    DOE PAGES

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less

  20. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  1. Characteristics of the inductive nitrogen laser generation

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapoltsev, E. S.

    2016-05-01

    The results of the experimental study of energy, temporal, spectral and spatial characteristics of UV inductive laser generation are presented. The study has identified a number of characteristics which demonstrate the differences between electron parameters of inductively coupled plasma and the plasma of longitudinal and transverse electrical discharges. The mechanism of simultaneous occurrence of Lewis-Rayleigh afterglow representing transitions between higher vibrational substates of B3Πg and A3∑u+ states; laser generation at C3Πu→B3Πg transition as well as the absence of IR radiation at 1st positive system typical for electrical discharge nitrogen lasers has been thoroughly researched. The major characteristic is ring shaped laser beam which size and width depend on excitation conditions. Inductive UV nitrogen laser is found to operate in ASE regime, but has a low divergence of 0.4±0.1 mrad and high pulse-to-pulse stability (laser pulse deviation amplitude did not exceed 1%).

  2. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    PubMed

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  3. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  4. NRL Review, 2002

    DTIC Science & Technology

    2002-05-01

    technology for polarization-maintaining fiber amplification and an ultrashort pulsed fiber laser to Calmar Optcom. Calmar Optcom will be manufacturing...June 1995. This facility is made up of 56 laser beams and is single pulsed (4 nanosecond pulse ). This facil- ity provides intense radiation for studying...plasma interactions, in- tense laser -electron beam interactions, and intense laser -matter interactions. The division is building a repetitively pulsed (5

  5. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; ...

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  6. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  7. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  8. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  9. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  10. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  11. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  12. Short intense ion pulses for materials and warm dense matter research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  13. The Multi-Messenger Approach to High Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Supporting evidence also comes from the relatively high rate of detection of radio pulsars in young supernova remnants. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude and would make young, radio-quiet gamma-ray pulsars more of a rarity than previously thought. Radio emission at high altitudes will also have enhanced distortions due to aberration, retardation and caustics. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by polar cap, slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population.

  14. Electron-Optical System of the Gyrotron Designed for Operation in the DNP-NMR Spectrometer Cryomagnet ("Gyrotrino")

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.

    2017-08-01

    The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.

  15. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  16. Interaction of Intense Short Laser Pulses with Air and Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Eisenmann, S.; Katzir, Y.; Zigler, A.; Fibich, G.; Louzon, E.; Ehrlich, Y.; Henis, Z.; Pecker, S.; Fisher, D.; Fraenkel, M.

    A study of the propagation of intense short laser pulses in air and the interaction of these pulses with distant targets is described. It is shown that the beam filamentation pattern can be controlled by introducing beam astigmatism. In addition, it is demonstrated that the collapse distance of intense femtosecond laser beams scales as P-1/2 for input powers that are moderately above the critical power for self focusing, and that at higher powers the collapse distance scales as P-1. Related to the interaction of intense short pulses with distant targets, it is measured that the threshold fluence for optical damage in wide gap materials is lower by up to 20% for negatively chirped pulses than for positively chirped, at pulse durations ranging from 60 fs to 1 ps.

  17. Pulsed source of ultra low-energy muons at RIKEN-RAL

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Matsuda, Yasuyuki; Iwasaki, Masahiko; Miyake, Yasuhiro; Nagamine, Kanetada; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick

    2006-03-01

    At RIKEN-RAL muon facility of the Rutherford Appleton Laboratory (UK) we have produced a pulsed LE-μ + beam with pulse duration of only 10 ns and performed μSR experiments to demonstrate the capability to measure high spin precession frequency signals. The yield of pulsed LE-μ + has been steadily improving over the past 3 years and currently rates of up to 20 μ + per second are observed at the sample position. The overall cooling efficiency from the surface muon beam is now comparable to moderating the muon beam to epithermal energies in simple van der Waals bound solids.

  18. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in March 2011, and extensive engineering runs were carried out using radioactive sources, and beams from the 88-Inch Cyclotron at LBNL. The data obtained will be used to optimize its performance. Then the first scientific campaign will start in March 2012 at NSCL MSU.

