GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WEI,J.
2001-06-18
Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].
Measurement of the electron beam mode in earth's foreshock
NASA Technical Reports Server (NTRS)
Onsager, T. G.; Holzworth, R. H.
1990-01-01
High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.
Photon Beaming in External Compton models
NASA Astrophysics Data System (ADS)
Hutter, Anne; Spanier, Felix
In attempt to model blazar emission spectra, External Compton models have been employed to fit the observed data. In these models photons from the accretion disk or the CMB are upscat-tered via the Compton effect by the electrons and contribute to the emission. In previous works the resulting scattered photon angular distribution has been calculated for ultrarelativistic elec-trons. This work aims to extend the result to the case of mildly relativistic electrons. Hence, the beaming pattern produced by a relativistic moving blob consisting of isotropic distributed electrons, which scatter photons of an isotropic external radiation is calculated numerically. The isotropic photon density distribution in the blob frame is Lorentz-transformed into the rest frame of the electron and results in an anisotropic distribution with a preferred direction where it is upscattered by the electrons. The photon density distribution is determined and transformed back into the blob frame. As the photons in the rest frame of the electrons are dis-tributed anisotropically the scattering does not reproduce this anisotropic distribution. When transforming back into the blob frame the resulting photon distribution won't be isotropic. Approximations have shown that the resulting photon distribution is boosted more strongly than a distribution assumed to be isotropic in the rest frame of the electrons. Hence, in order to obtain the beaming caused by external Compton it is of particular interest to derive a more exact approximation of the resulting photon angular distribution.
Generalized radially self-accelerating helicon beams.
Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander
2014-10-31
We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields.
Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.
Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel
2009-09-01
This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.
The Square Light Clock and Special Relativity
ERIC Educational Resources Information Center
Galli, J. Ronald; Amiri, Farhang
2012-01-01
A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…
NASA Technical Reports Server (NTRS)
Greiner, D. E.; Lindstrom, P. J.; Heckman, H. H.; Cork, B.; Bieser, F. S.
1975-01-01
The fragment momentum distributions in the projectile rest frame are, typically, Gaussian shaped, narrow, consistent with isotropy, depend on fragment and projectile, and have no significant correlation with target mass or beam energy. The nuclear temperature is inferred from the momentum distributions of the fragments and is approximately equal to the projectile nuclear binding energy, indicative of small energy transfer between target and fragment.
41. Interior view of roof and wall below, looking to ...
41. Interior view of roof and wall below, looking to the east from the second floor landing at the junction of the common rafters to the raising plate, or false plate (note the false plate does not rest on the brick wall, instead is lapped over tie beams that support the floor & framing of the second level) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA
NASA Astrophysics Data System (ADS)
Maes, C.; Asbóth, J. K.; Ritsch, H.
2007-05-01
We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.
Maes, C; Asbóth, J K; Ritsch, H
2007-05-14
We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.
23. Engine room, as seen from starboard side near ladderway ...
23. Engine room, as seen from starboard side near ladderway from main (promenade) deck. At left is hot well for main engine, at the sides of which are two reciprocating boiler feedwater pumps. Behind the hot well is the condenser and the foot of one of the legs supporting the walking beam A-frame. Hot well and condenser rest on a large bed (painted black) which runs the length of the engine. In the right foreground is water pump for trim tanks. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
Ansari, Mojtaba; Hashemi, Hoda; Soltanshahi, Mehdi; Qutbi, Mohsen; Azizmohammadi, Zahra; Tabeie, Faraj; Javadi, Hamid; Jafari, Esmail; Barekat, Maryam; Assadi, Majid
2018-06-07
Evaluating the effects of heart cavity volume, presence and absence of perfusion defect, gender and type of study (stress and rest) on the difference of systolic parameters of myocardial perfusion scan in 16 and 8 framing gated SPECT imaging. Cardiac gated SPECT in both 16 and 8 framing simultaneously and both stress and rest phases at one-day protocol was performed for 50 patients. Data have been reconstructed by filter back projection (FBP) method and left ventricular (LV) systolic parameters were calculated by using QGS software. The effect of some factors such as LV cavity volume, presence and absence of perfusion defect, gender and type of study on data difference between 8 and 16 frames were evaluated. The differences in ejection fraction (EF), end-diastolic volume (EDV) and end-systolic volume (ESV) in both stress and rest were statistically significant. Difference in both framing was more in stress for EF and ESV, and was more in rest for EDV. Study type had a significant effect on differences in systolic parameters while gender had a significant effect on differences in EF and ESV in rest between both framings. In conclusion, results of this study revealed that difference of both 16 and 8 frames data in systolic phase were statistically significant and it seems that because of better efficiency of 16 frames, it cannot be replaced by 8 frames. Further well-designed studies are required to verify these findings.
Research on discrete element simulation of anchor frame beam reinforcement in bedding shale slope
NASA Astrophysics Data System (ADS)
Zhang, Xiao yong; Xie, Xiao ting
2017-11-01
The anchor frame beam is a new type of composite support method, which is a kind of slope protection structure considering the interaction between the anchors and the slope. Based on the reinforcement project of a bedding shale slope in Chengzhang highway, the reinforced effect of anchor frame beam is studied by discrete element method. Firstly, the mesoscopic parameters of the rock mass are obtained by calibration while that of anchor frame beam are obtained by calculation. Then the slope model with the reinforcement of anchor frame beam is established by particle flow software PFC2D. Afterwards, the statement of slope can be analyzed and the reinforcement effect of anchor frame beam can be predicted. Results show that: there is no instability in the slope after reinforcement, and the sliding of slope can be effectively prevented by anchor frame beam. The simulation results can provide reference for the design and construction of the project.
The motional stark effect with laser-induced fluorescence diagnostic
NASA Astrophysics Data System (ADS)
Foley, E. L.; Levinton, F. M.
2010-05-01
The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.
Relationship between selected orientation rest frame, circular vection and space motion sickness
NASA Technical Reports Server (NTRS)
Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.
1998-01-01
Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.
View of parking (resting) frame that supported the Shuttle assembly ...
View of parking (resting) frame that supported the Shuttle assembly when the hydrodynamic supports were not engaged (removed from structure). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources
NASA Astrophysics Data System (ADS)
Murphy, Eric J.; Momjian, Emmanuel; Condon, James J.; Chary, Ranga-Ram; Dickinson, Mark; Inami, Hanae; Taylor, Andrew R.; Weiner, Benjamin J.
2017-04-01
Our sensitive ({σ }{{n}}≈ 572 {nJy} {{beam}}-1), high-resolution (FWHM {θ }1/2=0\\buildrel{\\prime\\prime}\\over{.} 22≈ 2 {kpc} {at} z≳ 1), 10 GHz image covering a single Karl G. Jansky Very Large Array (VLA) primary beam (FWHM {{{\\Theta }}}1/2≈ 4\\buildrel{ \\prime}\\over{.} 25) in the GOODS-N field contains 32 sources with {S}{{p}}≳ 2 μ {Jy} {{beam}}-1 and optical and/or near-infrared (OIR) counterparts. Most are about as large as the star-forming regions that power them. Their median FWHM major axis is < {θ }{{M}}> =167+/- 32 {mas}≈ 1.2+/- 0.28 {kpc}, with rms scatter ≈ 91 {mas}≈ 0.79 {kpc}. In units of the effective radius {r}{{e}} that encloses half their flux, these radio sizes are < {r}{{e}}> ≈ 69+/- 13 {mas}≈ 509+/- 114 {pc}, with rms scatter ≈ 38 {mas}≈ 324 {pc}. These sizes are smaller than those measured at lower radio frequencies, but agree with dust emission sizes measured at mm/sub-mm wavelengths and extinction-corrected Hα sizes. We made a low-resolution ({θ }1/2=1\\buildrel{\\prime\\prime}\\over{.} 0) image with ≈ 10× better brightness sensitivity, in order to detect extended sources and measure matched-resolution spectral indices {α }1.4 {GHz}10 {GHz}. It contains six new sources with {S}{{p}}≳ 3.9 μ {Jy} {{beam}}-1 and OIR counterparts. The median redshift of all 38 sources is < z> =1.24+/- 0.15. The 19 sources with 1.4 GHz counterparts have a median spectral index of < {α }1.4 {GHz}10 {GHz}> =-0.74+/- 0.10, with rms scatter ≈ 0.35. Including upper limits on α for sources not detected at 1.4 GHz flattens the median to < {α }1.4 {GHz}10 {GHz}> ≳ -0.61, suggesting that the μJy radio sources at higher redshifts—and hence those selected at higher rest-frame frequencies—may have flatter spectra. If the non-thermal spectral index is {α }{NT}≈ -0.85, the median thermal fraction of sources selected at median rest-frame frequency ≈ 20 {GHz} is ≳48%.
Reversal of orbital angular momentum arising from an extreme Doppler shift
Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.
2018-01-01
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2009-12-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2010-03-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
78 FR 31389 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... requires repetitive inspections to detect cracking of the lower corners of the door frame and cross beam of... modification of the outboard radius of the lower corners of the door frame and reinforcement of the cross beam... of the lower frames and in the lower number 5 cross beam of the forward cargo door. We are issuing...
77 FR 50407 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... requires repetitive inspections to detect cracking of the lower corners of the door frame and cross beam of... modification of the outboard radius of the lower corners of the door frame and reinforcement of the cross beam... the lower frames and in the lower number 5 cross beam of the forward cargo door. This proposed AD...
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.
1984-01-01
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan
A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times,more » enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.« less
Dijet angular distributions in direct and resolved photoproduction at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staino, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Frisken, W. R.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration
1996-02-01
Jet photoproduction, where the two highest transverse energy ( ETjet) jets have ETjet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.
Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties
NASA Astrophysics Data System (ADS)
Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.
2016-11-01
Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.
THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel
2015-06-01
We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 Kmore » is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.« less
Iron Framing Axonometric, Stringer, IBeam, Channel, Composite TieBeam, and Small ...
Iron Framing Axonometric, Stringer, I-Beam, Channel, Composite Tie-Beam, and Small and Large Phoenix Columns - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, J
2016-06-15
Purpose: Develop a method to maximize the noncoplanar beam orientations and assure the beam delivery clearance for SBRT, therefore, optimize the dose conformality to the target, increase the dose sparing to the critical normal organs and reduce the hot spots in the body. Methods: A SBRT body frame (Elekta, Stockholm, Sweden) was used for patient immobilization and target localization. The SBRT body frame has CT fiducials on its side frames. After patient’s CT scan, the radiation treatment isocenter was defined and its coordinators referring to the body frame was calculated in the radiation treatment planning process. Meanwhile, initial beam orientationsmore » were designed based on the patient target and critical organ anatomy. The body frame was put on the linear accelerator couch and positioned to the calculated isocenter. Initially designed beam orientations were manually measured by tuning the body frame position on the couch, the gantry and couch angles. The finalized beam orientations were put into the treatment planning for dosimetric calculations. Results: Without patient presence, an optimal set of beam orientations were designed and validated. The radiation treatment plan was optimized and guaranteed for delivery clearance. Conclusion: The developed method is beneficial and effective in SBRT treatment planning for individual patient. It first allows maximizing the achievable noncoplanar beam orientation space, therefore, optimize the treatment plan for specific patient. It eliminates the risk that a plan needs to be modified due to the gantry and couch collision during patient setup.« less
17. FLOOR l; DETAIL OF FRAMING; CANT POST HAS A ...
17. FLOOR l; DETAIL OF FRAMING; CANT POST HAS A SHOULDER FOR TIE BEAM WHICH SUPPORTS STONE BEAMS; BELOW TIE BEAM IS HINGE FOR THE BRAYER - Hook Windmill, North Main Street at Pantigo Road, East Hampton, Suffolk County, NY
NASA Astrophysics Data System (ADS)
Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey
2012-05-01
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melbourne, J.; Soifer, B. T.; Desai, Vandana
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. Themore » rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 {mu}m flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 {mu}m flux density ratios (e.g., observed-frame 250/350 {mu}m ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 {mu}m ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both.« less
Reversal of orbital angular momentum arising from an extreme Doppler shift.
Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J
2018-04-10
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Eldridge, John J.; Stanway, Elizabeth R.
2012-01-01
Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.
Inelastic seismic response of precast concrete frames with constructed plastic hinges
NASA Astrophysics Data System (ADS)
Sucuoglu, H.
1995-07-01
A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.
RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, Ashok K., E-mail: asingal@prl.res.in
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less
Relativistic Doppler Beaming and Misalignments in AGN Jets
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2016-08-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Evidence of Light-by-Light Scattering with Real Photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boege, J.
2003-12-19
In a new experiment at the Stanford Linear Accelerator Center, heretofore untested aspects of high field strength Quantum Electrodynamics were probed. Bunches of 46.6 GeV electrons available in the Final Focus Test Beam line were brought into collision with terawatt pulses of either 1.17 eV or 2.34 eV photons from a Nd:Glass laser system. Several physical process were investigated. This thesis describes the production of electron-positron pairs in photon-photon collisions. This is particularly interesting since it represents the generation of massive particles from massless particles. The bunch/pulse trajectories are approximately antiparallel. Due to the head-on nature of the collisions, themore » electrons see, in their rest frame, a transformed laser pulse electric field amplitude {bar {var_epsilon}}{sub 0} = 2{gamma}{var_epsilon}{sub 0}, and so a lab frame field {var_epsilon} {approx} 1.0 x 10{sup 11} V/cm corresponds to a 46.6 GeV electron rest frame field {bar {var_epsilon}}{sub 0} {approx} 1.8 x 10{sup 16} V/cm. For electric field amplitudes of this magnitude, perturbative QED is of limited validity. Multiphoton processes dominate collision results. The geometry of the experiments was such that any pairs produced came into existence in the midst of the electron/photon collision region. The electron from a produced pair was indistinguishable from the recoil electrons generated via other processes in collisions. Detecting the positron, then, was the only way to observe pair production. In data accumulated during the September 1994 Final Focus Test Beam run, positrons in excess of background were detected. Positron signals were extracted from an ensemble of data collected during electron bunch/laser pulse collisions. Calorimeter readings were used to measure the energy, and reconstruct the transverse displacement of positrons propagating downstream from the bunch/pulse collision region. Field maps of permanent magnets located downstream of the collision region but upstream of the calorimeter were used in implementing a cut of off-momentum background positrons. Effects of various cuts and the characteristics of the detected positrons are presented. Statistically significant positron production above background is reported. The rate for e{sup +} production is calculated, and the energy spectrum of the candidates is shown. The agreement of simulation results with these observations is described.« less
Lid design for low level waste container
Holbrook, R.H.; Keener, W.E.
1995-02-28
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.
Lid design for low level waste container
Holbrook, Richard H.; Keener, Wendell E.
1995-01-01
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.
Experimental tests of relativistic gravitation theories
NASA Technical Reports Server (NTRS)
Anderson, J. D.
1971-01-01
Experimental tests were studied for determining the potential uses of future deep space missions in studies of relativistic gravity. The extensions to the parametrized post-Newtonian framework to take explicit account of the solar system's center of mass relative to the mean rest frame of the Universe is reported. Discoveries reported include the Machian effects of motion relative to the universal rest frame. Summaries of the JPL research are included.
Inorganic spark chamber frame and method of making the same
NASA Technical Reports Server (NTRS)
Heslin, T. M. (Inventor)
1982-01-01
A spark chamber frame, manufactured using only inorganic materials is described. The spark chamber frame includes a plurality of beams formed from inorganic material, such as ceramic or glass, and are connected together at ends with inorganic bonding material having substantially the same thermal expansion as the beam material. A plurality of wires formed from an inorganic composition are positioned between opposed beams so that the wires are uniformly spaced and form a grid. A plurality of hold down straps are formed of inorganic material such as ceramic or glass having substantially the same chemical and thermal properties as the beam material. Hold down straps overlie wires extending over the beams and are bonded thereto with inorganic bonding material.
Effectiveness of damped braces to mitigate seismic torsional response of unsymmetric-plan buildings
NASA Astrophysics Data System (ADS)
Mazza, Fabio; Pedace, Emilia; Favero, Francesco Del
2017-02-01
The seismic retrofitting of unsymmetric-plan reinforced concrete (r.c.) framed buildings can be carried out by the incorporation of damped braces (DBs). Yet most of the proposals to mitigate the seismic response of asymmetric framed buildings by DBs rest on the hypothesis of elastic (linear) structural response. The aim of the present work is to evaluate the effectiveness and reliability of a Displacement-Based Design procedure of hysteretic damped braces (HYDBs) based on the nonlinear behavior of the frame members, which adopts the extended N2 method considered by Eurocode 8 to evaluate the higher mode torsional effects. The Town Hall of Spilinga (Italy), a framed structure with an L-shaped plan built at the beginning of the 1960s, is supposed to be retrofitted with HYDBs to attain performance levels imposed by the Italian seismic code (NTC08) in a high-risk zone. Ten structural solutions are compared by considering two in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and different design values of the frame ductility combined with a constant design value of the damper ductility. A computer code for the nonlinear dynamic analysis of r.c. spatial framed structures is adopted to evaluate the critical incident angle of bidirectional earthquakes. Beams and columns are simulated with a lumped plasticity model, including flat surface modeling of the axial load-biaxial bending moment elastic domain at the end sections, while a bilinear law is used to idealize the behavior of the HYDBs. Damage index domains are adopted to estimate the directions of least seismic capacity, considering artificial earthquakes whose response spectra match those adopted by NTC08 at serviceability and ultimate limit states.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian
2015-04-15
As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, themore » energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.« less
High frame-rate en face optical coherence tomography system using KTN optical beam deflector
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi
2017-02-01
We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.
Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
NASA Astrophysics Data System (ADS)
Fabbri, Luca; da Rocha, Roldão
2018-05-01
We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.
STS-43 TDRS-E during preflight processing at KSC's VPF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.
NASA Technical Reports Server (NTRS)
Moas, Eduardo; Boitnott, Richard L.; Griffin, O. Hayden, Jr.
1994-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statistically to determine their load response and failure mechanisms for large deflections that occur in airplanes crashes. These frame/skin specimens consisted of a cylindrical skin section co-cured with a semicircular I-frame. The skin provided the necessary lateral stiffness to keep deformations in the plane of the frame in order to realistically represent deformations as they occur in actual fuselage structures. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame/skin specimens: a two-dimensional shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Flange effectivities were included in the beam analysis to account for the curling phenomenon that occurs in thin flanges of curved beams. Good correlation was obtained between experimental results and the analytical predictions of the linear response of the frames prior to the initial failure. The specimens were found to be useful for evaluating composite frame designs.
Analysis of truss, beam, frame, and membrane components. [composite structures
NASA Technical Reports Server (NTRS)
Knoell, A. C.; Robinson, E. Y.
1975-01-01
Truss components are considered, taking into account composite truss structures, truss analysis, column members, and truss joints. Beam components are discussed, giving attention to composite beams, laminated beams, and sandwich beams. Composite frame components and composite membrane components are examined. A description is given of examples of flat membrane components and examples of curved membrane elements. It is pointed out that composite structural design and analysis is a highly interactive, iterative procedure which does not lend itself readily to characterization by design or analysis function only.-
NASA Astrophysics Data System (ADS)
McGraw, S. M.; Brandt, W. N.; Grier, C. J.; Filiz Ak, N.; Hall, P. B.; Schneider, D. P.; Anderson, S. F.; Green, P. J.; Hutchinson, T. A.; Macleod, C. L.; Vivek, M.
2017-08-01
We investigate broad absorption line (BAL) disappearance and emergence using a 470 BAL-quasar sample over ≤0.10-5.25 rest-frame years with at least three spectroscopic epochs for each quasar from the Sloan Digital Sky Survey. We identify 14 disappearing BALs over ≤1.73-4.62 rest-frame years and 18 emerging BALs over ≤1.46-3.66 rest-frame years associated with the C IV λλ1548,1550 and/or Si IV λλ1393,1402 doublets, and report on their variability behaviour. BAL quasars in our data set exhibit disappearing/emerging C IV BALs at a rate of 2.3^{+0.9}_{-0.7} and 3.0^{+1.0}_{-0.8} per cent, respectively, and the frequency for BAL to non-BAL quasar transitions is 1.7^{+0.8}_{-0.6} per cent. We detect four re-emerging BALs over ≤3.88 rest-frame years on average and three re-disappearing BALs over ≤4.15 rest-frame years on average, the first reported cases of these types. We infer BAL lifetimes along the line of sight to be nominally ≲ 100-1000 yr using disappearing C IV BALs in our sample. Interpretations of (re-)emerging and (re-)disappearing BALs reveal evidence that collectively supports both transverse-motion and ionization-change scenarios to explain BAL variations. We constrain a nominal C IV/Si IV BAL-outflow location of ≲ 100 pc from the central source and a radial size of ≳ 1× 10-7 pc (0.02 au) using the ionization-change scenario, and constrain a nominal outflow location of ≲ 0.5 pc and a transverse size of ˜0.01 pc using the transverse-motion scenario. Our findings are consistent with previous work, and provide evidence in support of BALs tracing compact flow geometries with small filling factors.
Comparison of z-known GRBs with the Main Groups of Bright BATSE Events
NASA Technical Reports Server (NTRS)
Mitrofanov, Igor G.; Sanin, Anton B.; Anfimov, Dmitrij S.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The small reference sample of six BATSE gamma-ray bursts with known redshifts from optical afterglows is compared with a comparison group of the 218 brightest BATSE bursts. These two groups are shown to be consistent both with respect to the distributions of the spectral peak parameter in the observer's frame and also with respect to the distributions of the frame-independent cosmological invariant parameter (CIP). Using the known values of the redshifts z for the reference sample, the rest-frame distribution of spectral parameters is built. The de-redshifted distribution of the spectral parameters of the reference sample is compared with distribution of these parameters for the comparison group after de-redshifting by the factor 1/(1+z), with z a free parameter. Requiring consistency between these two distributions produces a collective estimation of the best fitting redshifts z for the comparison group, z=1.8--3.6. These values can be considered as the average cosmological redshift of the sources of the brightest BATSE bursts. The most probable value of the peak energy of the spectrum in the rest frame is 920 keV, close to the rest mass of an electron-positron pair.
SU-E-T-171: Missing Dose in Integrated EPID Images.
King, B; Seymour, E; Nitschke, K
2012-06-01
A dosimetric artifact has been observed with Varian EPIDs in the presence of beam interrupts. This work determines the root cause and significance of this artifact. Integrated mode EPID images were acquired both with and without a manual beam interrupt for rectangular, sliding gap IMRT fields. Simultaneously, the individual frames were captured on a separate computer using a frame-grabber system. Synchronization of the individual frames with the integrated images allowed the determination of precisely how the EPID behaved during regular operation as well as when a beam interrupt was triggered. The ability of the EPID to reliably monitor a treatment in the presence of beam interrupts was tested by comparing the difference between the interrupt and non-interrupt images. The interrupted images acquired in integrated acquisition mode displayed unanticipated behaviour in the region of the image where the leaves were located when the beam interrupt was triggered. Differences greater than 5% were observed as a result of the interrupt in some cases, with the discrepancies occurring in a non-uniform manner across the imager. The differences measured were not repeatable from one measurement to another. Examination of the individual frames showed that the EPID was consistently losing a small amount of dose at the termination of every exposure. Inclusion of one additional frame in every image rectified the unexpected behaviour, reducing the differences to 1% or less. Although integrated EPID images nominally capture the entire dose delivered during an exposure, a small amount of dose is consistently being lost at the end of every exposure. The amount of missing dose is random, depending on the exact beam termination time within a frame. Inclusion of an extra frame at the end of each exposure effectively rectifies the problem, making the EPID more suitable for clinical dosimetry applications. The authors received support from Varian Medical Systems in the form of software and equipment loans as well as technical support. © 2012 American Association of Physicists in Medicine.
Narrow absorption lines with two observations from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue
2015-07-01
We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.
Lorentz Contraction and Current-Carrying Wires
ERIC Educational Resources Information Center
van Kampen, Paul
2008-01-01
The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…
Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.
1979-01-01
A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.
Experimental study of geotextile as plinth beam in a pile group-supported modeled building frame
NASA Astrophysics Data System (ADS)
Ravi Kumar Reddy, C.; Gunneswara Rao, T. D.
2017-12-01
This paper presents the experimental results of static vertical load tests on a model building frame with geotextile as plinth beam supported by pile groups embedded in cohesionless soil (sand). The experimental results have been compared with those obtained from the nonlinear FEA and conventional method of analysis. The results revealed that the conventional method of analysis gives a shear force of about 53%, bending moment at the top of the column about 17% and at the base of the column about 50-98% higher than that by the nonlinear FEA for the frame with geotextile as plinth beam.
NASA Astrophysics Data System (ADS)
Forrest, Ben; Tran, Kim-Vy H.; Tomczak, Adam R.; Broussard, Adam; Labbé, Ivo; Papovich, Casey; Kriek, Mariska; Allen, Rebecca J.; Cowley, Michael; Dickinson, Mark; Glazebrook, Karl; van Houdt, Josha; Inami, Hanae; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel; McCarthy, Patrick J.; Monson, Andrew; Morrison, Glenn; Nanayakkara, Themiya; Persson, S. Eric; Quadri, Ryan F.; Spitler, Lee R.; Straatman, Caroline; Tilvi, Vithal
2016-02-01
We build a set of composite galaxy spectral energy distributions (SEDs) by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ˜4000 Ks-band selected galaxies, we define 38 composite galaxy SEDs that yield continuous low-resolution spectra (R ˜ 45) over the rest-frame range 0.1-4 μm. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope (β) in the IRX-β dust relation at 1 < z < 3. Blue star-forming composite SEDs show IRX and β values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U - V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
The effect of atomic response time in the theory of Doppler cooling of trapped ions
NASA Astrophysics Data System (ADS)
Janacek, H.; Steane, A. M.; Lucas, D. M.; Stacey, D. N.
2018-03-01
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequencies it experiences in its rest frame, and this 'dynamic effect' can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to ?. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.
Discovery of an X-ray Violently Variable Broad Absorption Line Quasar
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.
2006-01-01
In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.
NASA Astrophysics Data System (ADS)
Mazilu, Traian
2017-08-01
This paper approaches the issue of the interaction between moving tandem wheels and an infinite periodically supported rail and points out at the basic characteristics in the steady-state interaction behaviour and in the interaction in the presence of the rail random irregularity. The rail is modelled as an infinite Timoshenko beam resting on supports which are discretely modelling the inertia of the sleepers and ballast and also the viscoelastic features of the rail pads, the ballast and the subgrade. Green‧s matrices of the track method in stationary reference frame were applied so as to conduct the time-domain analysis. This method allows to consider the nonlinearities of the wheel/rail contact and the Doppler effect. The study highlights certain aspects regarding the influence of the wheel base on the wheels/rail contact forces, particularly at the parametric resonance, due to the coincidence between the wheel/rail natural frequency and the passing frequency and also when the rail surface exhibits random irregularity. It has been shown that the wheel/rail dynamic behaviour is less intense when the wheel base equals integer multiple of the sleeper bay.
VizieR Online Data Catalog: CIII] emission in near & far star-forming galaxies (Rigby+, 2015)
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Pena-Guerrero, M.
2016-03-01
We measure the equivalent widths of Lyα and the C III] doublet in the rest-frame UV spectra of 11 gravitationally lensed galaxies at 1.6
NASA Astrophysics Data System (ADS)
Alba, David; Crater, Horace W.; Lusanna, Luca
2015-03-01
A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.
78 FR 25905 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... that the frame-to-floor beam attachment is subject to widespread fatigue damage (WFD). This proposed AD... fatigue cracking at the frame-to-floor beam attachment, on both the left- and right-sides, which could... between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service information...
77 FR 30048 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... built as 40-foot steel frame cars to carry logs. Their exact ages are unknown but they are thought to... only be manually applied when the cars are at rest, using a ratchet lever at the end of the frame. CASS...
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
NASA Astrophysics Data System (ADS)
Daprà, M.; Henkel, C.; Levshakov, S. A.; Menten, K. M.; Muller, S.; Bethlem, H. L.; Leurini, S.; Lapinov, A. V.; Ubachs, W.
