Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
VERTICAL BEAM SIZE CONTROL IN TLS AND TPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUO, C.C.; CHEN, J.R.; CHOU, P.J.
2006-06-26
Vertical beam size control is an important issue in the light source operations. The horizontal-vertical betatron coupling and vertical dispersion were measured and corrected to small values in the TLS 1.5 GeV storage ring. Estimated beam sizes are compared with the measured values. By employing an effective transverse damping system, the vertical beam blow-up due to transverse coherent instabilities, such as the fast-ion beam instability, was suppressed. As a result, the light source is very stable. In NSRRC we are designing an ultra low emittance 3-GeV storage ring and its designed vertical beam size could be as small as amore » few microns. The ground and mechanic vibration effects, and coherent instabilities could spoil the expected photon brightness due to blow-up of the vertical beam size if not well taken care of. The contributions of these effects to vertical beam size increase will be evaluated and the counter measures to minimize them will be proposed and reported in this paper.« less
NASA Astrophysics Data System (ADS)
He, Bo; Cheng, Xuemei; Zhang, Hui; Chen, Haowei; Zhang, Qian; Ren, Zhaoyu; Ding, Shan; Bai, Jintao
2018-05-01
We report micron-sized particle trapping and manipulation using a hollow beam of tunable size, which was generated by cross-phase modulation via the thermal nonlinear optical effect in an ethanol medium. The results demonstrated that the particle can be trapped stably in air for hours and manipulated in millimeter range with micrometer-level accuracy by modulating the size of the hollow beam. The merits of flexibility in tuning the beam size and simplicity in operation give this method great potential for the in situ study of individual particles in air.
El-Ocla, Hosam
2006-08-01
The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.
Propagation of Ince-Gaussian beams in uniaxial crystals orthogonal to the optical axis
NASA Astrophysics Data System (ADS)
Xu, Y. Q.; Zhou, G. Q.
2012-03-01
An analytical propagation expression of an Ince-Gaussian beam in uniaxial crystals orthogonal to the optical axis is derived. The uniaxial crystal considered here has the property of the extraordinary refractive index being larger than the ordinary refractive index. The Ince-Gaussian beam in the transversal direction along the optical axis spreads more rapidly than that in the other transversal direction. With increasing the ratio of the extraordinary refractive index to the ordinary refractive index, the spreading of the Ince-Gaussian beam in the transversal direction along the optical axis increases and the spreading of the Ince-Gaussian beam in the other transversal direction decreases. The effective beam size in the transversal direction along the optical axis is always larger than that in the other transversal direction. When the even and odd modes of Ince-Gaussian beams exist simultaneously, the effective beam size in the direction along the optical axis of the odd Ince-Gaussian beam is smaller than that of the even Ince-Gaussian beam in the corresponding direction, and the effective beam size in the transversal direction orthogonal to the optical axis of the odd Ince-Gaussian beam is larger than that of the even Ince-Gaussian beam in the corresponding direction.
Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N
2006-10-01
The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors associated with narrow beam profile measurements.
Characterization of linear accelerator X-ray source size using a laminated beam-spot camera.
Yeboah, Collins
2011-05-10
A laminated beam-spot camera of length 20 cm and effective cross-sectional area 2.5 cm × 3 cm was designed and constructed for the measurement of X-ray beam-spot sizes on different models of Siemens accelerators. With the accelerator gantry at 180° and camera positioned on an accessory tray holder, an XV film placed in contact with the camera at the distal end of it detected those X-rays that were transmitted through the camera. The FWHM of the detected X-ray intensity profile in the gun-target (G-T) direction or the orthogonal A-B direction was used as a measure of the beam-spot size in that direction. Siemens Mevatron MXEs exhibited a beam-spot size of 1.7 ± 0.2 mm in both the in-plane and cross-plane directions for 6 MV photon beams. The beam-spot size observed for a Mevatron MDX-2 was larger by up to 1 mm, and also was different for the in-plane and cross-plane directions. For Siemens PRIMUS accelerators, the beam-spot size in the in-plane direction was found to fall in the range 2.0-2.2 ± 0.2 mm, whereas the beam-spot size in the cross-plane direction fell within 1.7-1.9 ± 0.2 mm for 6, 10, and 18 MV photon beams. Assessment of long-term stability of the beam-spot size shows the spot size remains fairly stable over time.
Effect of beam types on the scintillations: a review
NASA Astrophysics Data System (ADS)
Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian
2009-02-01
When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.
Alternative beam configuration for a Canadian Ka-band satellite system
NASA Technical Reports Server (NTRS)
Hindson, Daniel J.; Caron, Mario
1995-01-01
Satellite systems operating in the Ka-band have been proposed to offer wide band personal communications services to fixed earth terminals employing small aperture antennas as well as to mobile terminals. This requirement to service a small aperture antenna leads to a satellite system utilizing small spot beams. The traditional approach is to cover the service area with uniform spot beams which have been sized to provide a given grade of service at the worst location over the service area and to place them in a honeycomb pattern. In the lower frequency bands this approach leads to a fairly uniform grade of service over the service area due to the minimal effects of rain on the signals. At Ka-band, however, the effects of rain are quite significant. Using this approach over a large service area (e.g. Canada) where the geographic distribution of rain impairment varies significantly yields an inefficient use of satellite resources to provide a uniform grade of service. An alternative approach is to cover the service area using more than one spot beam size in effect linking the spot beam size to the severity of the rain effects in a region. This paper demonstrates how for a Canadian Ka-band satellite system, that the use of two spot beam sizes can provide a more uniform grade of service across the country as well as reduce the satellite payload complexity over a design utilizing a single spot beam size.
Sakamoto, S; Kiger, W S; Harling, O K
1999-09-01
Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Bentefour, Hassan; Flanz, Jacob; Kooy, Hanne; Clasie, Benjamin
2018-05-01
Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ = 0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ = 0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ = 3.6 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like pattern nor volume averaging corrections, then the position and width of σ = 5.0 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. This work helps to simplify periodic QA in proton therapy because more routinely used ionization chamber arrays can be used to characterize narrow pencil beam properties.
Lin, Yuting; Bentefour, Hassan; Flanz, Jacob; Kooy, Hanne; Clasie, Benjamin
2018-05-15
Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ = 0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ = 0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ = 3.6 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like pattern nor volume averaging corrections, then the position and width of σ = 5.0 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. This work helps to simplify periodic QA in proton therapy because more routinely used ionization chamber arrays can be used to characterize narrow pencil beam properties.
NASA Astrophysics Data System (ADS)
Sulyman, Alex; Chrystal, Colin; Haskey, Shaun; Burrell, Keith; Grierson, Brian
2017-10-01
The possible observation of non-Maxwellian ion distribution functions in the pedestal of DIII-D will be investigated with a synthetic diagnostic that accounts for the effect of finite neutral beam size. Ion distribution functions in tokamak plasmas are typically assumed to be Maxwellian, however non-Gaussian features observed in impurity charge exchange spectra have challenged this concept. Two possible explanations for these observations are spatial averaging over a finite beam size and a local ion distribution that is non-Maxwellian. Non-Maxwellian ion distribution functions could be driven by orbit loss effects in the edge of the plasma, and this has implications for momentum transport and intrinsic rotation. To investigate the potential effect of finite beam size on the observed spectra, a synthetic diagnostic has been created that uses FIDAsim to model beam and halo neutral density. Finite beam size effects are investigated for vertical and tangential views in the core and pedestal region with varying gradient scale lengths. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program, DE-FC02-04ER54698, and DE-AC02-09CH11466.
The Physics of Boundary-Layer Aero-Optic Effects
2012-09-01
various models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed...models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed models were... Supersonic Facilities .................................................................................................... 8 3.3 2-D Wavefront Data
Casar, Bozidar; Pasler, Marlies; Wegener, Sonja; Hoffman, David; Talamonti, Cinzia; Qian, Jianguo; Mendez, Ignasi; Brojan, Denis; Perrin, Bruce; Kusters, Martijn; Canters, Richard; Pallotta, Stefania; Peterlin, Primoz
2017-09-01
The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1×1cm 2 to 20×20cm 2 , the effect of IQM on beam quality was assessed from the PDD 20,10 values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4×4cm 2 to 20×20cm 2 . The transmission factor was calculated by means of measured absorbed dose at 10cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (p<0.01) for all photon energies except for 18MV. The change in surface dose was smaller than 3.3% in all cases except for the 20×20cm 2 field and 10MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6MV to 0.9578 for 18MV and 0.9440 for 6MV FFF; 0.9533 for 10MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice. Copyright © 2017. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.
2014-06-01
We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.
Laser beam propagation in atmospheric turbulence
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
On the effective point of measurement in megavoltage photon beams.
Kawrakow, Iwan
2006-06-01
This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6 times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within +/- 0.5%.
NASA Astrophysics Data System (ADS)
Mishra, Praveen; Bhat, Badekai Ramchandra
2018-04-01
Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.
Effects associated with nanostructure fabrication using in situ liquid cell TEM technology
Chen, Xin; Zhou, Lihui; Wang, Ping; ...
2015-07-28
We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less
The effects of induced heat loads on the propagation of Ince-Gaussian beams
NASA Astrophysics Data System (ADS)
Nadgaran, H.; Servatkhah, M.
2011-10-01
Thermal effects are very much influential in high power beam generators. Their impacts on special types of beams such as Helmholtz-Gauss beams have attracted special attentions. This work reports thermal effects on the generation and propagation of Ince-Gaussian beams. The results show considerable beam spot size variations for near fields under various induced heat loads. As Ince-Gaussian beams are directly related to cavity symmetry breaking, the results can greatly help system designers for circumventing these types of symmetry breaks usually encountered in high power lasers.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography
NASA Astrophysics Data System (ADS)
Yoshizawa, Masaki; Moriya, Shigeru
2000-07-01
At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.
Beam parameter optimization at CLIC using the process e+e- → HZ → Hq q bar at 380 GeV
NASA Astrophysics Data System (ADS)
Andrianala, F.; Raboanary, R.; Roloff, P.; Schulte, D.
2017-01-01
At CLIC and the ILC beam-beam forces lead to the emission of beamstrahlung photons and a reduction of the effective center-of-mass energy. This degradation is controlled by the choice of the horizontal beam size. A reduction of this parameter would increase the luminosity but also the beamstrahlung. In this paper the optimum choice for the horizontal beam size is investigated for one of the most important physics processes. The Higgsstrahlung process e+e- → HZ is identified in a model-independent manner by observing the Z boson and determining the mass against which it is recoiling. The physics analysis for this process is performed for constant running times, assuming different beam size and taking into account the resulting levels of integrated luminosity and the associated luminosity spectra.
Application of gradient elasticity to benchmark problems of beam vibrations
NASA Astrophysics Data System (ADS)
Kateb, K. M.; Almitani, K. H.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Papadopoulos, P.; Askes, H.; Aifantis, E. C.
2016-04-01
The gradient approach, specifically gradient elasticity theory, is adopted to revisit certain typical configurations on mechanical vibrations. New results on size effects and scale-dependent behavior not captured by classical elasticity are derived, aiming at illustrating the usefulness of this approach to applications in advanced technologies. In particular, elastic prismatic straight beams in bending are discussed using two different governing equations: the gradient elasticity bending moment equation (fourth order) and the gradient elasticity deflection equation (sixth order). Different boundary/support conditions are examined. One problem considers the free vibrations of a cantilever beam loaded by an end force. A second problem is concerned with a simply supported beam disturbed by a concentrated force in the middle of the beam. Both problems are solved analytically. Exact free vibration frequencies and mode shapes are derived and presented. The difference between the gradient elasticity solution and its classical counterpart is revealed. The size ratio c/L (c denotes internal length and L is the length of the beam) induces significant effects on vibration frequencies. For both beam configurations, it turns out that as the ratio c/L increases, the vibration frequencies decrease, a fact which implies lower beam stiffness. Numerical examples show this behavior explicitly and recover the classical vibration behavior for vanishing size ratio c/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Morin, O
2015-06-15
Purpose: To evaluate the influence of a new commercial transmission detector on radiotherapy beams of various energies. Methods: A transmission detector designed for online treatment monitoring was characterized on a TrueBeam STx linear accelerator with 6MV, 6FFF, 10MV, and 10FFF beams. Measurements of beam characteristics including percentage depth doses (PDDs), inplane and crossplane off-axis profiles at different depths, transmission factors, and skin dose were acquired at field sizes of 3×3cm, 5×5m, 10×10cm, and 20×20cm at 100cm and 80cm source-to-surface distance (SSD). All measurements were taken with and without the transmission detector in the path of the beam. A CC04 chambermore » was used for all profile and transmission factor measurements. Skin dose was assessed at 100cm, 90cm, and 80cm SSD and using a variety of detectors (Roos and Markus parallel-plate chambers, and OSLD). Results: The PDDs showed small differences between the unperturbed and perturbed beams for both 100cm and 80cm SSD (≤4mm dmax difference and <1.2% average profile difference). The differences were larger for the flattened beams and at larger field sizes. The off-axis profiles showed similar trends. The penumbras looked similar with and without the transmission detector. Comparisons in the central 80% of the profile showed a maximum average (maximum) profile difference between all field sizes of 0.756% (1.535%) and 0.739% (3.682%) for 100cm and 80cm SSD, respectively. The average measured skin dose at 100cm (80cm) SSD for 10×10cm field size was <4% (<35%) dose increase for all energies. For 20×20cm field size, this value increased to <10% (≤45%). Conclusion: The transmission detector has minimal effect on the clinically relevant radiotherapy beams for IMRT and VMAT (field sizes 10×10cm and less). For larger field sizes, some perturbations are observable which would need to be assessed for clinical impact. The authors of this publication has research support from IBA Dosimetry.« less
Ion beam synthesis of Au nanoparticles embedded nano-composite glass
NASA Astrophysics Data System (ADS)
Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.