  19. Sound Beams with Shockwave Pulses

    NASA Astrophysics Data System (ADS)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  20. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  1. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  2. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  3. Micro- and macroscopic photonic control of matter

    NASA Astrophysics Data System (ADS)

    Ryabtsev, Anton

    This dissertation outlines the development of several methods and techniques that enable comprehensive control of laser-matter interactions and nonlinear optical processes using shaped femtosecond pulses. Manipulation of the spectral phases and amplitudes of femtosecond laser pulses provides an effective way to adjust laser parameters, both those intrinsic to pulse generation within a laser and those induced by laser-matter interactions. When coupled with a fundamental understanding of the interactions between a laser's electric field and the molecules in the propagation media, these methods make the behavior of laser pulses predictable and allow the experimental information they carry to be extracted accurately. The ultimate motivation is to enhance the accuracy and reproducibility of spectroscopic measurements and to control nonlinear processes during light-matter interaction using shaped femtosecond pulses. Ultrafast laser systems have become one of the most important scientific tools in femtochemistry, nanoscale material science, chemical detection and sensing, and many other applications where processes occur at femtosecond (fs, 10-15 of a second) timescales or when broad laser bandwidths are required. As with any measuring instrument, it is very important to know system's exact parameters in order to make meaningful, accurate and reproducible measurements. For ultrafast lasers, these parameters are the intensities of the spectral components, the spectral phase, the temporal profile, the pulse energy, and the spatial laser beam profile. Due to broadband nature of ultrafast laser sources, they are very sensitive to propagation media: gaseous, liquid or solid matter along the paths of laser pulses to the sample, including the material of the sample itself. Optical parameters describing the propagation media, such as linear and nonlinear dispersion, and birefringence, as well as physical parameters, such as temperature and pressure, all affect laser pulse parameters. In order for measurements not to be skewed, these interactions need to be taken into account and mitigated at the time of the experiment or handled later in data analysis and simulations. Experimental results are presented in four chapters. Chapter 2 describes two topics: (1) single-shot real-time monitoring and correction of spectral phase drifts, which commonly originate from temperature and pointing fluctuations inside the laser cavity when the pulses are generated; (2) an all-optical method for controlling the dispersion of femtosecond pulses using other pulses. Chapter 3 focuses on the effects of the propagation media--how intense laser pulses modify media and how, in turn, the media modifies them back--and how these effects can be counteracted. Self-action effects in fused silica are discussed, along with some interesting and unexpected results. A method is then proposed for mitigating self-action processes using binary modulation of the spectral phases of laser pulses. Chapter 4 outlines the design of two laser systems, which are specifically tailored for particular spectroscopic applications and incorporate the comprehensive pulse control described in previous chapters. Chapter 5 shows how control of spatial beam characteristics can be applied to measurements of the mechanical motion of microscale particles and how it can potentially be applied to molecular motion. It also describes an experiment on laser-induced flow in air in which attempts were made to control the macroscopic molecular rotation of gases. My research, with a pulse shaper as the enabling tool, provides important insights into ultrafast scientific studies by making femtosecond laser research more predictable, reliable and practical for measurement and control. In the long term, some of the research methods in this thesis may help the transition of femtosecond lasers from the laboratory environment into clinics, factories, airports, and other everyday settings.

  4. Generation of arbitrarily shaped picosecond optical pulses using an integrated electrooptic waveguide modulator.

    PubMed

    Haner, M; Warren, W S

    1987-09-01

    We have produced complex software adjustable laser pulse shapes with ~10-ps resolution, and pulse energies up to 100 microJ for spectroscopic applications. The key devices are a high damage threshold electrooptic directional coupler and a GaAs circuit for synthesizing arbitrarily shaped microwave pulses.