2017-12-01
The dependence of the proton-to-electron mass ratio, μ, on the local matter density was investigated using methanol emission in the dense dark cloud core L1498. Towards two different positions in L1498, five methanol transitions were detected and an extra line was tentatively detected at a lower confidence level in one of the positions. The observed centroid frequencies were then compared with their rest-frame frequencies derived from least-squares fitting to a large data set. Systematic effects, as the underlying methanol hyperfine structure and the Doppler tracking of the telescope, were investigated and their effects were included in the total error budget. The comparison between the observations and the rest-frame frequencies constrains potential μ variation at the level of Δμ/μ < 6 × 10-8, at a 3σ confidence level. For the dark cloud, we determine a total CH3OH (A+E) beam averaged column density of ∼3-4 × 1012 cm-2 (within roughly a factor of two), an E- to A-type methanol column density ratio of N(A-CH3OH)/N(E-CH3OH) ∼1.00 ± 0.15, a density of n(H2) = 3 × 105 cm-3 (again within a factor of two) and a kinetic temperature of Tkin = 6 ± 1 K. In a kinetic model including the line intensities observed for the methanol lines, the n(H2) density is higher and the temperature is lower than that derived in previous studies based on different molecular species; the intensity of the 10 → 1-1 E line strength is not well reproduced.
Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, B.; Chiaberge, M.; Kotyla, J. P.
2016-07-01
We present new rest-frame UV and visible observations of 22 high- z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope ’s Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses revealmore » that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.« less
Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.
2004-06-01
An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.
Superconductive radiofrequency window assembly
Phillips, Harry Lawrence; Elliott, Thomas S.
1998-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconductive radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1998-05-19
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
Superconducting radiofrequency window assembly
Phillips, Harry L.; Elliott, Thomas S.
1997-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconducting radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1997-03-11
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
An experimental and analytical investigation on the response of GR/EP composite I-frames
NASA Technical Reports Server (NTRS)
Moas, E., Jr.; Boitnott, R. L.; Griffin, O. H., Jr.
1991-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statically to determine their load response and failure mechanisms for large deflections that occur in an airplane crash. These frame-skin specimens consisted of a cylindrical skin section cocured with a semicircular I-frame. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame-skin specimens: a two-dimensional branched-shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Excellent correlation was obtained between experimental results and the finite element predictions of the linear response of the frames prior to the initial failure. The beam solution was used for rapid parameter and design studies, and was found to be stiff in comparison with the finite element analysis. The specimens were found to be useful for evaluating composite frame designs.
20. Underside of swingspan showing bottom truss chords, floor beams ...
20. Underside of swing-span showing bottom truss chords, floor beams and stringers. The draw rests on the end-lift pedestals (end ram supports) at each side of the masonry rest pier. The end-lift drive shaft is supported from the center of the draw. (Nov. 25, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY
Gao, Xiaoxue; Gong, Pingyuan; Liu, Jinting; Hu, Jie; Li, Yue; Yu, Hongbo; Gong, Xiaoliang; Xiang, Yang; Jiang, Changjun; Zhou, Xiaolin
2016-05-01
Individuals tend to avoid risk in a gain frame, in which options are presented in a positive way, but seek risk in a loss frame, in which the same options are presented negatively. Previous studies suggest that emotional responses play a critical role in this "framing effect." Given that the Met allele of COMT Val158Met polymorphism (rs4680) is associated with the negativity bias during emotional processing, this study investigated whether this polymorphism is associated with individual susceptibility to framing and which brain areas mediate this gene-behavior association. Participants were genotyped, scanned in resting state, and completed a monetary gambling task with options (sure vs risky) presented as potential gains or losses. The Met allele carriers showed a greater framing effect than the Val/Val homozygotes as the former gambled more than the latter in the loss frame. Moreover, the gene-behavior association was mediated by resting-state functional connectivity (RSFC) between orbitofrontal cortex (OFC) and bilateral amygdala. Met allele carriers showed decreased RSFC, thereby demonstrating higher susceptibility to framing than Val allele carriers. These findings demonstrate the involvement of COMT Val158Met polymorphism in the framing effect in decision-making and suggest RSFC between OFC and amygdala as a neural mediator underlying this gene-behavior association. Hum Brain Mapp 37:1880-1892, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man
2008-11-01
The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.
NASA Astrophysics Data System (ADS)
Gedalin, M.; Liverts, M.; Balikhin, M. A.
2008-05-01
Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).
Woo, Jonghye; Tamarappoo, Balaji; Dey, Damini; Nakazato, Ryo; Le Meunier, Ludovic; Ramesh, Amit; Lazewatsky, Joel; Germano, Guido; Berman, Daniel S; Slomka, Piotr J
2011-11-01
The authors aimed to develop an image-based registration scheme to detect and correct patient motion in stress and rest cardiac positron emission tomography (PET)/CT images. The patient motion correction was of primary interest and the effects of patient motion with the use of flurpiridaz F 18 and (82)Rb were demonstrated. The authors evaluated stress/rest PET myocardial perfusion imaging datasets in 30 patients (60 datasets in total, 21 male and 9 female) using a new perfusion agent (flurpiridaz F 18) (n = 16) and (82)Rb (n = 14), acquired on a Siemens Biograph-64 scanner in list mode. Stress and rest images were reconstructed into 4 ((82)Rb) or 10 (flurpiridaz F 18) dynamic frames (60 s each) using standard reconstruction (2D attenuation weighted ordered subsets expectation maximization). Patient motion correction was achieved by an image-based registration scheme optimizing a cost function using modified normalized cross-correlation that combined global and local features. For comparison, visual scoring of motion was performed on the scale of 0 to 2 (no motion, moderate motion, and large motion) by two experienced observers. The proposed registration technique had a 93% success rate in removing left ventricular motion, as visually assessed. The maximum detected motion extent for stress and rest were 5.2 mm and 4.9 mm for flurpiridaz F 18 perfusion and 3.0 mm and 4.3 mm for (82)Rb perfusion studies, respectively. Motion extent (maximum frame-to-frame displacement) obtained for stress and rest were (2.2 ± 1.1, 1.4 ± 0.7, 1.9 ± 1.3) mm and (2.0 ± 1.1, 1.2 ±0 .9, 1.9 ± 0.9) mm for flurpiridaz F 18 perfusion studies and (1.9 ± 0.7, 0.7 ± 0.6, 1.3 ± 0.6) mm and (2.0 ± 0.9, 0.6 ± 0.4, 1.2 ± 1.2) mm for (82)Rb perfusion studies, respectively. A visually detectable patient motion threshold was established to be ≥2.2 mm, corresponding to visual user scores of 1 and 2. After motion correction, the average increases in contrast-to-noise ratio (CNR) from all frames for larger than the motion threshold were 16.2% in stress flurpiridaz F 18 and 12.2% in rest flurpiridaz F 18 studies. The average increases in CNR were 4.6% in stress (82)Rb studies and 4.3% in rest (82)Rb studies. Fully automatic motion correction of dynamic PET frames can be performed accurately, potentially allowing improved image quantification of cardiac PET data.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... frames, upper deck floor beams, electronic bay access door cutout, nose wheel well, and main entry doors... intervals for certain airplanes. This AD results from fatigue tests and analysis that identified additional... frames, upper deck floor beams, electronic bay access door cutout, nose wheel well, and main entry doors...
Active vibration control of a thin walled beam by neural networks and piezo-actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecce, L.; Sorrentino, A.; Concilio, A.
1994-12-31
In turboprop aircraft, vibration of the fuselage frame (typically a thin-walled beam) has been identified as the main cause of interior noise. Passive methods, based essentially on the use of DVA (Dynamic Vibration Absorbers) have been shown to be not entirely satisfactory, due to the significant weight increase. The use of active control systems based on piezoceramic sensors and actuators integrated into the frame seems to be a valid alternative to attenuate interior noise. In this paper, the use of a MIMO feedforward active control system with piezoceramic actuators is proposed, in order to reduce the vertical vibration levels ofmore » a rectified, typical fuselage frame. A numerical FEM model of the rectified frame has been experimentally validated and has been used in order to evaluate the dynamic response of the beam, both with regard to piezoceramic actuators and to a point force, representing the primary disturbance. A neural network (NN) controller has been used to simultaneously compute amplitudes and phases of the control force for the 6 piezo actuators, so as to minimize the accelerometric responses acquired in 30 points of the beam (6 at each of 5 different transversal sections).« less
Relativistic Velocity Addition Law from Machine Gun Analogy
NASA Astrophysics Data System (ADS)
Rothenstein, Bernhard; Popescu, Stefan
2009-01-01
Many derivations of the relativistic addition law of parallel velocities without use of the Lorentz transformations (LT) are known.1-5 Some of them are based on thought experiments that require knowledge of the time dilation and the length contraction effects.1,4,5 Other derivations involve the Doppler effect in the optic domain considered from three inertial reference frames in relative motion.6 A few derivations simply involve only the principle of constancy of the light velocity.2 Such derivations are interesting for the teaching of special relativity theory since the relativistic addition of velocities leads directly to the LT.7 The derivation we propose is based on a machine gun-target analogy8 of the acoustic Doppler effect, considered from the rest frame of the machine gun and from the rest frame of the target.
Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy
NASA Astrophysics Data System (ADS)
Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter
2016-05-01
We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter
2013-06-01
Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.
NASA Technical Reports Server (NTRS)
Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.;
2013-01-01
Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.
NASA Technical Reports Server (NTRS)
Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.;
2013-01-01
Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.
SouthWest Elevation, Plan Showing Deck Framing, Deck Plan, Plan of ...
South-West Elevation, Plan Showing Deck Framing, Deck Plan, Plan of Collar Beams, Etc., Typical Framing Details, End Elevations, Elevation of Scarf Top Chord, Joint Details - Perrine's Bridge, Spanning Wallkill River, Rifton, Ulster County, NY
Parametric amplification of orbital angular momentum beams based on light-acoustic interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang
A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
ERIC Educational Resources Information Center
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2008-01-01
Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…
Column descriptions ID : Unique integer for each control time simulation LABEL : Description unique to each ID (see paper) Z : Redshift TIMEAREA : Observer-frame control time x area at 'Z' (year-arcmin ^2) Z2 : Second redshift TIMEVOL : Total rest-frame control time x volume between 'Z' and 'Z2' (year
Infrared/optical energy distributions of high redshifted quasars
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.
1982-01-01
Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.
Morphological and Star Formation Evolution to z = 1
NASA Astrophysics Data System (ADS)
Hammer, F.
The decrease, since z = 1, of the rest-frame UV luminosity density is related to global changes in morphology, color and emission lines properties of galaxies. This is apparently followed by a similar decrease of the rest-frame IR luminosity density. I discuss the relative contribution from the different galaxy morphological types to the observed evolution. The main contributors are compact galaxies observed in large number at optical wavelengths, and the sparse population of extincted & powerful starbursts observed by ISO. This latter population is made of large and massive galaxies mostly found in interacting systems, some of which could be leading to the formation of massive ellipticals at z < 1.
Experiment study on RC frame retrofitted by the external structure
NASA Astrophysics Data System (ADS)
Liu, Chunyang; Shi, Junji; Hiroshi, Kuramoto; Taguchi, Takashi; Kamiya, Takashi
2016-09-01
A new retrofitting method is proposed herein for reinforced concrete (RC) structures through attachment of an external structure. The external structure consists of a fiber concrete encased steel frame, connection slab and transverse beams. The external structure is connected to the existing structure through a connection slab and transverse beams. Pseudostatic experiments were carried out on one unretrofitted specimen and three retrofitted frame specimens. The characteristics, including failure mode, crack pattern, hysteresis loops behavior, relationship of strain and displacement of the concrete slab, are demonstrated. The results show that the load carrying capacity is obviously increased, and the extension length of the slab and the number of columns within the external frame are important influence factors on the working performance of the existing structure. In addition, the displacement difference between the existing structure and the outer structure was caused mainly by three factors: shear deformation of the slab, extraction of transverse beams, and drift of the conjunction part between the slab and the existing frame. Furthermore, the total deformation determined by the first two factors accounted for approximately 80% of the damage, therefore these factors should be carefully considered in engineering practice to enhance the effects of this new retrofitting method.
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
NASA Astrophysics Data System (ADS)
Mucha, Waldemar; Kuś, Wacław
2018-01-01
The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.
NASA Astrophysics Data System (ADS)
Rindani, Saurabh D.
2002-04-01
QCD corrections to order as in the soft-gluon approximation to angular distributions of decay charged leptons in the process e+e- --> t t(bar), followed by semileptonic decay of t or t(bar), are obtained in the e+e- centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow direct comparison with experiment without the need to reconstruct the top rest frame. The results also do not depend on the choice of a spin quantization axis for t or t (bar). Analytic expression for the triple distribution in the polar angle of t and polar and azimuthal angles of the lepton is obtained. Analytic expression is also derived for the distribution in the charged-lepton polar angle. Numerical values are discussed for (s) 1/2 = 400, 800 and 1500 GeV.
2015-01-01
Rest is a health-related phenomenon. Researchers have explored the phenomenon of rest, but further concept development is recommended. The aim of my study was to develop and describe a concept of rest, from interviews with a total of 63 participants about their lived experiences of rest. I performed the developing process in two stages: first with descriptive phenomenology and second with a hermeneutic approach. The concept of rest is comprised of the essences of both rest and “non-rest,” and there is a current movement between these two conditions in peoples’ lives. The essence of rest is being in harmony in motivation, feeling, and action. The essence of non-rest is being in disharmony in motivation, feeling, and action. The essences reveal some meaning constituents. Health care professionals and researchers can use the concept as a frame of reference in health care praxis and in applied research. PMID:28462307
76 FR 27232 - Airworthiness Directives; Airbus Model A310 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... rototest inspection to detect cracks in the area of frame 47 and frame 54, install new doublers, and repair if necessary. Repetitive visual inspections to detect cracks on frame 46 between the left- and right... visual inspections to detect cracks at the T- section connecting frame 50A to the beam between the left...
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Zamani, M. H.
2018-06-01
The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.
Evaluating and improving the redshifts of z > 2.2 quasars
NASA Astrophysics Data System (ADS)
Mason, Michelle; Brotherton, Michael S.; Myers, Adam
2017-08-01
Quasar redshifts require the best possible precision and accuracy for a number of applications, such as setting the velocity scale for outflows as well as measuring small-scale quasar-quasar clustering. The most reliable redshift standard in luminous quasars is arguably the narrow [O III] λλ4959, 5007 emission line doublet in the rest-frame optical. We use previously published [O III] redshifts obtained using near-infrared spectra in a sample of 45 high-redshift (z > 2.2) quasars to evaluate redshift measurement techniques based on rest-frame ultraviolet spectra. At redshifts above z = 2.2, the Mg II λ2798 emission line is not available in observed-frame optical spectra and the most prominent unblended and unabsorbed spectral feature available is usually C IV λ1549. Peak and centroid measurements of the C IV profile are often blueshifted relative to the rest-frame of the quasar, which can significantly bias redshift determinations. We show that redshift determinations for these high-redshift quasars are significantly correlated with the emission-line properties of C IV (I.e. the equivalent width, or EW, and the full width at half-maximum, or FWHM) as well as the luminosity, which we take from the Sloan Digital Sky Survey Data Release 7. We demonstrate that empirical corrections based on multiple regression analyses yield significant improvements in both the precision and accuracy of the redshifts of the most distant quasars and are required to establish consistency with redshifts determined in more local quasars.
Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames
NASA Astrophysics Data System (ADS)
Watkins, Ryan
Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.
Seismic Stability of St. Stephen Hydropower Plant, South Carolina
2006-11-01
looking from the fish-lift side ....................................... 9 Figure 1-9. Upstream T- beam connection : shim plates welded to embedded wall (an...Figure 1-10. Downstream T- beam connection : T- beam bearing plate rests on Neoprene pad, bolt through plate with slotted holes (an ideal roller condition...37 Figure 4-1. Beam - column model of the erection bay
Construction simulation analysis of 120m continuous rigid frame bridge based on Midas Civil
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
In this paper, a three-dimensional finite element model of a continuous rigid frame bridge with a main span of 120m is established by the simulation and analysis of Midas Civil software. The deflection and stress of the main beam in each construction stage of continuous beam bridge are simulated and analyzed, which provides a reliable technical guarantee for the safe construction of the bridge.
The Shock and Vibration Digest. Volume 18, Number 5
1986-05-01
response. 16-1067 Seismic Analysis of Azisym metric Shells R.J. Jospin, E.M. Toledo, R.A. Feijoo Laboratorio de Computacao Cientifica, Rio de ...matrices for tapered beam elements, de - rived by various autbots are reviewed. Tapered member framing has been utilized in a variety of building frames of...sectional shape. Dynamic stiffness and consistent mass matrices [2,22] have been de - rived in explicit form for the beam element of closed box of
Damage evaluation of reinforced concrete frame based on a combined fiber beam model
NASA Astrophysics Data System (ADS)
Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo
2014-04-01
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.
Hagen, E.C.; Hudson, C.L.
1995-07-25
A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.
Vibration suppression and slewing control of a flexible structure
NASA Technical Reports Server (NTRS)
Inman, Daniel J.; Garcia, Ephrahim; Pokines, Brett
1991-01-01
Examined here are the effects of motor dynamics and secondary piezoceramic actuators on vibration suppression during the slewing of flexible structures. The approach focuses on the interaction between the structure, the actuators, and the choice of control law. The results presented here are all simulated, but are based on experimentally determined parameters for the motor, structure, piezoceramic actuators, and piezofilm sensors. The simulation results clearly illustrate that the choice of motor inertia relative to beam inertia makes a critical difference in the performance of the system. In addition, the use of secondary piezoelectric actuators reduces the load requirements on the motor and also reduces the overshoot of the tip deflection. The structures considered here are a beam and a frame. The majority of results are based on a Euler Bernoulli beam model. The slewing frame introduces substantial torsional modes and a more realistic model. The slewing frame results are incomplete and represent work in progress.
Charges and Fields in a Current-Carrying Wire
ERIC Educational Resources Information Center
Redzic, Dragan V.
2012-01-01
Charges and fields in a straight, infinite, cylindrical wire carrying a steady current are determined in the rest frames of ions and electrons, starting from the standard assumption that the net charge per unit length is zero in the lattice frame and taking into account a self-induced pinch effect. The analysis presented illustrates the mutual…
Third generation design solar cell module LSA task 5, large scale production
NASA Technical Reports Server (NTRS)
1980-01-01
A total of twelve (12) preproduction modules were constructed, tested, and delivered. A concept to the frame assembly was designed and proven to be quite reliable. This frame design, as well as the rest of the assembly, was designed with future high volume production and the use of automated equipment in mind.
Alignment of cryo-EM movies of individual particles by optimization of image translations.
Rubinstein, John L; Brubaker, Marcus A
2015-11-01
Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual <1 MDa protein particle trajectories to be estimated, but requires rolling averages to be calculated from frames and fits linear trajectories for particles. Here we describe an algorithm that allows for individual <1 MDa particle images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM. Copyright © 2015 Elsevier Inc. All rights reserved.
Superenergy flux of Einstein-Rosen waves
NASA Astrophysics Data System (ADS)
Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.
In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.
Universal ICT Picosecond Camera
NASA Astrophysics Data System (ADS)
Lebedev, Vitaly B.; Syrtzev, V. N.; Tolmachyov, A. M.; Feldman, Gregory G.; Chernyshov, N. A.
1989-06-01
The paper reports on the design of an ICI camera operating in the mode of linear or three-frame image scan. The camera incorporates two tubes: time-analyzing ICI PIM-107 1 with cathode S-11, and brightness amplifier PMU-2V (gain about 104) for the image shaped by the first tube. The camera is designed on the basis of streak camera AGAT-SF3 2 with almost the same power sources, but substantially modified pulse electronics. Schematically, the design of tube PIM-107 is depicted in the figure. The tube consists of cermet housing 1, photocathode 2 made in a separate vacuum volume and introduced into the housing by means of a manipulator. In a direct vicinity of the photocathode, accelerating electrode is located made of a fine-structure grid. An electrostatic lens formed by focusing electrode 4 and anode diaphragm 5 produces a beam of electrons with a "remote crossover". The authors have suggested this term for an electron beam whose crossover is 40 to 60 mm away from the anode diaphragm plane which guarantees high sensitivity of scan plates 6 with respect to multiaperture framing diaphragm 7. Beyond every diaphragm aperture, a pair of deflecting plates 8 is found shielded from compensation plates 10 by diaphragm 9. The electronic image produced by the photocathode is focused on luminescent screen 11. The tube is controlled with the help of two saw-tooth voltages applied in antiphase across plates 6 and 10. Plates 6 serve for sweeping the electron beam over the surface of diaphragm 7. The beam is either allowed toward the screen, or delayed by the diaphragm walls. In such a manner, three frames are obtained, the number corresponding to that of the diaphragm apertures. Plates 10 serve for stopping the compensation of the image streak sweep on the screen. To avoid overlapping of frames, plates 8 receive static potentials responsible for shifting frames on the screen. Changing the potentials applied to plates 8, one can control the spacing between frames and partially or fully overlap the frames. This sort of control is independent of the frequency of frame running and of their duration, and can only determine frame positioning on the screen. Since diaphragm 7 is located in the area of crossover and electron trajectories cross in the crossover, the frame is not decomposed into separate elements during its formation. The image is transferred onto the screen practically within the entire time of frame duration increasing the aperture ratio of the tube as compared to that in Ref. 3.
NASTRAN nonlinear vibration analysis of beam and frame structures
NASA Technical Reports Server (NTRS)
Mei, C.; Rogers, J. L., Jr.
1975-01-01
A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.
Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
NASA Astrophysics Data System (ADS)
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.
2018-01-01
A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.
NASA Astrophysics Data System (ADS)
Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.
2012-10-01
An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.
An ASCA GIS spectrum of S5 0014+813 AT z = 3.384
NASA Technical Reports Server (NTRS)
Elvis, Martin; Matsuoka, M.; Siemiginowska, A.; Fiore, F.; Mihara, T.; Brinkmann, W.
1994-01-01
ASCA has detected the z = 3.384 quasar S5 0014+813 up to energies of 34 keV in the quasar rest frame using the two gas imaging spectrometer (GIS) instruments. The combined X-ray spectrum has a signal-to-noise ratio of over 50 sigma and is consistent with a single power law of energy slope 0.63 +/- 0.03 over the 0.8-8 keV (observed) energy range. The spectrum is also well fitted with a simple thermal bremsstrahlung model of kT = 40 +/- 4 keV (in the quasar frame), which raises obvious possibilities for contributions to the diffuse X-ray background. A maximum solid angle of Omega(sub d)/2(pi) = 0.4(90% confidence) can be placed on the strength of a Compton reflection component above the energy of the Fe K-edge. The Fe K 6.4 keV fluorescence line has a rest frame equivalent width less than 120 eV (90% confidence) at its redshifted energy of 1.46 keV. The weakness of these features differentiates this high-luminosity, high-redshift quasar from the majority of Seyfert galaxies using its X-ray spectrum alone. The GIS slope is consistent with the slope derived by the ROSAT Position Sensitive Proportional Counter (PSPC). The normalization at 1 keV in the ASCA observation is, however, a factor 30%-40% higher than in the ROSAT observation, suggesting a significant increase in the 1 keV (observed) flux over the 31.5 months between the two observations (7.2 months, rest frame).
Integrated circuit package with lead structure and method of preparing the same
NASA Technical Reports Server (NTRS)
Kennedy, B. W. (Inventor)
1973-01-01
A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.
A Reverse Shock in GRB 160509A
NASA Astrophysics Data System (ADS)
Laskar, Tanmoy; Alexander, Kate D.; Berger, Edo; Fong, Wen-fai; Margutti, Raffaella; Shivvers, Isaac; Williams, Peter K. G.; Kopač, Drejc; Kobayashi, Shiho; Mundell, Carole; Gomboc, Andreja; Zheng, WeiKang; Menten, Karl M.; Graham, Melissa L.; Filippenko, Alexei V.
2016-12-01
We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of {n}0≈ {10}-3 {{cm}}-3, supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 × 1022 {{cm}}-2, and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at {t}{jet}≈ 6 {days}, and thus derive a jet opening angle of {θ }{jet}≈ 4^\\circ , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of {E}{{K}}≈ 4× {10}50 erg and {E}γ ≈ 1.3× {10}51 erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of {t}{dec} ≈ 460 s ≈ T 90, a Lorentz factor of {{Γ }}({t}{dec})≈ 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of {R}{{B}}\\equiv {ɛ }{{B},{RS}}/{ɛ }{{B},{FS}}≈ 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.
In situ damage detection in frame structures through coupled response measurements
NASA Astrophysics Data System (ADS)
Liu, D.; Gurgenci, H.; Veidt, M.
2004-05-01
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures.
Free vibrations of a pultruded GFRP frame with different rotational stiffnesses of bolted joints
NASA Astrophysics Data System (ADS)
Boscato, G.; Russo, S.
2013-01-01
Experimental and numerical results for the dynamic response of an all-FRP (fiber-reinforced polymer) twodimensional frame in free vibration are presented. The frame was assembled of pultruded glass-fiber-reinforced polymer (GFRP) profiles and bolted beam-to-column connections with GFRP angles. To give a variable rotational stiffness to the four beam-to-column major-axis joints, all bolts were tightened by a constant torque of 10, 25, or 40 N · m. Experimental measurements were performed on the three configurations to identify the natural frequencies of the first vibration mode in the plane of the frame and to determine the ability of each structure to dissipate the initial acceleration imposed on it through damping. The results obtained are compared with analytical and finite-element calculations. It was found that an increased bolt torque improved the dynamic response of the GFRP frame by reducing its vibration time and maximum displacements and by enhancing its dissipation capacity.
An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories
NASA Astrophysics Data System (ADS)
Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji
2008-11-01
We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
An alternative resolution to the Mansuripur paradox
NASA Astrophysics Data System (ADS)
Redfern, Francis
2016-04-01
In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.
Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael
2016-12-01
We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.
Buckling of beams supported by Pasternak foundation.
NASA Technical Reports Server (NTRS)
Murthy, G. K. N.
1973-01-01
The determination of buckling loads for infinitely long beams resting on a Pasternak (1954) foundation is considered. It is assumed that the onset of buckling takes place at neutral equilibrium. The effect of extending the foundation beyond the width of the beam is determined by comparing the results obtained for two- and three-dimensional foundations.
Solid-state framing camera with multiple time frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K. L.; Stewart, R. E.; Steele, P. T.
2013-10-07
A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
GEO light imaging national testbed (GLINT) heliostat design and testing status
NASA Astrophysics Data System (ADS)
Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee
2002-01-01
The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.
75 FR 53843 - Airworthiness Directives; The Boeing Company Model 737-100 and -200 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... damaged fasteners of certain fuselage frames and stub beams, and corrective actions if necessary. For... hole of the frame at body station 639, stringer S-16, and corrective actions if necessary. For certain... terminates the repetitive inspections for the repaired or modified frame only. For airplanes on which the...
75 FR 27969 - Airworthiness Directives; The Boeing Company Model 737-100 and -200 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... cracking and damaged fasteners of certain fuselage frames and stub beams, and corrective actions if... the inboard chord fastener hole of the frame at body station 639, stringer S-16, and corrective... inspections for the repaired or modified frame only. For airplanes on which the modification or repair is done...
High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits
2014-01-28
polarizing beam splitter, TDC: time-to-digital converter. Extra&loss& photon/bin frame size QSER secure bpp ECC secure&key&rate& none& 0.0031 64 14...to-digital converter. photon/frame frame size QSER secure bpp ECC secure&key& rate& 1.3 16 9.5 % 2.9 layered LDPC 7.3&Mbps& Figure 24: Operating
High stability wavefront reference source
Feldman, M.; Mockler, D.J.
1994-05-03
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.
High stability wavefront reference source
Feldman, Mark; Mockler, Daniel J.
1994-01-01
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.
Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoupas, N.; Hahn, H.; Meng, W.
2014-08-26
The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite’s temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those ofmore » a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.« less
NASA Astrophysics Data System (ADS)
Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko
2018-04-01
We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.
Hagen, Edward C.; Hudson, Charles L.
1995-01-01
A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).
Terrain interaction with the quarter scale beam walker
NASA Technical Reports Server (NTRS)
Chun, Wendell H.; Price, S.; Spiessbach, A.
1990-01-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
Terrain Interaction With The Quarter Scale Beam Walker
NASA Astrophysics Data System (ADS)
Chun, Wendell H.; Price, R. S.; Spiessbach, Andrew J.
1990-03-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.
2018-04-01
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.
The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field
NASA Technical Reports Server (NTRS)
Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.;
2009-01-01
We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors.
A preliminary structural analysis of space-based inflatable tubular frame structures
NASA Technical Reports Server (NTRS)
Main, John A.; Peterson, Steven W.; Strauss, Alvin M.
1992-01-01
The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed.
Analytical Approach to Large Deformation Problems of Frame Structures
NASA Astrophysics Data System (ADS)
Ohtsuki, Atsumi; Ellyin, Fernand
In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.
Do framing effects reveal irrational choice?