2013-02-01
Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.
Simulation results of corkscrew motion in DARHT-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.
2003-01-01
DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less
NASA Astrophysics Data System (ADS)
Rahman, N.; Alam, M. N.
2018-02-01
Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.
Aberrations and Emittance Growth in the DARHT 2nd Axis Downstream Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, Martin E.
The emittance of the DARHT 2 nd Axis has been inferred from solenoid scans performed in the downstream transport (DST) region using a short kicked pulse. The beam spot size is measured by viewing optical transition radiation (OTR) in the near field as a function of the field (current) of a solenoid magnet (S4). The imaging station containing the OTR target is located about 100 cm downstream of the solenoid magnet. The emittance is then inferred using a beam optics code such as LAMDA or XTR by fitting the data to initial conditions upstream of the S4 solenoid magnet. Themore » initial conditions are the beam size, beam convergence and emittance. The beam energy and current are measured. In preparation for a solenoid scan, the magnets upstream of the solenoid are adjusted to produce a round beam with no beam losses due to scraping in the beam tube. This is different from the standard tune in which the beam tune is adjusted to suppress the effects of ions and rf in the septum dump. In this standard tune, approximately 10% of the beam is lost due to scraping as the beam enters the small 3.75” ID beam tube after the septum. The normalized emittance inferred from recent solenoid scans typically ranges from 600 to 800 π(mm-mrad). This larger beam size increases the sensitivity to any non-linear fields in the Collins quadrupoles that are mounted along the small diameter beam tube. The primary magnet used to adjust the beam size in this region is the S3 solenoid magnet. Measurements made of the beam shape as the beam size was decreased showed significant structure consistent with non-linear fields. Using the measured magnetic fields in the Collins quadrupoles including higher order multipoles, the beam transport through the Collins quadrupoles is simulated and compared to the observed OTR images. The simulations are performed using the beam optics codes TRANSPORT [1] and TURTLE [2]. Estimates of the emittance growth and beam losses are made as a function of the S3 magnet setting. The increase in the spot size on the x-ray production target resulting from this emittance growth is examined for different DST tunes.« less
Bernstein, Eric F; Civiok, Jennifer M
2013-12-01
Laser beam diameter affects the depth of laser penetration. Q-switched lasers tend to have smaller maximum spot sizes than other dermatologic lasers, making beam diameter a potentially more significant factor in treatment outcomes. To compare the clinical effect of using the maximum-size treatment beam available for each delivered fluence during laser tattoo removal to a standard 4-mm-diameter treatment beam. Thirteen tattoos were treated in 12 subjects using a Q-switched Nd:YAG laser equipped with a treatment beam diameter that was adjustable in 1 mm increments and a setting that would enable the maximally achievable diameter ("MAX-ON" setting) with any fluence. Tattoos were randomly bisected and treated on one side with the MAX-ON setting and on the contralateral side with a standard 4-mm-diameter spot ("MAX-OFF" setting). Photographs were taken 8 weeks following each treatment and each half-tattoo was evaluated for clearance on a 10-point scale by physicians blinded to the treatment conditions. Tattoo clearance was greater on the side treated with the MAX-ON setting in a statistically significant manner following the 1st through 4th treatments, with the MAX-OFF treatment site approaching the clearance of the MAX-ON treatment site after the 5th and 6th treatments. This high-energy, Q-switched Nd:YAG laser with a continuously variable spot-size safely and effectively removes tattoos, with greater removal when using a larger spot-size. © 2013 Wiley Periodicals, Inc.
Synthetic Incoherence via Scanned Gaussian Beams
Levine, Zachary H.
2006-01-01
Tomography, in most formulations, requires an incoherent signal. For a conventional transmission electron microscope, the coherence of the beam often results in diffraction effects that limit the ability to perform a 3D reconstruction from a tilt series with conventional tomographic reconstruction algorithms. In this paper, an analytic solution is given to a scanned Gaussian beam, which reduces the beam coherence to be effectively incoherent for medium-size (of order 100 voxels thick) tomographic applications. The scanned Gaussian beam leads to more incoherence than hollow-cone illumination. PMID:27274945
Spatial characterization of Bessel-like beams for strong-field physics.
Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A
2017-02-06
We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.
Srinivasan-Rao, Triveni
2002-01-01
A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.
Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier
2018-01-01
To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org
Purpose: To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Methods: Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according tomore » measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (E{sub avg}) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusions: The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A; Pasciak, A; Wagner, L
Purpose: To evaluate the sensitivity of the Diagnostic Radiological Index of Protection (DRIP) to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams (SMPB) to be used in measuring the DRIP. Methods: A series of clinical and factorial Monte Carlo simulations were conducted to determine the shape of the scattered X-ray spectra incident on the operator in different clinical fluoroscopy scenarios. Two clinical evaluations studied the sensitivity of the scattered spectrum to gantry angle and patient size while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial evaluationsmore » studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size and beam quality for constant technical factors. Average energy was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affected the scattered spectrum indirectly through their effects on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in interventional cardiology, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusion: The scattered spectrum striking the operator in fluoroscopy, and therefore the DRIP, is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle. These results will help determine an appropriate set of SMPB to be used for measuring the DRIP.« less
Sensitivity of the diagnostic radiological index of protection to procedural factors in fluoroscopy.
Jones, A Kyle; Pasciak, Alexander S; Wagner, Louis K
2016-07-01
To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (Eavg) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...
2016-04-11
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less
NASA Astrophysics Data System (ADS)
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.
2016-04-01
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.
NASA Astrophysics Data System (ADS)
Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.
2016-12-01
Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL) = 2.88 mm Al) and 250 kVp (HVL = 2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4 × 4 cm2-20 × 20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, C; Chow, J
Purpose: This study investigated the dose enhancement effect of using gold nanoparticles (GNP) as radiation sensitizers radiated by different photon beam energies. Microdosimetry of photon-irradiated GNP was determined by the Geant4-DNA process in the DNA scale. Methods: Monte Carlo simulation was conducted using the Geant4 toolkit (ver. 10.2). A GNP with different sizes (30, 50, and 100nm diameter sphere) and a DNA were placed in a water cube (1µm{sup 3}). The GNP was irradiated by photon beams with different energies (50, 100, and 150keV) and produced secondary electrons to increase the dose to the DNA. Energy depositions were calculated formore » both with and without GNP and to investigate the dose enhancement effect at the DNA. The distance between the GNP and DNA was varied to optimize the best GNP position to the DNA. The photon beam source was set to 200nm from the GNP in each simulation. Results: It is found that GNP had a dose enhancement effect on kV photon radiations. For Monte Carlo results on different GNP sizes, distances between the GNP and DNA, and photon beam energies, enhancement ratio was found increasing as GNP size increased. The distance between the GNP and DNA affected the result that as distance increased while the dose enhancement ratio decreased. However, the effect of changing distance was not as significant as varying the GNP size. In addition, increasing the photon beam energy also increased the dose enhancement ratio. The largest dose enhancement ratio was found to be 3.5, when the GNP (100nm diameter) irradiated by the 150keV photon beam was set to 80nm from the DNA. Conclusion: Dose enhancement was determined in the DNA with GNP in the microdosimetry scale. It is concluded that the dose enhancement varied with the photon beam energy, GNP size and distance between the GNP and DNA.« less
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602
Predicting the effectiveness of viscoelastic damping pockets in beams
NASA Astrophysics Data System (ADS)
Butler, Nigel D.; Oyadiji, S. O.
2005-05-01
This paper looks at the use of viscoelastic damping pockets in the suppression of structural vibration. These are in the form of cavities filled with a viscoelastic material. The benefits and uses of these designed-in damping treatments are highlighted. The vibration responses of viscoelastically-damped beams are predicted using the finite element method. A series of cantilevered beams are considered and the damping performance of several configurations of designed-in dampers are predicted and compared to that of a traditional CLD treatment. It is shown that the effectiveness of the damping pockets and sinks depends on their location and size with respect to the highly stressed regions of the beams. Although there is a practical limit on the sizes of the geometrical features that can be designed-in, it is shown that if located correctly the damping pockets and sinks can be more effective at suppressing structural vibration than traditional CLD treatments.
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
Field-size dependence of doses of therapeutic carbon beams.
Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa
2007-10-01
To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.
Modified hollow Gaussian beam and its paraxial propagation
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Chen, Chiyi; Wang, Fei
2007-10-01
A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.
Research and development of an electron beam focusing system for a high-brightness X-ray generator.
Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo
2011-01-01
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
Steinman, James Paul; Bakhtiari, Mohammad; Malhotra, Harish Kumar
2012-01-01
Radioactive seeds used in permanent prostate brachytherapy are composed of high-Z metals and may exceed 100 in a patient. If supplemental external beam treatment is administered afterward, the seeds may cause substantial dose perturbation, which is being investigated in this article. Film measurements using 6-MV beam were primarily carried out using Kodak XV2 film layered above and below a nonradioactive iodine-125 ((125)I) seed. Monte Carlo simulations were carried out using DOSXYZnrc. Other experimental comparisons looked at changing beam energy, depth, and field size, including two opposing fields' pair. Effect of multiple seeds spatially spaced 0.5cm vertically was also studied. For a single (125)I seed, on XV film, there is a localized dose enhancement of 6.3% upstream and -10.9% downstream. With two opposing fields, a cold spot around the seed of ∼3% was noticed. Increasing beam energy and field size decreased the magnitude of this effect, whereas the effect was found to increase with the increasing Z of material. DOSXYZnrc and EBT-2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the (125)I seed surface. In general, the dose perturbation because of the seeds was spatially limited to ∼2mm upstream and ∼5mm downstream to the incident beam. Similar to other heterogeneities, the seeds perturbation depends on incident beam energy, field size, and its Z. With multiple seeds spatially apart and multiple radiation fields routinely used in external beam radiotherapy, the cumulative effect may not result in clinically significant dose perturbation. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Sensitivity of Beam Parameters to a Station C Solenoid Scan on Axis II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, Martin E.
Magnet scans are a standard technique for determining beam parameters in accelerators. Beam parameters are inferred from spot size measurements using a model of the beam optics. The sensitivity of the measured beam spot size to the beam parameters is investigated for typical DARHT Axis II beam energies and currents. In a typical S4 solenoid scan, the downstream transport is tuned to achieve a round beam at Station C with an envelope radius of about 1.5 cm with a very small divergence with S4 off. The typical beam energy and current are 16.0 MeV and 1.625 kA. Figures 1-3 showmore » the sensitivity of the bean size at Station C to the emittance, initial radius and initial angle respectively. To better understand the relative sensitivity of the beam size to the emittance, initial radius and initial angle, linear regressions were performed for each parameter as a function of the S4 setting. The results are shown in Figure 4. The measured slope was scaled to have a maximum value of 1 in order to present the relative sensitivities in a single plot. Figure 4 clearly shows the beam size at the minimum of the S4 scan is most sensitive to emittance and relatively insensitive to initial radius and angle as expected. The beam emittance is also very sensitive to the beam size of the converging beam and becomes insensitive to the beam size of the diverging beam. Measurements of the beam size of the diverging beam provide the greatest sensitivity to the initial beam radius and to a lesser extent the initial beam angle. The converging beam size is initially very sensitive to the emittance and initial angle at low S4 currents. As the S4 current is increased the sensitivity to the emittance remains strong while the sensitivity to the initial angle diminishes.« less
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-01-01
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-06-20
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.