  5. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  6. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  7. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5 mus after the fast-rising high voltage pulse is applied and lasts for tens of mus. The value of the series resistance in the pulser circuit was varied to change the rise time of the voltage pulse; plasma density was expected to decrease with increasing values of resistance. However, the data showed that changing the resistance had no significant effect. The average charge emitted per shot depends strongly on the value of the storage capacitance. Lowering the capacitance from 141 nF to 47 nF resulted in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse was as high, and rise time as short, as when high-density plasma was produced. Increasing the capacitance from 141 nF to 235 nF increased the average charge emitted per shot by a factor of 2.

  8. An Efficient Single Frequency Ho:YLF Laser for IPDA Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, J.; Bai, Y.; Wong, T.; Reithmeier, K.; Petros, M.

    2016-01-01

    A highly efficient, versatile, single frequency 2-micron pulsed laser can be used in a pulsed Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution measurements to investigate sources and sinks of CO2. For a direct detection IPDA lidar, the desired 2 ?m Ho:YLF laser should generate 30-40 mJ pulses at the repetition rate of 100 to 200 Hz, with short pulse length (<100 ns) and better than 2% wall plug efficiency. A Tm fiber laser in-band pumped Ho:YLF laser has been developed to meet this technical challenge. This Ho:YLF laser is designed in a four mirror ring resonator with bow tie configuration, which helps to obtain high beam quality. It is end-pumped by a 40 W linearly polarized Tm fiber laser at 1.94µm. The resonator length is 1.10 meters with output coupler reflectivity at 45%. The laser crystal size is 3 x 3 x 60 mm (w, h, l) with a doping concentration of 0.5% Holmium. The laser beam and pump beam are mode-matched in the active medium. Thus, the pump and laser beams have the same confocal parameters. Mode-matching is also helpful for operating the laser in a single transverse mode. The laser beam waist is slightly less than 0.5 mm at the center of the laser crystal. Based on quasi-four level modeling, pump absorption and saturation depend on laser intensity. Laser amplification and saturation also depend on the pump intensity in the crystal. The laser is injection seeded to obtain the single frequency required by an IPDA lidar measurement. The seed beam is entered into the resonator through an output coupler. The laser is mounted on a water cooled optical bench for stable and reliable operation. The size of the optical bench is 22.16 x 9.20 x 1.25 inches. It is stiffened so that the laser can be operated in any orientation of the optical bench. This packaged Ho:YLF laser is designed for either mobile trailer or airborne platform operation. The engineering prototype Ho:YLF laser has been fully characterized to demonstrate laser performance. Figure 1 shows the laser output power as a function of pump power at different pulse repetition rates from 100 Hz to 333 Hz. The threshold of the laser is less than 14 W. The slope efficiencies are 28%, 40%, 41% and 43% for pulse repetition rates of 100, 200, 250 and 333 Hz, respectively. Maximum power increases with the pulse repetition rate. Output power of 4.2 W, 6 W, 6.7 W, and 7.7 W is achieved for pulse repetition rates of 100, 200, 250 and 333Hz, respectively. This represents the optical conversion efficiency of 16.7%, 22.4%, 23.7%, and 26.5% at these various pulse repletion rates. It is the most efficient and compact Ho:YLF laser demonstrated in the high pulse energy (>20mJ) and moderate pulse repetition rate (100's Hz) operation range. As shown in Figure 1, the maximum pulse energy at 100 Hz is 42 mJ. This is limited due to optical damage. The laser stability is characterized and found to be very stable. A relative pulse energy standard deviation of 2% was measured. The beam quality of the Ho:YLF was measured by a Spiricon infrared laser beam camera. Figure 2 shows the beam profile image of the laser. Both the X-profile of the beam (horizontal direction) and the Y-profile of the beam (vertical direction) are well fitted by a Gaussian profile. The qualitative beam quality measurement shows excellent beam quality in both axis. The M-square value for the laser beam is measured at 1.06 and 1.09 for the x and y axis respectively.-

  9. Nd-glass laser for deep-penetration welding and hardening

    NASA Astrophysics Data System (ADS)

    Kayukov, Serguei V.; Yaresko, Sergey I.; Mikheyev, Pavel A.