Mandel, David R
2014-06-01
Framing effects have long been viewed as compelling evidence of irrationality in human decision making, yet that view rests on the questionable assumption that numeric quantifiers used to convey the expected values of choice options are uniformly interpreted as exact values. Two experiments show that when the exactness of such quantifiers is made explicit by the experimenter, framing effects vanish. However, when the same quantifiers are given a lower bound (at least) meaning, the typical framing effect is found. A 3rd experiment confirmed that most people spontaneously interpret the quantifiers in standard framing tests as lower bounded and that their interpretations strongly moderate the framing effect. Notably, in each experiment, a significant majority of participants made rational choices, either choosing the option that maximized expected value (i.e., lives saved) or choosing consistently across frames when the options were of equal expected value. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Plastic-aluminum composites in transportation infrastructure.
DOT National Transportation Integrated Search
2017-03-01
This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if ...
Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System
NASA Astrophysics Data System (ADS)
Nouiraa, H.; Deschaud, J. E.; Goulettea, F.
2016-06-01
LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.
Rahim, Ruzairi Abdul; Fazalul Rahiman, Mohd Hafiz; Leong, Lai Chen; Chan, Kok San; Pang, Jon Fea
2008-01-01
The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4-projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project. PMID:27879885
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
X-Ray Backscatter Machine Support Frame
NASA Technical Reports Server (NTRS)
Cannon, Brooke
2010-01-01
This summer at Kennedy Space Center, I spent 10 weeks as an intern working at the Prototype Development Lab. During this time I learned about the design and machining done here at NASA. I became familiar with the process from where a design begins in Pro/Engineer and finishes at the hands of the machinists. As an intern I was given various small jobs to do and then one project of my own. My personal project was a job for the Applied Physics Lab; in their work they use an X-Ray Backscatter machine. Previously it was resting atop a temporary frame that limited the use of the machine. My job was to design a frame for the machine to rest upon that would allow a full range of sample sizes. The frame was required to support the machine and provide a strain relief for the cords attached to the machine as it moved in the x and y directions. Calculations also had to be done to be sure the design would be able to withstand any loads or outside sources of stress. After the calculations proved the design to be ready to withstand the requirements, the parts were ordered or fabricated, as required. This helped me understand the full process of jobs sent to the Prototype Development Lab.
Martins, Luciana Flaquer; Vigorito, Julio Wilson
2013-01-01
To determine the characteristics of facial soft tissues at rest and wide smile, and their possible relation to the facial type. We analyzed a sample of forty-eight young female adults, aged between 19.10 and 40 years old, with a mean age of 30.9 years, who had balanced profile and passive lip seal. Cone beam computed tomographies were performed at rest and wide smile postures on the entire sample which was divided into three groups according to individual facial types. Soft tissue features analysis of the lips, nose, zygoma and chin were done in sagittal, axial and frontal axis tomographic views. No differences were observed in any of the facial type variables for the static analysis of facial structures at both rest and wide smile postures. Dynamic analysis showed that brachifacial types are more sensitive to movement, presenting greater sagittal lip contraction. However, the lip movement produced by this type of face results in a narrow smile, with smaller tooth exposure area when compared with other facial types. Findings pointed out that the position of the upper lip should be ahead of the lower lip, and the latter, ahead of the pogonion. It was also found that the facial type does not impact the positioning of these structures. Additionally, the use of cone beam computed tomography may be a valuable method to study craniofacial features.
DES13S2cmm: The first superluminous supernova from the Dark Energy Survey
Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; ...
2015-03-23
We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 ± 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M peak U = –21.05 +0.10 –0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicitymore » (sub-solar), low stellar-mass host galaxy (log(M/M⊙) = 9.3 ± 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2–0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for ‘standardising’ such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I – the radioactive decay of ⁵⁶Ni, and a magnetar – and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.« less
The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5
NASA Astrophysics Data System (ADS)
Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.
2007-02-01
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.
The Balkan beam - Florschütz frame and its use during the Great War.
Fatović-Ferenčić, Stella; Pećina, Marko
2014-10-01
We remember the military medical practice of Croatian surgeon, Vatroslav Florschütz (1879-1967), known for his invention of the traction frame for repositioning bone fracture fragments of the upper and lower extremities. The method, known as the Balkan frame / beam or Balkan splint, was introduced and published in 1911 and used in war medicine thereafter. The memory of this invention adds to our orthopaedic heritage and sheds light on its creator working under the most demanding war circumstances. On the occasion of the 100th anniversary of the outbreak of World War I, reminiscence of Florschütz's war experience, his orthopaedic innovation and other innovations contributes to our understanding of human efforts to save lives and restore bodily function of the wounded during wars.
4. Band Wheel and Walking Beam Mechanism, Including Remains of ...
4. Band Wheel and Walking Beam Mechanism, Including Remains of Frame Belt House, Looking Southeast - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA
Wang, G; Wu, K; Hu, H; Li, G; Wang, L J
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
NASA Astrophysics Data System (ADS)
Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
1.56 Terahertz 2-frames per second standoff imaging
NASA Astrophysics Data System (ADS)
Goyette, Thomas M.; Dickinson, Jason C.; Linden, Kurt J.; Neal, William R.; Joseph, Cecil S.; Gorveatt, William J.; Waldman, Jerry; Giles, Robert; Nixon, William E.
2008-02-01
A Terahertz imaging system intended to demonstrate identification of objects concealed under clothing was designed, assembled, and tested. The system design was based on a 2.5 m standoff distance, with a capability of visualizing a 0.5 m by 0.5 m scene at an image rate of 2 frames per second. The system optical design consisted of a 1.56 THz laser beam, which was raster swept by a dual torsion mirror scanner. The beam was focused onto the scan subject by a stationary 50 cm-diameter focusing mirror. A heterodyne detection technique was used to down convert the backscattered signal. The system demonstrated a 1.5 cm spot resolution. Human subjects were scanned at a frame rate of 2 frames per second. Hidden metal objects were detected under a jacket worn by the human subject. A movie including data and video images was produced in 1.5 minutes scanning a human through 180° of azimuth angle at 0.7° increment.
Near infrared and optical spectroscopy of FSC10214+4724
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Cohen, J. G.; Armus, L.; Matthews, K.; Neugebauer, G.; Oke, J. B.
1995-01-01
New infrared and optical spectroscopic observations, obtained with the W.M. Keck Telescope, are reported for the highly luminous infrared source FSC10214+4724. The rest frame optical spectrum shows new emission lines of (NeIII, (NeV), (OI), (OII), (SII), and He(+) while the rest frame ultraviolet spectrum shows new lines of OIV+SiIV, NII, NIV, SiII, NeIV and possibly NII and (NeIII), as well as clearly showing the L alpha is self-absorbed. The emission line spectrum is most characteristic of a Seyfert 2 nucleus. The preponderance of spectroscopic evidence strengthens the case of a dust enshrouded AGN powering much or most of the observed luminosity. The various spectral lines lead to a wide range in the inferred reddening and ionization parameter for this system, suggesting that we are viewing several environments through differing extinctions.
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.
2015-06-01
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
Stellar Populations and Physical Conditions at 100 pc Resolution in a Lensed Galaxy at z 4
NASA Astrophysics Data System (ADS)
Berg, Danielle
2015-10-01
Large surveys of star-forming galaxies at high redshift (z > 1.5) have provided us with a broad understanding of how galaxies assemble and evolve, but the spatial and spectral limitations inherent in observing faint, distant objects mean that many of the physical processes regulating this dynamic evolution are poorly constrained. Much of our most detailed knowledge of the physical conditions in distant galaxies comes from careful studies of gravitationally lensed sources, few of which are at z>3.5. FOR J0332-3557 is a gravitationally lensed galaxy at z 4 for which we and other groups have obtained a total of 37.3 hours of VLT spectroscopy. The rest-frame UV spectrum is notable for its unusual combination of both strong emission lines in the rest-frame UV and strong Lya and interstellar absorption, and for the unusual spatial variation seen in the nebular emission lines, which are less extended than the underlying stellar continuum. We propose high spatial resolution imaging of FOR J0332-3557 with four broadband filters on WFC3, taking advantage of both the HST resolution and the lensing magnification to study star formation and extinction on 100 pc scales. Because the interpretation of our unusual rest-frame UV and optical spectra requires an accurate reddening estimate, combining these observations with ground-based spectroscopy will give the most complete picture to date of chemical evolution in a distant galaxy.
Probing stellar mass build-up in galaxies at z=4-7 with CANDELS and S-CANDELS
NASA Astrophysics Data System (ADS)
Song, Mimi; Finkelstein, Steven L.; Ashby, Matthew; Merlin, Emiliano
2015-01-01
Over the last few years the advent of the Hubble Space Telescope (HST) Wide Field Camera 3 has enabled us to build statistically significant samples of galaxies out to z=8. We have subsequently witnessed remarkable progress in our understanding of galaxy evolution in the early universe. However, our understanding of the galaxy stellar mass growth in this era has been limited due to the lack of rest-frame optical data at a comparable depth as the HST data. Here we present results on the galaxy stellar mass function at z=4-7 from a sample of ~7500 galaxies over an area of ~280 square arcmin in the CANDELS GOODS-South and North fields, as well as the Hubble Ultra Deep Field. Utilizing deep IRAC data from the S-CANDELS and IUDF10 programs to robustly constrain the stellar masses of galaxies in our sample, we measure the stellar-mass to rest-frame ultraviolet (UV) luminosity trends in each of our redshift bins. We convolve these trends with recent measurements of the rest-frame ultraviolet luminosity function to derive the stellar mass functions. Contrary to initial studies at these redshifts, we find steeper low-mass-end slopes (-1.6 at z=4, and -2.0 at z=7), similar to recent simulations. Our results provide the most accurate estimates to date of the cosmic stellar mass density over the first two billion years after the Big Bang.
Fully covariant cosmology and its astrophysical implications
NASA Technical Reports Server (NTRS)
Wesson, Paul S.; Liu, Hongya
1995-01-01
We present a cosmological model with good physical properties which is invariant not only under changes of the space and time coordinates but also under changes of an extra (Kaluza-Klein) coordinate related to rest mass. In frames where the latter is chosen to be constant we recover standard cosmology. In frames where it is chosen to be variable we obtain new astrophysical effects and gain insight into the nature of the big bang.
Extending F10.7’s Time Resolution to Capture Solar Flare Phenomena
2008-07-01
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 REFERENCES ...accelera- tion, (iii) maximum power is emitted in a direction perpendicular to the acceleration, and (iv) the radiation from protons is insignificant...then is P = 2 3 e2 c3 v2⊥e 2B2γ2 m2ec 2 . (2.19) In the electron reference frame, the power emitted is dipolar and in the rest frame, the power is
Sliding Mode Control of a Slewing Flexible Beam
NASA Technical Reports Server (NTRS)
Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III
1997-01-01
An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.
Jayne, John T.; Worsnop, Douglas R.
2016-02-23
In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.
Improving particle beam acceleration in plasmas
NASA Astrophysics Data System (ADS)
C. de Sousa, M.; L. Caldas, I.
2018-04-01
The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.
Adams, E J; Suter, B L; Warrington, A P; Black, P; Saran, F; Brada, M
2001-09-01
Stereotactically-guided conformal radiotherapy (SCRT) allows the delivery of highly conformal dose distributions to localised brain tumours. This is of particular importance for children, whose often excellent long-term prognosis should be accompanied by low toxicity. The commercial immobilisation system in use at our hospital for adults was felt to be too heavy for children, and precluded the use of anaesthesia, which is sometimes required for paediatric patients. This paper therefore describes the design and implementation of a system for treating children with SCRT. This system needed to be well tolerated by patients, with good access for treating typical childhood malignancies. A lightweight frame was developed for immobilisation, with a shell-based alternative for patients requiring general anaesthetic. Procedures were set up to introduce the patients to the frame system in order to maximise patient co-operation and comfort. Film measurements were made to assess the impact of the frame on transmission and surface dose. The reproducibility of the systems was assessed using electronic portal images. Both frame and shell systems are in clinical use. The frame weighs 0.6 kg and is well tolerated. It has a transmission of 92-96%, and fields which pass through it deliver surface doses of 58-82% of the dose at d(max), compared to 18% when no frame is present. However, the frame is constructed to maximise the availability of unobstructed beam directions. Reproducibility measurements for the frame showed a mean random error of 1.0+/-0.2mm in two dimensions (2D) and 1.4+/-0.7 mm in 3D. The mean systematic error in 3D was 2.2mm, and 90% of all overall 3D errors were less than 3.4mm. For the shell system, the mean 2D random error was 1.5+/-0.2mm. Two well-tolerated immobilisation devices have been developed for fractionated SCRT treatment of paediatric patients. A lightweight frame system gives a wide range of possible unobstructed beam directions, although beams that intersect the frame are not precluded, provided that output corrections are applied. A shell system allows the use of general anaesthesia. Both systems give reproducible immobilisation to complement the high-precision treatment delivery.
NASA Astrophysics Data System (ADS)
Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.
2018-04-01
Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.
Dispositional optimism, self-framing and medical decision-making.
Zhao, Xu; Huang, Chunlei; Li, Xuesong; Zhao, Xin; Peng, Jiaxi
2015-03-01
Self-framing is an important but underinvestigated area in risk communication and behavioural decision-making, especially in medical settings. The present study aimed to investigate the relationship among dispositional optimism, self-frame and decision-making. Participants (N = 500) responded to the Life Orientation Test-Revised and self-framing test of medical decision-making problem. The participants whose scores were higher than the middle value were regarded as highly optimistic individuals. The rest were regarded as low optimistic individuals. The results showed that compared to the high dispositional optimism group, participants from the low dispositional optimism group showed a greater tendency to use negative vocabulary to construct their self-frame, and tended to choose the radiation therapy with high treatment survival rate, but low 5-year survival rate. Based on the current findings, it can be concluded that self-framing effect still exists in medical situation and individual differences in dispositional optimism can influence the processing of information in a framed decision task, as well as risky decision-making. © 2014 International Union of Psychological Science.
A reticle retrofit and dosimetric consideration for a linear accelerator.
Krithivas, V
1996-01-01
An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.
Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F
2006-01-01
We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2014-11-01
Measurements of fiducial and differential cross sections of Higgs boson production in the H → ZZ* → 4 ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb-1 of pp collision data, produced at √{ s} = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.
LDEF positioned by RMS over OV-102's payload during STS-32 retrieval
1990-01-20
STS032-541-018 (12 Jan 1990) --- One of a number of frames photographed by the STS-32 crew as part of a detailed supplementary objective on documentary still photography. The DSO was monitored by Astronaut Marsha S. Ivins, mission specialist. STS032-541-018 Kodak Ektar 25 negative film. 35mm frame of LDEF suspended just over its resting place in cargo bay. White clouds and blue ocean in foreground.
33. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
33. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: From above the mill showing the three 15' x 22' horizontal rolls, mill frame or cheeks, portland cement foundation, and lower part of vertical drive shaft lying next mill in foreground. The loose metal piece resting on top of the mill frame matched the indented portion of the upper frame to form a bracket and bearing for the drive shaft when it was in its proper upright position. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Video image position determination
Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.
1991-01-01
An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.
Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk; Jonassen, Johnny; Jensen, Carsten
2015-11-15
Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with amore » 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2.2%, and 0.9% in the first, second, and third frame after an exposure. The CNR model predicted the CNR with triggered image readout with a mean absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.« less
Detection of inter-frame forgeries in digital videos.
K, Sitara; Mehtre, B M
2018-05-26
Videos are acceptable as evidence in the court of law, provided its authenticity and integrity are scientifically validated. Videos recorded by surveillance systems are susceptible to malicious alterations of visual content by perpetrators locally or remotely. Such malicious alterations of video contents (called video forgeries) are categorized into inter-frame and intra-frame forgeries. In this paper, we propose inter-frame forgery detection techniques using tamper traces from spatio-temporal and compressed domains. Pristine videos containing frames that are recorded during sudden camera zooming event, may get wrongly classified as tampered videos leading to an increase in false positives. To address this issue, we propose a method for zooming detection and it is incorporated in video tampering detection. Frame shuffling detection, which was not explored so far is also addressed in our work. Our method is capable of differentiating various inter-frame tamper events and its localization in the temporal domain. The proposed system is tested on 23,586 videos of which 2346 are pristine and rest of them are candidates of inter-frame forged videos. Experimental results show that we have successfully detected frame shuffling with encouraging accuracy rates. We have achieved improved accuracy on forgery detection in frame insertion, frame deletion and frame duplication. Copyright © 2018. Published by Elsevier B.V.
Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Liu, X.-W.; Chen, B.-Q.
We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurementsmore » accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.« less
Near-infrared and optical spectroscopy of FSC 10214+4724
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Cohen, J. G.; Armus, L.; Matthews, K.; Neugebauer, G.; Oke, J. B.
1995-01-01
New infrared and optical spectroscopic observations, obtained with the W. M. Keck Telescope, are reported for the highly luminous infrared source FSC 10214+4724. The rest frame optical spectrum shows new emission lines of (Ne III), (Ne V), (O I), (O II), (S II), and He(+), while the rest frame ultraviolet spectrum shows new lines of O IV) + Si IV, N III, N IV), Si II, Ne IV, and possibly N II and (Ne III), as well as clearly showing that Ly-alpha is self-absorbed. The emission-line spectrum is most characteristic of a Seyfert 2 nucleus. The preponderance of spectroscopic evidence strengthens the case for a dust-enshrouded Active galactic nuclei (AGN) powering much or most of the observed luminosity. The various spectral lines lead to a wide range in the inferred reddening and ionization parameter for this system, suggesting that we are viewing several environments through differing extinctions.
NASA Technical Reports Server (NTRS)
Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.;
2004-01-01
We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.
Kura, Sreekanth; Xie, Hongyu; Fu, Buyin; Ayata, Cenk; Boas, David A; Sakadžić, Sava
2018-06-01
Resting state functional connectivity (RSFC) allows the study of functional organization in normal and diseased brain by measuring the spontaneous brain activity generated under resting conditions. Intrinsic optical signal imaging (IOSI) based on multiple illumination wavelengths has been used successfully to compute RSFC maps in animal studies. The IOSI setup complexity would be greatly reduced if only a single wavelength can be used to obtain comparable RSFC maps. We used anesthetized mice and performed various comparisons between the RSFC maps based on single wavelength as well as oxy-, deoxy- and total hemoglobin concentration changes. The RSFC maps based on IOSI at a single wavelength selected for sensitivity to the blood volume changes are quantitatively comparable to the RSFC maps based on oxy- and total hemoglobin concentration changes obtained by the more complex IOSI setups. Moreover, RSFC maps do not require CCD cameras with very high frame acquisition rates, since our results demonstrate that they can be computed from the data obtained at frame rates as low as 5 Hz. Our results will have general utility for guiding future RSFC studies based on IOSI and making decisions about the IOSI system designs.
Relativistic analysis of stochastic kinematics
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.
Handheld probe for portable high frame photoacoustic/ultrasound imaging system
NASA Astrophysics Data System (ADS)
Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.
2013-03-01
Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wethers, C. F.; Banerji, M.; Hewett, P. C.
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey
Wethers, C. F.; Banerji, M.; Hewett, P. C.; ...
2018-01-05
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less
Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars
NASA Astrophysics Data System (ADS)
Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen
2015-06-01
We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ∼ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < L5100 < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass (MBH) estimator of local AGNs, we derive the MBH estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 MBH estimates from Hα confirm the existence of BHs as massive as ∼ 1010 M⊙ out to z ∼ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid MBH growth has occurred in the early universe.
A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies
NASA Astrophysics Data System (ADS)
Lawther, D.; Vestergaard, M.; Fan, X.
2018-04-01
We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad
Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii,more » Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s{sup −1}, and significant C iv blueshifts (≈1000–5500 km s{sup −1}) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu
2016-03-01
Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
Physics of Non-Inertial Reference Frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamalov, Timur F.
2010-12-22
Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less
High throughput laser processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harley, Gabriel; Pass, Thomas; Cousins, Peter John
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
Ran, Hong; Zhang, Ping-Yang; Fang, Ling-Ling; Ma, Xiao-Wu; Wu, Wen-Fang; Feng, Wang-Fei
2012-07-01
To evaluate whether myocardial strain under adenosine stress calculated from two-dimensional echocardiography by automatic frame-by-frame tracking of natural acoustic markers enables objective description of myocardial viability in clinic. Two-dimensional echocardiography and two-dimensional speckle tracking imaging (2D STI) at rest were performed first and once again after adenosine was infused at 140 ug/kg/min over a period of 6 minutes in 36 stable patients with previous myocardial infarction. Then radionuclide myocardial perfusion/metabolic imaging served as the "gold standard" to define myocardial viability was given in all patients within 1 day. Two-dimensional speckle tracking images were acquired at rest and after adenosine administration. An automatic frame-by-frame tracking system of natural acoustic echocardiographic markers was used to calculate 2D strain variables including peak-systolic circumferential strain (CS(peak-sys)), radial strain (RS(peak-sys)), and longitudinal strain (LS(peak-sys)). Those segments with abnormal motion from visual assessment of two-dimensional echocardiography were selected for further study. As a result, 126 regions were viable whereas 194 were nonviable among 320 abnormal motion segments in 36 patients according to radionuclide imaging. At rest, there were no significant changes of 2D strain between the viable and nonviable myocardium. After adenosine administration (140 ug/kg/min), CS(peak-sys) had a little change of the viable myocardium while RS(peak-sys) and LS(peak-sys) increased significantly compared with those at rest. In nonviable group, CS(peak-sys), RS(peak-sys), and LS(peak-sys) had no significant changes during adenosine administration. After adenosine administration, RS(peak-sys) and LS(peak-sys) in viable group increased significantly compared with nonviable group. Obtained strain data were highly reproducible and affected in small intraobserver and interobserver variabilities. A change of radial strain more than 9.5% has a sensitivity of 83.9% and a specificity of 81.4% for viable whereas a change of longitudinal strain more than 14.6% allowed a sensitivity of 86.7% and a specificity of 90.2%. 2D STI combined with adenosine stress echocardiography could provide a new and reliable method to identify myocardium viability. © 2012, Wiley Periodicals, Inc.
A Multi-Wavelength Census of Dust and Star Formation in Galaxies at z ~ 2
NASA Astrophysics Data System (ADS)
Shivaei, Irene; Reddy, Naveen; MOSDEF Collaboration
2017-01-01
Redshift of z ~ 2 is an important era in the history of the universe, as it contains the peak of star formation rate density and quasar activity. We study the galaxy properties during this era from two different, yet complementary, aspects: by studying formation of stars and mass assembly, and exploring the properties of galactic dust. We use a wealth of multi-wavelength data, from UV to far-IR, to obtain a complete census of obscured and unobscured star formation in galaxies. Our data consists of rest-frame optical spectra from the MOSDEF survey, rest-frame UV and optical photometric data from the 3D-HST survey, and mid- and far-IR data obtained by the Spitzer and Herschel telescopes. In the MOSDEF survey, we acquired rest-frame optical spectra of ~ 1500 galaxies with the MOSFIRE spectrograph on the Keck I telescope. MOSDEF is currently the largest survey of the rest-frame optical properties of galaxies at 1.37 ≤ z ≤ 3.80. Using the multi-wavelength data sets, we show that Hα SFRs, corrected for dust attenuation using the Hβ line, accurately trace SFRs up to ~ 300 M⊙ yr-1, when compared with panchromatic (UV-to-far-IR) SED models. Using Hα SFRs for a large sample of ~ 200 galaxies at z ~ 2, we explore the SFR-M* relation and show that the slope of this relation is shallower than previously measured. We conclude that the scatter in the SFR-M* relation is dominated by uncertainties in dust correction and cannot be used to measure the star formation stochasticity. Furthermore, we investigate the robustness of Spitzer/MIPS 24 micron flux as an SFR indicator and its variation with ISM physical parameters. We find that 24 micron flux, which at z ~ 2 traces the emission from the PAH grains, significantly depends on metallicity, such that there is a PAH deficiency in metal-poor galaxies. We demonstrate that commonly-used conversions of 24 micron flux to IR luminosity underestimate the IR luminosity of low-mass galaxies by more than a factor of 2. Our results suggest a higher specific SFR (i.e., SFR/M*) at M* ~ 109.5M⊙ and a higher IR luminosity density at z ~ 2 than previously measured. The latter corresponds to a ~ 30% increase in the SFR density.
97. Historic American Buildings Survey R.A. Waugh, Photographer October 1936 ...
97. Historic American Buildings Survey R.A. Waugh, Photographer October 1936 FRAMING of SUMMER BEAM INTO SILL ALSO FLOOR TIMBERS INTO SUMMER BEAM - Colonel Paul Wentworth House, Dover Street (Salmon Falls, NH) (moved to Dover, MA, and then to 47 Water Street, Rollinsford, NH), Rollinsford, Strafford County, NH
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
NASA Astrophysics Data System (ADS)
Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura
2016-03-01
Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.
Targets for production of the medical radioisotopes with alpha and proton or deuteron beams
NASA Astrophysics Data System (ADS)
Stolarz, Anna; Kowalska, J. A.; Jastrzebski, J.; Choiński, J.; Sitarz, M.; Szkliniarz, K.; Trzcińska, A.; Zipper, W.
2018-05-01
The research quantities of some medical radioisotopes were produced in reactions induced by 32 MeV internal alpha beam (211At, Sc isotopes), 16 MeV and 28 MeV proton beams (Sc isotopes) and 8 MeV deuteron beam (Sc isotopes). The frame-less targets used for irradiation with internal alpha beam were prepared from elemental (Bi for 211At) and compound (CaCO3 for Sc radioisotopes) materials. The CaCO3 powder targets were also used for production of Sc radioisotopes with proton or deuteron external beams. Methods developed for preparation of the targets suitable for the irradiating beam type are described in this work.
Computer modeling design of a frame pier for a high-speed railway project
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Fan, Jiang
2018-03-01
In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.
Development of two-framing camera with large format and ultrahigh speed
NASA Astrophysics Data System (ADS)
Jiang, Xiaoguo; Wang, Yuan; Wang, Yi
2012-10-01
High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.
Creep rupture analysis of a beam resting on high temperature foundation
NASA Technical Reports Server (NTRS)
Gu, Randy J.; Cozzarelli, Francis A.
1988-01-01
A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.
Negoita, Madalina; Zolgharni, Massoud; Dadkho, Elham; Pernigo, Matteo; Mielewczik, Michael; Cole, Graham D; Dhutia, Niti M; Francis, Darrel P
2016-09-01
To determine the optimal frame rate at which reliable heart walls velocities can be assessed by speckle tracking. Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.
Studies of the jet in BL Lacertae. I. Recollimation shock and moving emission features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, M. H.; Hovatta, T.; Meier, D. L.
2014-06-01
Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of –166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the closemore » analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor Γ{sub beam}{sup gal}≈3.5 in the frame of the host galaxy and the fast mode wave has Lorentz factor Γ{sub Fwave}{sup beam}≈1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features, β{sub app} = v{sub app}/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.« less
Super Resolution Image of Yogi
NASA Technical Reports Server (NTRS)
1997-01-01
Yogi is a meter-size rock about 5 meters northwest of the Mars Pathfinder lander and was the second rock visited by the Sojourner Rover's alpha proton X-ray spectrometer (APXS) instrument. This mosaic shows super resolution techniques applied to the second APXS target rock, which was poorly illuminated in the rover's forward camera view taken before the instrument was deployed. Super resolution was applied to help to address questions about the texture of this rock and what it might tell us about its mode of origin.
This mosaic of Yogi was produced by combining four 'Super Pan' frames taken with the IMP camera. This composite color mosaic consists of 7 frames from the right eye, taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be. This panchromatic frame was then colorized with the red, green, and blue filtered images from the same sequence. The color balance was adjusted to approximate the true color of Mars. Shadows were processed separately from the rest of the rock and combined with the rest of the scene to bring out details in the shadow of Yogi that would be too dark to view at the same time as the sunlit surfaces.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Extended plate and beam demonstration home
Patricia Gunderson; Vladimir Kochkin; Xiping Wang
2018-01-01
An extended plate and beam (EP&B) design was developed at Home Innovation Research Labs (Upper Marlboro, Maryland) in an effort to provide traditional light-frame wall construction details that are compatible with continuous insulating sheathing. This would encourage wide-spread adoption of high-R walls and promote greater energy efficiency in new houses. The...
BEAM: A Finite Element Program for the Collapse Analysis of Vehicle Structures
1994-06-01
deflects a latera: d&stance 8, its bending stresses are increased. Nor can BEAM account for the reduction of plastic moment capacity due to axial loads...Figure 9: The load -displacement curve for Frame 4, comparing elastic-, rigid plastuc and Sttq’ BI-Step analyses with experimental results. The
Parametric Modelling of As-Built Beam Framed Structure in Bim Environment
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.
2017-02-01
A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.
Ballasted photovoltaic module and module arrays
Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Danning, Matt [Oakland, CA
2011-11-29
A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, M.