Fellin, Francesco; Righetto, Roberto; Fava, Giovanni; Trevisan, Diego; Amelio, Dante; Farace, Paolo
2017-03-01
To investigate the range errors made in treatment planning due to the presence of the immobilization devices along the proton beam path. The measured water equivalent thickness (WET) of selected devices was measured by a high-energy spot and a multi-layer ionization chamber and compared with that predicted by treatment planning system (TPS). Two treatment couches, two thermoplastic masks (both un-stretched and stretched) and one headrest were selected. At TPS, every immobilization device was modelled as being part of the patient. The following parameters were assessed: CT acquisition protocol, dose-calculation grid-sizes (1.5 and 3.0mm) and beam-entrance with respect to the devices (coplanar and non-coplanar). Finally, the potential errors produced by a wrong manual separation between treatment couch and the CT table (not present during treatment) were investigated. In the thermoplastic mask, there was a clear effect due to beam entrance, a moderate effect due to the CT protocols and almost no effect due to TPS grid-size, with 1mm errors observed only when thick un-stretched portions were crossed by non-coplanar beams. In the treatment couches the WET errors were negligible (<0.3mm) regardless of the grid-size and CT protocol. The potential range errors produced in the manual separation between treatment couch and CT table were small with 1.5mm grid-size, but could be >0.5mm with a 3.0mm grid-size. In the headrest, WET errors were negligible (0.2mm). With only one exception (un-stretched mask, non-coplanar beams), the WET of all the immobilization devices was properly modelled by the TPS. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A proton irradiation test facility for space research in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias
2016-07-01
Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.
Influence of fundamental mode fill factor on disk laser output power and laser beam quality
NASA Astrophysics Data System (ADS)
Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen
2017-11-01
An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.
Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H
2013-06-21
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation.
Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H
2013-01-01
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of 5 lung cancer patients of varying tumor size (50.4–167.1cc) and motion amplitude (2.9–30.1mm). Treatments were planned assuming delivery in 35×2.5Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the 5 patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior (SI) motion amplitude alone. Larger spot sizes (σ ~9–16mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0±4.4% (1 standard deviation) in a single fraction compared to 86.1±13.1% for smaller spots (σ ~2–4mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation. PMID:23689035
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
Simple method for the characterization of intense Laguerre-Gauss vector vortex beams
NASA Astrophysics Data System (ADS)
Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.
2018-05-01
We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.
2016-05-01
Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.
Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu
2018-06-01
Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.
Impact of range shifter material on proton pencil beam spot characteristics.
Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin
2015-03-01
To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.
Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis
NASA Astrophysics Data System (ADS)
Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka
2017-01-01
Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palma, B; Bazalova, M; Qu, B
Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization wasmore » performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less
A geometrical optics approach for modeling atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Atia, Walid; Davis, Christopher C.
2005-08-01
Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes the optical phasefront to become distorted from propagation through turbulent eddies of varying sizes and refractive index. Turbulence also results in intensity scintillation and beam wander, which can severely impair the operation of target designation and free space optical (FSO) communications systems. We have developed a new model to assess the effects of turbulence on laser beam propagation in such applications. We model the atmosphere along the laser beam propagation path as a spatial distribution of spherical bubbles or curved interfaces. The size and refractive index discontinuity represented by each bubble are statistically distributed according to various models. For each statistical representation of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques allow us to assess beam wander, beam spread, and phase shifts along the path. An effective Cn2 can be determined by correlating beam wander behavior with the path length. This model has already proved capable of assessing beam wander, in particular the (Range)3 dependence of mean-squared beam wander, and in estimating lateral phase decorrelations that develop across the laser phasefront as it propagates through turbulence. In addition, we have developed efficient computational techniques for various correlation functions that are important in assessing the effects of turbulence. The Monte Carlo simulations are compared and show good agreement with the predictions of wave theory.
Spot size dependence of laser accelerated protons in thin multi-ion foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tung-Chang, E-mail: tcliu@umd.edu; Shao, Xi; Liu, Chuan-Sheng
2014-06-15
We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, amore » laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.« less
Investigation of multiple scattering effects in aerosols
NASA Technical Reports Server (NTRS)
Deepak, A.
1980-01-01
The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.
Investigation of multiple scattering effects in aerosols
NASA Astrophysics Data System (ADS)
Deepak, A.
1980-05-01
The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.
Analytical study on the self-healing property of Bessel beam
NASA Astrophysics Data System (ADS)
Chu, X.
2012-10-01
With the help of Babinet principle, an analytical expression for the self-healing of Bessel beam is derived by using the Gaussian absorption function to describe the obstacle. Based on the analytical expression, the self-healing properties of Bessel beam are studied. It shows that Bessel beam has the ability to reconstruct its beam shape disturbed by an obstacle. However, during the self-healing process, not only the intensity of the beam behind the obstacle but also the other part will be affected by the obstruction. Meanwhile, the highlight spot, which intensity is larger than that without the obstacle will appear, and the size and strength of the highlight spot is determined by the size of the obstacle. From the change of Poynting vector and Babinet principle, the physical interpretations for the self-healing ability, the effects of the obstruction on the other part and the appearance of highlight spot are given.
Monte Carlo analysis of tagged neutron beams for cargo container inspection.
Pesente, S; Lunardon, M; Nebbia, G; Viesti, G; Sudac, D; Valkovic, V
2007-12-01
Fast neutrons produced via D+T reactions and tagged by the associated particle technique have been recently proposed to inspect cargo containers. The general characteristics of this technique are studied with Monte Carlo simulations by determining the properties of the tagged neutron beams as a function of the relevant design parameters (energy and size of the deuteron beam, geometry of the charged particle detector). Results from simulations, validated by experiments, show that the broadening of the correlation between the alpha-particle and the neutron, induced by kinematical as well as geometrical (beam and detector size) effects, is important and limits the dimension of the minimum voxel to be inspected. Moreover, the effect of the container filling is explored. The material filling produces a sizeable loss of correlation between alpha-particles and neutrons due to scattering and absorption. Conditions in inspecting cargo containers are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, David B.
An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
NASA Astrophysics Data System (ADS)
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between 30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of 100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer
2008-02-01
We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.
Effects of polycrystallinity in nano patterning by ion-beam sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sun Mi; Kim, J.-S., E-mail: jskim@sm.ac.kr; Yoon, D.
Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceedmore » by both thermal diffusion and ion-induced processes.« less
NASA Astrophysics Data System (ADS)
Ebrahimi-Nejad, Salman; Boreiry, Mahya
2018-03-01
The bending, buckling and vibrational behavior of size-dependent piezoelectric nanobeams under thermo-magneto-mechano-electrical environment are investigated by performing a parametric study, in the presence of surface effects. The Gurtin-Murdoch surface elasticity and Eringen’s nonlocal elasticity theories are applied in the framework of Euler–Bernoulli beam theory to obtain a new non-classical size-dependent beam model for dynamic and static analyses of piezoelectric nanobeams. In order to satisfy the surface equilibrium equations, cubic variation of stress with beam thickness is assumed for the bulk stress component which is neglected in classical beam models. Results are obtained for clamped - simply-supported (C-S) and simply-supported - simply-supported (S-S) boundary conditions using a proposed analytical solution method. Numerical examples are presented to demonstrate the effects of length, surface effects, nonlocal parameter and environmental changes (temperature, magnetic field and external voltage) on deflection, critical buckling load and natural frequency for each boundary condition. Results of this study can serve as benchmarks for the design and analysis of nanostructures of magneto-electro-thermo-elastic materials.
Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun
2011-07-04
We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.
Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures
NASA Astrophysics Data System (ADS)
Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.
2004-05-01
This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.
A new evaluation method of electron optical performance of high beam current probe forming systems.
Fujita, Shin; Shimoyama, Hiroshi
2005-10-01
A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.
NASA Astrophysics Data System (ADS)
Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang
2017-09-01
The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)
NASA Astrophysics Data System (ADS)
Li, Ting; Zhao, Yue; Duan, Meixue; Sun, Yunlong; Li, Kai
2014-02-01
Low level light therapy (LLLT) has been clinically utilized for many indications in medicine requiring protection from cell/tissue death, stimulation of healing and repair of injuries, pain reduction, swelling and inflammation. Presently, use of LLLT to treat stroke, traumatic brain injury, and cognitive dysfunction is attracting growing interest. Near-infrared light can penetrate into the brain tissue, allowing noninvasive treatment to be carried out with few treatment-related adverse events. Optimization of LLLT treatment effect is one key issue of the field; however, only a few experimental tests on mice for wavelength selection have been reported. We addressed this issue by low-cost, straightforward and quantitative comparisons on light dosage distribution in Visible Chinese human head with Monte Carlo modeling of light propagation. Optimized selection in wavelength, beam type and size were given based on comparisons among frequently-used setups (i.e., wavelengths: 660 nm, 810 nm, 980 nm; beam type: Gaussian and flat beam; beam diameter: 2 cm, 4 cm, 6cm).This study provided an efficient way to guide optimization of LLLT setup and selection on wavelength, beam type and size for clinical brain LLLT.
A high resolution hand-held focused beam profiler
NASA Astrophysics Data System (ADS)
Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.
2017-05-01
The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.
Energy scaling of terahertz-wave parametric sources.
Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun
2015-02-23
Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoupas,N.; Ahrens, L.; Pile, P.
2008-10-01
As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along themore » drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.« less
Beam wander of dark hollow, flat-topped and annular beams
NASA Astrophysics Data System (ADS)
Eyyuboğlu, H. T.; Çil, C. Z.
2008-11-01
Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Influence of CdS nanoparticles grain morphology on laser-induced absorption
NASA Astrophysics Data System (ADS)
Ebothé, Jean; Michel, Jean; Kityk, I. V.; Lakshminarayana, G.; Yanchuk, O. M.; Marchuk, O. V.
2018-06-01
Using external illumination of a 7 nanosecond (ns) doubled frequency Nd: YAG laser emitting at λ = 532 nm with frequency repetition 10 Hz it was established a possibility of significant changes of the absorption at the probing wavelength 1150 nm of continuous wave (cw) He-Ne laser for the CdS nanoparticles embedded into the PVA polymer matrix. The effect is observed only during the two beam laser coherent treatment and this effect is a consequence of interference of two coherent beams. It is shown a principal role of the grain morphology in the efficiency of the process, which is more important than the nanoparticle sizes. The photoinduced absorption is manifested in the space distribution of the probing laser beam. The principal role of the grain interfaces between the nanoparticle interfaces and the surrounding polymer matrix is shown. The effect is almost independent of the nanoparticle sizes. It may be used for laser operation by nanocomposites.
Boss, Emmanuel; Slade, Wayne; Hill, Paul
2009-05-25
Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.
Kwon, Yun-Suk; Lee, Kyu-Shik; Chun, So-Young; Jang, Tae Jung; Nam, Kyung-Soo
2016-07-01
A proton beam is a next generation tool to treat intractable cancer. Although the therapeutic effects of a proton beam are well known, the effect on tumor metastasis is not fully described. Here, we investigated the effects of a proton beam on metastasis in highly invasive 4T1 murine breast cancer cells and their orthotopic breast cancer model. Cells were irradiated with 2, 4, 8 or 16 Gy proton beam, and changes in cell proliferation, survival, and migration were observed by MTT, colony forming and wound healing assays. 4T1 breast cancer cell-implanted BALB/c mice were established and the animals were randomly divided into 4 groups when tumor size reached 200 mm3. Breast tumors were selectively irradiated with 10, 20 or 30 Gy proton beam. Breast tumor sizes were measured twice a week, and breast tumor and lung tissues were pathologically observed. Metastasis-regulating gene expression was assessed with quantitative RT-PCR. A proton beam dose-dependently decreased cell proliferation, survival and migration in 4T1 murine breast cancer cells. Also, growth of breast tumors in the 4T1 orthotopic breast cancer model was significantly suppressed by proton beam irradiation without significant change of body weight. Furthermore, fewer tumor nodules metastasized from breast tumor into lung in mice irradiated with 30 Gy proton beam, but not with 10 and 20 Gy, than in control. We observed correspondingly lower expression levels of urokinase plasminogen activator (uPA), uPA receptor, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF), which are important factors in cancer metastasis, in breast tumor irradiated with 30 Gy proton beam. Proton beam irradiation did not affect expressions of matrix metalloproteinase (MMP)-9 and MMP-2. Taken together, the data suggest that, although proton beam therapy is an effective tool for breast cancer treatment, a suitable dose is necessary to prevent metastasis-linked relapse and poor prognosis.