    2000-04-01

    Pulsed Nd-glass lasers usually have low beam quality (200 - 300 mm-mrad), and are used only for surface hardening of metals. However, high pulse energy make them feasible for deep penetration welding if their beam quality could be improved. We investigated beam properties of Nd-glass laser with unstable resonator with semitransparent output coupler (URSOC). We had found that beam divergence of the laser with URSOC was an order of magnitude smaller than that of the laser with stable resonator. The achieved beam quality (40 - 50 mm-mrad) permitted to perform deep penetration welding with the aspect ratio of approximately 8. For beam divergence of 3 mrad melt depth of 6.3 mm was achieved with the ratio of depth to pulse energy of 0.27 mm/J.

  10. Two-beam combined 3.36  J, 100  Hz diode-pumped high beam quality Nd:YAG laser system.

    PubMed

    Qiu, J S; Tang, X X; Fan, Z W; Wang, H C; Liu, H

    2016-07-20

    In this paper, we develop a diode-pumped all-solid-state high-energy and high beam quality Nd:YAG laser system. A master oscillator power amplifier structure is used to provide a high pulse energy laser output with a high repetition rate. In order to decrease the amplifier working current so as to reduce the impact of the thermal effect on the beam quality, a beam splitting-amplifying-combining scheme is adopted. The energy extraction efficiency of the laser system is 50.68%. We achieve 3.36 J pulse energy at a 100 Hz repetition rate with a pulse duration of 7.1 ns, a far-field beam spot 1.71 times the diffraction limit, and 1.07% energy stability (RMS).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectivelymore » when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ∼47% at an output power of ∼14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ∼20% at ∼6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.« less

  12. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  13. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  14. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  15. Dynamic laser beam shaping for material processing using hybrid holograms

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Yutao; Zhai, Zhongsheng; Fang, Zheng; Tao, Qing; Perrie, Walter; Edwarson, Stuart P.; Dearden, Geoff

    2018-06-01

    A high quality, dynamic laser beam shaping method is demonstrated by displaying a series of hybrid holograms onto a spatial light modulator (SLM), while each one of the holograms consists of a binary grating and a geometric mask. A diffraction effect around the shaped beam has been significantly reduced. Beam profiles of arbitrary shape, such as square, ring, triangle, pentagon and hexagon, can be conveniently obtained by loading the corresponding holograms on the SLM. The shaped beam can be reconstructed in the range of 0.5 mm at the image plane. Ablation on a polished stainless steel sample at the image plane are consistent with the beam shape at the diffraction near-field. The ±1st order and higher order beams can be completely removed when the grating period is smaller than 160 μm. The local energy ratio of the shaped beam observed by the CCD camera is up to 77.67%. Dynamic processing at 25 Hz using different shapes has also been achieved.

  16. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    PubMed

    van Wilderen, Luuk J G W; Lincoln, Craig N; van Thor, Jasper J

    2011-03-21

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is essential to model and resolve the details of physical behaviour of populations in ultrafast spectroscopy such as pump-probe, pump-dump-probe and pump-repump-probe experiments.

  17. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is essential to model and resolve the details of physical behaviour of populations in ultrafast spectroscopy such as pump-probe, pump-dump-probe and pump-repump-probe experiments. PMID:21445294

  18. Pulsed rotating supersonic source for merged molecular beams

    NASA Astrophysics Data System (ADS)

    Sheffield, L.; Hickey, M. S.; Krasovitskiy, V.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Herschbach, D. R.

    2012-06-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ˜1012 molecules at lab speeds as low as 35 m/s and ˜1015 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.

  19. Pulsed rotating supersonic source for merged molecular beams

    NASA Astrophysics Data System (ADS)

    Sheffield, Les; Hickey, Mark; Krasovitskiy, Vitaliy; Rathnayaka, Daya; Lyuksyutov, Igor; Herschbach, Dudley

    2012-10-01

    We continue the characterization of a pulsed rotating supersonic beam source. The original device was described by M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001). The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, and a shutter gate eliminate the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1--0.6 ms (depending on rotor speed) and containing ˜10^12 molecules at lab speeds as low as 35 m/s and ˜10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.

  20. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

Top