1980-03-04
A light-weight, low-cost and high efficiency solar panel includes a light-weight rectangular wood frame which surrounds and houses a copper absorber plate. A pair of spaced glazings, formed from plastic film materials, are disposed above the absorber to define a pair of enclosed air spaces. The lower glazing is capable of withstanding high temperatures and the upper glazing material is capable of providing good weather resistance. The material of the upper glazing extends fully about the frame to protect the entire frame from weathering. Insulation is provided beneath the absorber plate. The frame rests on top of a bottom sheetmore » of insulative foam plastic which is wrapped in a plastic envelope. The surrounding film of the outer glazing is bonded securely to the envelope to encase the entire panel within a protective sealed envelope of weather-resistant plastic film.« less
Laser cutting apparatus for nuclear core fuel subassembly
Walch, Allan P.; Caruolo, Antonio B.
1982-02-23
The object of the invention is to provide a system and apparatus which employs laser cutting to disassemble a nuclear core fuel subassembly. The apparatus includes a gantry frame (C) which straddles the core fuel subassembly (14), an x-carriage (22) travelling longitudinally above the frame which carries a focus head assembly (D) having a vertically moving carriage (46) and a laterally moving carriage (52), a system of laser beam transferring and focusing mirrors carried by the x-carriage and focusing head assembly, and a shroud follower (F) and longitudinal follower (G) for following the shape of shroud (14) to maintain a beam focal point (44) fixed upon the shroud surface for accurate cutting.
NASA Astrophysics Data System (ADS)
Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei
2017-03-01
We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Rositano, S.; Taylor, R. C.
1977-01-01
Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2014-10-14
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2012-09-11
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
NASA Technical Reports Server (NTRS)
Stowell, Elbridge, Z; Schwartz, Edward B; Houbolt, John C
1945-01-01
A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length.
No evidence for Lyman α emission in spectroscopy of z > 7 candidate galaxies
NASA Astrophysics Data System (ADS)
Caruana, Joseph; Bunker, Andrew J.; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lacy, Mark; Jarvis, Matt J.; Lorenzoni, Silvio; Hickey, Samantha
2012-12-01
We present Gemini/Gemini Near Infrared Spectrograph (GNIRS) spectroscopic observations of four z-band (z ≈ 7) dropout galaxies and Very Large Telescope (VLT)/XSHOOTER observations of one z-band dropout and three Y-band (z ≈ 8-9) dropout galaxies in the Hubble Ultra Deep Field, which were selected with Wide Field Camera 3 imaging on the Hubble Space Telescope. We find no evidence of Lyman α emission with a typical 5σ sensitivity of 5 × 10-18 erg cm-2 s-1, and use the upper limits on Lyman α flux and the broad-band magnitudes to constrain the rest-frame equivalent widths for this line emission. Accounting for incomplete spectral coverage, we survey 3.0 z-band dropouts and 2.9 Y-band dropouts to a Lyman α rest-frame equivalent width limit >120 Å (for an unresolved emission line); for an equivalent width limit of 50 Å the effective numbers of drop-outs surveyed fall to 1.2 z-band drop-outs and 1.5 Y-band drop-outs. A simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3-6.5 is inconsistent with our non-detections at z = 7-9 at the ≈1σ level for spectrally unresolved lines, which may indicate that a significant neutral H I fraction in the intergalactic medium suppresses the Lyman α line in z-drop and Y-drop galaxies at z > 7. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, as part of programme 086.A-0968(B).
A Candidate Tidal Disruption Event in a Quasar at z = 2.359 from Abundance Ratio Variability
NASA Astrophysics Data System (ADS)
Liu, Xin; Dittmann, Alexander; Shen, Yue; Jiang, Linhua
2018-05-01
A small fraction of quasars show an unusually high nitrogen-to-carbon ratio (N/C) in their spectra. These “nitrogen-rich” (N-rich) quasars are a long-standing puzzle because their interstellar medium implies stellar populations with abnormally high metallicities. It has recently been proposed that N-rich quasars may result from tidal disruption events (TDEs) of stars by supermassive black holes. The rapid enhancement of nitrogen and the depletion of carbon due to the carbon–nitrogen–oxygen cycle in supersolar mass stars could naturally produce high N/C. However, the TDE hypothesis predicts that the N/C should change with time, which has never hitherto been observed. Here we report the discovery of the first N-rich quasar with rapid N/C variability that could be caused by a TDE. Two spectra separated by 1.7 years (rest-frame) show that the N III] λ1750/C III] λ1909 intensity ratio decayed by ∼86% ± 14% (1σ). Optical (rest-frame UV) light-curve and X-ray observations are qualitatively consistent with the TDE hypothesis; though, the time baseline falls short of a definitive proof. Putting the single-object discovery into context, statistical analyses of the ∼80 known N-rich quasars with high-quality archival spectra show evidence (at a 5σ significance level) of a decrease in N/C on timescales of >1 year (rest-frame) and a constant level of ionization (indicated by the C III] λ1909/C IV λ1549 intensity ratio). If confirmed, our results demonstrate the method of identifying TDE candidates in quasars via abundance ratio variability, opening a new window of TDE observations at high redshift (z > 2) with upcoming large-scale time-domain spectroscopic surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Kyle; Dickinson, Mark; Dey, Arjun
Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less
NASA Astrophysics Data System (ADS)
Simpson, J. M.; Smail, Ian; Wang, Wei-Hao; Riechers, D.; Dunlop, J. S.; Ao, Y.; Bourne, N.; Bunker, A.; Chapman, S. C.; Chen, Chian-Chou; Dannerbauer, H.; Geach, J. E.; Goto, T.; Harrison, C. M.; Hwang, H. S.; Ivison, R. J.; Kodama, Tadayuki; Lee, C.-H.; Lee, H.-M.; Lee, M.; Lim, C.-F.; Michałowski, M. J.; Rosario, D. J.; Shim, H.; Shu, X. W.; Swinbank, A. M.; Tee, W.-L.; Toba, Y.; Valiante, E.; Wang, Junxian; Zheng, X. Z.
2017-07-01
The identification of high-redshift, massive galaxies with old stellar populations may pose challenges to some models of galaxy formation. However, to securely classify a galaxy as quiescent, it is necessary to exclude significant ongoing star formation, something that can be challenging to achieve at high redshifts. In this Letter, we analyze deep ALMA/870 μm and SCUBA-2/450 μm imaging of the claimed “post-starburst” galaxy ZF 20115 at z = 3.717 that exhibits a strong Balmer break and absorption lines. The rest-frame far-infrared imaging identifies a luminous starburst 0.″4 ± 0.″1 (˜3 kpc in projection) from the position of the ultraviolet/optical emission and is consistent with lying at the redshift of ZF 20115. The star-forming component, with an obscured star formation rate of {100}-70+15 {M}⊙ {{yr}}-1, is undetected in the rest-frame ultraviolet but contributes significantly to the lower angular resolution photometry at rest-frame wavelengths ≳3500 Å. This contribution from the obscured starburst, especially in the Spitzer/IRAC wavebands, significantly complicates the determination of a reliable stellar mass for the ZF 20015 system, and we conclude that this source does not pose a challenge to current models of galaxy formation. The multi-wavelength observations of ZF 20115 unveil a complex system with an intricate and spatially varying star formation history. ZF 20115 demonstrates that understanding high-redshift obscured starbursts will only be possible with multi-wavelength studies that include high-resolution observations, available with the James Webb Space Telescope, at mid-infrared wavelengths.
C III] Emission in Star-forming Galaxies at z ∼ 1
NASA Astrophysics Data System (ADS)
Du, Xinnan; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.
2017-03-01
The C III]λλ1907, 1909 rest-frame UV emission doublet has recently been detected in galaxies during the epoch of reionization (z > 6), with a high equivalent width (EW; 10 Å, rest frame). Currently, it is possible to obtain much more detailed information for star-forming galaxies at significantly lower redshift. Accordingly, studies of their far-UV spectra are useful for understanding the factors modulating the strength of C III] emission. We present the first statistical sample of C III] emission measurements in star-forming galaxies at z ∼ 1. Our sample is drawn from the DEEP2 survey and spans the redshifts 0.64 ≤slant z ≤slant 1.35 (< z> =1.08). We find that the median EW of individual C III] detections in our sample (1.30 Å) is much smaller than the typical value observed thus far at z > 6. Furthermore, out of 184 galaxies with coverage of C III], only 40 have significant detections. Galaxies with individual C III] detections have bluer colors and lower luminosities on average than those without, implying that strong C III] emitters are in general young and low-mass galaxies without significant dust extinction. Using stacked spectra, we further investigate how C III] strength correlates with multiple galaxy properties (M B , U ‑ B, M *, star formation rate, specific star formation rate) and rest-frame near-UV (Fe II* and Mg II) and optical ([O III] and Hβ) emission line strengths. These results provide a detailed picture of the physical environment in star-forming galaxies at z ∼ 1, and motivate future observations of strong C III] emitters at similar redshifts.
NASA Astrophysics Data System (ADS)
Kura, Sreekanth; Xie, Hongyu; Fu, Buyin; Ayata, Cenk; Boas, David A.; Sakadžić, Sava
2018-06-01
Objective. Resting state functional connectivity (RSFC) allows the study of functional organization in normal and diseased brain by measuring the spontaneous brain activity generated under resting conditions. Intrinsic optical signal imaging (IOSI) based on multiple illumination wavelengths has been used successfully to compute RSFC maps in animal studies. The IOSI setup complexity would be greatly reduced if only a single wavelength can be used to obtain comparable RSFC maps. Approach. We used anesthetized mice and performed various comparisons between the RSFC maps based on single wavelength as well as oxy-, deoxy- and total hemoglobin concentration changes. Main results. The RSFC maps based on IOSI at a single wavelength selected for sensitivity to the blood volume changes are quantitatively comparable to the RSFC maps based on oxy- and total hemoglobin concentration changes obtained by the more complex IOSI setups. Moreover, RSFC maps do not require CCD cameras with very high frame acquisition rates, since our results demonstrate that they can be computed from the data obtained at frame rates as low as 5 Hz. Significance. Our results will have general utility for guiding future RSFC studies based on IOSI and making decisions about the IOSI system designs.
NASA Astrophysics Data System (ADS)
Chen, Linzhi; Lu, Xilin; Jiang, Huanjun; Zheng, Jianbo
2009-06-01
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests of ten column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
Automated touch sensing in the mouse tapered beam test using Raspberry Pi.
Ardesch, Dirk Jan; Balbi, Matilde; Murphy, Timothy H
2017-11-01
Rodent models of neurological disease such as stroke are often characterized by motor deficits. One of the tests that are used to assess these motor deficits is the tapered beam test, which provides a sensitive measure of bilateral motor function based on foot faults (slips) made by a rodent traversing a gradually narrowing beam. However, manual frame-by-frame scoring of video recordings is necessary to obtain test results, which is time-consuming and prone to human rater bias. We present a cost-effective method for automated touch sensing in the tapered beam test. Capacitive touch sensors detect foot faults onto the beam through a layer of conductive paint, and results are processed and stored on a Raspberry Pi computer. Automated touch sensing using this method achieved high sensitivity (96.2%) as compared to 'gold standard' manual video scoring. Furthermore, it provided a reliable measure of lateralized motor deficits in mice with unilateral photothrombotic stroke: results indicated an increased number of contralesional foot faults for up to 6days after ischemia. The automated adaptation of the tapered beam test produces results immediately after each trial, without the need for labor-intensive post-hoc video scoring. It also increases objectivity of the data as it requires less experimenter involvement during analysis. Automated touch sensing may provide a useful adaptation to the existing tapered beam test in mice, while the simplicity of the hardware lends itself to potential further adaptations to related behavioral tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography
Ludlow, John B.; Walker, Cameron
2013-01-01
Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radyushkin, Anatoly V.
Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less
Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer
NASA Technical Reports Server (NTRS)
Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.
1991-01-01
The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.
Search for Type Ia supernova NUV-optical subclasses
NASA Astrophysics Data System (ADS)
Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake
2017-04-01
In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.
Radyushkin, Anatoly V.
2017-08-28
Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-01-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05–0.20°) are combined with goniometer tilts at a coarse step (2.0–3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods. PMID:24282334
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-12-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20°) are combined with goniometer tilts at a coarse step (2.0-3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.
Image Processing In Laser-Beam-Steering Subsystem
NASA Technical Reports Server (NTRS)
Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.
1996-01-01
Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.
Feasibility of pulse wave velocity estimation from low frame rate US sequences in vivo
NASA Astrophysics Data System (ADS)
Zontak, Maria; Bruce, Matthew; Hippke, Michelle; Schwartz, Alan; O'Donnell, Matthew
2017-03-01
The pulse wave velocity (PWV) is considered one of the most important clinical parameters to evaluate CV risk, vascular adaptation, etc. There has been substantial work attempting to measure the PWV in peripheral vessels using ultrasound (US). This paper presents a fully automatic algorithm for PWV estimation from the human carotid using US sequences acquired with a Logic E9 scanner (modified for RF data capture) and a 9L probe. Our algorithm samples the pressure wave in time by tracking wall displacements over the sequence, and estimates the PWV by calculating the temporal shift between two sampled waves at two distinct locations. Several recent studies have utilized similar ideas along with speckle tracking tools and high frame rate (above 1 KHz) sequences to estimate the PWV. To explore PWV estimation in a more typical clinical setting, we used focused-beam scanning, which yields relatively low frame rates and small fields of view (e.g., 200 Hz for 16.7 mm filed of view). For our application, a 200 Hz frame rate is low. In particular, the sub-frame temporal accuracy required for PWV estimation between locations 16.7 mm apart, ranges from 0.82 of a frame for 4m/s, to 0.33 for 10m/s. When the distance is further reduced (to 0.28 mm between two beams), the sub-frame precision is in parts per thousand (ppt) of the frame (5 ppt for 10m/s). As such, the contributions of our algorithm and this paper are: 1. Ability to work with low frame-rate ( 200Hz) and decreased lateral field of view. 2. Fully automatic segmentation of the wall intima (using raw RF images). 3. Collaborative Speckle Tracking of 2D axial and lateral carotid wall motion. 4. Outlier robust PWV calculation from multiple votes using RANSAC. 5. Algorithm evaluation on volunteers of different ages and health conditions.
Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.
A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less
Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique
Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; ...
2017-10-16
A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
NASA Astrophysics Data System (ADS)
Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi
2018-04-01
Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.
An Expert System For Tuning Particle-Beam Accelerators
NASA Astrophysics Data System (ADS)
Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.
1989-03-01
We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.
Toward real-time quantum imaging with a single pixel camera
Lawrie, B. J.; Pooser, R. C.
2013-03-19
In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less
Rajagopal, Krishna; Sadofyev, Andrey V.
2015-10-05
Here, we provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to themore » drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.« less
Two superluminous supernovae from the early universe discovered by the supernova legacy survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, D. A.; Kasen, D.; Lidman, C.
2013-12-20
We present spectra and light curves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae (SNe) discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M{sub U} = –22.7 it is one of the most luminous SNe ever observed, and it gives a rare glimpse into the rest-frame ultraviolet where these SNe put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but on the basis of the SN spectrum, we estimate it to be at z ∼ 1.5. Both SNe havemore » similar observer-frame griz light curves, which map to rest-frame light curves in the U band and UV, rising in ∼20 rest-frame days or longer and declining over a similar timescale. The light curves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra with theoretical models, and we identify lines of C II, C III, Fe III, and Mg II in the spectra of SNLS 06D4eu and SCP 06F6 and find that they are consistent with an expanding explosion of only a few solar masses of carbon, oxygen, and other trace metals. Thus, the progenitors appear to be related to those suspected for SNe Ic. A high kinetic energy, 10{sup 52} erg, is also favored. Normal mechanisms of powering core-collapse or thermonuclear SNe do not seem to work for these SNe. We consider models powered by {sup 56}Ni decay and interaction with circumstellar material, but we find that the creation and spin-down of a magnetar with a period of 2 ms, a magnetic field of 2 × 10{sup 14} G, and a 3 M {sub ☉} progenitor provides the best fit to the data.« less
Effects of the circularly polarized beam of linearized gravitational waves
NASA Astrophysics Data System (ADS)
Barker, W.
2017-08-01
Solutions of the linearized Einstein equations are found that describe a transversely confined beam of circularly polarized gravitational waves on a Minkowski backdrop. By evaluating the cycle-averaged stress-energy-momentum pseudotensor of Landau & Lifshitz it is found that the angular momentum density is concentrated in the ‘skin’ at the edge of the beam where the intensity falls, and that the ratio of angular momentum to energy per unit length of the beam is 2/ω , where ω is the wave frequency, as expected for a beam of spin-2 gravitons. For sharply-defined, uniform, axisymmetric beams, the induced background metric is shown to produce the gravitomagnetic field and frame-dragging effects of a gravitational solenoid, whilst the angular momentum current helically twists the space at infinite radius along the beam axis.
Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2018-04-01
Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.
Wing walls for enhancing the seismic performance of reinforced concrete frame structures
NASA Astrophysics Data System (ADS)
Yang, Weisong; Guo, Xun; Xu, Weixiao; Yuan, Xin
2016-06-01
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A `strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.
The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs
NASA Astrophysics Data System (ADS)
Armitage, Philip J.; Reynolds, Christopher S.
2003-05-01
We use global magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to investigate the temporal variability of accretion discs around Schwarzschild black holes. We use the vertically averaged magnetic stress in the simulated disc as a proxy for the rest-frame dissipation, and compute the observed emission by folding this through the transfer function describing the relativistic beaming, light bending and time delays near a non-rotating black hole. The temporal power spectrum of the predicted emission from individual annuli in the disc is described by a broken power law, with indices of ~-3.5 at high frequency and ~0 to -1 at low frequency. Integrated over the disc, the power spectrum is approximated by a single power law with an index of -2. Increasing inclination boosts the relative power at frequencies around ~0.3fms, where fms is the orbital frequency at the marginally stable orbit, but no evidence is found for sharp quasi-periodic oscillations in the light curve. Assuming that fluorescent iron line emission locally tracks the continuum flux, we compute simulated broad iron line profiles. We find that relativistic beaming of the non-axisymmetric emission profile, induced by turbulence, produces high-amplitude variability in the iron line profile. We show that this substructure within the broad iron line profile can survive averaging over a number of orbital periods, and discuss the origin of the anomalous X-ray spectral features, recently reported by Turner et al. for the Seyfert galaxy NGC 3516, in the context of turbulent disc models.
Simulation of periodically focused, adiabatic thermal beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Akylas, T. R.; Barton, T. J.
2012-12-21
Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
Mass, charge, and energy separation by selective acceleration with a traveling potential hill
NASA Astrophysics Data System (ADS)
Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.
1996-10-01
A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.
Effect of environmental conditions on the flexural properties of wood I-beams and lumber
Gwo-Huang Chen; R.C. Tang; E.W. Price
1989-01-01
Flexural properties as affected by environmental conditions were evaluated for full-sized wood composite I-beams webbed with oriented strand board (OSB), randomly oriented flakeboard (RF) and 3-ply Structural I plywood (PLY). Solid-sawn southern pine 2 by 10's, ordinarily used in light-frame building construction, were also tested for comparative purposes....
Design and Construction of Mat Foundations
1989-11-01
column loads indicates the effectiveness of stiffening beams in spreading applied loads ... beams centered on rows of columns , (3) a shear and moment diagram may be constructed assuming that the column loads are point loads , (4) the mat depth...flexible consisting of precast concrete panels on a structural steel frame. Column loads , Figure 48, lead to an average pressure of 1.4 ksf. The mat
The directed self-assembly for the surface patterning by electron beam II
NASA Astrophysics Data System (ADS)
Nakagawa, Sachiko T.
2015-03-01
When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.
NASA Astrophysics Data System (ADS)
Koltenbah, Benjamin E. C.; Parazzoli, Claudio G.; Greegor, Robert B.; Dowell, David H.
2002-07-01
Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA_B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR and SC. For the CSR calculations, the macro-particles are further combined into macro-particle-bins that follow the central trajectory of the bend. The energy change through the time step is calculated from expressions derived from the Liénard-Wiechart formulae, and from this energy change the particle's momentum is updated. For the SC calculations, we maintain the same rest-frame-electrostatic approach of the original PARMELA; however, we employ a finite difference Poisson equation solver instead of the symmetrical ring algorithm of the original code. In this way, we relax the symmetry assumptions in the original code. This method is based upon standard numerical procedures and conserves momentum to first order. The SC computational grid is adaptive and conforms to the size of the pulse as it evolves through the calculation. We provide descriptions of these two algorithms, validation comparisons with other CSR and SC methods, and a limited comparison with experimental results.
Common path point diffraction interferometer using liquid crystal phase shifting
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R. (Inventor)
1997-01-01
A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.
Squeezed states, time-energy uncertainty relation, and Feynman's rest of the universe
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1992-01-01
Two illustrative examples are given for Feynman's rest of the universe. The first example is the two-mode squeezed state of light where no measurement is taken for one of the modes. The second example is the relativistic quark model where no measurement is possible for the time-like separation fo quarks confined in a hadron. It is possible to illustrate these examples using the covariant oscillator formalism. It is shown that the lack of symmetry between the position-momentum and time-energy uncertainty relations leads to an increase in entropy when the system is different Lorentz frames.
Infrared diffuse interstellar bands
NASA Astrophysics Data System (ADS)
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
NASA Astrophysics Data System (ADS)
Sukrawa, Made
2017-11-01
Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers
Ansari, MH; Karami, M Amin
2018-01-01
A miniature nonlinear piezoelectric energy harvester is developed to power state of the art leadless cardiac pacemakers from cardiac motions. The energy harvester is integrated in the leadless pacemaker and is connected to the myocardium. The energy harvester converts myocardial motions to electricity to power leadless pacemakers. The energy is stored in a battery or supercapacitor and is used for pacing. The device is composed of a bimorph piezoelectric beam confined in a gray iron frame. The system is assembled at high temperature and operated at the body temperature. The mismatch in the coefficients of thermal expansion of the beam and the frame causes the beam to buckle in body temperature. This intentional buckling makes the beam unstable and improves the power production and robustness of the device. Having high natural frequency is a major problem in microelectromechanical systems energy harvesters. Considering the small size of the energy harvester, 0.5 cm3, the natural frequency is expected to be high. In our design, the natural frequency is lowered significantly using a buckled beam and a proof mass. Since the beam is buckled, the design is bistable and nonlinear, which could increase the output power. In this article, the device is analytically modeled, and the natural frequencies and mode shapes of the energy harvester are analytically derived. The terms corresponding to geometric nonlinearities are included in the electromechanical coupled governing equations. The simulations show that the device generates sufficient electricity to power leadless pacemakers. PMID:29674842
Test Frame for Gravity Offload Systems
NASA Technical Reports Server (NTRS)
Murray, Alexander R.
2005-01-01
Advances in space telescope and aperture technology have created a need to launch larger structures into space. Traditional truss structures will be too heavy and bulky to be effectively used in the next generation of space-based structures. Large deployable structures are a possible solution. By packaging deployable trusses, the cargo volume of these large structures greatly decreases. The ultimate goal is to three dimensionally measure a boom's deployment in simulated microgravity. This project outlines the construction of the test frame that supports a gravity offload system. The test frame is stable enough to hold the gravity offload system and does not interfere with deployment of, or vibrations in, the deployable test boom. The natural frequencies and stability of the frame were engineered in FEMAP. The test frame was developed to have natural frequencies that would not match the first two modes of the deployable beam. The frame was then modeled in Solidworks and constructed. The test frame constructed is a stable base to perform studies on deployable structures.
McMullan, G; Vinothkumar, K R; Henderson, R
2015-11-01
We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less
NASA Astrophysics Data System (ADS)
Westphal, A. J.; Bradley, J. P.
2004-12-01
Interplanetary dust particles (IDPs) contain enigmatic submicron components called GEMS (glass with embedded metal and sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation, but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS: they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca, and Fe (relative to solar abundances); most have normal (solar) oxygen isotopic compositions; they exhibit a strikingly narrow size distribution (0.1-0.5 μm diameter); and some of them contain ``relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble (SB), and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury, and Ellison have proposed that Galactic cosmic rays (GCRs) originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for GCRs. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last 30 yr.
Realizing a terrestrial reference frame using the Global Positioning System
NASA Astrophysics Data System (ADS)
Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.
2015-08-01
We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.
Whisking mechanics and active sensing
Bush, Nicholas E; Solla, Sara A
2017-01-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212
Whisking mechanics and active sensing.
Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz
2016-10-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.
Design of the forward straw tube tracker for the PANDA experiment
NASA Astrophysics Data System (ADS)
Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.
2017-06-01
The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Edward N.; Franx, Marijn; Quadri, Ryan F.
2009-08-01
We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community.{sup 22}Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU {sub 38} BVRIz'JK imaging covering the full 1/2 x 1/2 square circ of the ECDFS, plus H-band photometry for approximately 80% of themore » field. The 5{sigma} flux limit for point sources is K{sup (AB)}{sub tot}= 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is {approx}>85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1{sigma}) photometric redshift accuracy of {delta}z/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest.{sup 23}InterRest is available via http://www.strw.leidenuniv.nl/{approx}ent/InterRest. Documentation and a complete walkthrough can be found at the same address.« less
Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity
NASA Astrophysics Data System (ADS)
Ciarkowski, Adam
Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact solution, found yet by Sommerfeld. We take advantage of this solution and transform it back from complex frequency to the time domain. In this transformation both inverse Fourier transform and Felsen technique are used. Finally, the transient field obtained in the moving frame of reference is Lorentz transformed to the laboratory frame. We carry our calculations for both E- and H-field polarizations and show that the field distribution in the laboratory frame is not simply a moving image of that in the moving frame. For wedge velocities much lower than the velocity of light we reduce general expressions for the field in this frame to simpler ones.
Gauge-invariant formalism of cosmological weak lensing
NASA Astrophysics Data System (ADS)
Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre
2018-04-01
We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.
Riek, L M; Ludewig, P M; Nawoczenski, D A
2008-05-01
Case series; nonparametric repeated-measures analysis of variance. To compare and contrast three-dimensional shoulder kinematics during frequently utilized upper extremity weight-bearing activities (standing depression lifts used in brace walking, weight-relief raises, transfers) and postures (sitting rest, standing in a frame) in spinal cord injury (SCI). Movement Analysis Laboratory, Department of Physical Therapy, Ithaca College, Rochester, NY, USA. Three female and two male subjects (39.2+/-6.1 years old) at least 12 months post-SCI (14.6+/-6.7 years old), SCI distal to T2 and with an ASIA score of A. The Flock of Birds magnetic tracking device was used to measure three-dimensional positions of the scapula, humerus and thorax during various activities. Standing in a frame resulted in significantly less scapular anterior tilt (AT) and greater glenohumeral external rotation (GHER) than standing depression lifts and weight-relief raises. Standing frame posture offers the most favorable shoulder joint positions (less scapular AT and greater GHER) when compared to sitting rest posture, weight-relief raises, transfers and standing depression lifts. Knowledge of kinematic patterns associated with each activity is an essential first step to understanding the potential impact on shoulder health. Choosing specific activities or modifying techniques within functional activities that promote favorable shoulder positions may preserve long-term shoulder health.
Simple ``invariance'' of two-body decay kinematics
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin
2013-09-01
We study the two-body decay of a mother particle into a massless daughter. We further assume that the mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we show analytically that the laboratory frame energy distribution of the massless decay product has a peak, whose location is identical to the (fixed) energy of that particle in the rest frame of the corresponding mother particle. Given its simplicity and “invariance” under changes in the boost distribution of the mother particle, our finding should be useful for the determination of masses of mother particles. In particular, we anticipate that such a procedure will then not require a full reconstruction of this two-body decay chain (or, for that matter, information about the rest of the event). With this eventual goal in mind, we make a proposal for extracting the peak position by fitting the data to a well-motivated analytic function describing the shape of such an energy distribution. This fitting function is then tested on the theoretical prediction for top quark pair production and its decay, and it is found to be quite successful in this regard. As a proof of principle of the usefulness of our observation, we apply it for measuring the mass of the top quark at the LHC, using simulated data and including experimental effects.
Piezoelectric energy harvester having planform-tapered interdigitated beams
Kellogg, Rick A [Tijeras, NM; Sumali, Hartono [Albuquerque, NM
2011-05-24
Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my
2015-05-15
Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualitiesmore » were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.« less
Safari, M J; Wong, J H D; Ng, K H; Jong, W L; Cutajar, D L; Rosenfeld, A B
2015-05-01
The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.