Spatial-spectral characterization of focused spatially chirped broadband laser beams.
Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-11-20
Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuyu
2012-12-31
Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.« less
Nanofabrication by advanced electron microscopy using intense and focused beam∗.
Furuya, Kazuo
2008-01-01
The nanogrowth and nanofabrication of solid substances using an intense and focused electron beam are reviewed in terms of the application of scanning and transmission electron microscopy (SEM, TEM and STEM) to control the size, position and structure of nanomaterials. The first example discussed is the growth of freestanding nanotrees on insulator substrates by TEM. The growth process of the nanotrees was observed in situ and analyzed by high-resolution TEM (HRTEM) and was mainly controlled by the intensity of the electron beam. The second example is position- and size-controlled nanofabrication by STEM using a focused electron beam. The diameters of the nanostructures grown ranged from 4 to 20 nm depending on the size of the electron beam. Magnetic nanostructures were also obtained using an iron-containing precursor gas, Fe(CO) 5 . The freestanding iron nanoantennas were examined by electron holography. The magnetic field was observed to leak from the nanostructure body which appeared to act as a 'nanomagnet'. The third example described is the effect of a vacuum on the size and growth process of fabricated nanodots containing W in an ultrahigh-vacuum field-emission TEM (UHV-FE-TEM). The size of the dots can be controlled by changing the dose of electrons and the partial pressure of the precursor. The smallest particle size obtained was about 1.5 nm in diameter, which is the smallest size reported using this method. Finally, the importance of a smaller probe and a higher electron-beam current with atomic resolution is emphasized and an attempt to develop an ultrahigh-vacuum spherical aberration corrected STEM (Cs-corrected STEM) at NIMS is reported.
Nanofabrication by advanced electron microscopy using intense and focused beam∗
Furuya, Kazuo
2008-01-01
The nanogrowth and nanofabrication of solid substances using an intense and focused electron beam are reviewed in terms of the application of scanning and transmission electron microscopy (SEM, TEM and STEM) to control the size, position and structure of nanomaterials. The first example discussed is the growth of freestanding nanotrees on insulator substrates by TEM. The growth process of the nanotrees was observed in situ and analyzed by high-resolution TEM (HRTEM) and was mainly controlled by the intensity of the electron beam. The second example is position- and size-controlled nanofabrication by STEM using a focused electron beam. The diameters of the nanostructures grown ranged from 4 to 20 nm depending on the size of the electron beam. Magnetic nanostructures were also obtained using an iron-containing precursor gas, Fe(CO)5. The freestanding iron nanoantennas were examined by electron holography. The magnetic field was observed to leak from the nanostructure body which appeared to act as a ‘nanomagnet’. The third example described is the effect of a vacuum on the size and growth process of fabricated nanodots containing W in an ultrahigh-vacuum field-emission TEM (UHV-FE-TEM). The size of the dots can be controlled by changing the dose of electrons and the partial pressure of the precursor. The smallest particle size obtained was about 1.5 nm in diameter, which is the smallest size reported using this method. Finally, the importance of a smaller probe and a higher electron-beam current with atomic resolution is emphasized and an attempt to develop an ultrahigh-vacuum spherical aberration corrected STEM (Cs-corrected STEM) at NIMS is reported. PMID:27877936
Spot size characterization of focused non-Gaussian X-ray laser beams.
Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S
2010-12-20
We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...
2017-11-20
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Propagation properties of cylindrical sinc Gaussian beam
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.; Bayraktar, Mert
2016-09-01
We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.
Effective temperature of an ultracold electron source based on near-threshold photoionization.
Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D
2014-01-01
We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sangeetha, S.; Sureka, C. S.
2017-06-01
The present study is focused to compare the characteristics of Varian Clinac 600 C/D flattened and unflattened 6 MV photon beams for small field dosimetry using EGSnrc Monte Carlo Simulation since the small field dosimetry is considered to be the most crucial and provoking task in the field of radiation dosimetry. A 6 MV photon beam of a Varian Clinac 600 C/D medical linear accelerator operates with Flattening Filter (FF) and Flattening-Filter-Free (FFF) mode for small field dosimetry were performed using EGSnrc Monte Carlo user codes (BEAMnrc and DOSXYZnrc) in order to calculate the beam characteristics using Educated-trial and error method. These includes: Percentage depth dose, lateral beam profile, dose rate delivery, photon energy spectra, photon beam uniformity, out-of-field dose, surface dose, penumbral dose and output factor for small field dosimetry (0.5×0.5 cm2 to 4×4 cm2) and are compared with magna-field sizes (5×5 cm2 to 40×40 cm2) at various depths. The results obtained showed that the optimized beam energy and Full-width-half maximum value for small field dosimetry and magna-field dosimetry was found to be 5.7 MeV and 0.13 cm for both FF and FFF beams. The depth of dose maxima for small field size deviates minimally for both FF and FFF beams similar to magna-fields. The depths greater than dmax depicts a steeper dose fall off in the exponential region for FFF beams comparing FF beams where its deviations gets increased with the increase in field size. The shape of the lateral beam profiles of FF and FFF beams varies remains similar for the small field sizes less than 4×4 cm2 whereas it varies in the case of magna-fields. Dose rate delivery for FFF beams shows an eminent increase with a two-fold factor for both small field dosimetry and magna-field sizes. The surface dose measurements of FFF beams for small field size were found to be higher whereas it gets lower for magna-fields than FF beam. The amount of out-of-field dose reduction gets increased with the increase in field size. It is also observed that the photon energy spectrum gets increased with the increase in field size for FFF beam mode. Finally, the output factors for FFF beams were relatively quite low for small field sizes than FF beams whereas it gets higher for magna-field sizes. From this study, it is concluded that the FFF beams depicted minimal deviations in the treatment field region irrespective to the normal tissue region for small field dosimetry compared to FF beams. The more prominent result observed from the study is that the shape of the beam profile remains similar for FF and FFF beams in the case of smaller field size that leads to more accurate treatment planning in the case of IMRT (Image-Guided Radiation Therapy), IGAT (Image-Guided Adaptive Radiation Therapy), SBRT (Stereotactic Body Radiation Therapy), SRS (Stereotactic Radio Surgery), and Tomotherapy techniques where homogeneous dose is not necessary. On the whole, the determination of dosimetric beam characteristics of Varian linac machine using Monte Carlo simulation provides accurate dose calculation as the clinical golden data.
Kanematsu, Nobuyuki; Komori, Masataka; Yonai, Shunsuke; Ishizaki, Azusa
2009-04-07
The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.
Elleaume, P; Fortgang, C; Penel, C; Tarazona, E
1995-09-01
A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.
Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation
2013-01-01
We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer. PMID:24138985
Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation.
Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha
2013-10-18
We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.
Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha
2013-10-01
We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.
Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation
Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong
2013-01-01
Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert
2015-09-07
Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Singh, H; Islam, M
2014-06-01
Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less
A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams.
Richmond, Neil; Allen, Vince; Daniel, Jim; Dacey, Rob; Walker, Chris
2015-01-01
Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10MV and Elekta 6MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40cm(2). For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14cm(2). Outside this range, the differences were much greater, reaching - 3.2%, - 4.5%, and - 4.3% for the fields of 40 × 40cm(2) for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud
2016-04-01
This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.
Impedance computations and beam-based measurements: A problem of discrepancy
NASA Astrophysics Data System (ADS)
Smaluk, Victor
2018-04-01
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.
NASA Astrophysics Data System (ADS)
Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco
2005-01-01
We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.
Generation and propagation characteristics of a localized hollow beam
NASA Astrophysics Data System (ADS)
Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping
2018-05-01
A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
NASA Technical Reports Server (NTRS)
Herr, R. W.
1974-01-01
The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.
NASA Astrophysics Data System (ADS)
Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.
2018-04-01
Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.
Gyrator transform of Gaussian beams with phase difference and generation of hollow beam
NASA Astrophysics Data System (ADS)
Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke
2018-03-01
The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.
Gyrator transform of Gaussian beams with phase difference and generation of hollow beam
NASA Astrophysics Data System (ADS)
Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke
2018-06-01
The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.
An optimized nanoparticle separator enabled by electron beam induced deposition
NASA Astrophysics Data System (ADS)
Fowlkes, J. D.; Doktycz, M. J.; Rack, P. D.
2010-04-01
Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
NASA Astrophysics Data System (ADS)
Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.
2014-03-01
Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.
Scanning systems for particle cancer therapy
Trbojevic, Dejan
2015-08-04
A particle beam to treat malignant tissue is delivered to a patient by a gantry. The gantry includes a plurality of small magnets sequentially arranged along a beam tube to transfer the particle beam with strong focusing and a small dispersion function, whereby a beam size is very small, allowing for the small magnet size. Magnets arranged along the beam tube uses combined function magnets where the magnetic field is a combination of a bending dipole field with a focusing or defocusing quadrupole field. A triplet set of combined function magnets defines the beam size at the patient. A scanning system of magnets arranged along the beam tube after the bending system delivers the particle beam in a direction normal to the patient, to minimize healthy skin and tissue exposure to the particle beam.
Beam tracking simulation in the central region of a 13 MeV PET cyclotron
NASA Astrophysics Data System (ADS)
Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning
2012-06-01
This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.
Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima
2015-11-08
The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.
Alabdoaburas, Mohamad M.; Mege, Jean‐Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Attila; de Vathaire, Florent; Lefkopoulos, Dimitri
2015-01-01
The purpose of this work was to experimentally investigate the out‐of‐field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off‐axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD‐700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel‐plane ionization chamber measurements. Also, out‐of‐field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12–15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10×10cm2 applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10×10cm2 applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out‐of‐field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long‐term effects. PACS number(s): 87.53.Bn, 87.56.bd, 87.56.J‐ PMID:26699572
NASA Astrophysics Data System (ADS)
Marsden, Nicholas; Flynn, Michael J.; Taylor, Jonathan W.; Allan, James D.; Coe, Hugh
2016-12-01
Single-particle mass spectrometry (SPMS) is a useful tool for the online study of aerosols with the ability to measure size-resolved chemical composition with a temporal resolution relevant to atmospheric processes. In SPMS, optical particle detection is used for the effective temporal alignment of an ablation laser pulse with the presence of a particle in the ion source, and it gives the option of aerodynamic sizing by measuring the offset of particle arrival times between two detection stages. The efficiency of the optical detection stage has a strong influence on the overall instrument performance. A custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry. The use of a collimated laser beam permitted the construction of a numerical model that predicts the effects of detection laser wavelength, output power, beam focussing characteristics, light collection angle, particle size, and refractive index on the effective detection radius (R) of the detection laser beam. We compare the model predictions with an ambient data set acquired during the Ice in Clouds Experiment - Dust (ICE-D) project. The new laser system resulted in an order-of-magnitude improvement in instrument sensitivity to spherical particles in the size range 500-800 nm compared to a focussed 405 nm laser diode system. The model demonstrates that the limit of detection in terms of particle size is determined by the scattering cross section (Csca) as predicted by Mie theory. In addition, if light is collected over a narrow collection angle, oscillations in the magnitude of Csca with respect to particle diameter result in a variation in R, resulting in large particle-size-dependent variation in detection efficiency across the particle transmission range. This detection bias is imposed on the aerodynamic size distributions measured by the instrument and accounts for some of the detection bias towards sea salt particles in the ambient data set.
Using refractive optics to broaden the focus of an X-ray mirror.
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal
2017-07-01
X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10-20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required.
Using refractive optics to broaden the focus of an X-ray mirror
Dhamgaye, Vishal
2017-01-01
X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10–20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required. PMID:28664880
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
2016-08-03
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure
NASA Astrophysics Data System (ADS)
Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.
2017-12-01
Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.
Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph
2016-05-20
The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
The effect of a finite focal spot size on location dependent detectability in a fan beam CT system
NASA Astrophysics Data System (ADS)
Kim, Byeongjoon; Baek, Jongduk
2017-03-01
A finite focal spot size is one of the sources to degrade the resolution performance in a fan beam CT system. In this work, we investigated the effect of the finite focal spot size on signal detectability. For the evaluation, five spherical objects with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm were used. The optical focal spot size viewed at the iso-center was a 1 mm (height) × 1 mm (width) with a target angle of 7 degrees, corresponding to an 8.21 mm (i.e., 1 mm / sin (7°)) focal spot length. Simulated projection data were acquired using 8 × 8 source lets, and reconstructed by Hanning weighted filtered backprojection. For each spherical object, the detectability was calculated at (0 mm, 0 mm) and (0 mm, 200 mm) using two image quality metrics: pixel signal to noise ratio (SNR) and detection SNR. For all signal sizes, the pixel SNR is higher at the iso-center since the noise variance at the off-center is much higher than that at the iso-center due to the backprojection weightings used in direct fan beam reconstruction. In contrast, detection SNR shows similar values for different spherical objects except 1 mm and 2 mm diameter spherical objects. Overall, the results indicate the resolution loss caused by the finite focal spot size degrades the detection performance, especially for small objects with less than 2 mm diameter.
Effects of various cavity designs on the performance of a CO2 TEA laser with an unstable resonator
NASA Technical Reports Server (NTRS)
Zhao, Yanzeng; Post, Madison J.; Lawrence, T. R.
1992-01-01
Unstable resonator modeling has been carried out for an injection-seeded CO2 transversely excited atmosphere (TEA) laser in the NOAA/ERL/Wave Propagation Laboratory (WPL) Doppler lidar to examine the effects of various cavity designs on the quality of the output beam. The results show the effects of an injection pinhole, electrode spacing, mirror tilt, and radial reflectivity function of the output coupler. The electrode spacing in this laser has negligible effect. The injection pinhole, however, produces complicated structures in the output patterns. If the pinhole is removed, the output pattern is much smoother, and the frequency jitter is smaller. Misalignment sensitivity is very closely related to the radial reflectivity function. The superparabolic function provides the highest coupling efficiency, largest beam size, and good collimation, but produces a slightly higher misalignment sensitivity compared with a parabolic function. The Gaussian function provides the lowest misalignment sensitivity, but it produces the smallest beam size and the largest beam divergence. Also, the coupling coefficient is 50 percent lower than the optimum value. Methods for using a flat diffraction grating in unstable resonators are also investigated. The best way is to use a flat grating/positive lens combination to replace the back concave mirror.
Studies on transmitted beam modulation effect from laser induced damage on fused silica optics.
Zheng, Yi; Ma, Ping; Li, Haibo; Liu, Zhichao; Chen, Songlin
2013-07-15
UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, P. H., E-mail: p.charles@qut.edu.au; Crowe, S. B.; Langton, C. M.
Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated intomore » additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ≤15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤12 mm. Source occlusion also caused a large change in OPF for field sizes ≤8 mm. Based on the results of this study, field sizes ≤12 mm were considered to be theoretically very small for 6 MV beams. Conclusions: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤12 mm and more conservatively≤15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.« less
Charles, P H; Cranmer-Sargison, G; Thwaites, D I; Crowe, S B; Kairn, T; Knight, R T; Kenny, J; Langton, C M; Trapp, J V
2014-04-01
This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤ 12 mm and more conservatively ≤ 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection. © 2014 American Association of Physicists in Medicine.
A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Neil, E-mail: neil.richmond@stees.nhs.uk; Allen, Vince; Daniel, Jim
2015-04-01
Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (S{sub c}) and total scatter (S{sub cp}) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (S{sub p}) data. The similarities and differences between S{sub p} of flattened and FFF beams are described. S{sub c} and S{sub cp} data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmicmore » power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam S{sub p} and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm{sup 2}. For the FFF beams, S{sub p} was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm{sup 2}. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm{sup 2} for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam S{sub p} increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis.« less
NASA Astrophysics Data System (ADS)
Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Jiang, Ping; Harder, Dietrich; Poppe, Björn
2018-01-01
The well-known field-size dependent overresponse in small-field photon-beam dosimetry of solid-state detectors equipped with very thin sensitive volumes, such as the PTW microDiamond, cannot be caused by the photon and electron interactions within these sensitive layers because they are only a few micrometers thick. The alternative explanation is that their overresponse is caused by the combination of two effects, the modification of the secondary electron fluence profile (i) by a field size too small to warrant lateral secondary electron equilibrium and (ii) by the density-dependent electron ranges in the structural detector materials placed in front of or backing the sensitive layer. The present study aims at the numerical demonstration and visualization of this combined mechanism. The lateral fluence profiles of the secondary electrons hitting a 1 µm thick scoring layer were Monte-Carlo simulated by modelling their generation and transport in the upstream or downstream adjacent layers of thickness 0.6 mm and densities from 0.0012 to 3 g cm-3, whose atomic composition was constantly kept water-like. The scoring layer/adjacent layer sandwich was placed in an infinite water phantom irradiated by circular 60Co, 6 MV and 15 MV photon beams with diameters from 3 to 40 mm. The interpretation starts from the ideal case of lateral secondary electron equilibrium, where the Fano theorem excludes any density effect. If the field size is then reduced, electron tracks potentially originating from source points outside the field border will then be numerically ‘cut away’. This geometrical effect reduces the secondary electron fluence at the field center, but the magnitude of this reduction also varies with the density-dependent electron ranges in the adjacent layers. This combined mechanism, which strongly depends on the photon spectrum, explains the field size and material density effect on the response of detectors with very thin sensitive layers used in small-field photon-beam dosimetry.
Method of automatic measurement and focus of an electron beam and apparatus therefore
Giedt, W.H.; Campiotti, R.
1996-01-09
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.
Method of automatic measurement and focus of an electron beam and apparatus therefor
Giedt, Warren H.; Campiotti, Richard
1996-01-01
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.
Study on the coloration response of a radiochromic film to MeV cluster ion beams
NASA Astrophysics Data System (ADS)
Yuri, Yosuke; Narumi, Kazumasa; Chiba, Atsuya; Hirano, Yoshimi; Saitoh, Yuichi
2017-11-01
A radiochromic film, Gafchromic HD-V2, is applied to a possible method of measuring a two-dimensional (2D) spatial profile of MeV cluster ion beams. The coloration responses of the HD-V2 film to MeV carbon and gold cluster ion beams are experimentally investigated since some cluster effect may appear. The degree of the film coloration is quantified as a change in optical density (OD) by reading the films with an image scanner for high-resolution measurement of the 2D beam profile. The OD response of HD-V2 is characterized as a function of the ion and atom fluence for comparison. The dependences of the OD response on the cluster size, kinetic energy, and ion species are discussed. It is found that the sensitivity of the OD change is reduced when the cluster size is large. The beam profile of MeV cluster ion beams delivered from the tandem accelerator in TIARA is characterized from the measurement result using HD-V2 films. The present results show that the use of the Gafchromic HD-V2 film is suitable for the detail beam profile measurement of MeV cluster ions, especially C60 ions, whose available intensity is rather low in comparison with that of monatomic ion beams.
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.
2002-02-01
Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.
Optical characterization of high speed microscanners based on static slit profiling method
NASA Astrophysics Data System (ADS)
Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa
2017-01-01
Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.
Karsai, Syrus; Pfirrmann, Gudrun; Hammes, Stefan; Raulin, Christian
2008-02-01
Multiple treatments of resistant tattoos often result in fibrosis and visible textural changes that lessen response to subsequent treatments. The aim of this study is to evaluate the influence of beam profile and spot size on clearance rates and side effects in the setting of resistant tattoos. Thirty-six professional, black tattoos (32 patients) were treated unsuccessfully with a Q-switched Nd:YAG laser (MedLite C3, HoyaConBio Inc., Fremont, CA). Because of therapy resistance all tattoos were re-treated using a new generation Nd:YAG laser (MedLite C6, HoyaConBio Inc.). Maximum energy fluence (E (max)), mean energy fluence, mean spot size, level of clearance, side effects and beam profile (irradiance distribution) of both laser systems were assessed and evaluated in a retrospective study. All tattoos were previously treated with the C3 laser at 1,064 nm using a mean E(max) of 5.8+/-0.8 J/cm(2) (range 3.8-7.5 J/cm(2)) as compared with a mean E(max) of 6.4+/-1.6 J/cm(2) (range 3.2-9.0 J/cm(2)) during the C6 treatment course. Corresponding spot sizes were larger during C6 treatments as compared with C3 (5.0+/-0.9 and 3.6+/-0.2 mm, respectively). The C6 laser had a "flat top" and homogenous profile regardless of the spot size. For the C3 laser the beam shape was "Gaussian," and the homogeneity was reduced by numerous micro-spikes and micro-nadirs. After the C6 treatment course 33.3% of the tattoos showed clearance of grade 1 (0-25%), 16.7% of grade 2 (26-50%), 16.7% of grade 3 (51-75%), 30.5% of grade 4 (76-95%), 2.8% of grade 5 (96-100%). The total rate of side effects due to C6 treatment was 8.3% in all tattoos (hyperpigmentation 5.6%, hypopigmentation 2.7%, textural changes/scars 0%). This clinical study documents for the first time the impact of a 1,064-nm Nd:YAG laser with a more homogenous beam profile and a larger spot size on the management of resistant tattoos. Only a few treatment sessions were necessary to achieve an additional clearance with a low rate of side effects.
Learn, R; Feigenbaum, E
2016-06-01
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Learn, R.; Feigenbaum, E.
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Learn, R.; Feigenbaum, E.
2016-05-27
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Khoshnoud, Afsaneh
2016-03-01
In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.
Impedance computations and beam-based measurements: A problem of discrepancy
Smaluk, Victor
2018-04-21
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
Impedance computations and beam-based measurements: A problem of discrepancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smaluk, Victor
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
Physical-geometric optics method for large size faceted particles.
Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong
2017-10-02
A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.
2014-09-15
Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations tomore » the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of RM-step thickness is required for accurate parameterization of the effective SAD. The GBD energy spread is given by a linear function of the exponential of the beam energy. Except for a few outliers, the measured parameters match the GBD within the specified tolerances in all of the four rooms investigated. For a SOBP field with a range of 15 g/cm{sup 2} and an air gap of 25 cm, the maximum difference in the 80%–20% lateral penumbra between the GBD-commissioned treatment-planning system and measurements in any of the four rooms is 0.5 mm. Conclusions: The beam model parameters of the double-scattering system can be parameterized with a limited set of equations and parameters. This GBD closely matches the measured dosimetric properties in four different rooms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Giebeler, A; Mascia, A
Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the twomore » treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.« less
Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence.
Song, Zhenzhen; Liu, Zhengjun; Zhou, Keya; Sun, Qiongge; Liu, Shutian
2016-01-25
We derive several analytical expressions for the root-mean-square (rms) angular width and the M(2)-factor of the multi-sinc Schell-model (MSSM) beams propagating in non-Kolmogorov turbulence with the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Numerical results show that a MSSM beam with dark-hollow far fields in free space has advantage over the one with flat-topped or multi-rings far fields for reducing the turbulence-induced degradation, which will become more obvious with larger dark-hollow size. Beam quality of MSSM beams can be further improved with longer wavelength and larger beam width, or under the condition of weaker turbulence. We also demonstrate that the non-Kolmogorov turbulence has significantly less effect on the MSSM beams than the Gaussian Schell-model beam.
Laser-induced retinal damage thresholds for annular retinal beam profiles
NASA Astrophysics Data System (ADS)
Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.
2004-07-01
The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.
Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Leung, W. C.
1995-01-01
Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.; Baykal, Yahya; Çil, Celal Z.; Korotkova, Olga; Cai, Yangjian
2010-02-01
In this paper we review our work done in the evaluations of the root mean square (rms) beam wander characteristics of the flat-topped, dark hollow, cos-and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams in atmospheric turbulence. Our formulation is based on the wave-treatment approach, where not only the beam sizes but the source beam profiles are taken into account as well. In this approach the first and the second statistical moments are obtained from the Rytov series under weak atmospheric turbulence conditions and the beam size are determined as a function of the propagation distance. It is found that after propagating in atmospheric turbulence, under certain conditions, the collimated flat-topped, dark hollow, cos- and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams have smaller rms beam wander compared to that of the Gaussian beam. The beam wander of these beams are analyzed against the propagation distance, source spot sizes, and against specific beam parameters related to the individual beam such as the relative amplitude factors of the constituent beams, the flatness parameters, the beam orders, the displacement parameters, the width parameters, and are compared against the corresponding Gaussian beam.
HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Morgan, J.; Lee, S.H.
The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less
Observation of stimulated Mie-Bragg scattering from large-size-gold-nanorod suspension in water
NASA Astrophysics Data System (ADS)
He, Guang S.; Yong, Ken-Tye; Zhu, Jing; Prasad, P. N.
2012-04-01
Highly directional backward stimulated scattering has been observed from large-size-gold nanorods suspended in water, pumped with ˜816 nm and ˜10 ns laser pulses. In comparison with other known stimulated scattering effects, the newly observed effect exhibits the following features. (i) The scattering centers are impurity particles with a size comparable in order of magnitude to the incident wavelength. (ii) There is no frequency shift between the pump wavelength and the stimulated scattering wavelength. (iii) The pump threshold can be significantly lower than that of stimulated Brillouin scattering in pure water. The nonfrequency shift can be explained by the formation of a standing-wave Bragg grating induced by the interference between the forward pump beam and the backward Mie-scattering beam. The low pump threshold results from stronger initial Mie-scattering (seed) signals and the intensity-dependent refractive-index change of the scattering medium enhanced by metallic nanoparticles.
A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
NASA Astrophysics Data System (ADS)
Xia, Yong; Yin, Jianping
2005-03-01
We propose a new scheme to generate a focusing hollow beam (FHB) by use of an azimuthally distributed 2π-phase plate and a convergent thin lens. From the Fresnel diffraction theory, we calculate the intensity distributions of the FHB in free propagation space and study the relationship between the waist w0 of the incident Gaussian beam (or the focal length f of the lens) and the dark spot size (or the beam radius) at the focal point and the relationship between the maximum radial intensity of the FHB and the dark spot size (or the beam radius) at the focal point, respectively. Our study shows that the FHB can be used to cool and trap neutral atoms by intensity-gradient-induced Sisyphus cooling due to an extremely high intensity gradient of the FHB itself near the focal point, or to guide and focus a cold molecular beam. We also calculate the optical potential of the blue-detuned FHB for 85Rb atoms and find that in the focal plane, the smaller the dark spot size of the FHB is, the higher the optical potential is, and the greater the corresponding optimal detuning δ is; these qualities are beneficial to an atomic lens not only because it is profitable to obtain an atomic lens with a higher resolution, but also because it is helpful to reduce the spontaneous photon-scattering effect of atoms in the FHB.
Husser, Edgar; Bargmann, Swantje
2017-01-01
The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657
An Atomic Lens Using a Focusing Hollow Beam
NASA Astrophysics Data System (ADS)
Xia, Yong; Yin, Jian-Ping; Wang, Yu-Zhu
2003-05-01
We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2pi-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist wo of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei
2015-01-01
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K. PMID:26233132
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lei; Zhang, Jie; Freund, William M.
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature,more » the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.« less
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.
Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei
2015-07-28
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.
Ion beam radiation effects on natural halite crystals
NASA Astrophysics Data System (ADS)
Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam
2017-10-01
Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.
NASA Astrophysics Data System (ADS)
Ansari, R.; Sahmani, S.
2012-04-01
The free vibration response of single-walled carbon nanotubes (SWCNTs) is investigated in this work using various nonlocal beam theories. To this end, the nonlocal elasticity equations of Eringen are incorporated into the various classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Reddy beam theory (RBT) to consider the size-effects on the vibration analysis of SWCNTs. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations of each nonlocal beam theory corresponding to four commonly used boundary conditions. Then molecular dynamics (MD) simulation is implemented to obtain fundamental frequencies of nanotubes with different chiralities and values of aspect ratio to compare them with the results obtained by the nonlocal beam models. Through the fitting of the two series of numerical results, appropriate values of nonlocal parameter are derived relevant to each type of chirality, nonlocal beam model, and boundary conditions. It is found that in contrast to the chirality, the type of nonlocal beam model and boundary conditions make difference between the calibrated values of nonlocal parameter corresponding to each one.
Miniature rotating transmissive optical drum scanner
NASA Technical Reports Server (NTRS)
Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)
2013-01-01
A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.
Formation of Sub-Millimeter-Size Powerful X-Ray Sources in Low-Impedance Rod-Pinch Diodes
NASA Astrophysics Data System (ADS)
Sorokin, S. A.
2018-01-01
In the paper, experiments on the formation of a low-impedance diode and a focused electron beam as a result of detachment of radial wires, accelerated by the current of a high-current generator, from the rod anode have been described. In the experiments, along with studies of conditions for compact focusing of the electron beam and effective generation of hard x-rays, the shape of the tip of the anode rod is determined at which the x-ray source is point-sized when viewed in the radial direction.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
Li, Ye; Yu, Lin; Zhang, Yixin
2017-05-29
Applying the angular spectrum theory, we derive the expression of a new Hermite-Gaussian (HG) vortex beam. Based on the new Hermite-Gaussian (HG) vortex beam, we establish the model of the received probability density of orbital angular momentum (OAM) modes of this beam propagating through a turbulent ocean of anisotropy. By numerical simulation, we investigate the influence of oceanic turbulence and beam parameters on the received probability density of signal OAM modes and crosstalk OAM modes of the HG vortex beam. The results show that the influence of oceanic turbulence of anisotropy on the received probability of signal OAM modes is smaller than isotropic oceanic turbulence under the same condition, and the effect of salinity fluctuation on the received probability of the signal OAM modes is larger than the effect of temperature fluctuation. In the strong dissipation of kinetic energy per unit mass of fluid and the weak dissipation rate of temperature variance, we can decrease the effects of turbulence on the received probability of signal OAM modes by selecting a long wavelength and a larger transverse size of the HG vortex beam in the source's plane. In long distance propagation, the HG vortex beam is superior to the Laguerre-Gaussian beam for resisting the destruction of oceanic turbulence.
NASA Astrophysics Data System (ADS)
Steinman, James P.
I-125 seeds used in permanent prostate brachytherapy are composed of high-Z metals and may number from 40 to over 100 in a typical implant. If any supplemental external beam treatment is administered afterward (as for salvaging failed brachytherapy treatment), it is possible that the seeds may cause substantial dose perturbation which will depend on numerous factors (photon energy, depth, field size, number of seeds, etc.) and this effect needs to be thoroughly investigated. Film measurements were primarily done using Kodak XV2 layered above and below a non-radioactive I-125 seed placed in a groove on a Lucite plate with 5 cm buildup and 10 cm backscatter added at 95 cm SSD. The phantom was irradiated with and without seed with 6 MV photons for a 1 x 1 cm2 field size. Monte Carlo simulations were carried out using DOSXYZnrc using the same parameters and compared with Gafchromic EBT2 film. Other comparisons looked at changing energy, depth, and field size in both with and without seeds configuration. This study was further extended to include metals of various Z of the seed's dimensions and also looked into effect of 3 seeds spaced 0.5 cm vertically. Another measurement was done using two opposing fields using single as well as 3 seed configuration to see whether the dose enhancement and attenuation cancel out in multi-field treatments which is the norm clinically in a prostate treatment. For a single I-125 seed, on XV film a localized dose enhancement of 6.3% upstream and -10.9% downstream was noticed. With three seeds, this effect did not change. With two opposing fields, a cold spot around the seed of ~3% was noticed from film measurements. Increasing energy and field size decreased the effect while increase in Z of material greatly increased the effect. Increasing depth appeared to have no effect. DOSXYZnrc and EBT2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the I-125 seed surface. In general, the range of the effect was limited to ~2 mm upstream and ~5 mm downstream with reference to the seed surface in relation to the incident photon beam. As with other heterogeneities in a human body, the dose perturbation due to I-125 seeds in external beam radiotherapy depends on incident beam energy, field size, and the composition of the seed. However, unlike other heterogeneities, no depth dependence of the seed in the material was noted. With multiple seeds spaced apart and multiple fields normally used in prostate treatment, the dose perturbation due to them may not be clinically significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore-560013
InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.
Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach.
Sharpe, M B; Miller, B M; Yan, D; Wong, J W
2000-12-01
Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Effect of environmental conditions on the flexural properties of wood I-beams and lumber
Gwo-Huang Chen; R.C. Tang; E.W. Price
1989-01-01
Flexural properties as affected by environmental conditions were evaluated for full-sized wood composite I-beams webbed with oriented strand board (OSB), randomly oriented flakeboard (RF) and 3-ply Structural I plywood (PLY). Solid-sawn southern pine 2 by 10's, ordinarily used in light-frame building construction, were also tested for comparative purposes....
Liu, Paul Z.Y.; Lee, Christopher; McKenzie, David R.; Suchowerska, Natalka
2016-01-01
Flattening filter‐free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization chambers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ±0.9% across all field sizes measured. Solid‐state detectors showed an increased dependence on the flattening filter of up to ±1.6%. Measured diode response was within ±1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ±1.6% is accepted. PACS number(s): 87.55.km, 87.56.bd, 87.56.Da PMID:27167280
Belosi, Maria F; Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sempau, Josep; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo
2014-05-01
Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, Trevor John; Moir, David C.
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Quantifying Spot Size Reduction of a 1.8 kA Electron Beam for Flash Radiography
Burris-Mog, Trevor John; Moir, David C.
2018-03-14
The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittancemore » and solenoid aberrations are also presented.« less
Monte Carlo calculations for reporting patient organ doses from interventional radiology
NASA Astrophysics Data System (ADS)
Huo, Wanli; Feng, Mang; Pi, Yifei; Chen, Zhi; Gao, Yiming; Xu, X. George
2017-09-01
This paper describes a project to generate organ dose data for the purposes of extending VirtualDose software from CT imaging to interventional radiology (IR) applications. A library of 23 mesh-based anthropometric patient phantoms were involved in Monte Carlo simulations for database calculations. Organ doses and effective doses of IR procedures with specific beam projection, filed of view (FOV) and beam quality for all parts of body were obtained. Comparing organ doses for different beam qualities, beam projections, patients' ages and patient's body mass indexes (BMIs) which generated by VirtualDose-IR, significant discrepancies were observed. For relatively long time exposure, IR doses depend on beam quality, beam direction and patient size. Therefore, VirtualDose-IR, which is based on the latest anatomically realistic patient phantoms, can generate accurate doses for IR treatment. It is suitable to apply this software in clinical IR dose management as an effective tool to estimate patient doses and optimize IR treatment plans.
Plasma lens experiments at the Final Focus Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, B.; Chattopadhyay, S.; Chen, P.
1993-04-01
We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
Stress-Strain Behavior of Cementitious Materials with Different Sizes
Zhou, Jikai; Qian, Pingping; Chen, Xudong
2014-01-01
The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant's size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li's equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement. PMID:24744688
Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2017-01-01
This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213
Effects of Ultraviolet Radiation on the Oxygen Uptake Rate of the Rabbit Cornea
1989-07-01
typical of a noncoherent source Optometrist, Ph.D. exposure. IV Effects on Corneal Oxygen Uptake-Lattimore 117 AvxAtl,-blity Codes 1- -il and/or , "t i...romator entrance slit by the housing optics . A 10 reciprocity (i.e., the biologic effects or endpoints cm quartz-enclosed water chamber was placed be...remove the infrared radiation. The exit optical taneous output at 350.7 and 356.4 nm (3:1 ratio), beam was focused by a quartz lens with a beam size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Yuanshui; Liu Yaxi; Zeidan, Omar
Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.« less
Experimental characterization of active plasma lensing for electron beams
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marocchino, A.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2017-03-01
The active plasma lens represents a compact and affordable tool with radially symmetric focusing and field gradients up to several kT/m. In order to be used as a focusing device, its effects on the particle beam distribution must be well characterized. Here, we present the experimental results obtained by focusing an high-brightness electron beam by means of a 3 cm-long discharge-capillary pre-filled with Hydrogen gas. We achieved minimum spot sizes of 24 μ m (rms) showing that, during plasma lensing, the beam emittance increases due to nonlinearities in the focusing field. The results have been cross-checked with numerical simulations, showing an excellent agreement.
Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude
2018-02-01
The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring system was able to measure in a reproducible way the total charge of electrons that exit the machine, as long as the electron pulse amplitude remains above a given threshold. Furthermore, we were able to relate the charge measured with the monitoring system to the absorbed dose in a solid water phantom. The Oriatron eRT6 was successfully commissioned for preclinical use and is currently in full operation, with studies being performed on the radiobiological effects of high dose-per-pulse irradiation. © 2017 American Association of Physicists in Medicine.
Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2016-11-01
Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.
Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique
NASA Astrophysics Data System (ADS)
Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.
2018-03-01
The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M.; Janyani, Vijay
The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The presentmore » paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.« less
Operation of the CESR-TA vertical beam size monitor at Eb = 4 GeV
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Conolly, C.; Edwards, E.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2015-10-01
We describe operation of the CESR-TA vertical beam size monitor (xBSM) with e± beams with Eb=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs photodiodes with 50 μm pitch. The device has previously been successfully used to measure vertical beam sizes of 10-100 μm on a bunch-by-bunch, turn-by-turn basis at e± beam energies of ~2 GeV and source magnetic fields below 2.8 kG, for which the detector required calibration for incident x-rays of 1-5 keV. At Eb = 4.0 GeV and B=4.5 kG, however, the incident synchrotron radiation spectrum extends to ~20 keV, requiring calibration of detector response in that regime. Such a calibration is described and then used to analyze data taken with several different thicknesses of filters in front of the detector. We obtain a relative precision of better than 4% on beam size measurement from 15 to 100 μm over several different ranges of x-ray energy, including both 1-12 keV and 6-17 keV. The response of an identical detector, but tilted vertically by 60° in order to increase magnification without a longer beamline, is measured and shown to improve x-ray detection above 4 keV without compromising sensitivity to beam size. We also investigate operation of a coded aperture using gold masking backed by synthetic diamond.
PREVAIL: IBM's e-beam technology for next generation lithography
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.
2000-07-01
PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.
Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams
NASA Technical Reports Server (NTRS)
Steely, Sidney L.
1993-01-01
The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.
Free-space wavelength-multiplexed optical scanner.
Yaqoob, Z; Rizvi, A A; Riza, N A
2001-12-10
A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.
DuFour, Mark R.; Mayer, Christine M.; Kocovsky, Patrick; Qian, Song; Warner, David M.; Kraus, Richard T.; Vandergoot, Christopher
2017-01-01
Hydroacoustic sampling of low-density fish in shallow water can lead to low sample sizes of naturally variable target strength (TS) estimates, resulting in both sparse and variable data. Increasing maximum beam compensation (BC) beyond conventional values (i.e., 3 dB beam width) can recover more targets during data analysis; however, data quality decreases near the acoustic beam edges. We identified the optimal balance between data quantity and quality with increasing BC using a standard sphere calibration, and we quantified the effect of BC on fish track variability, size structure, and density estimates of Lake Erie walleye (Sander vitreus). Standard sphere mean TS estimates were consistent with theoretical values (−39.6 dB) up to 18-dB BC, while estimates decreased at greater BC values. Natural sources (i.e., residual and mean TS) dominated total fish track variation, while contributions from measurement related error (i.e., number of single echo detections (SEDs) and BC) were proportionally low. Increasing BC led to more fish encounters and SEDs per fish, while stability in size structure and density were observed at intermediate values (e.g., 18 dB). Detection of medium to large fish (i.e., age-2+ walleye) benefited most from increasing BC, as proportional changes in size structure and density were greatest in these size categories. Therefore, when TS data are sparse and variable, increasing BC to an optimal value (here 18 dB) will maximize the TS data quantity while limiting lower-quality data near the beam edges.
A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation
NASA Astrophysics Data System (ADS)
Binh, Doan; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu
2012-07-01
The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml-1 in absorbed doses were investigated. There were some new peaks in the 1H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, Rh) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of Gx (Charlesby, 1960; Jung-Chul, 2010). The influence of the "size effect" was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
NASA Astrophysics Data System (ADS)
Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.
2016-09-01
Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.
Sub-ply level scaling approach investigated for graphite-epoxy composite beam columns
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris
1994-01-01
Scale model graphite-epoxy composite specimens were fabricated using the 'sub-ply level' approach and tested as beam-columns under an eccentric axial load to determine the effect of specimen size on flexural response and failure. In the current research project, although the fiber diameters are not scaled, the thickness of the pre-preg material itself has been scaled by adjusting the number of fibers through the thickness of a single ply. Three different grades of graphite-epoxy composite material (AS4/3502) were obtained from Hercules, Inc., in which the number of fibers through the thickness of a single ply was reduced (Grade 190 with 12 to 16 fibers, Grade 95 with 6 to 8 fibers, and Grade 48 with 3 to 4 fibers). Thus, using the sub-ply level approach, a baseline eight ply quasi-isotropic laminate could be fabricated using either the Grade 48 or Grade 95 material and the corresponding full-scale laminate would be constructed from Grade 95 or standard Grade 190 material, respectively. Note that in the sub-ply level approach, the number of ply interfaces is constant for the baseline and full-scale laminates. This is not true for the ply level and sublaminate level scaled specimens. The three grades of graphite-epoxy composite material were used to fabricate scale model beam-column specimens with in-plane dimensions of 0.5*n x 5.75*n, where n=1,2,4 corresponsing to 1/4, 1/2, and full-scale factors. Angle ply, cross ply, and quasi-isotropic laminate stacking sequences were chosen for the investigation and the test matrices for each laminate type are given. Specimens in each laminate family with the same in-plane dimensions but different thicknesses were tested to isolate the influence of the thickness dimension on the flexural response and failure. Also, specific lay-ups were chosen with blocked plies and dispersed plies for each laminate type. Specimens were subjected to an eccentric axial load until failure. The load offset was introduced through a set of hinges which were attached to the platens of a standard load test machine. Three sets of geometrically scaled hinges were used to ensure that scaled loading conditions were applied. This loading condition was chosen because it promotes large flexural deformations and specimens fail at the center of the beam, away from the grip supports. Five channels of data including applied vertical load, end shortening displacement, strain from gages applied back-to-back at the midspan of the beam, and rotation of the hinge from a bubble inclinometer were recorded for each specimen. The beam-column test configuration was used previously to study size effects in ply level scaled composite specimens of the same material system, sizes, and stacking sequences. Thus, a direct comparison between the two scaling approaches is possible. Ply level scaled beam-columns with angle ply, cross ply, and quasi-isotropic lay-ups exhibited no size dependencies in the flexural response, but significant size effects in strength. The reduction in strength with increasing specimen size was not predicted successfully by analysis techniques. It is anticipated that results from this investigation will lead to a better understanding of the strength scale effect in composite structures.
Degtiarenko, Pavel V.; Dotson, Danny Wayne
2007-10-09
A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.
NASA Astrophysics Data System (ADS)
Zhu, Jie; Zhu, Kaicheng; Tang, Huiqin; Xia, Hui
2017-10-01
Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.
Design of an electron projection system with slider lenses and multiple beams
NASA Astrophysics Data System (ADS)
Moonen, Daniel; Leunissen, Peter L. H. A.; de Jager, Patrick W.; Kruit, Pieter; Bleeker, Arno J.; Van der Mast, Karel D.
2002-07-01
The commercial applicability of electron beam projection lithography systems may be limited at high resolution because of low throughput. The main limitations to the throughput are: (i) Beam current. The Coulomb interaction between electrons result in an image blue. Therefore less beam current can be allowed at higher resolution, impacting the illuminate time of the wafer. (ii) Exposure field size. Early attempts to improve throughput with 'full chip' electron beam projection systems failed, because the system suffered from large off-axis aberrations of the electron optics, which severely restricted the useful field size. This has impact on the overhead time. A new type of projection optics will be proposed in this paper to overcome both limits. A slider lens is proposed that allows an effective field that is much larger than schemes proposed by SCALPEL and PREVAIL. The full width of the die can be exposed without mechanical scanning by sliding the beam through the slit-like bore of the lens. Locally, at the beam position, a 'round'-lens field is created with a combination of a rectangular magnetic field and quadruples that are positioned inside the lens. A die can now be exposed during a single mechanical scan as in state-of-the-art light optical tools. The total beam current can be improved without impact on the Coulomb interaction blur by combining several beams in a single lithography system if these beams do not interfere with each other. Several optical layouts have been proposed that combined up to 5 beams in a projection system consisting of a doublet of slider lenses. This type of projection optics has a potential throughput of 50 WPH at 45 nm with a resist sensitivity of 6 (mu) C/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Tanaka, Y.
2011-09-26
Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less
NASA Astrophysics Data System (ADS)
Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Thwaites, D. I.
2018-01-01
Flattening filter free (FFF) beams have reached widespread use for clinical treatment deliveries. The usual methods for FFF beam characterisation for their quality assurance (QA) require the use of associated conventional flattened beams (cFF). Methods for QA of FFF without the need to use associated cFF beams are presented and evaluated against current methods for both FFF and cFF beams. Inflection point normalisation is evaluated against conventional methods for the determination of field size and penumbra for field sizes from 3 cm × 3 cm to 40 cm × 40cm at depths from dmax to 20 cm in water for matched and unmatched FFF beams and for cFF beams. A method for measuring symmetry in the cross plane direction is suggested and evaluated as FFF beams are insensitive to symmetry changes in this direction. Methods for characterising beam energy are evaluated and the impact of beam energy on profile shape compared to that of cFF beams. In-plane symmetry can be measured, as can cFF beams, using observed changes in profile, whereas cross-plane symmetry can be measured by acquiring profiles at collimator angles 0 and 180. Beam energy and ‘unflatness’ can be measured as with cFF beams from observed shifts in profile with changing beam energy. Normalising the inflection points of FFF beams to 55% results in an equivalent penumbra and field size measurement within 0.5 mm of conventional methods with the exception of 40 cm × 40 cm fields at a depth of 20 cm. New proposed methods are presented that make it possible to independently carry out set up and QA measurements on beam energy, flatness, symmetry and field size of an FFF beam without the need to reference to an equivalent flattened beam of the same energy. The methods proposed can also be used to carry out this QA for flattened beams, resulting in universal definitions and methods for MV beams. This is presented for beams produced by an Elekta linear accelerator, but is anticipated to also apply to other manufacturers’ beams.
Biological and dosimetric characterisation of spatially fractionated proton minibeams
NASA Astrophysics Data System (ADS)
Meyer, Juergen; Stewart, Robert D.; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-12-01
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Biological and dosimetric characterisation of spatially fractionated proton minibeams.
Meyer, Juergen; Stewart, Robert D; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-11-21
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence.
Cai, Yangjian; Eyyuboğlu, Halil T; Baykal, Yahya
2008-07-01
The scintillation properties of astigmatic dark hollow beams (DHBs) in weak atmospheric turbulence were investigated in detail. An explicit expression for the on-axis scintillation index of an astigmatic DHB propagating in weak atmospheric turbulence was derived. It was found that the scintillation index value of an astigmatic DHB with suitable astigmatism (i.e., ratio of the beam waist size in the x direction to that in the y direction), dark size, beam waist size, and wavelength can be smaller than that of a stigmatic DHB and that of stigmatic and astigmatic flat-topped, annular, and Gaussian beams in weak atmospheric turbulence particularly at long propagation ranges. Our results will be useful in long-distance free-space optical communications.
Numerical study of the properties of optical vortex array laser tweezers.
Kuo, Chun-Fu; Chu, Shu-Chun
2013-11-04
Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.
Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansaloni, F.; Lagares, J. I.; Arce, P.
2012-12-19
The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.
Determination of the effects of wind-induced vibration on cylindrical beams
NASA Technical Reports Server (NTRS)
Artusa, E. A.
1991-01-01
The objective of the analysis was to determine the critical length to diameter ratio (L/Do) of a hollow, cylindrical beam subjected to wind-induced vibration. The sizes of beams ranged from 4 to 24 inches and were composed of ASTM grade A and grade B and American Petroleum Institute grade X42 steels. Calculations used maximum steady-state wind speeds of 130 mph associated with hurricane conditions possible at the Kennedy Space Center. The study examined the effect that different end support and load conditions have on the natural frequencies of the beams. Finally, methods of changing the frequency of the wind-induced vibration were examined. The conclusions drawn were that the greatest possible L/Do is achieved using welded supports and limiting the maximum applied axial and bending loads to less than 50 percent.
Design of a novel multi channel photonic crystal fiber polarization beam splitter
NASA Astrophysics Data System (ADS)
Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun
2017-10-01
A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.
Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap
NASA Astrophysics Data System (ADS)
Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu
2018-06-01
The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.
The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrodemore » and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.« less
Optical Properties of Multilayer CdSe/POLYMER Structures
NASA Astrophysics Data System (ADS)
Red'Ko, V. P.; Voitenkov, A. I.; Kovalenko, O. E.