2017-01-01
In the classic gain/loss framing effect, describing a gamble as a potential gain or loss biases people to make risk-averse or risk-seeking decisions, respectively. The canonical explanation for this effect is that frames differentially modulate emotional processes, which in turn leads to irrational choice behavior. Here, we evaluate the source of framing biases by integrating functional magnetic resonance imaging data from 143 human participants performing a gain/loss framing task with meta-analytic data from >8000 neuroimaging studies. We found that activation during choices consistent with the framing effect were most correlated with activation associated with the resting or default brain, while activation during choices inconsistent with the framing effect was most correlated with the task-engaged brain. Our findings argue against the common interpretation of gain/loss framing as a competition between emotion and control. Instead, our study indicates that this effect results from differential cognitive engagement across decision frames. SIGNIFICANCE STATEMENT The biases frequently exhibited by human decision makers have often been attributed to the presence of emotion. Using a large fMRI sample and analysis of whole-brain networks defined with the meta-analytic tool Neurosynth, we find that neural activity during frame-biased decisions was more significantly associated with default behaviors (and the absence of executive control) than with emotion. These findings point to a role for neuroscience in shaping long-standing psychological theories in decision science. PMID:28264981
Li, Rosa; Smith, David V; Clithero, John A; Venkatraman, Vinod; Carter, R McKell; Huettel, Scott A
2017-03-29
In the classic gain/loss framing effect, describing a gamble as a potential gain or loss biases people to make risk-averse or risk-seeking decisions, respectively. The canonical explanation for this effect is that frames differentially modulate emotional processes, which in turn leads to irrational choice behavior. Here, we evaluate the source of framing biases by integrating functional magnetic resonance imaging data from 143 human participants performing a gain/loss framing task with meta-analytic data from >8000 neuroimaging studies. We found that activation during choices consistent with the framing effect were most correlated with activation associated with the resting or default brain, while activation during choices inconsistent with the framing effect was most correlated with the task-engaged brain. Our findings argue against the common interpretation of gain/loss framing as a competition between emotion and control. Instead, our study indicates that this effect results from differential cognitive engagement across decision frames. SIGNIFICANCE STATEMENT The biases frequently exhibited by human decision makers have often been attributed to the presence of emotion. Using a large fMRI sample and analysis of whole-brain networks defined with the meta-analytic tool Neurosynth, we find that neural activity during frame-biased decisions was more significantly associated with default behaviors (and the absence of executive control) than with emotion. These findings point to a role for neuroscience in shaping long-standing psychological theories in decision science. Copyright © 2017 the authors 0270-6474/17/373588-11$15.00/0.
Experimental study on beam for composite CES structural system
NASA Astrophysics Data System (ADS)
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Application study of filamentary composites in a commercial jet aircraft fuselage
NASA Technical Reports Server (NTRS)
Johnson, R. W.; June, R. R.
1972-01-01
A study of applications of filamentary composite materials to aircraft fuselage structure was performed. General design criteria were established and material studies conducted using the 727-200 forebody as the primary structural component. Three design approaches to the use of composites were investigated: uniaxial reinforcement of metal structure, uniaxial and biaxial reinforcement of metal structure, and an all-composite design. Materials application studies for all three concepts were conducted on fuselage shell panels, keel beam, floor beams, floor panels, body frames, fail-safe straps, and window frames. Cost benefit studies were conducted and developmental program costs estimated. On the basis of weight savings, cost effectiveness, developmental program costs, and potential for early application on commercial aircraft, the unaxial design is recommended for a 5-year flight service evaluation program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-10
A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.
Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames
NASA Astrophysics Data System (ADS)
Keshavarzi, Farhad; Mirghaderi, Rasoul; Torabian, Shahabeddin; Imanpour, Ali
2008-07-01
Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column. This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam—strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection. Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment-rotation graphs form sub-assemblage show a desirable seismic performance of this connection
Experimental research on the seismic behavior of CSPSWs connected to frame beams
NASA Astrophysics Data System (ADS)
Guo, Lanhui; Ma, Xinbo; Li, Ran; Zhang, Sumei
2011-03-01
The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or connectors is experimentally studied. The shear wall is connected to the frame beams but not to the columns. This arrangement restrains the possible out-of-plane buckling of the thin-walled steel plate, thus significantly increasing the bearing capacity and ductility of the overall wall, and prevents the premature overall or local buckling failure of the frame columns. From a practical viewpoint, these solutions can provide open space in a floor as this type of composite shear walls with a relatively small aspect ratio can be placed parallel along a bay. In this study, four CSPSWs and one SPSW were tested and the results showed that both CSPSWs and SPSW possessed good ductility. For SPSW alone, the buckling appeared and resulted in a decrease of bearing capacity and energy dissipation capacity. In addition, welding stiffeners at corners were shown to be an effective way to increase the energy dissipation capacity of CSPSWs.
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
Investigating the Luminous Environment of SDSS Data Release 4 Mg II Absorption Line Systems
NASA Astrophysics Data System (ADS)
Caler, Michelle A.; Ravi, Sheth K.
2018-01-01
We investigate the luminous environment within a few hundred kiloparsecs of 3760 Mg II absorption line systems. These systems lie along 3760 lines of sight to Sloan Digital Sky Survey (SDSS) Data Release 4 QSOs, have redshifts that range between 0.37 ≤ z ≤ 0.82, and have rest equivalent widths greater than 0.18 Å. We use the SDSS Catalog Archive Server to identify galaxies projected near 3 arcminutes of the absorbing QSO’s position, and a background subtraction technique to estimate the absolute magnitude distribution and luminosity function of galaxies physically associated with these Mg II absorption line systems. The Mg II absorption system sample is split into two parts, with the split occurring at rest equivalent width 0.8 Å, and the resulting absolute magnitude distributions and luminosity functions compared on scales ranging from 50 h-1 kpc to 880 h-1 kpc. We find that, on scales of 100 h-1 kpc and smaller, the two distributions differ: the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width ≥ 0.8 Å (2750 lines of sight) seems to be approximated by that of elliptical-Sa type galaxies, whereas the absolute magnitude distribution of galaxies associated with systems of rest frame equivalent width < 0.8 Å (1010 lines of sight) seems to be approximated by that of Sa-Sbc type galaxies. However, on larger scales greater than 200 h-1 kpc, both distributions are broadly consistent with that of elliptical-Sa type galaxies. We note that, in a broader context, these results represent an estimate of the bright end of the galaxy luminosity function at a median redshift of z ˜ 0.65.
NASA Astrophysics Data System (ADS)
Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo (Inventor)
2016-01-01
An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.
Generation of cylindrically polarized vector vortex beams with digital micromirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Lei; Liu, Weiwei; Wang, Meng
We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less
NASA Technical Reports Server (NTRS)
Kerley, James J.; Eklund, Wayne; Crane, Alan
1992-01-01
Walker supports person with limited use of legs and back. Enables person to stand upright, move with minimum load, and rest at will taking weight off legs. Consists of wheeled frame with body harness connected compliantly to side structures. Harness supports wearer upright when wearer relaxes and takes weight off lower extremities. Assumes partial to full body weight at user's discretion.
A Pilot Study to Directly Measure the Dynamical Masses of ULIRGs at Intermediate Redshifts
NASA Astrophysics Data System (ADS)
Rothberg, Barry
2012-02-01
We propose a pilot study to use the Calcium II Triplet stellar absorption lines (rest-frame 0.85 microns) in conjunction with publicly available, high-resolution rest-frame optical HST imaging to directly measure the dynamical masses (M_dyn) and estimate central black hole masses (M_BH) in a small sample of intermediate redshift ULIRGs (0.4 < z < 1.0). It is the same method we have used to measure M_dyn and M_BH in local ULIRGs, and has successfully shown that these systems are statistically indistinguishable from nearby (z < 0.4) QSOs. At 0.4 < z < 1.0, the star-formation rates, gas fractions, and (presumably) masses, are believed to be significantly higher than in the local universe. However, mass is a critical parameter in most galaxy scaling relations, and current methods to estimate mass at intermediate redshifts rely heavily on unproven assumptions. Using stellar velocity dispersions is a straight-forward method to measuring M_dyn, and we will use it to: 1) conf! irm higher masses at 0.4 < z < 1.0; and 2) provide a calibration for other techniques.
NASA Astrophysics Data System (ADS)
Fischer, Travis; Rigby, Jane; Gladders, Michael; Sharon, Keren q.; Barrientos, L. Felipe; Bayliss, Matt; Dahle, Håkon; Florian, Michael; Johnson, Traci Lin; Wuyts, Eva
2018-01-01
We present rest-frame optical SINFONI integral field spectroscopy and rest-frame UV HST imaging of a lensed galaxy hosting an active galactic nucleus (AGN) at z = 2.39. Galactic wind feedback is widely acknowledged to play a critical role in the evolution of galaxies, however, the physical mechanisms involved and the relative importance of AGN and star formation as the main feedback drivers remain poorly understood. AGN-driven feedback has been evident in very luminous but rare quasars and radio galaxies, but observational evidence remains lacking for less extreme, “normal” star-forming galaxies. We report, for the first time at high redshift, spatially resolved velocity profiles and geometries of an AGN-driven outflow in a normal star-forming galaxy and spatial extents and morphologies of Lyα emission and stellar UV continuum. Analyzing these measurements in tandem, we determine the physical conditions, geometry, and excitation sources of the interstellar medium in a star-forming, AGN-hosting galaxy at cosmic noon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvis, M.; Hao, H.; Civano, F.
2012-11-01
The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and showmore » examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.« less
NASA Astrophysics Data System (ADS)
Astawa, M. D.; Kartini, W.; Lie, F. X. E.
2018-01-01
Floor Building that requires a large space such as for the meeting room, so it must remove the column in the middle of the room, then the span beam above the room will be long. If the beam of structural element with a span length reaches 15.00 m, then it is less effective and efficient using a regular Reinforced Concrete Beam because it requires a large section dimension, and will reduce the beauty of the view in terms of aesthetics of Architecture. In order to meet these criteria, in this design will use partial prestressing method with 400/600 mm section dimension, assuming the partial Prestressed Beam structure is still able to resist the lateral force of the earthquake. The design of the reinforcement has taken into account to resist the moment due to the gravitational load and lateral forces. The earthquake occurring on the frame structure of the building. In accordance with the provisions, the flexural moment capacity of the tendon is permitted only by 25% of the total bending moment on support of the beam, while the 75% will be charged to the reinforcing steel. Based on the analysis result, bring ini 1 (one) tendon contains 6 strand with diameter 15,2 mm. On the beam pedestal, requires 5D25 tensile reinforcement and 3D25 for the compression reinforcement, for shear reinforcement on the pedestal using Ø10-100 mm. Dimensional column section are 600/600 mm with longitudinal main reinforcement of 12D25, and transverse reinforcement Ø10-150. At the core of the beam-column joint, use the transversal reinforcement Ø10-100 mm. The moment of Column versus Beam Moment ∑Me > 1.2 Mg, with a value of 906.99 kNm > 832.25 kNm, qualify for ductility and Strong Columns-weak beam. Capacity of contribution bending moment of Strand Tendon’s is 23.95% from the total bending moment capacity of the beam, meaning in accordance with the provisions. Thus, the stability and ductility structure of Beam-Column joint is satisfy the requirements of SNI 2847: 2013 and ACI 318-11.
Behavior Of Aircraft Components Under Crash-Type Loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1993-01-01
Report presents overview of research involving use of concepts of aircraft elements and substructures not necessarily designed or optimized with respect to energy-absorption or crash-loading considerations. Experimental and analytical data presented in report indicate some general trends in failure behaviors of class of composite-material structures including individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to frame/stringer arrangement.
Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography.
Ludlow, John B; Walker, Cameron
2013-12-01
The increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern about the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Effective doses resulting from various combinations of field of view size and field location comparing child and adult anthropomorphic phantoms with the recently introduced i-CAT FLX cone-beam computed tomography unit (Imaging Sciences, Hatfield, Pa) were measured with optical stimulated dosimetry using previously validated protocols. Scan protocols included high resolution (360° rotation, 600 image frames, 120 kV[p], 5 mA, 7.4 seconds), standard (360°, 300 frames, 120 kV[p], 5 mA, 3.7 seconds), QuickScan (180°, 160 frames, 120 kV[p], 5 mA, 2 seconds), and QuickScan+ (180°, 160 frames, 90 kV[p], 3 mA, 2 seconds). Contrast-to-noise ratio was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Child phantom doses were on average 36% greater than adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than standard protocols for the child (P = 0.0167) and adult (P = 0.0055) phantoms. The 13 × 16-cm cephalometric fields of view ranged from 11 to 85 μSv in the adult phantom and 18 to 120 μSv in the child phantom for the QuickScan+ and standard protocols, respectively. The contrast-to-noise ratio was reduced by approximately two thirds when comparing QuickScan+ with standard exposure parameters. QuickScan+ effective doses are comparable with conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off might be acceptable for certain diagnostic tasks such as interim assessment of treatment results. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
NASA Astrophysics Data System (ADS)
Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin
2011-12-01
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
Time resolving beam position measurement and analysis of beam unstable movement in PSR
NASA Astrophysics Data System (ADS)
Aleksandrov, A. V.
2000-11-01
Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.
NASA Astrophysics Data System (ADS)
Nelson, Erica June; van Dokkum, Pieter G.; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Bezanson, Rachel; Da Cunha, Elisabete; Kriek, Mariska; Labbe, Ivo; Lundgren, Britt; Quadri, Ryan; Schmidt, Kasper B.
2012-03-01
We investigate the buildup of galaxies at z ~ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re (Hα) ~ 1.0 kpc to extended disks with re (Hα) ~ 15 kpc. Comparing Hα sizes to continuum sizes, we find
NASA Astrophysics Data System (ADS)
Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter; Gawiser, Eric; Franx, Marijn; Lira, Paulina; Rudnick, Gregory; Urry, C. Megan; Maza, José; Kriek, Mariska; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Christlein, Daniel; Coppi, Paolo S.; Hall, Patrick B.; Herrera, David; Infante, Leopoldo; Taylor, Edward N.; Treister, Ezequiel; Willis, Jon P.
2007-09-01
We present deep near-infrared JHK imaging of four 10' × 10' fields. The observations were carried out as part of the Multiwavelength Survey by Yale-Chile (MUSYC) with ISPI on the CTIO 4 m telescope. The typical point-source limiting depths are J ~ 22.5, H ~ 21.5, and K ~ 21 (5 σ Vega). The effective seeing in the final images is ~1.0″. We combine these data with MUSYC UBVRIz imaging to create K-selected catalogs that are unique for their uniform size, depth, filter coverage, and image quality. We investigate the rest-frame optical colors and photometric redshifts of galaxies that are selected using common color selection techniques, including distant red galaxies (DRGs), star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman break galaxies (LBGs). These techniques are effective at isolating large samples of high-redshift galaxies, but none provide complete or uniform samples across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify populations of red and blue galaxies, respectively, as they were designed to do. The star-forming BzKs have a very wide redshift distribution, extending down to z ~ 1, a wide range of colors, and may include galaxies with very low specific star formation rates. In comparison, the passive BzKs are fewer in number, have a different distribution of K magnitudes, and have a somewhat different redshift distribution. By combining either the DRG and BM/BX/LBG criteria, or the star-forming and passive BzK criteria, it appears possible to define a reasonably complete sample of galaxies to our flux limit over specific redshift ranges. However, the redshift dependence of both the completeness and sampled range of rest-frame colors poses an ultimate limit to the usefulness of these techniques.
THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, W.; Berger, E.
2013-10-10
We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets ofmore » ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel
2010-08-20
With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10{sup 11} M{sub sun}) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, {sigma} {sub z}/(1 + z) {approx} 2%, and rest-frame colors, {sigma}{sub U-V} {approx} 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread inmore » ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z {approx}< 1, and a frosting of relatively young stars from star formation at later times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Zauderer, B. A.; Chary, R.-R.
2014-12-01
We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000more » μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.« less
Lifting system and apparatus for constructing wind turbine towers
Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James
2011-02-01
The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.
Proximity correction of high-dosed frame with PROXECCO
NASA Astrophysics Data System (ADS)
Eisenmann, Hans; Waas, Thomas; Hartmann, Hans
1994-05-01
Usefulness of electron beam lithography is strongly related to the efficiency and quality of methods used for proximity correction. This paper addresses the above issue by proposing an extension to the new proximity correction program PROXECCO. The combination of a framing step with PROXECCO produces a pattern with a very high edge accuracy and still allows usage of the fast correction procedure. Making a frame with a higher dose imitates a fine resolution correction where the coarse part is disregarded. So after handling the high resolution effect by means of framing, an additional coarse correction is still needed. Higher doses have a higher contribution to the proximity effect. This additional proximity effect is taken into account with the help of the multi-dose input of PROXECCO. The dose of the frame is variable, depending on the deposited energy coming from backscattering of the proximity. Simulation proves the very high edge accuracy of the applied method.
Seismic response of reinforced concrete frames at different damage levels
NASA Astrophysics Data System (ADS)
Morales-González, Merangeli; Vidot-Vega, Aidcer L.
2017-03-01
Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.
NASA Astrophysics Data System (ADS)
Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei
2017-11-01
We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.
Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2
NASA Astrophysics Data System (ADS)
Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.
2009-08-01
We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared to local galaxies, and [O III]/[O II] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z ~ 2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts. Based, in part, on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle
NASA Astrophysics Data System (ADS)
Fleischer, D.; Park, S.-K.
2004-06-01
The hydroelastic vibrations of a beam with rectangular cross-section is analyzed under the effect of an uniformly moving single axle vehicle using modal analysis and two-dimensional potential flow theory of the fluid neglecting the effect of surface waves aside the beam. For the special case of homogeneous beam resting on the surface of a water filled prismatic basin, the normal modes are determined considering surface waves in beam direction under the condition of compensating the volume of the enclosed fluid. The way to determine the vertical acceleration of the single axle vehicle is shown, which governs the response of the system. As analysis results the course of wheel load, the surface waves along the beam and the flow velocity distribution of the fluid is demonstrated for a continuous floating bridge under the passage of a rolling mass moving with uniform speed.
NASA Astrophysics Data System (ADS)
Fang, Sheng-En; Perera, Ricardo; De Roeck, Guido
2008-06-01
This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC) frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model can be used for an approximate stiffness estimation of a cracked beam segment.
Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS
NASA Astrophysics Data System (ADS)
Decker, Glenn; Rosenbaum, Gerd; Singh, Om
2006-11-01
Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.
Method of laser beam coding for control systems
NASA Astrophysics Data System (ADS)
Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof
2017-08-01
The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).
Investigation of the Production of High Density Uniform Plasmas.
1980-10-01
first time with the framing camera. These are a considerable improvement upon the black and white films taken in earlier experi- ments. The different...i 111 I 11Il ELECTRON BEAM JvL ~f OIL REFLECTING PRISMS - -PYREX CELL SUSTAINER CATHODE LENS MIRROR LENS MINATURE ARC LAMP APERTURE FRAMING...was run to test the opposite limit. This cathode also arced earlier than the more con- ventional materials. The first run left several holes in the kap
Method and devices for performing stereotactic microbeam radiation therapy
Dilmanian, F. Avraham
2010-01-05
A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.
AlDahlawi, Ismail; Prasad, Dheerendra; Podgorsak, Matthew B
2017-05-01
The Gamma Knife Icon comes with an integrated cone-beam CT (CBCT) for image-guided stereotactic treatment deliveries. The CBCT can be used for defining the Leksell stereotactic space using imaging without the need for the traditional invasive frame system, and this allows also for frameless thermoplastic mask stereotactic treatments (single or fractionated) with the Gamma Knife unit. In this study, we used an in-house built marker tool to evaluate the stability of the CBCT-based stereotactic space and its agreement with the standard frame-based stereotactic space. We imaged the tool with a CT indicator box using our CT-simulator at the beginning, middle, and end of the study period (6 weeks) for determining the frame-based stereotactic space. The tool was also scanned with the Icon's CBCT on a daily basis throughout the study period, and the CBCT images were used for determining the CBCT-based stereotactic space. The coordinates of each marker were determined in each CT and CBCT scan using the Leksell GammaPlan treatment planning software. The magnitudes of vector difference between the means of each marker in frame-based and CBCT-based stereotactic space ranged from 0.21 to 0.33 mm, indicating good agreement of CBCT-based and frame-based stereotactic space definition. Scanning 4-month later showed good prolonged stability of the CBCT-based stereotactic space definition. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Vagnetti, F.; Middei, R.; Antonucci, M.; Paolillo, M.; Serafinelli, R.
2016-09-01
Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims: We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ~0.1 and ~5, and X-ray luminosities in the 0.5-4.5 keV band between ~1042 erg/s and ~1047 erg/s. Methods: We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results: We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ LX-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν-0.15, corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (≲15%) shift upwards (V-correction). Conclusions: Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A55
Echoes of the Vision: When the Rest of the Organization Talks Total Quality.
ERIC Educational Resources Information Center
Fairhurst, Gail T.
1993-01-01
Describes a case study of an organization that recently began implementing W. E. Deming's Total Quality (TQ). Finds and discusses five framing devices used in routine work conversations between leaders and members to implement the TQ vision: communicated predicaments, possible futures, jargon and vision themes, positive spin, and agenda setting.…
Fermat's Principle of Least Time in the Presence of Uniformly Moving Boundaries and Media
ERIC Educational Resources Information Center
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2007-01-01
The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium…
"No, Do You Know What 'Your' Treaty Rights Are?" Treaty Consciousness in a Decolonizing Frame
ERIC Educational Resources Information Center
Hiller, Chris
2016-01-01
"Idle No More" represents a watershed moment of treaty education, with treaty-related teach-ins, direct actions, and information sharing happening in diverse public spaces across Canada and around the globe. Although unprecedented in scope, depth, and intensity, "Idle No More" rests in a centuries-old continuity of Indigenous…
Earth at Rest: Aesthetic Experience and Students' Grounding in Science Education
ERIC Educational Resources Information Center
Østergaard, Edvin
2017-01-01
Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I…
Fluorescent screens and image processing for the APS linac test stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, W.; Ko, K.
A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
Four-Year-Olds Use a Mixture of Spatial Reference Frames
Negen, James; Nardini, Marko
2015-01-01
Keeping track of unseen objects is an important spatial skill. In order to do this, people must situate the object in terms of different frames of reference, including body position (egocentric frame of reference), landmarks in the surrounding environment (extrinsic frame reference), or other attached features (intrinsic frame of reference). Nardini et al. hid a toy in one of 12 cups in front of children, turned the array when they were not looking, and then asked them to point to the cup with the toy. This forced children to use the intrinsic frame (information about the array of cups) to locate the hidden toy. Three-year-olds made systematic errors by using the wrong frame of reference, 4-year-olds were at chance, and only 5- and 6-year-olds were successful. Can we better understand the developmental change that takes place at four years? This paper uses a modelling approach to re-examine the data and distinguish three possible strategies that could lead to the previous results at four years: (1) Children were choosing cups randomly, (2) Children were pointing between the egocentric/extrinsic-cued location and the correct target, and (3) Children were pointing near the egocentric/extrinsic-cued location on some trials and near the target on the rest. Results heavily favor the last possibility: 4-year-olds were not just guessing or trying to combine the available frames of reference. They were using the intrinsic frame on some trials, but not doing so consistently. These insights suggest that accounts of improving spatial performance at 4 years need to explain why there is a mixture of responses. Further application of the selected model also suggests that children become both more reliant on the correct frame and more accurate with any chosen frame as they mature. PMID:26133990
Perspective on the Origin of Hadron Masses
NASA Astrophysics Data System (ADS)
Roberts, Craig D.
2017-01-01
The energy-momentum tensor in chiral QCD, T_{μ ν }, exhibits an anomaly, viz. \\varTheta _0 := T_{μ μ } ne 0. Measured in the proton, this anomaly yields m_p^2, where m_p is the proton's mass; but, at the same time, when computed in the pion, the answer is m_π ^2=0. Any attempt to understand the origin and nature of mass, and identify observable expressions thereof, must explain and unify these two apparently contradictory results, which are fundamental to the nature of our Universe. Given the importance of Poincaré-invariance in modern physics, the utility of a frame-dependent approach to this problem seems limited. That is especially true of any approach tied to a rest-frame decomposition of T_{μ ν } because a massless particle does not possess a rest-frame. On the other hand, the dynamical chiral symmetry breaking paradigm, connected with a Poincaré-covariant treatment of the continuum bound-state problem, provides a straightforward, simultaneous explanation of both these identities, and also a diverse array of predictions, testable at existing and proposed facilities. From this perspective, < π | \\varTheta _0 |π rangle =0 owing to exact, symmetry-driven cancellations which occur between one-body dressing effects and two-body-irreducible binding interactions in any well-defined computation of the forward scattering amplitude that defines this expectation value in the pseudoscalar meson. The cancellation is incomplete in any other hadronic bound state, with a remainder whose scale is set by the size of one-body dressing effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Craig D.
The energy-momentum tensor in chiral QCD, T-mu nu, exhibits an anomaly, viz. Theta(0) := T-mu mu not equal 0. Measured in the proton, this anomaly yields m(p)(2), where m(p) is the proton's mass; but, at the same time, when computed in the pion, the answer is m(pi)(2) = 0. Any attempt to understand the origin and nature of mass, and identify observable expressions thereof, must explain and unify these two apparently contradictory results, which are fundamental to the nature of our Universe. Given the importance of Poincare-invariance in modern physics, the utility of a frame-dependent approach to this problem seemsmore » limited. That is especially true of any approach tied to a rest-frame decomposition of T-mu nu because a massless particle does not possess a rest-frame. On the other hand, the dynamical chiral symmetry breaking paradigm, connected with a Poincare-covariant treatment of the continuum bound-state problem, provides a straightforward, simultaneous explanation of both these identities, and also a diverse array of predictions, testable at existing and proposed facilities. From this perspective, = 0 owing to exact, symmetry-driven cancellations which occur between one-body dressing effects and two-body-irreducible binding interactions in any well-defined computation of the forward scattering amplitude that defines this expectation value in the pseudoscalar meson. The cancellation is incomplete in any other hadronic bound state, with a remainder whose scale is set by the size of one-body dressing effects.« less
Correction of beam-beam effects in luminosity measurement in the forward region at CLIC
NASA Astrophysics Data System (ADS)
Lukić, S.; Božović-Jelisavčić, I.; Pandurović, M.; Smiljanić, I.
2013-05-01
Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.
Connecting kinematic and dynamic reference frames by D-VLBI
NASA Astrophysics Data System (ADS)
Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes
2012-08-01
In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.
NASA Astrophysics Data System (ADS)
Borrazzo, Cristian; Galea, Nicola; Pacilio, Massimiliano; Altabella, Luisa; Preziosi, Enrico; Carnì, Marco; Ciolina, Federica; Vullo, Francesco; Francone, Marco; Catalano, Carlo; Carbone, Iacopo
2018-02-01
Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood flow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may influence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1 ± 0.05 mmol kg-1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Student’s t-test, linear regression analysis, and Bland-Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not significantly different, and were in good agreement with the literature. The results obtained during the first-pass transit time (20 s) yielded p-values in the range 0.20-0.28 for Student’s t-test, linear regression analysis slopes between 0.98-1.03, and R values between 0.92-1.01. From the Bland-Altman plots, the paired comparisons yielded a bias (and a 95% CI)—expressed as ml/min/g—for FFM versus TM, -0.01 (-0.20, 0.17) or 0.02 (-0.49, 0.52) at rest or under stress respectively, for FFM versus GF, -0.05 (-0.29, 0.20) or -0.07 (-0.55, 0.41) at rest or under stress, and for TM versus GF, -0.03 (-0.30, 0.24) or -0.09 (-0.43, 0.26) at rest or under stress. With the two-way ANOVA, the results were p = 0.20 for the method effect (not significant), p < 0.0001 for the rest/stress condition effect (highly significant, as expected), whereas no interaction resulted between the rest/stress condition and method (p = 0.70, not significant). Considering a wider time-frame (60 s), the estimates for both rest and stress conditions were 25%-30% higher (p in the range 0.016-0.025) than those obtained in the 20 s time-frame. MBF estimates obtained by various methods under rest/stress conditions were not significantly different in the first-pass transit time, encouraging quantitative perfusion estimates in DCE-CMRI with the used methods.
Optical levitation of absorbing particles with a nominally Gaussian laser beam.
Huisken, Jan; Stelzer, Ernst H K
2002-07-15
We use a Gaussian laser beam to study the levitation of absorbing Mie particles. Several metal oxide particles are stably levitated, and their movement over time is recorded. Our studies show that the position of each particle is highly dependent on the other particles' locations. The observations are explained by the phenomenon of thermal creep. The increased local pressure that is due to a temperature gradient along the particle's surface induces levitation. The particles rest close to minima in the intensity distribution near the optical axis. An experiment is suggested that can be used to locate these minima in a laser beam.
An Engineer's Physics Lab -- using a Large Force Frame
NASA Astrophysics Data System (ADS)
Heid, Christy; Rampolla, Donald
2009-03-01
We have constructed very economical, easy to assemble force frames that are used by students in our general physics laboratory at Chatham University. The force frame is used at the beginning of the semester to study vector properties of forces. The force frame can be used as a horizontal or vertical force table. Angles of forces are measured using a large movable (rotation and translation) Cartesian coordinate board attached to the frame with large binder clips. The force frame is a versatile device which is used for a number of other experiments, including beam bending and torsion, mechanical resonance, projectile trajectories, torque, mechanical equilibrium, an isolated non-magnetic support for magnetic field experiments, easily adjustable support for inclined plane experiments, support for traveling wave experiments with heavy rope, and support for large scale fluid flow experiments. One advantage to a wood frame is that things can be easily stapled, nailed, screwed or glued just about anywhere on the frame, and damaged frame members can be replaced easily. As one of the few remaining women's undergraduate institutions, we have found the use of these frames to provide an additional advantage in helping women overcome their fear of simple power tools and assembly of mechanical parts as they become comfortable with these through working with the force frames throughout the semester. We intend to describe and model these applications during the session.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
The PHOBOS perspective on discoveries at RHIC
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration
2005-08-01
This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au + Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au + Au at different centralities, the dependence of the yield on the number of participants at higher p ( ˜4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.
NASA Astrophysics Data System (ADS)
Otsuka, Fumiko; Matsukiyo, Shuichi; Kis, Arpad; Nakanishi, Kento; Hada, Tohru
2018-02-01
Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory (QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well, when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to 32 keV ions match with the observational values in the event discussed in the companion paper, which contains an intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when approaching the shock significantly affects the energy dependence of the e-folding distance.
Measurements of J/JΦ Φ polarization in p +p collisions at STAR
NASA Astrophysics Data System (ADS)
Luo, Siwei; STAR Collaboration
2016-03-01
Measurements of J/JΦ Φ production cross section and polarization can help understand J/JΦ Φ production mechanism in hadron collisions and distinguish among different models. J/JΦ Φ polarization could be characterized by the λθ, λφ and λinv polarization parameters, where λθ and λφ are coefficients of positron polar and azimuthal angle distribution in the J/JΦ Φ rest frame with respect to a chosen polarization axis, while λinv is a frame-independent variable calculable from λθ and λφ. J/JΦ Φ polarization parameters λθ, λφ and λinv in both helicity and Collins-Soper frames have been extracted from the STAR 2011 data in p +p collisions at √{ s} = 500 GeV, while only λθ in the helicity frame has been extracted from the STAR 2009 data in p +p collisions at √{ s} = 200 GeV. In this talk, we will present a new analysis to study J/JΦ Φ polarization using the STAR 2012 data to extract λθ, λφ and λinv in both the helicity and Collins-Soper frames in p +p collisions at √{ s} = 200 GeV.
NASA Technical Reports Server (NTRS)
Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander
2011-01-01
A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.
Informative frame detection from wireless capsule video endoscopic images
NASA Astrophysics Data System (ADS)
Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito
2008-03-01
Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).
NASA Technical Reports Server (NTRS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha
2011-01-01
It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron s rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2011-12-15
It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. Atmore » the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail
2010-05-15
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less
NASA Technical Reports Server (NTRS)
Larsson, S. E.
1972-01-01
A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened.
Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David
2013-01-01
Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.
SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, P; Na, Y; Wuu, C
2016-06-15
Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) systemmore » (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to standard MLC position segments.« less
Bhattarai, Prem; Paudel, Bishnu H; Thakur, Dilip; Bhattarai, Balkrishna; Subedi, Bijay; Khadka, Rita
2018-01-01
Despite the successful adaptation to high altitude, some differences do occur due to long term exposure to the hypoxic environment. The effect of long term high altitude exposure on cardiac autonomic adjustment during basal and post-exercise recovery is less known. Thus we aimed to study the differences in basal cardiac autonomic adjustment and its response to exercise in highlanders and to compare it with lowlanders. The study was conducted on 29 healthy highlander males who were born and brought up at altitude of 3000 m and above from the sea level, their cardiac autonomic adjustment was compared with age, sex, physical activity and ethnicity-matched 29 healthy lowlanders using Heart Rate Variability (HRV) during rest and recovery from sub-maximal exercise (3 m step test). Intergroup comparison between the highlanders and lowlanders and intragroup comparison between the rest and the postexercise recovery conditions were done. Resting heart rate and HRV during rest was comparable between the groups. However, heart rate recovery after 3 min step test was faster in highlanders ( p < 0.05) along with significantly higher LF power and total power during the recovery phase. Intragroup comparison of highlanders showed higher SDNN ( p < 0.05) and lower LF/HF ratio ( p < 0.05) during recovery phase compared to rest which was not significantly different in two phases in lowlanders. Further highlander showed complete recovery of RMSSD, NN50, pNN50 and HF power back to resting level within five minutes, whereas, these parameters failed to return back to resting level in lowlanders within the same time frame. Highlanders completely recovered back to their resting state within five minutes from cessation of step test with parasympathetic reactivation; however, recovery in lowlanders was delayed.
Electromagnetic ion instabilities in a cometary environment
NASA Astrophysics Data System (ADS)
Gary, S. P.; Madland, C. D.
1988-01-01
This paper considers the linear theory of electromagnetic ion beam and ion ring-beam instabilities in a homogeneous Vlasov plasma. Propagation parallel or antiparallel to a uniform magnetic field and frequencies at or below the proton cyclotron frequency are considered. For parameters representative of the distant cometary environment, the authors show that instabilities with right-hand polarization in the zero momentum frame have larger linear growth rates than left-hand polarized instabilities at α values up to 90° where α is the angle between the solar wind velocity and the uniform interplanetary magnetic field. If both a proton beam and an oxygen beam are present with α = 0°, two right-hand resonant instabilities may grow; these two modes are distinct and relatively independent of one another for a very wide range of proton/oxygen beam density ratios.
Joining and reinforcing a composite bumper beam and a composite crush can for a vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Elisabeth; Decker, Leland; Armstrong, Dale
A front bumper beam and crush can (FBCC) system is provided for a vehicle. A bumper beam has an interior surface with a plurality of ribs extending therefrom. The ribs and the interior surface are made of a chopped fiber composite and cooperate to engage a crush can. The chopped fiber composite reinforces the engaging surfaces of the crush can and the interior surface of the bumper beam. The crush can has a tubular body made of a continuous fiber composite. The crush can has outwardly-extending flanges at an end spaced away from the bumper beam. The flanges are atmore » least partially provided with a layer of chopped fiber composite to reinforce a joint between the outwardly-extending flange and the vehicle frame.« less
Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.
Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Fei; Toselli, Italo; Korotkova, Olga
2016-02-10
An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.
Environmental Assessment of Proposed Upgrades to Military Family Housing, Phase I
2003-03-01
contributions to the economic, ecological , recreational, and human health of a community or locale. Stormwater flows, which are increased by high proportions...positive at least once include the following: • Metal beams or columns (87 percent positive results) • Wood beams or columns (24 percent) • Wood ...cabinet doors (4 percent) • Wood ceiling (ə percent) • Varnished wood closet door (ə percent) • Wood door frames (ə percent) • Interior metal door
Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors.
Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo
2017-08-10
The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams.
Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors
Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo
2017-01-01
The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams. PMID:28796156
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Xie, Yi
2010-11-01
We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.
Guys and "the Rest of Us": Tales of Gendered Aptitude and Experience in Educational Carework
ERIC Educational Resources Information Center
Mallozzi, Christine A.; Galman, Sally Campbell
2014-01-01
A history of framing the teaching of young children as a matter of "natural" female aptitude has led a number of researchers and educators to oversimplify men's experiences as a foil or antidote to the ills of schooling. In this qualitative study of men, women, and "feminisation" in early education and care environments,…
The Correlated Variations of {\\rm{C}}\\,{\\rm{IV}} Narrow Absorption Lines and Quasar Continuum
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Pang, Ting-Ting; He, Bing; Huang, Yong
2018-06-01
We assemble 207 variable quasars from the Sloan Digital Sky Survey, all with at least 3 observations, to analyze C IV narrow absorption doublets, and obtain 328 C IV narrow absorption line systems. We find that 19 out of 328 C IV narrow absorption line systems were changed by | {{Δ }}{W}rλ 1548| ≥slant 3{σ }{{Δ }{W}rλ 1548} on timescales from 15.9 to 1477 days at rest-frame. Among the 19 obviously variable C IV systems, we find that (1) 14 systems have relative velocities {\\upsilon }r> 0.01c and 4 systems have {\\upsilon }r> 0.1c, where c is the speed of light; (2) 13 systems are accompanied by other variable C IV systems; (3) 9 systems were changed continuously during multiple observations; and (4) 1 system with {\\upsilon }r = 16,862 km s‑1 was enhanced by {{Δ }}{W}rλ 1548=2.7{σ }{{Δ }{W}rλ 1548} in 0.67 day at rest-frame. The variations of absorption lines are inversely correlated with the changes in the ionizing continuum. We also find that large variations of C IV narrow absorption lines are form differently over a short timescale.
The Host Galaxies Of UV-selected AGNs At z 2-3
NASA Astrophysics Data System (ADS)
Hainline, Kevin; Shapley, A.; Greene, J.; Steidel, C.
2012-01-01
An important goal for studies of galaxy formation consists of tracing a direct evolutionary connection between the growth of supermassive black holes powering active galactic nuclei (AGNs) and the build-up of stellar mass in their host galaxies. In the local universe, AGNs are preferentially found in bulge-dominated galaxies, but the AGN demographics at earlier epochs are not as well understood. We present a rest-frame UV composite spectrum for a sample of 33 z 2-3 AGNs drawn from the UV-selected Lyman Break Galaxy (LBG) survey. This spectrum shows many emission and absorption features, such as HI Lyman-alpha, NV 1240, NIV] 1483, 1486, CIV 1548, 1550, HeII 1640, and CIII] 1907, 1909. Redshifted SiIV 1394 absorption provides evidence for outflowing high-ionization gas in these objects at speeds of 103 km/s. Finally, using optical, near-IR, and mid-IR photometry, which cover the rest-frame UV to near-IR portions of the galaxies' spectral energy distributions, we perform stellar population synthesis modeling of the sample. Based on these results, we explore the relationship in the host galaxy between AGN activity, maturity of the stellar population, and regulation of star formation.
Color evolution from z = 0 to z = 1
NASA Technical Reports Server (NTRS)
Rakos, Karl D.; Schombert, James M.
1995-01-01
Rest frame Stroemgren photometry (3500 A, 4100 A, 4750 A, and 5500 A) is presented for 509 galaxies in 17 rich clusters between z = 0 and z = 1 as a test of color evolution. Our observations confirm a strong, rest frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z = 0.4 to 80% at z = 0.9. We also find that a majority of these blue cluster galaxies are composed of normal disk or post-starburst systems based on color criteria. When comparing our colors to the morphological results from Hubble Space Telescope HST imaging, we propose that the blue cluster galaxies are a population of late-type, low surface brightness objects which fade and are then destroyed by the cluster tidal field. After isolating the red objects from Butcher-Oemler objects, we have compared the mean color of these old, non-star-forming objects with spectral energy distribution models in the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single-burst models which predict a mean epoch of galaxy formation at z = 5. Tracing the red envelope for ellipticals places the earliest epoch of galaxy formation at z = 10.
NASA Astrophysics Data System (ADS)
Qin, Yi-Ping; Zhang, Fu-Wen
2005-12-01
Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600 keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be Γ = 116+9-9 (at the 68% confident level, triangleχ2 = 1) and the rest frame spectral peak energy to be E0,p = 2.96+0.24-0.18 keV. Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.
NASA Astrophysics Data System (ADS)
Jung, Joon Hee; Jang, Gang-Won; Shin, Dongil; Kim, Yoon Young
2018-03-01
This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.
An experimental investigation for external RC shear wall applications
NASA Astrophysics Data System (ADS)
Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.
2010-09-01
The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, B. M.; Alexeev, P. N.; Borodin, Yu. A.
The yields of long-lived nuclear fragments at an angle of 3.5° that originate fromthe fragmentation of carbon ions with an energy of T{sub 0} = 0.6 GeV per nucleon on a berylliumtarget were measured in the FRAGMexperiment at the ITEP TWA heavy-ion accelerator. The momentum spectra of these fragments cover both the fragmentation-maximum region and the cumulative region. The respective differential cross sections change by about five orders of magnitude. The momentum distributions of fragments in the laboratory frame and their kinetic-energy distributions in the rest frame of the fragmenting nucleus are used to test the predictions of four modelsmore » of ion–ion interactions: BC, INCL++, LAQGSM03.03, and QMD.« less
78 FR 51058 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... below the center wing box between frame (FR) 40 and FR 42, and in part of the area of the upper... NDT inspections for cracks in the affected areas of the keel beam side panel below the center wing box...
Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.
Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav
2012-12-01
Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.
Proton beam generation of whistler waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1987-01-01
It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.
Comparison of PA imaging by narrow beam scanning and one-shot broad beam excitation
NASA Astrophysics Data System (ADS)
Xia, Jinjun; Wei, Chen-Wei; Huang, Lingyun; Pelivanov, I. M.; O'Donnell, Matthew
2011-03-01
Current systems designed for deep photoacoustic (PA) imaging typically use a low repetition rate, high power pulsed laser to provide a ns-scale pulse illuminating a large tissue volume. Acoustic signals recorded on each laser firing can be used to reconstruct a complete 2-D (3-D) image of sources of heat release within that region. Using broad-beam excitation, the maximum frame rate of the imaging system is restricted by the pulse repetition rate of the laser. An alternate illumination approach is proposed based on fast scanning by a low energy (~ 1 mJ) high repetition rate (up to a few kHz) narrow laser beam (~1 mm) along the tissue surface over a region of interest. A final PA image is produced from the summation of individual PA images reconstructed at each laser beam position. This concept can take advantage of high repetition rate fiber lasers to create PA images with much higher frame rates than current systems, enabling true real-time integration of photoacoustics with ultrasound imaging. As an initial proof of concept, we compare conventional broad beam illumination to a scanned beam approach in a simple model system. Two transparent teflon tubes with diameters of 1.6 mm and 0.8 mm were filled with ink having an absorption coefficient of 5 cm-1. These tubes were buried inside chicken breast tissue acting as an optical scattering medium. They were separated by 3 mm or 10 mm to test spatial and contrast resolution for the two scan formats. The excitation wavelength was 700 nm. The excitation source is a traditional OPO pumped by a Q-switched Nd:YAG laser with doubler. Photoacoustic images were reconstructed using signals from a small, scanned PVDF transducer acting as an acoustic array. Two different illumination schemes were compared: one was 15 mm x 10 mm in cross section and acted as the broad beam; the other was 5 mm x 2 mm in cross section (15 times smaller than the broad beam case) and was scanned over an area equivalent to broad beam illumination. Multiple images obtained during narrow beam scanning were added together to form one PA image equivalent to the single-shot broad beam one. Results of the phantom study indicate that PA images formed by narrow beam scanning excitation can be equivalent to one shot broad beam illumination in signal to noise ratio and spatial resolution. Future studies will focus on high repetition-rate laser sources and scan formats appropriate for real-time, integrated deep photoacoustic/ultrasonic imaging.
Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography
NASA Astrophysics Data System (ADS)
Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy
2014-09-01
A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.
Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom
2018-01-01
Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall physical environment in typical star-forming galaxies.
Slomka, Piotr J; Alexanderson, Erick; Jácome, Rodrigo; Jiménez, Moises; Romero, Edgar; Meave, Aloha; Le Meunier, Ludovic; Dalhbom, Magnus; Berman, Daniel S; Germano, Guido; Schelbert, Heinrich
2012-02-01
Several models for the quantitative analysis of myocardial blood flow (MBF) at stress and rest and myocardial flow reserve (MFR) with (13)N-ammonia myocardial perfusion PET have been implemented for clinical use. We aimed to compare quantitative results obtained from 3 software tools (QPET, syngo MBF, and PMOD), which perform PET MBF quantification with either a 2-compartment model (QPET and syngo MBF) or a 1-compartment model (PMOD). We considered 33 adenosine stress and rest (13)N-ammonia studies (22 men and 11 women). Average age was 54.5 ± 15 y, and average body mass index was 26 ± 4.2. Eighteen patients had a very low likelihood of disease, with no chest pain, normal relative perfusion results, and normal function. All data were obtained on a PET/CT scanner in list mode with CT attenuation maps. Sixteen dynamic frames were reconstructed (twelve 10-s, two 30-s, one 1-min, and one 6-min frames). Global and regional stress and rest MBF and MFR values were obtained with each tool. Left ventricular contours and input function region were obtained automatically in system QPET and syngo MBF and manually in PMOD. The flow values and MFR values were highly correlated among the 3 packages (R(2) ranging from 0.88 to 0.92 for global values and from 0.78 to 0.94 for regional values. Mean reference MFR values were similar for QPET, syngo MBF, and PMOD (3.39 ± 1.22, 3.41 ± 0.76, and 3.66 ± 1.19, respectively) by 1-way ANOVA (P = 0.74). The lowest MFR in very low likelihood patients in any given vascular territory was 2.25 for QPET, 2.13 for syngo MBF, and 2.23 for PMOD. Different implementations of 1- and 2-compartment models demonstrate an excellent correlation in MFR for each vascular territory, with similar mean MFR values.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, V.
The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who had applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage G.K.O’Neill, one of the collider pioneers, wrote in 1956 [2]: “…as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy availablemore » for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle...” Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy E R = 2E beam (while a particle with the same energy E beam colliding with another particle of the mass m at rest produces only E R = (2E beam m)½ in the extreme relativistic case.) One can also add that the colliders are “cleaner” machines with respect to the fixed target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders.« less
XPAR-2 Search Mode Initial Design
2013-11-01
by an azimuth sector, an elevation sector, and out to a required maximum range. The frame-time, which is defined as the time it takes the antenna beam...continues its scan, more targets are detected and the measurements are used to form their track files, which are then updated when the beam scans over...every additional target to be tracked. Although the track update rate can be made much faster than that in the TWS mode, it is obvious that there is a
NASA Technical Reports Server (NTRS)
Park, Junhong; Palumbo, Daniel L.
2004-01-01
For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.
NASA Astrophysics Data System (ADS)
Rückwardt, M.; Göpfert, A.; Schnellhorn, M.; Correns, M.; Rosenberger, M.; Linß, G.
2010-07-01
Precise measuring of spectacle frames is an important field of quality assurance for opticians and their customers. Different supplier and a number of measuring methods are available but all of them are tactile ones. In this paper the possible employment of optical coordinate measuring machines is discussed for detecting the groove of a spectacle frame. The ambient conditions like deviation and measuring time are even multifaceted like quantity of quality characteristics and measuring objects itself and have to be tested. But the main challenge for an optical coordinate measuring machine is the blocked optical path, because the device under test is located behind an undercut. In this case it is necessary to deflect the beam of the machine for example with a rotating plane mirror. In the next step the difficulties of machine vision connecting to the spectacle frame are explained. Finally first results are given.
1. FIRST FLOOR INTERIOR OF BUILDING No. 3 DETAIL ...
1. FIRST FLOOR INTERIOR OF BUILDING No. 3 - DETAIL OF WOOD FRAMING TO SHOW WOOD COLUMNS, WOOD GIRDERS AND BEAMS WITH COLUMN CAPS - ORIGINAL CONSTRUCTION - Whiting-Plover Paper Mill, Building No. 3, 3243 Whiting Road, Whiting, Portage County, WI
29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.
Code of Federal Regulations, 2010 CFR
2010-07-01
... when employees are kept out of the area below. (f) In buildings of “skeleton-steel” construction, the steel framing may be left in place during the demolition of masonry. Where this is done, all steel beams...
29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.
Code of Federal Regulations, 2011 CFR
2011-07-01
... when employees are kept out of the area below. (f) In buildings of “skeleton-steel” construction, the steel framing may be left in place during the demolition of masonry. Where this is done, all steel beams...
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong
2002-01-01
The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.
Beam-driven acceleration in ultra-dense plasma media
Shin, Young-Min
2014-09-15
Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less
Control of the diocotron instability of a hollow electron beam with periodic dipole magnets
Jo, Y. H.; Kim, J. S.; Stancari, G.; ...
2017-12-28
A method to control the diocotron instability of a hollow electron beam with peri-odic dipole magnetic fields has been investigated by a two-dimensional particle-in-cell simulation. At first, relations between the diocotron instability and several physical parameters such as the electron number density, current and shape of the electron beam, and the solenoidal field strength are theoretically analyzed without periodic dipole magnetic fields. Then, we study the effects of the periodic dipole magnetic fields on the diocotron instability using the two-dimensional particle-in-cell simulation. In the simulation, we considered the periodic dipole magnetic field applied along the propagation direction of the beam,more » as a temporally varying magnetic field in the beam frame. Lastly, a stabilizing effect is observed when the oscillating frequency of the dipole magnetic field is optimally chosen, which increases with the increasing amplitude of the dipole magnetic field.« less
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.
A metrology system for a high resolution cavity beam position monitor system
NASA Astrophysics Data System (ADS)
Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen
2013-11-01
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.
Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation
NASA Technical Reports Server (NTRS)
Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri
2002-01-01
The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.
Thomas precession, Wigner rotations and gauge transformations
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Son, D.
1987-01-01
The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.
NASA Astrophysics Data System (ADS)
Matthee, Jorryt; Sobral, David; Darvish, Behnam; Santos, Sérgio; Mobasher, Bahram; Paulino-Afonso, Ana; Röttgering, Huub; Alegre, Lara
2017-11-01
We present spectroscopic follow-up of candidate luminous Ly α emitters (LAEs) at z = 5.7-6.6 in the SA22 field with VLT/X-SHOOTER. We confirm two new luminous LAEs at z = 5.676 (SR6) and z = 6.532 (VR7), and also present HST follow-up of both sources. These sources have luminosities LLy α ≈ 3 × 1043 erg s-1, very high rest-frame equivalent widths of EW0 ≳ 200 Å and narrow Ly α lines (200-340 km s-1). VR7 is the most UV-luminous LAE at z > 6.5, with M1500 = -22.5, even brighter in the UV than CR7. Besides Ly α, we do not detect any other rest-frame UV lines in the spectra of SR6 and VR7, and argue that rest-frame UV lines are easier to observe in bright galaxies with low Ly α equivalent widths. We confirm that Ly α line widths increase with Ly α luminosity at z = 5.7, while there are indications that Ly α lines of faint LAEs become broader at z = 6.6, potentially due to reionization. We find a large spread of up to 3 dex in UV luminosity for >L⋆ LAEs, but find that the Ly α luminosity of the brightest LAEs is strongly related to UV luminosity at z = 6.6. Under basic assumptions, we find that several LAEs at z ≈ 6-7 have Ly α escape fractions ≳ 100 per cent, indicating bursty star formation histories, alternative Ly α production mechanisms, or dust attenuating Ly α emission differently than UV emission. Finally, we present a method to compute ξion, the production efficiency of ionizing photons, and find that LAEs at z ≈ 6-7 have high values of log10(ξion/Hz erg-1) ≈ 25.51 ± 0.09 that may alleviate the need for high Lyman-Continuum escape fractions required for reionization.
NASA Astrophysics Data System (ADS)
Toft, S.; van Dokkum, P.; Franx, M.; Labbe, I.; Förster Schreiber, N. M.; Wuyts, S.; Webb, T.; Rudnick, G.; Zirm, A.; Kriek, M.; van der Werf, P.; Blakeslee, J. P.; Illingworth, G.; Rix, H.-W.; Papovich, C.; Moorwood, A.
2007-12-01
We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2
NASA Astrophysics Data System (ADS)
Fujimoto, Seiji; Ouchi, Masami; Shibuya, Takatoshi; Nagai, Hiroshi
2017-11-01
We present the large statistics of the galaxy effective radius R e in the rest-frame far-infrared (FIR) wavelength {R}{{e}({FIR})} obtained from 1627 Atacama Large Millimeter/submillimeter Array (ALMA) 1 mm band maps that become public by 2017 July. Our ALMA sample consists of 1034 sources with the star formation rate ˜ 100{--}1000 {M}⊙ {{yr}}-1 and the stellar mass ˜ {10}10{--}{10}11.5 {M}⊙ at z = 0-6. We homogeneously derive {R}{{e}({FIR})} and FIR luminosity L FIR of our ALMA sources via the uv-visibility method with the exponential disk model, carefully evaluating selection and measurement incompletenesses by realistic Monte-Carlo simulations. We find that there is a positive correlation between {R}{{e}({FIR})} and L FIR at the >99% significance level. The best-fit power-law function, {R}{{e}({FIR})}\\propto {L}{FIR}α , provides α =0.28+/- 0.07, and shows that {R}{{e}({FIR})} at a fixed L FIR decreases toward high redshifts. The best-fit α and the redshift evolution of {R}{{e}({FIR})} are similar to those of R e in the rest-frame UV (optical) wavelength {R}{{e}({UV})} ({R}{{e}({Opt}.)}) revealed by Hubble Space Telescope (HST) studies. We identify that our ALMA sources have significant trends of {R}{{e}({FIR})}≲ {R}{{e}({UV})} and {R}{{e}({Opt}.)}, which suggests that the dusty starbursts take place in compact regions. Moreover, {R}{{e}({FIR})} of our ALMA sources is comparable to {R}{{e}({Opt}.)} of quiescent galaxies at z ˜ 1-3 as a function of stellar mass, supporting the evolutionary connection between these two galaxy populations. We also investigate rest-frame UV and optical morphologies of our ALMA sources with deep HST images, and find that ˜30%-40% of our ALMA sources are classified as major mergers. This indicates that dusty starbursts are triggered by not only the major mergers but also the other mechanism(s).
Relativistic Transverse Gravitational Redshift
NASA Astrophysics Data System (ADS)
Mayer, A. F.
2012-12-01
The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.
NASA Astrophysics Data System (ADS)
Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.
2017-02-01
Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.
Transverse Beam Dynamics in the Modified Betatron.
1982-03-01
charge, m is the electron rest mass, and c is the speed of light . Self field effects will modify Eq. (1) however. A nonneutral current ring produces both a...magnetic flux or stream func- tion *P(p.) rA, where A, is the usual vector potential. The equations for 4 and 1 are 17 CHERNJN AND SPRANGLE p-[ l 2 - ( o...8217- 4). (A-21) m m 2 Using Eq. (A-21) in Eq. (A-20) the resulting integrals are elementary. The result, for the vector potential inside the beam is Ask
An investigation of articulatory setting using real-time magnetic resonance imaging
Ramanarayanan, Vikram; Goldstein, Louis; Byrd, Dani; Narayanan, Shrikanth S.
2013-01-01
This paper presents an automatic procedure to analyze articulatory setting in speech production using real-time magnetic resonance imaging of the moving human vocal tract. The procedure extracts frames corresponding to inter-speech pauses, speech-ready intervals and absolute rest intervals from magnetic resonance imaging sequences of read and spontaneous speech elicited from five healthy speakers of American English and uses automatically extracted image features to quantify vocal tract posture during these intervals. Statistical analyses show significant differences between vocal tract postures adopted during inter-speech pauses and those at absolute rest before speech; the latter also exhibits a greater variability in the adopted postures. In addition, the articulatory settings adopted during inter-speech pauses in read and spontaneous speech are distinct. The results suggest that adopted vocal tract postures differ on average during rest positions, ready positions and inter-speech pauses, and might, in that order, involve an increasing degree of active control by the cognitive speech planning mechanism. PMID:23862826
Boruah, B R; Neil, M A A
2009-01-01
We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.
Martisikova, M; Jakubek, J; Gwosch, K; Hartmann, B; Telsemeyer, J; Soukup, P; Granja, C; Pospisil, S; Jaekel, O
2012-06-01
Radiation therapy with ion beams provides highly conformal dose distributions. Therefore, monitoring the dose delivery within the patient in a non- invasive way is desired. The clinically available method based on tissue activation measurements with a PET-camera shows limitations due to the low induced activities and biological washout of the activated nuclei. The prompt production of secondary ions is supposed to be less influenced by biological processes. This contribution investigates the feasibility of beam range monitoring in a patient-like geometry containing realistic tissue inhomogeneities. The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany using carbon ion beams of 213 and 250MeV/u. Static pencil beams (FWHM of 6mm) were applied to the skull base and brain regions of a head phantom containing real bones. The emerging secondary ions were registered by the silicon detector Timepix. It was developed by the Medipix Collaboration and provides 256×256 pixels with 55um pitch. To determine the direction of the particles, a multi-layered detector (3D voxel detector, J.Jakubek etal. JINST6 C12010) was employed. The contribution of K. Gwosch etal. addresses the performance of this method in a homogeneous phantom. In the 3D distributions of the measured secondary ions clear differences between the application of lower and higher energies were observed. This Result was achieved in both brain (homogeneous) and skull base regions (containing inhomogeneities). Differences between the energies could be observed with the detector positioned on the occipital side as well as on the facial side of the head. We performed the first experiments towards beam range monitoring in a patient-like geometry exploiting tracking of prompt secondary ions with a small detector prototype. Despite the inherent tissue inhomogeneities, we found sensitivity on the beam range in both brain and skull base. Research carried out in frame of the Medipix Collaboration. Research carried out in frame of the Medipix Collaboration. © 2012 American Association of Physicists in Medicine.
Kapitan, Miguel; Beltran, Alvaro; Beretta, Mario; Mut, Fernando
2018-04-01
There is paucity of data on left ventricular (LV) functional parameters using gated SPECT myocardial perfusion imaging (MPI) from the Latin American region. This study provides detailed information in low-risk patients both at rest and during exercise. We studied 90 patients (50 men) with a very low likelihood of coronary artery disease. Gated-SPECT MPI was performed with Tc-99m MIBI using a 2-day protocol, with 16 frames/R-R cycle. The LV ejection fraction and volumes were not different between the rest and post-stress images. LVEF was 68 ± 7% post-stress and 70 ± 7% at rest in women, and 62 ± 7% and 63 ± 7%, respectively, in men (P = .19, .26). LV volumes were larger in men than women (P < .01). There were no differences in most variables obtained at rest or post-stress. Transient ischemic dilatation was similar, with upper limits of 1.20 and 1.19 in women and men, respectively (P = NS). These data could prove helpful for the interpretation of gated SPECT MPI data in Latin America using identical protocol as used in this study.
Stress Analysis of Columns and Beam Columns by the Photoelastic Method
NASA Technical Reports Server (NTRS)
Ruffner, B F
1946-01-01
Principles of similarity and other factors in the design of models for photoelastic testing are discussed. Some approximate theoretical equations, useful in the analysis of results obtained from photoelastic tests are derived. Examples of the use of photoelastic techniques and the analysis of results as applied to uniform and tapered beam columns, circular rings, and statically indeterminate frames, are given. It is concluded that this method is an effective tool for the analysis of structures in which column action is present, particularly in tapered beam columns, and in statically indeterminate structures in which the distribution of loads in the structures is influenced by bending moments due to axial loads in one or more members.
Role of neutrino mixing in accelerated proton decay
NASA Astrophysics Data System (ADS)
Blasone, M.; Lambiase, G.; Luciano, G. G.; Petruzziello, L.
2018-05-01
The decay of accelerated protons has been analyzed both in the laboratory frame (where the proton is accelerated) and in the comoving frame (where the proton is at rest and interacts with the Fulling-Davies-Unruh thermal bath of electrons and neutrinos). The equality between the two rates has been exhibited as an evidence of the necessity of Fulling-Davies-Unruh effect for the consistency of quantum field theory formalism. Recently, it has been argued that neutrino mixing can spoil such a result, potentially opening new scenarios in neutrino physics. In the present paper, we analyze in detail this problem, and we find that, assuming flavor neutrinos to be fundamental and working within a certain approximation, the agreement can be restored.
The Equilibrium Rule--A Personal Discovery
ERIC Educational Resources Information Center
Hewitt, Paul G.
2016-01-01
Examples of equilibrium are evident everywhere and the equilibrium rule provides a reasoned way to view all things, whether in static (balancing rocks, steel beams in building construction) or dynamic (airplanes, bowling balls) equilibrium. Interestingly, the equilibrium rule applies not just to objects at rest but whenever any object or system of…
Diaphragm motion quantification in megavoltage cone-beam CT projection images.
Chen, Mingqing; Siochi, R Alfredo
2010-05-01
To quantify diaphragm motion in megavoltage (MV) cone-beam computed tomography (CBCT) projections. User identified ipsilateral hemidiaphragm apex (IHDA) positions in two full exhale and inhale frames were used to create bounding rectangles in all other frames of a CBCT scan. The bounding rectangle was enlarged to create a region of interest (ROI). ROI pixels were associated with a cost function: The product of image gradients and a gradient direction matching function for an ideal hemidiaphragm determined from 40 training sets. A dynamic Hough transform (DHT) models a hemidiaphragm as a contour made of two parabola segments with a common vertex (the IHDA). The images within the ROIs are transformed into Hough space where a contour's Hough value is the sum of the cost function over all contour pixels. Dynamic programming finds the optimal trajectory of the common vertex in Hough space subject to motion constraints between frames, and an active contour model further refines the result. Interpolated ray tracing converts the positions to room coordinates. Root-mean-square (RMS) distances between these positions and those resulting from an expert's identification of the IHDA were determined for 21 Siemens MV CBCT scans. Computation time on a 2.66 GHz CPU was 30 s. The average craniocaudal RMS error was 1.38 +/- 0.67 mm. While much larger errors occurred in a few near-sagittal frames on one patient's scans, adjustments to algorithm constraints corrected them. The DHT based algorithm can compute IHDA trajectories immediately prior to radiation therapy on a daily basis using localization MVCBCT projection data. This has potential for calibrating external motion surrogates against diaphragm motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brice, S. J.; Cooper, R. L.; DeJongh, F.
2014-04-03
We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for amore » CENNS experiment.« less
NASA Astrophysics Data System (ADS)
Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.
2018-05-01
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.
Spectral structure of a polycapillary lens shaped X-ray beam
NASA Astrophysics Data System (ADS)
Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.
2018-04-01
Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.
Iodine filter imaging system for subtraction angiography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.
1993-11-01
A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.
NASA Astrophysics Data System (ADS)
Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald
2018-04-01
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
The K-selected Butcher-Oemler Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, S A; De Propris, R; Dickinson, M
2004-03-02
We investigate the Butcher-Oemler effect using samples of galaxies brighter than observed frame K* + 1.5 in 33 clusters at 0.1 {approx}< z {approx}< 0.9. We attempt to duplicate as closely as possible the methodology of Butcher & Oemler. Apart from selecting in the K-band, the most important difference is that we use a brightness limit fixed at 1.5 magnitudes below an observed frame K* rather than the nominal limit of rest frame M(V ) = -20 used by Butcher & Oemler. For an early type galaxy at z = 0.1 our sample cutoff is 0.2 magnitudes brighter than restmore » frame M(V ) = -20, while at z = 0.9 our cutoff is 0.9 magnitudes brighter. If the blue galaxies tend to be faint, then the difference in magnitude limits should result in our measuring lower blue fractions. A more minor difference from the Butcher & Oemler methodology is that the area covered by our galaxy samples has a radius of 0.5 or 0.7 Mpc at all redshifts rather than R{sub 30}, the radius containing 30% of the cluster population. In practice our field sizes are generally similar to those used by Butcher & Oemler. We find the fraction of blue galaxies in our K-selected samples to be lower on average than that derived from several optically selected samples, and that it shows little trend with redshift. However, at the redshifts z < 0.6 where our sample overlaps with that of Butcher & Oemler, the difference in fB as determined from our K-selected samples and those of Butcher & Oemler is much reduced. The large scatter in the measured f{sub B}, even in small redshift ranges, in our study indicates that determining the f{sub B} for a much larger sample of clusters from K-selected galaxy samples is important. As a test of our methods, our data allow us to construct optically-selected samples down to rest frame M(V ) = -20, as used by Butcher & Oemler, for four clusters that are common between our sample and that of Butcher & Oemler. For these rest V selected samples, we find similar fractions of blue galaxies to Butcher & Oemler, while the K selected samples for the same 4 clusters yield blue fractions which are typically half as large. This comparison indicates that selecting in the K-band is the primary difference between our study and previous optically-based studies of the Butcher & Oemler effect. Selecting in the observed K-band is more nearly a process of selecting galaxies by their mass than is the case for optically-selected samples. Our results suggest that the Butcher-Oemler effect is at least partly due to low mass galaxies whose optical luminosities are boosted. These lower mass galaxies could evolve into the rich dwarf population observed in nearby clusters.« less
Extraction electrode geometry for a calutron
Veach, A.M.; Bell, W.A. Jr.
1975-09-23
This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)
Operational Design: The Importance of Getting the Fundamentals Right
2010-04-01
problems require only a simple form of Aristotelian mission analysis. They can be broken down into parts and treated accordingly. Davison 44...collection of subtly alternative but essentially derivative theories have promised to break through into mainstream doctrine. SOD itself has matured...desired system frame. This is the theory of action that informs the rest of the planning process. This transitional step is commander led, as it
Investigating Supermassive Black Hole Spin at Different Redshift
NASA Astrophysics Data System (ADS)
Sinanan-Singh, Jasmine
2018-01-01
Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.
2017-10-01
We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.
Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission
NASA Astrophysics Data System (ADS)
Lestone, J. P.
2016-01-01
A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.
Rest-frame optical photometry of a z-7.54 quasar and its environment
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Banados, Eduardo; Fan, Xiaohui; Walter, Fabian; Venemans, Bram; Paolo, Emanuele; Mazzucchelli, Chiara; Wang, Feige; Stern, Daniel
2017-10-01
Bright quasars are unique tools to study the dawn of galaxy and black hole formation, and to investigate the properties of the universe at the earliest cosmic epochs. We recently discovered the luminous quasar ULAS J1342+0928 at a record-breaking redshift of z=7.54 (whereas the previous quasar redshift record holder was at z=7.08). The presence of a damping wing in the quasar's spectrum, associated with a highly neutral intergalactic medium, and the high bolometric luminosity, powered by accretion on a supermassive, 8e8 Msun black hole, set unparalleled constraints on the history of reionization and on the formation and evolution of first massive black holes, only 690 Myr after the Big Bang. Here we propose to obtain sensitive Spitzer observations to sample the rest-frame optical emission of this quasar and of potential bright companion galaxies. By complementing our already secured observations with HST, IRAM/NOEMA, ALMA, and many other facilities, the proposed dataset will allow us (1) to constrain the Spectral Energy Distribution of the quasar, thus disentangling the contribution of its various components at optical wavelengths; (2) to investigate the quasar environment; and (3) to lay the foundation for high-resolution imaging and sensitive spectroscopy at MIR wavelengths with the James Webb Space Telescope.
How Accurate Are Infrared Luminosities from Monochromatic Photometric Extrapolation?
NASA Astrophysics Data System (ADS)
Lin, Zesen; Fang, Guanwen; Kong, Xu
2016-12-01
Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ({L}{IR}) of galaxies. By utilizing multi-wavelength data that covers across 0.35-500 μm in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated {L}{IR} based on three IR spectral energy distribution (SED) templates out to z˜ 3.5. We find that the Chary & Elbaz template provides the best estimate of {L}{IR} in Herschel/Photodetector Array Camera and Spectrometer (PACS) bands, while the Dale & Helou template performs best in Herschel/Spectral and Photometric Imaging Receiver (SPIRE) bands. To estimate {L}{IR}, we suggest that extrapolations from the available longest wavelength PACS band based on the Chary & Elbaz template can be a good estimator. Moreover, if the PACS measurement is unavailable, extrapolations from SPIRE observations but based on the Dale & Helou template can also provide a statistically unbiased estimate for galaxies at z≲ 2. The emission with a rest-frame 10-100 μm range of IR SED can be well described by all three templates, but only the Dale & Helou template shows a nearly unbiased estimate of the emission of the rest-frame submillimeter part.
ALMA resolves extended star formation in high-z AGN host galaxies
NASA Astrophysics Data System (ADS)
Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian
2016-03-01
We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (I.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.
NASA Astrophysics Data System (ADS)
Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.
2016-09-01
Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O III]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O III]λ4363 measurements.
NASA Astrophysics Data System (ADS)
Huang, Jiasheng; Aretxaga, Itziar; Ashby, Mat; Fazio, Giovanni; Hughes, David; Ilbert, Olivier; Le Floc'h, Emeric; Lowenthal, James; Sanders, David; Scoville, Nick; Webb, Tracy; Wilner, David; Wilson, Grant; Yan, Lin; Younger, Joshua; Yun, Min
2007-05-01
In 2007 January, we detected no fewer than five AzTEC 1.1 mm galaxies via high-resolution interferometric imaging with the Sub-Millimeter Array (SMA) atop Mauna Kea at 890 microns. Despite the fact that these sources are all radio-quiet SMGs, with the high S/N SMA detections in the narrow SMA beam we unambiguously determine the position of the AzTEC galaxies with subarcsecond accuracy. All the counterparts, which lie in the SCOSMOS survey, are detected by IRAC at 3.6 and 4.5 microns in the existing SCOSMOS mosaics. Only two are detected at the longer IRAC wavelengths, however, and none are detected in the existing 24 micron data. Furthermore, only two are detected at optical wavelengths. These sources thus present (incomplete) SEDs that appear consistent with their being either 1. deeply dust-enshrouded galaxies at z=2, or 2. a distant z=4 population of very luminous objects. Because they are so optically faint, only broadband imaging such as Spitzer can provide will permit construction of their rest-frame optical-near-IR SEDs. This appears to be the only way to discriminate between the two possibilities for the origin of SMGs that are radio-quiet. Accordingly, we ask for 37.4 h to carry out a very deep imaging program utilizing all three Spitzer instruments to construct the SEDs for the four SMGs in our sample.
A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation
NASA Technical Reports Server (NTRS)
Voellmer, George
2008-01-01
One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.
NASA Astrophysics Data System (ADS)
Altinok, O.; Le, T.; Aliaga, L.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres Vera, G. F. R.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Han, J. Y.; Harris, D. A.; Kleykamp, J.; Kordosky, M.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Yaeggy, B.
2017-10-01
The semiexclusive channel νμ+CH →μ-π0+nucleon(s ) is analyzed using MINERvA exposed to the low-energy NuMI νμ beam with spectral peak at Eν≃3 GeV . Differential cross sections for muon momentum and production angle, π0 kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section σ (Eν) is obtained over the range 1.5 GeV ≤Eν<20 GeV . Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for charged-current π+(π0) production by νμ(ν¯μ) neutrinos. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for Q2 that may reflect shortfalls in modeling of interactions on carbon. For π0 kinematic distributions, however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as π0 mesons, the p π0 invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the p π0 system are measured in the region of Δ (1232 )+ production, W <1.4 GeV .
Altinok, O.; Le, T.; Aliaga, L.; ...
2017-10-01
The semiexclusive channel νμ+CH→μ-π0+nucleon(s) is analyzed using MINERvA exposed to the low-energy NuMI νμ beam with spectral peak at Eν≃3 GeV. Differential cross sections for muon momentum and production angle, π0 kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section σ(Eν) is obtained over the range 1.5 GeV≤Eν<20 GeV. Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for charged-current π+(π0) production by νμ(ν¯μ) neutrinos. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for Q2 that may reflectmore » shortfalls in modeling of interactions on carbon. For π0 kinematic distributions, however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as π0 mesons, the pπ0 invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the pπ0 system are measured in the region of Δ(1232)+ production, W<1.4 GeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altinok, O.; Le, T.; Aliaga, L.
The semiexclusive channel νμ+CH→μ-π0+nucleon(s) is analyzed using MINERvA exposed to the low-energy NuMI νμ beam with spectral peak at Eν≃3 GeV. Differential cross sections for muon momentum and production angle, π0 kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section σ(Eν) is obtained over the range 1.5 GeV≤Eν<20 GeV. Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for charged-current π+(π0) production by νμ(ν¯μ) neutrinos. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for Q2 that may reflectmore » shortfalls in modeling of interactions on carbon. For π0 kinematic distributions, however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as π0 mesons, the pπ0 invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the pπ0 system are measured in the region of Δ(1232)+ production, W<1.4 GeV.« less
Six-degrees-of-freedom sensing based on pictures taken by single camera.
Zhongke, Li; Yong, Wang; Yongyuan, Qin; Peijun, Lu
2005-02-01
Two six-degrees-of-freedom sensing methods are presented. In the first method, three laser beams are employed to set up Descartes' frame on a rigid body and a screen is adopted to form diffuse spots. In the second method, two superimposed grid screens and two laser beams are used. A CCD camera is used to take photographs in both methods. Both approaches provide a simple and error-free method to record the positions and the attitudes of a rigid body in motion continuously.
NASA Technical Reports Server (NTRS)
Wilson, L. N.
1970-01-01
The mathematical bases for the direct measurement of sound source intensities in turbulent jets using the crossed-beam technique are discussed in detail. It is found that the problems associated with such measurements lie in three main areas: (1) measurement of the correct flow covariance, (2) accounting for retarded time effects in the measurements, and (3) transformation of measurements to a moving frame of reference. The determination of the particular conditions under which these problems can be circumvented is the main goal of the study.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.
The optical and near-infrared colors of galaxies, 1: The photometric data
NASA Technical Reports Server (NTRS)
Bershady, Matthew A.; Hereld, Mark; Kron, Richard G.; Koo, David C.; Munn, Jeffrey A.; Majewski, Steven R.
1994-01-01
We present optical and near-infrared photometry and spectroscopic redshifts of a well defined sample of 171 field galaxies selected from three high galactic latitude fields. This data set forms the basis for subsequent studies to characterize the trends, dispersion, and evolution of rest-frame colors and image structure. A subset of 143 galaxies constitutes a magnitude-limited sample to B approx. 19.9-20.75 (depending on field), with a median redshift of 0.14, and a maximum redshift of 0.54. This subset is statistically representative in its sampling of the apparent color distribution of galaxies. Thirty six galaxies were selected to have the reddest red-optical colors in two redshift intervals between 0.2 less than z less than 0.3. Photometric passbands are similar to U, B, V, I, and K, and sample galaxy spectral energy distributions between 0.37 and 2.2 micrometers in the observed frame, or down to 0.26 micrometers in the rest frame for the most distant galaxies. B and K images of the entire sample are assembled to form the first optical and near-infrared atlas of a statistically-representative sample of field galaxies. We discuss techniques for faint field-galaxy photometry, including a working definition of a total magnitude, and a method for matching magnitudes in different passbands and different seeing conditions to ensure reliable, integrated colors. Photographic saturation, which substantially affects the brightest 12% of our sample in the optical bands, is corrected with a model employing measured plate-density distributions for each galaxy, calibrated via similar measurements for stars as a function of known saturation level. Both the relative and absolute calibration of our photometry are demonstrated.
NASA Astrophysics Data System (ADS)
Cyuzuzo, Sonia
2014-09-01
The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. Acknowledging NSF and UIUC.
NASA Astrophysics Data System (ADS)
Hagen, Alex
This thesis concentrates on the physical and morphological properties of galaxies via image analysis and spectral energy distribution fitting. My research primarily focuses on Lyman-alpha emitting galaxies (LAEs) at z 2, but to place the investigations in context, comparison samples of galaxies are also used. These galaxies present the opportunity to study formation and evolution of low-mass galaxies at this redshift, which is extremely difficult using continuum selection methods. Chapter 1 gives an introduction to LAEs and puts them in the context of galaxy formation and evolution. Chapter 2 was originally published as Hagen et al. (2014), which studied the physical properties of LAEs at 1.9 < z < 3.5 from the HETDEX Pilot Survey (Adams et al. 2011; Blanc et al. 2011). This paper found that LAEs span almost a three dex range in stellar mass and could be simply drawn for the star-forming galaxy mass function. We also found that, while most LAEs are dust poor, there were some objects that weren't. The Lyman-alpha photons seem to experience the same dust opacity as the UV continuum, suggesting that in these galaxies Lyman-alpha does not undergo significant scattering before escaping. This result, when matched with radiative transfer simulations, will help to constrain how Lyman-alpha escapes galaxies. Chapter 3, originally published as Hagen et al. (2016), describes research that studies how Lyman-alpha emitters are drawn from star-forming galaxies. This work used galaxies identified via their optical emission lines (oELGs) as a comparison sample (Zeimann et al. 2015a). These oELGs have a mass range similar to LAEs and are an excellent comparison sample to LAEs. Previous comparison samples, such as LBGs, are two dex more massive than LAEs and thus do not represent galaxies in the same evolutionary state as LAEs. We compared ten physical and morphological properties between Lyman-alpha and non-Lyman-alpha emitting galaxies and found no statistically significant differences between these two populations. This null result is actually very exciting, as this suggests that LAEs--such as the 106 LAEs soon to be found by HETDEX--can be used as unbiased tracers of the star-forming galaxy population. Chapter 4, originally Hagen et al. (2017), examines the rest-frame UV and rest-frame optical sizes of LAEs and oELGs from Zeimann et al. (2015a). We found that these morphological properties are indistinguishable between the samples, and that the galaxies are smaller in the rest-frame optical compared to the rest-frame UV. This suggests that low-mass galaxies are undergoing inside-out galaxy formation, which some papers had thought was only in higher mass galaxies. Chapter 5 is a proof-of-concept to show that LAEs detected from HETDEX commissioning observations can be cross-matched to Hubble Space Telescope counterparts, which then can be used to perform significant research into galaxy formation and evolution. This chapter will continue to be developed into a journal article. Chapter 6 summarizes the findings of this work and discusses future research opportunities with HETDEX.
Probing the Building Blocks of Galactic Disks: An Analysis of Ultraviolet Clumps
NASA Astrophysics Data System (ADS)
Soto, Emmaris
The universe is filled with a diversity of galaxies; however, despite these diversities we are able to group galaxies into morphological categories, such as Hubble types, that may indicate different paths of evolution. In order to understand the evolution of galaxies, such as our own Milk Way, it is necessary to study the underlying star formation over cosmic time. At high redshift (z>2) star-forming galaxies reveal asymmetric and clumpy morphologies. However, the evolutionary process which takes clumpy galaxies from z>2 to the smooth axially symmetric Hubble-type galaxies in place at z˜0.5 is still unknown. Therefore, it is vital to make a connection between the morphologies of galaxies at the peak epoch of cosmic star formation at z˜2 with the galaxies observed in the local universe to better understand the mechanisms that led to their evolution. To address this and chronicle the progression of galaxy evolution, deep high resolution multi-wavelength data is used to study galaxies across cosmic time. This dissertation provides a detailed study of clumpy star-forming galaxies at intermediate redshifts, 0.5 ≤ z ≤ 1.5, focusing on sub-galactic regions of star formation which provide a mechanism to explain the evolution of clumpy galaxies to the spiral galaxies we observe today. We developed a clump-finding algorithm to select a sample of clumpy galaxies from the Ultraviolet Ultra Deep Field (UVUDF). The UVUDF was the first deep image (˜28 AB mag) ever taken with the Hubble Space Telescope (HST) showing the rest-frame far-ultraviolet (FUV, 1500A) at intermediate-z. The rest-frame FUV probes the young star-forming regions which are often seen in clumpy galaxies at high redshift. We identified 209 clumpy galaxies (hereafter host galaxies) from 1,404 candidates at intermediate redshifts. We used the HST Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) broadband images from the UVUDF with observed near-ultraviolet, optical, and near-infrared photometry to determine their stellar properties via spectral energy distribution (SED) fitting. We estimated properties such as the mass, age, star formation rate (SFR), and metallicity of host galaxies. The deep high resolution WFC3 rest-frame FUV data allowed us to detect and measure the sizes of 403 clumps. The results provided evidence to support clump migration as a mechanism for galaxy evolution. We show that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Additionally, individual clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from less than 1% up to 93%. We showed that clumps in the outskirts of galaxies are typically younger, with higher star formation rates than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
Magneto-optical cooling of atoms.
Raizen, Mark G; Budker, Dmitry; Rochester, Simon M; Narevicius, Julia; Narevicius, Edvardas
2014-08-01
We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power.
The X-ray evolution of inflows and outflows in active galactic nuclei
NASA Astrophysics Data System (ADS)
Saez, Cristian
The evolution of the space density of AGNs might have spectral counterparts which could be observable in X-rays. The main objective of this thesis is to study the spectral properties of AGNs in X-rays in order to increase our current knowledge of AGN evolution. In chapter 2, we present results from a statistical analysis of 173 bright radio-quiet AGNs selected from the Chandra Deep Field-North and Chandra Deep Field-South surveys (hereafter, CDFs) in the redshift range of 0.1 ≲z≲ 4. We find that the X-ray power-law photon index (Gamma) of radio-quiet AGNs is correlated with their 2--10 keV rest-frame X-ray luminosity ( LX) at the > 99.5% confidence level in two redshift bins, 0.3 ≲z≲ 0.96, and 1.5 ≲z≲ 3.3 and is slightly less significant in the redshift bin 0.96 ≲z≲ 1.5. The X-ray spectral slope steepens as the X-ray luminosity increases for AGNs in the luminosity range 1042 to 1045 erg s-1. Combining our results from the CDFs with those from previous studies in the redshift range 1.5 ≲z≲ 3.3, we find that the Gamma -- L X correlation has a null-hypothesis probability of 1.6 x 10 -9. We investigate the redshift evolution of the correlation between the power-law photon index and the hard X-ray luminosity and find that the slope and offset of a linear fit to the correlation change significantly (at the > 99.9% confidence level) between redshift bins of 0.3 ≲z≲ 0.96 and 1.5 ≲z≲ 3.3. We explore physical scenarios explaining the origin of this correlation and its possible evolution with redshift in the context of steady corona models focusing on its dependency on variations of the properties of the hot corona with redshift. In chapter 3, we present results from three Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of ≲ 2 keV (low-energy) and 7--12 keV (high-energy). The detection of these features confirms the results of previous long-exposure (80--90 ks) Chandra and XMM-Newton observations. The low and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku XIS spectra (with an F-test significance of ≳ 99%). We interpret the low-energy absorption as arising from a low-ionization absorber with log (NH/cm-2) ˜ 23 and the high-energy absorption as due to lines arising from highly ionized (2.75 ≲ log xi ≲ 4.0; where xi is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be ≲ 36°. We also detect likely variability of the absorption lines (at the ≳ 99.9% and ≳ 98% significance levels in the FI and BI spectra, respectively) with a rest-frame time scale of ˜1 month. Assuming that the detected high-energy absorption features arise from Fe XXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be ≳ 10%. In chapter 4, we present an expansion of our previous work on the study of X-ray outflows on APM 08279+5255. The main conclusions from our multi-epoch spectral analysis of Chandra, XMM-Newton and Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line (BAL) quasar APM 08279+5255 are: (1) In every observation we confirm the presence of two strong features, one at rest-frame energies between 1--4 keV, and the other between 7--18 keV. (2) The low-energy absorption is interpreted as arising (1--4 keV rest-frame) from a low-ionization absorber with log (N H/cm-2) ˜ 23 and the high-energy absorption (7--18 keV rest-frame) as due to lines arising from highly ionized (3 ≲ log xi ≲ 4; where xi is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to ˜ 0.7c. We also present results obtained from fits to all the long exposure observations of APM 08279+5255 with a new outflow model. (Abstract shortened by UMI.)
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352
NASA Astrophysics Data System (ADS)
Chen, Yumin; Zhang, Zhichao; Liu, Hanlong
2017-04-01
The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall's global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.
15. DETAIL OF UNDERSIDE OF BRIDGE, SHOWING LONGITUDINAL STRINGERS SUPPORTING ...
15. DETAIL OF UNDERSIDE OF BRIDGE, SHOWING LONGITUDINAL STRINGERS SUPPORTING WOODEN DECK AND RESTING ON TRANSVERSE FLOOR BEAMS. DIAGONAL EYE BARS FOR REINFORCEMENT ARE SEEN AT CENTER; VIEW FROM SOUTH BANK. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
Polarization of photons scattered by electrons in any spectral distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo, E-mail: jiangyg@ihep.ac.cn
On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incidentmore » bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.« less
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuzaki, Y; Jenkins, C; Yang, Y
Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light ismore » emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R{sup 2}=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.« less
Use Hardwoods for Building Components
Glenn A. Cooper; William W. Rice
1968-01-01
Describes a system for prefabricating structural units from hardwoods for use in floors, roofs, and walls of a-frame or post-and-beam type construction. The interior face of the unit is decorative paneling; the exterior face is sheathing. Use of the system could reduce prefabricated house construction costs compared to conventional construction costs.
NASA Astrophysics Data System (ADS)
Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni
2017-10-01
Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of the infilled RC frame, it was still stronger and stiffer than the bare frame.
A high flux source of swift oxygen atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.
Dynamic beam steering at submm- and mm-wave frequencies using an optically controlled lens antenna
NASA Astrophysics Data System (ADS)
Gallacher, T. F.; Søndenâ, R.; Robertson, D. A.; Smith, G. M.
2013-05-01
We present details of our work which has been focused on improving the efficiency and scan rate of the photo-injected Fresnel zone plate antenna (piFZPA) technique which utilizes commercially available visible display technologies. This approach presents a viable low-cost solution for non-mechanical beam steering, suitable for many applications at (sub) mm-wave frequencies that require rapid beam steering capabilities in order to meet their technological goals, such as imaging, surveillance, and remote sensing. This method has the advantage of being comparatively low-cost, is based on a simple and flexible architecture, enabling rapid and precise arbitrary beam forming, and which is scalable to higher frame-rates and higher submm-wave frequencies. We discuss the various optimization stages of a range of piFZPA designs that implement fast visible projection displays, enabling up to 30,000 beams per second. We also outline the suitability of this technology across mm-wave and submm-wave frequencies as a low-cost and simple solution for dynamic optoelectronic beam steering.
Stability properties of a thin relativistic beam propagation in a magnetized plasma
NASA Astrophysics Data System (ADS)
Jovanović, Dušan; Fedele, Renato; Belić, Milivoj; De Nicola, Sergio; Akhter, Tamina
2018-05-01
A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam through a plasma that is relatively strongly magnetized. Such situation is encountered when the gyro-frequency is comparable to the plasma frequency, i.e. |Ω e | ω pe . In addition, it is assumed the plasma density is much bigger than that of the beam. In the regime when the solution propagates in the comoving frame with a velocity that is much smaller than the thermal speed, a nonlinear stationary beam structure is found in which the electron motion in the transverse direction is negligible and whose transverse localization comes from the nonlinearity associated with its 3-D adiabatic expansion. Conversely, when the parallel velocity of the structure is sufficiently large to prevent the heat convection along the magnetic field, a helicoidally shaped stationary solution is found that is governed by the transverse convective nonlinearity. The profile of such beam is determined from a nonlinear dispersion relation and depends on the transverse size of the beam and its pitch angle to the magnetic field.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
A Guide to Scaffold Use in the Construction Industry
2001-01-01
1926.451(e)(5)) and •integral prefabricated frames. (1926.451(e)(6)) What are the access requirements for employees erecting and dismantling supported...guardrails which block employee access to the cantilevered end. (6) On scaffolds where scaffold planks are abutted to create a long platform, each... abutted end shall rest on a separate support surface. This provision does not preclude the use of common support members, such as “T” sections, to support
RF System for the MICE Demonstration of Ionisation Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald, K.; et al.
2017-04-01
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaborationmore » aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.« less
NASA Astrophysics Data System (ADS)
Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-05-01
The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.
NASA Astrophysics Data System (ADS)
Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung
2018-04-01
Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
A computational procedure for multibody systems including flexible beam dynamics
NASA Technical Reports Server (NTRS)
Downer, J. D.; Park, K. C.; Chiou, J. C.
1990-01-01
A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.
Performance of a high resolution cavity beam position monitor system
NASA Astrophysics Data System (ADS)
Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen
2007-07-01
It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.
NASA Astrophysics Data System (ADS)
Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott
2012-11-01
We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, M.; BME NTI, Budapest; Anda, G.
A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, whilemore » a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.« less
NASA Astrophysics Data System (ADS)
Harikane, Yuichi; Ouchi, Masami; Shibuya, Takatoshi; Kojima, Takashi; Zhang, Haibin; Itoh, Ryohei; Ono, Yoshiaki; Higuchi, Ryo; Inoue, Akio K.; Chevallard, Jacopo; Capak, Peter L.; Nagao, Tohru; Onodera, Masato; Faisst, Andreas L.; Martin, Crystal L.; Rauch, Michael; Bruzual, Gustavo A.; Charlot, Stephane; Davidzon, Iary; Fujimoto, Seiji; Hilmi, Miftahul; Ilbert, Olivier; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Silverman, John D.; Toft, Sune
2018-06-01
We investigate Lyα, [O III] λ5007, Hα, and [C II] 158 μm emission from 1124 galaxies at z = 4.9–7.0. Our sample is composed of 1092 Lyα emitters (LAEs) at z = 4.9, 5.7, 6.6, and 7.0 identified by Subaru/Hyper-Suprime-Cam (HSC) narrowband surveys covered by Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) and 34 galaxies at z = 5.148–7.508 with deep ALMA [C II] 158 μm data in the literature. Fluxes of strong rest-frame optical lines of [O III] and Hα (Hβ) are constrained by significant excesses found in the SPLASH 3.6 and 4.5 μm photometry. At z = 4.9, we find that the rest-frame Hα equivalent width and the Lyα escape fraction f Lyα positively correlate with the rest-frame Lyα equivalent width {EW}}Lyα }0. The {f}Lyα }{--}{EW}}Lyα }0 correlation is similarly found at z ∼ 0–2, suggesting no evolution of the correlation over z ≃ 0–5. The typical ionizing photon production efficiency of LAEs is log(ξ ion/[Hz erg‑1]) ≃ 25.5, significantly (60%–100%) higher than those of LBGs at a given UV magnitude. At z = 5.7–7.0, there exists an interesting turnover trend that the [O III]/Hα flux ratio increases in {EW}}Lyα }0≃ 0{--}30 \\mathringA and then decreases out to {EW}}Lyα }0≃ 130 \\mathringA . We also identify an anticorrelation between a ratio of [C II] luminosity to star formation rate (L [C II]/SFR) and {EW}}Lyα }0 at the >99% confidence level.. We carefully investigate physical origins of the correlations with stellar-synthesis and photoionization models and find that a simple anticorrelation between {EW}}Lyα }0 and metallicity explains self-consistently all of the correlations of Lyα, Hα, [O III]/Hα, and [C II] identified in our study, indicating detections of metal-poor (∼0.03 Z ⊙) galaxies with {EW}}Lyα }0≃ 200 \\mathringA .
Deep, wide-field, multi-band imaging of z approximately equal to 0.4 clusters and their environs
NASA Technical Reports Server (NTRS)
Silva, David R.; Pierce, Michael J.
1993-01-01
The existence of an excess population of blue galaxies in the cores of distant, rich clusters of galaxies, commonly referred to as the 'Butcher-Oemler' effect is now well established. Spectroscopy of clusters at z = 0.2-0.4 has confirmed that the luminous blue populations comprise as much as 20 percent of these clusters. This fraction is much higher that the 2 percent blue fraction found for nearby rich clusters, such as Coma, indicating that rapid galaxy evolution has occurred on a relatively short time scale. Spectroscopy has also shown that the 'blue' galaxies can basically be divided into three classes: 'starburst' galaxies with large (O II) equivalent widths, 'post-starburst' E+A galaxies (i.e. galaxies with strong Balmer lines shortward of 4000A but elliptical-like colors, and normal spiral/irregulars. Unfortunately, it is difficult to obtain enough spectra of individual galaxies in these intermediate redshift clusters to say anything statistically meaningful. Thus, limited information is available about the relative numbers of these three classes of 'blue' galaxies and the associated E/SO population in these intermediate redshift clusters. More statistically meaningful results can be derived from deep imaging of these clusters. However, the best published data to date (e.g. MacLaren et al. 1988; Dressler & Gunn 1992) are limited to the cluster cores and do not sample the galaxy luminosity functions very deeply at the bluest wavelengths. Furthermore, only limited spectro-energy distribution data is available below 4000A in the observed cluster rest frame providing limited sensitivity to 'recent' star formation activity. To improve this situation, we are currently obtaining deep, wide-field UBRI images of all known rich clusters at z approx. equals 0.4. Our main objective is to obtain the necessary color information to distinguish between the E+SO, 'E+A', and spiral/irregular galaxy populations throughout the cluster/supercluster complex. At this redshift, UBRI correspond to rest-frame 2500A/UVR bandpasses. The rest-frame UVR system provides a powerful 'blue' galaxy discriminate given the expected color distribution. Moreover, since 'hot' stars peak near 2500A, that bandpass is a powerful probe of recent star formation activity in all classes of galaxies. In particular, it is sensitive to ellipticals with 'UV excess' populations (MacLaren et al. 1988).
Seismic damage to structures in the M s6.5 Ludian earthquake
NASA Astrophysics Data System (ADS)
Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu
2016-03-01
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
3. West portal of Tunnel 23, view to north, 135mm ...
3. West portal of Tunnel 23, view to north, 135mm lens. Concrete foundation in right foreground was from 'telltale,' a simple post-and-beam frame that spanned the tracks with lengths of rope suspended from the beam. In the days when brakemen were required to be on, and walk along, the tops of freight cars to set brakes, the 'telltale' ropes would strike the unwary to warn of the tunnel ahead, allowing them to lie flat and avoid being struck by the tunnel portal. - Central Pacific Transcontinental Railroad, Tunnel No. 23, Milepost 132.69, Applegate, Placer County, CA
Electron beam curing — taking good ideas to the manufacturing floor
NASA Astrophysics Data System (ADS)
Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.
2000-03-01
Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities.
Utilizing NX Advanced Simulation for NASA's New Mobile Launcher for Ares-l
NASA Technical Reports Server (NTRS)
Brown, Christopher
2010-01-01
This slide presentation reviews the use of NX to simulate the new Mobile Launcher (ML) for the Ares-I. It includes: a comparison of the sizes of the Saturn 5, the Space Shuttle, the Ares I, and the Ares V, with the height, and payload capability; the loads control plan; drawings of the base framing, the underside of the ML, beam arrangement, and the finished base and the origin of the 3D CAD data. It also reviews the modeling approach, meshing. the assembly Finite Element Modeling, the model summary. and beam improvements.
The Antiproton-Nucleon Annihilation Process (Antiproton Collaboration Experiment)
DOE R&D Accomplishments Database
Barkas, W. H.; Birge, R. W.; Chupp, W. W.; Ekspong, A. G.; Goldhaber, G.; Goldhaber, S.; Heckman, H. H.; Perkins, D. H.; Sandweiss, J.; Segre, E.; Smith, F. M.; Stork, D. H.; Rossum, L. Van; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.
1956-09-10
In the exposure to a 700-MeV/c negative particle beam, 35 antiproton stars have been found. Of these antiprotons, 21 annihilate in flight and three give large-angle scatters ({Theta} > 15 , T{sub P-} > 50 Mev), while 14 annihilate at rest. From the interactions in flight we obtain the total cross section for antiproton interaction.
Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R
2013-03-21
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.
Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R
2013-01-01
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411
UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.
Amer, Eynas; Gren, Per; Sjödahl, Mikael
2013-10-21
A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.
49 CFR 178.338-13 - Supporting and anchoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the structural member used in place of a motor vehicle frame, the cargo tank or the jacket must be... for the supports and load-bearing tank or jacket, and the support attachments must include beam stress... uses the weight of the cargo tank and its attachments when filled to the design weight of the lading...
78 FR 49913 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain The Boeing... the frame-to-floor beam attachment, on both the left- and right-sides, which could result in reduced... Operations, M-30, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E. C.; Barnak, D. H.; Betti, R.
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less
High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.
Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M
2016-02-01
We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.
Hansen, E. C.; Barnak, D. H.; Betti, R.; ...
2018-04-04
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less
Results From the New NIF Gated LEH imager
NASA Astrophysics Data System (ADS)
Chen, Hui; Amendt, P.; Barrios, M.; Bradley, D.; Casey, D.; Hinkel, D.; Berzak Hopkins, L.; Kilkenny, J.; Kritcher, A.; Landen, O.; Jones, O.; Ma, T.; Milovich, J.; Michel, P.; Moody, J.; Ralph, J.; Pak, A.; Palmer, N.; Schneider, M.
2016-10-01
A novel ns-gated Laser Entrance Hole (G-LEH) diagnostic has been successfully implemented at the National Ignition Facility (NIF). This diagnostic has successfully acquired images from various experimental campaigns, providing critical information for inertial confinement fusion experiments. The G-LEH diagnostic which takes time-resolved gated images along a single line-of-sight, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories into the existing Static X-ray Imager diagnostic at NIF. It is capable of capturing two laser-entrance-hole images per shot on its 1024x448 pixel photo-detector array, with integration times as short as 2 ns per frame. The results that will be presented include the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52- 07NA27344.
VizieR Online Data Catalog: Host galaxies of Superluminous Supernovae (Angus+, 2016)
NASA Astrophysics Data System (ADS)
Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.
2016-11-01
Here we use nIR and rest-frame UV observations of a sample of 21 SLSN host galaxies, within a redshift range of 0.019
Baryons as Fock states of 3,5,... Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
NASA Astrophysics Data System (ADS)
Li, Zefeng; McGreer, Ian D.; Wu, Xue-Bing; Fan, Xiaohui; Yang, Qian
2018-07-01
We present the ensemble variability analysis results of quasars using the Dark Energy Camera Legacy Survey (DECaLS) and the Sloan Digital Sky Survey (SDSS) quasar catalogs. Our data set includes 119,305 quasars with redshifts up to 4.89. Combining the two data sets provides a 15 year baseline and permits the analysis of the long timescale variability. Adopting a power-law form for the variability structure function, V=A{(t/1{years})}γ , we use the multidimensional parametric fitting to explore the relationships between the quasar variability amplitude and a wide variety of quasar properties, including redshift (positive), bolometric luminosity (negative), rest-frame wavelength (negative), and black hole mass (uncertain). We also find that γ can be also expressed as a function of redshift (negative), bolometric luminosity (positive), rest-frame wavelength (positive), and black hole mass (positive). Tests of the fitting significance with the bootstrap method show that, even with such a large quasar sample, some correlations are marginally significant. The typical value of γ for the entire data set is ≳0.25, consistent with the results in previous studies on both the quasar ensemble variability and the structure function. A significantly negative correlation between the variability amplitude and the Eddington ratio is found, which may be explained as an effect of accretion disk instability.
NASA Astrophysics Data System (ADS)
Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca
2004-05-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian
In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less
The application of a shift theorem analysis technique to multipoint measurements
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Chapman, S. C.
1999-03-01
A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.
Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian; ...
2017-02-09
In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel
2010-09-20
Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less
GNIRS-DQS: A Gemini Near Infrared Spectrograph Distant Quasar Survey
NASA Astrophysics Data System (ADS)
Matthews, Brandon; Shemmer, Ohad; Brotherton, Michael S.; Andruchow, Ileana; Boroson, Todd A.; Brandt, W. Niel; Cellone, Sergio; Ferrero, Gabriel; Gallagher, Sarah; Green, Richard F.; Hennawi, Joseph F.; Lira, Paulina; Myers, Adam D.; Plotkin, Richard; Richards, Gordon T.; Runnoe, Jessie; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Willott, Chris J.; Wills, Beverley J.
2018-06-01
We describe an ongoing three-year Gemini survey, launched in 2017, that will obtain near-infrared spectroscopy of 416 Sloan Digital Sky Survey (SDSS) quasars between redshifts of 1.5 and 3.5 in the ~1.0-2.5 μm band. These spectra will cover critical diagnostic emission lines, such as Mg II, Hβ, and [O III], in each source. This project will more than double the existing inventory of near-infrared spectra of luminous quasars at these redshifts, including the era of fast quasar growth. Additional rest frame ultraviolet coverage of at least the C IV emission line is provided by the SDSS spectrum of each source. We will utilize the spectroscopic inventory to determine the most accurate and precise quasar black hole masses, accretion rates, and redshifts, and use the results to derive improved prescriptions for UV-based proxies for these parameters. The improved redshifts will establish velocities of quasar outflows that interact with the host galaxies, and will help constrain how imprecise distance estimates bias quasar clustering measurements. Furthermore, our measurements will facilitate a more complete understanding of how the rest-frame UV-optical spectral properties depend on redshift and luminosity, and test whether the physical properties of the quasar central engine evolve over cosmic time. We will make our data immediately available to the public, provide reduced spectra via a dedicated website, and produce a catalog of measurements and fundamental quasar properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.
2016-02-01
Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less
Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF
NASA Astrophysics Data System (ADS)
Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric
2017-03-01
We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
Radio polarization properties of quasars and active galaxies at high redshifts
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.
2018-04-01
We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z < 3) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of 50 ± 22 rad m-2 for z > 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.
MAGIC: a European program to push the insertion of maskless lithography
NASA Astrophysics Data System (ADS)
Pain, L.; Icard, B.; Tedesco, S.; Kampherbeek, B.; Gross, G.; Klein, C.; Loeschner, H.; Platzgummer, E.; Morgan, R.; Manakli, S.; Kretz, J.; Holhe, C.; Choi, K.-H.; Thrum, F.; Kassel, E.; Pilz, W.; Keil, K.; Butschke, J.; Irmscher, M.; Letzkus, F.; Hudek, P.; Paraskevopoulos, A.; Ramm, P.; Weber, J.
2008-03-01
With the willingness of the semiconductor industry to push manufacturing costs down, the mask less lithography solution represents a promising option to deal with the cost and complexity concerns about the optical lithography solution. Though a real interest, the development of multi beam tools still remains in laboratory environment. In the frame of the seventh European Framework Program (FP7), a new project, MAGIC, started January 1st 2008 with the objective to strengthen the development of the mask less technology. The aim of the program is to develop multi beam systems from MAPPER and IMS nanofabrication technologies and the associated infrastructure for the future tool usage. This paper draws the present status of multi beam lithography and details the content and the objectives of the MAGIC project.
Diagnostics Upgrades for Investigations of HOM Effects in TESLA-type SCRF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.
We describe the upgrades to diagnostic capabilities on the Fermilab Accelerator Science and Technology (FAST) electron linear accelerator that will allow investigations of the effects of high-order modes (HOMs) in SCRF cavities on macropulse-average beam quality. We examine the dipole modes in the first pass-band generally observed in the 1.6-1.9 GHz regime for TESLA-type SCRF cavities due to uniform transverse beam offsets of the electron beam. Such cavities are the basis of the accelerators such as the European XFEL and the proposed MaRIE XFEL facility. Preliminary HOM detector data, prototype BPM test data, and first framing camera OTR data withmore » ~20- micron spatial resolution at 250 pC per bunch will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
The goal of this work is to study the behavior of the angular distribution of the electron from the decay of the W boson in a specific rest frame of the W, the Collins-Soper frame. More specifically, the parameter {alpha}{sub 2} from the expression d{sigma}/d(P{sub T}{sup W}){sup 2} d cos {theta}* = k(1 + {alpha}{sub 2} cos {theta}* + {alpha}{sup 2}(cos {theta}*){sup 2}), corresponding to the distribution of cos {theta}* in the Collins-Soper frame, was measured. The experimental value of {alpha}P{sub 2} was compared with the predictions made by E. Mirkes [11] who included the radiative QCD perturbations in themore » weak-interaction B{sub boson} {r_arrow} lepton + lepton. This experimental value was extracted for the first time using knowledge about how the radiative QCD perturbations will modify the predictions given by the Electro-Weak process only.« less
Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.;
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.
Simultaneity on the Rotating Disk
NASA Astrophysics Data System (ADS)
Koks, Don
2017-04-01
The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".
Matter Lagrangian of particles and fluids
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Sousa, L.
2018-03-01
We consider a model where particles are described as localized concentrations of energy, with fixed rest mass and structure, which are not significantly affected by their self-induced gravitational field. We show that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame, is equal to the volume average of the trace T of the energy-momentum tensor in the same frame, independently of the particle's structure and constitution. Since both Lm and T are scalars, and thus independent of the reference frame, this result is also applicable to collections of moving particles and, in particular, to those which can be described by a perfect fluid. Our results are expected to be particularly relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as f (R ,Lm) and f (R ,T ) gravity. In particular, they indicate that, in this context, f (R ,Lm) theories may be regarded as a subclass of f (R ,T ) gravity.
A Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Technical Reports Server (NTRS)
Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.
2010-01-01
A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Manuel I. Martin
1996-10-07
The goal of this work was to study the behavior of the angular distribution of the electron form the decay of the W boson in a specific rest-frame of the W, the Collins-Soper frame. This thesis consists of four major divisions, each dealing with closely related themes: (a) Physics Background, (b) Description of the Hardware and General Software Tools, (c) Description of the Analysis and Specific Tools, and (d) Results and Conclusions. Each division is comprised of one or more chapters and each chapter is divided into sections and subsections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Hrycushko, B; Yan, Y
Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bernardi, E., E-mail: elisabetta.debernardi@unimib.it; Ricotti, R.; Riboldi, M.
2016-02-15
Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generatedmore » by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Kearney, V; Liu, H
Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT correspondingmore » curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.« less
Guzmán-de la Garza, Francisco J; González Ayala, Alejandra E; Gómez Nava, Marisol; Martínez Monsiváis, Leislie I; Salinas Martínez, Ana M; Ramírez López, Erik; Mathiew Quirós, Alvaro; Garcia Quintanilla, Francisco
2017-09-10
The main aim of this study was to test the hypothesis that body frame size is related to the amount of fat in different adipose tissue depots and to fat distribution in schoolchildren. Children aged between 5 and 10 years were included in this cross-sectional study (n = 565). Body frame size, adiposity markers (anthropometric, skinfolds thickness, and ultrasound measures), and fat distribution indices were analyzed. Correlation coefficients adjusted by reliability were estimated and analyzed by sex; the significance of the difference between two correlation coefficients was assessed using the Fisher z-transformation. The sample included primarily urban children; 58.6% were normal weight, 16.1% overweight, 19.6% obese, and the rest were underweight. Markers of subcutaneous adiposity, fat mass and fat-free mass, and preperitoneal adiposity showed higher and significant correlations with the sum of the biacromial + bitrochanteric diameter than with the elbow diameter, regardless of sex. The fat distribution conicity index presented significant but weak correlations; and visceral adipose tissue, hepatic steatosis, and the waist-for-hip ratio were not significantly correlated with body frame size measures. Body frame size in school children was related to the amount of adipose tissue in different depots, but not adipose distribution. More studies are needed to confirm this relationship and its importance to predict changes in visceral fat deposition during growth. © 2017 Wiley Periodicals, Inc.
Development of a Muon Rotating Target for J-PARC/MUSE
NASA Astrophysics Data System (ADS)
Makimura, Shunsuke; Kobayashi, Yasuo; Miyake, Yasuhiro; Kawamura, Naritoshi; Strasser, Patrick; Koda, Akihiro; Shimomura, Koichiro; Fujimori, Hiroshi; Nishiyama, Kusuo; Kato, Mineo; Kojima, Kenji; Higemoto, Wataru; Ito, Takashi; Shimizu, Ryou; Kadono, Ryosuke
At the J-PARC muon science facility (J-PARC/MUSE), a graphite target with a thickness of 20 mm has been used in vacuum to obtain an intense pulsed muon beam from the RCS 3-GeV proton beam [1], [2]. In the current design, the target frame is constructed using copper with a stainless steel tube embedded for water cooling. The energy deposited by the proton beam at 1 MW is evaluated to be 3.3 kW on the graphite target and 600 W on the copper frame by a Monte-Carlo simulation code, PHITS [3]. Graphite materials are known to lose their crystal structure and can be shrunk under intense proton beam irradiation. Consequently, the lifetime of the muon target is essentially determined by the radiation damage in graphite, and is evaluated to be half a year [4]. Hence, we are planning to distribute the radiation damage by rotating a graphite wheel. Although the lifetime of graphite in this case will be more than 10 years, the design of the bearing must be carefully considered. Because the bearing in JPARC/MUSE is utilized in vacuum, under high radiation, and at high temperature, an inorganic and solid lubricant must be applied to the bearing. Simultaneously, the temperature of the bearing must also be decreased to extend the lifetime. In 2009, a mock-up of the Muon Rotating Target, which could heat up and rotate a graphite wheel, was fabricated. Then several tests were started to select the lubricant and to determine the structure of the Muon Rotating Target, the control system and so on. In this report, the present status of the Muon Rotating Target for J-PARC/MUSE, especially the development of a rotation system in vacuum, is described.
NASA Technical Reports Server (NTRS)
Wade, T. O.
1984-01-01
Reduction techniques for traffic matrices are explored in some detail. These matrices arise in satellite switched time-division multiple access (SS/TDMA) techniques whereby switching of uplink and downlink beams is required to facilitate interconnectivity of beam zones. A traffic matrix is given to represent that traffic to be transmitted from n uplink beams to n downlink beams within a TDMA frame typically of 1 ms duration. The frame is divided into segments of time and during each segment a portion of the traffic is represented by a switching mode. This time slot assignment is characterized by a mode matrix in which there is not more than a single non-zero entry on each line (row or column) of the matrix. Investigation is confined to decomposition of an n x n traffic matrix by mode matrices with a requirement that the decomposition be 100 percent efficient or, equivalently, that the line(s) in the original traffic matrix whose sum is maximal (called critical line(s)) remain maximal as mode matrices are subtracted throughout the decomposition process. A method of decomposition of an n x n traffic matrix by mode matrices results in a number of steps that is bounded by n(2) - 2n + 2. It is shown that this upper bound exists for an n x n matrix wherein all the lines are maximal (called a quasi doubly stochastic (QDS) matrix) or for an n x n matrix that is completely arbitrary. That is, the fact that no method can exist with a lower upper bound is shown for both QDS and arbitrary matrices, in an elementary and straightforward manner.
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-07
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
NASA Astrophysics Data System (ADS)
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-01
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
Nielles-Vallespin, Sonia; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew E
2015-02-17
A low excitation flip angle (α < 10°) steady-state free precession (SSFP) proton-density (PD) reference scan is often used to estimate the B1-field inhomogeneity for surface coil intensity correction (SCIC) of the saturation-recovery (SR) prepared high flip angle (α = 40-50°) SSFP myocardial perfusion images. The different SSFP off-resonance response for these two flip angles might lead to suboptimal SCIC when there is a spatial variation in the background B0-field. The low flip angle SSFP-PD frames are more prone to parallel imaging banding artifacts in the presence of off-resonance. The use of FLASH-PD frames would eliminate both the banding artifacts and the uneven frequency response in the presence of off-resonance in the surface coil inhomogeneity estimate and improve homogeneity of semi-quantitative and quantitative perfusion measurements. B0-field maps, SSFP and FLASH-PD frames were acquired in 10 healthy volunteers to analyze the SSFP off-resonance response. Furthermore, perfusion scans preceded by both FLASH and SSFP-PD frames from 10 patients with no myocardial infarction were analyzed semi-quantitatively and quantitatively (rest n = 10 and stress n = 1). Intra-subject myocardial blood flow (MBF) coefficient of variation (CoV) over the whole left ventricle (LV), as well as intra-subject peak contrast (CE) and upslope (SLP) standard deviation (SD) over 6 LV sectors were investigated. In the 6 out of 10 cases where artifacts were apparent in the LV ROI of the SSFP-PD images, all three variability metrics were statistically significantly lower when using the FLASH-PD frames as input for the SCIC (CoVMBF-FLASH = 0.3 ± 0.1, CoVMBF-SSFP = 0.4 ± 0.1, p = 0.03; SDCE-FLASH = 10 ± 2, SDCE-SSFP = 32 ± 7, p = 0.01; SDSLP-FLASH = 0.02 ± 0.01, SDSLP-SSFP = 0.06 ± 0.02, p = 0.03). Example rest and stress data sets from the patient pool demonstrate that the low flip angle SSFP protocol can exhibit severe ghosting artifacts originating from off-resonance banding artifacts at the edges of the field of view that parallel imaging is not able to unfold. These artifacts lead to errors in the quantitative perfusion maps and the semi-quantitative perfusion indexes, such as false positives. It is shown that this can be avoided by using FLASH-PD frames as input for the SCIC. FLASH-PD images are recommended as input for SCIC of SSFP perfusion images instead of low flip angle SSFP-PD images.
Polarimetric Imaging using Two Photoelastic Modulators
NASA Technical Reports Server (NTRS)
Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat
2009-01-01
A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-03-06
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less
NASA Astrophysics Data System (ADS)
Giordano, V.; Chisari, C.; Rizzano, G.; Latour, M.
2017-10-01
The main aim of this work is to understand how the prediction of the seismic performance of moment-resisting (MR) steel frames depends on the modelling of their dissipative zones when the structure geometry (number of stories and bays) and seismic excitation source vary. In particular, a parametric analysis involving 4 frames was carried out, and, for each one, the full-strength beam-to-column connections were modelled according to 4 numerical approaches with different degrees of sophistication (Smooth Hysteretic Model, Bouc-Wen, Hysteretic and simple Elastic-Plastic models). Subsequently, Incremental Dynamic Analyses (IDA) were performed by considering two different earthquakes (Spitak and Kobe). The preliminary results collected so far pointed out that the influence of the joint modelling on the overall frame response is negligible up to interstorey drift ratio values equal to those conservatively assumed by the codes to define conventional collapse (0.03 rad). Conversely, if more realistic ultimate interstorey drift values are considered for the q-factor evaluation, the influence of joint modelling can be significant, and thus may require accurate modelling of its cyclic behavior.
NASA Astrophysics Data System (ADS)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.
2018-06-01
We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, S.; Chung, C.; Fitsos, P.
2007-04-24
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less