The effects of preparation condition, concentration and size of particles upon optical and photoelectrical characteristics of multilayer structures CdSe/polyethylene terephthalate obtained by electron-beam evaporation were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belosi, Maria F.; Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch, E-mail: afc@iosi.ch; Cozzi, Luca
2014-05-15
Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1more » × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm{sup 2} field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm{sup 2}, worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. Conclusions: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm{sup 2}, that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
A fast new cadioptric design for fiber-fed spectrographs
NASA Astrophysics Data System (ADS)
Saunders, Will
2012-09-01
The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.
NASA Astrophysics Data System (ADS)
Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman
2017-12-01
In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.
Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis
NASA Astrophysics Data System (ADS)
Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad
2016-07-01
Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.
Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin
2017-12-01
The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Scattering effects in passive foil focusing of ion beams
Yuen, Albert; Lund, Steven M.; Barnard, John J.; ...
2015-09-11
A stack of thin, closely spaced conducting foils has been investigated by Lund et al. [ Phys. Rev. ST Accel. Beams 16, 044202 (2013)] as a passive focusing lens for intense ion beams. The foils mitigate space-charge defocusing forces to enable the beam self-magnetic field to focus. In this study, we analyze possible degradation of focusing due to scattering of beam ions resulting from finite foil thickness using an envelope model and numerical simulations with the particle-in-cell code WARP. Ranges of kinetic energy where scattering effects are sufficient to destroy passive focusing are quantified. The scheme may be utilized tomore » focus protons produced in intense laser-solid accelerator schemes. The spot size of an initially collimated 30 MeV proton beam with initial rms radius 200 μm, perveance Q=1.8×10 -2, and initial transverse emittance ϵ x,rms=0.87 mm mrad propagating through a stack of 6.4 μm thick foils, spaced 100 μm apart, gives a 127.5 μm spot with scattering and a 81.0 μm spot without scattering, illustrating the importance of including scattering effects.« less
Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films
NASA Astrophysics Data System (ADS)
Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.
2015-08-01
Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.
Physical and engineering aspect of carbon beam therapy
NASA Astrophysics Data System (ADS)
Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro
2003-08-01
Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.
Toward single mode, atomic size electron vortex beams.
Krivanek, Ondrej L; Rusz, Jan; Idrobo, Juan-Carlos; Lovejoy, Tracy J; Dellby, Niklas
2014-06-01
We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic "fork" aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1-2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥ 20 pA of current should be attainable at 100-200 keV in either instrument.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron
2018-03-01
The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.
Davidson, James R.; Lassahn, Gordon D.
2001-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Demonstration of electronic design automation flow for massively parallel e-beam lithography
NASA Astrophysics Data System (ADS)
Brandt, Pieter; Belledent, Jérôme; Tranquillin, Céline; Figueiro, Thiago; Meunier, Stéfanie; Bayle, Sébastien; Fay, Aurélien; Milléquant, Matthieu; Icard, Beatrice; Wieland, Marco
2014-07-01
For proximity effect correction in 5 keV e-beam lithography, three elementary building blocks exist: dose modulation, geometry (size) modulation, and background dose addition. Combinations of these three methods are quantitatively compared in terms of throughput impact and process window (PW). In addition, overexposure in combination with negative bias results in PW enhancement at the cost of throughput. In proximity effect correction by over exposure (PEC-OE), the entire layout is set to fixed dose and geometry sizes are adjusted. In PEC-dose to size (DTS) both dose and geometry sizes are locally optimized. In PEC-background (BG), a background is added to correct the long-range part of the point spread function. In single e-beam tools (Gaussian or Shaped-beam), throughput heavily depends on the number of shots. In raster scan tools such as MAPPER Lithography's FLX 1200 (MATRIX platform) this is not the case and instead of pattern density, the maximum local dose on the wafer is limiting throughput. The smallest considered half-pitch is 28 nm, which may be considered the 14-nm node for Metal-1 and the 10-nm node for the Via-1 layer, achieved in a single exposure with e-beam lithography. For typical 28-nm-hp Metal-1 layouts, it was shown that dose latitudes (size of process window) of around 10% are realizable with available PEC methods. For 28-nm-hp Via-1 layouts this is even higher at 14% and up. When the layouts do not reach the highest densities (up to 10∶1 in this study), PEC-BG and PEC-OE provide the capability to trade throughput for dose latitude. At the highest densities, PEC-DTS is required for proximity correction, as this method adjusts both geometry edges and doses and will reduce the dose at the densest areas. For 28-nm-hp lines critical dimension (CD), hole&dot (CD) and line ends (edge placement error), the data path errors are typically 0.9, 1.0 and 0.7 nm (3σ) and below, respectively. There is not a clear data path performance difference between the investigated PEC methods. After the simulations, the methods were successfully validated in exposures on a MAPPER pre-alpha tool. A 28-nm half pitch Metal-1 and Via-1 layouts show good performance in resist that coincide with the simulation result. Exposures of soft-edge stitched layouts show that beam-to-beam position errors up to ±7 nm specified for FLX 1200 show no noticeable impact on CD. The research leading to these results has been performed in the frame of the industrial collaborative consortium IMAGINE.
Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere.
Zhang, Yuqiu; Ji, Xiaoling; Zhang, Hao; Li, Xiaoqing; Wang, Tao; Wang, Huan; Deng, Yu
2018-05-28
We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M 2 -factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M 2 -factor is less than 1.6.
Beam Wave Considerations for Optical Link Budget Calculations
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2016-01-01
The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.
Fluence inhomogeneities due to a ripple filter induced Moiré effect.
Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli
2015-02-07
At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in fluence inhomogeneity at the isocenter. In the normal clinical application, such a setting should generally be avoided.
NASA Astrophysics Data System (ADS)
Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie
2013-06-01
The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.
Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals
NASA Astrophysics Data System (ADS)
Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul
2010-03-01
Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.
Light-induced thermodiffusion in two-component media
NASA Astrophysics Data System (ADS)
Ivanov, V.; Ivanova, G.; Okishev, K.; Khe, V.
2017-01-01
We have theoretically studied the optical transmittance response of thin cell with liquid containing absorbing nanoparticles in a Gaussian beam field. The transmittance spatial changing is caused by thermal diffusion phenomenon (Soret effect) which produces the variations of concentration of absorbing nanoparticles. The thickness of optical cell (including windows) is significantly less than the size of the beam. As a result, an exact analytical expression for the one dimensional thermal task is derived, taking into account the Soret feedback that leads to the temperature rising on the axis of a Gaussian beam. We have experimentally studied this phenomenon in carbon nanosuspension.
Beam characterisation of the KIRAMS electron microbeam system.
Sun, G M; Kim, E H; Song, K B; Jang, M
2006-01-01
An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Lige; Fan, Kuanjun; Hu, Shengwei; Li, Xiaofei; Mei, Zhiyuan; Zeng, Zhijie; Chen, Wei; Qin, Bin; Rao, Yinong
2018-07-01
A SCC-250 MeV cyclotron, producing a 250 MeV proton beam, is under development in Huazhong University of Science and Technology (HUST) for proton therapy. The magnetic flux density, as a function of radius, decreases rapidly in the beam extraction region, which increases the radial beam size continuously along the extraction orbit. In this paper, an extraction channel inside the SCC-250 MeV is designed to control the beam size using passive magnetic channels. An equivalent lumped parameter method is used to establish the model of the extraction channel in the complex fringe magnetic field of the main magnet. Then, the extraction channel is designed using the lattice design software MADX. The beam envelopes are verified using particle tracing method. The maximum radial size of 6.8 mm and axial size of 4.3 mm meet the requirements of the extraction from the SCC-250 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Strachan, Alejandro
2015-11-28
We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less
NASA Astrophysics Data System (ADS)
Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan
2014-08-01
High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Chibani, O; Chen, L
Purpose: Tremendous technological developments were made for conformal therapy techniques with linear accelerators, while less attention was paid to cobalt-60 units. The aim of the current study is to explore the dosimetric benefits of a novel rotating gamma ray system enhanced with interchangeable source sizes and multi-leaf collimator (MLC). Material and Methods: CybeRT is a novel rotating gamma ray machine with a ring gantry that ensures an iso-center accuracy of less than 0.3 mm. The new machine has a 70cm source axial distance allowing for improved penumbra compared to conventional machines. MCBEAM was used to simulate Cobalt-60 beams from themore » CybeRT head, while the MCPLAN code was used for modeling the MLC and for phantom/patient dose calculation. The CybeRT collimation will incorporate a system allowing for interchanging source sizes. In this work we have created phase space files for 1cm and 2cm source sizes. Evaluation of the system was done by comparing CybeRT beams with the 6MV beams in a water phantom and in patient geometry. Treatment plans were compared based on isodose distributions and dose volume histograms. Results: Profiles for the 1cm source were comparable to that from 6MV in the order of 6mm for 10×10 cm{sup 2} field size at the depth of maximum dose. This could ascribe to Cobalt-60 beams producing lowerenergy secondary electrons. Although, the 2cm source have a larger penumbra however it could be still used for large targets with proportionally increased dose rate. For large lung targets, the difference between cobalt and 6MV plans is clinically insignificant. Our preliminary results showed that interchanging source sizes will allow cobalt beams for volumetric arc therapy of both small lesions and large tumors. Conclusion: The CybeRT system will be a cost effective machine capable of performing advanced radiation therapy treatments of both small tumors and large target volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uvarov, Vladimir, E-mail: vladimiru@savion.huji.ac.il; Popov, Inna
2013-11-15
Crystallite size values were determined by X-ray diffraction methods for 183 powder samples. The tested size range was from a few to about several hundred nanometers. Crystallite size was calculated with direct use of the Scherrer equation, the Williamson–Hall method and the Rietveld procedure via the application of a series of commercial and free software. The results were statistically treated to estimate the significance of the difference in size resulting from these methods. We also estimated effect of acquisition conditions (Bragg–Brentano, parallel-beam geometry, step size, counting time) and data processing on the calculated crystallite size values. On the basis ofmore » the obtained results it is possible to conclude that direct use of the Scherrer equation, Williamson–Hall method and the Rietveld refinement employed by a series of software (EVA, PCW and TOPAS respectively) yield very close results for crystallite sizes less than 60 nm for parallel beam geometry and less than 100 nm for Bragg–Brentano geometry. However, we found that despite the fact that the differences between the crystallite sizes, which were calculated by various methods, are small by absolute values, they are statistically significant in some cases. The values of crystallite size determined from XRD were compared with those obtained by imaging in a transmission (TEM) and scanning electron microscopes (SEM). It was found that there was a good correlation in size only for crystallites smaller than 50 – 60 nm. Highlights: • The crystallite sizes for 183 nanopowders were calculated using different XRD methods • Obtained results were subject to statistical treatment • Results obtained with Bragg-Brentano and parallel beam geometries were compared • Influence of conditions of XRD pattern acquisition on results was estimated • Calculated by XRD crystallite sizes were compared with same obtained by TEM and SEM.« less
Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.
Mathew, Jose V; Bhattacharjee, Sudeep
2011-01-01
Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1999-12-01
Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.
Hong, Zhengshan; Zenkoh, Junko; Le, Biao; Gerelchuluun, Ariungerel; Suzuki, Kenshi; Moritake, Takashi; Washio, Masakazu; Urakawa, Junji; Tsuboi, Koji
2015-01-01
We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. PMID:26141370
3D theory of a high-gain free-electron laser based on a transverse gradient undulator
NASA Astrophysics Data System (ADS)
Baxevanis, Panagiotis; Ding, Yuantao; Huang, Zhirong; Ruth, Ronald
2014-02-01
The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of the FEL gain, an effect which is especially relevant when one considers FELs driven by plasma accelerators or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D) effects, including beam size variations along the undulator. The results of our theory compare favorably with simulation and are used in fast optimization studies of various x-ray FEL configurations.
NASA Astrophysics Data System (ADS)
Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas
2018-06-01
The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.
NASA Astrophysics Data System (ADS)
Naqwi, Amir A.; Durst, Franz
1993-07-01
Dual-beam laser measuring techniques are now being used, not only for velocimetry, but also for simultaneous measurements of particle size and velocity in particulate two-phase flows. However, certain details of these optical techniques, such as the effect of Gaussian beam profiles on the accuracy of the measurements, need to be further explored. To implement innovative improvements, a general analytic framework is needed in which performances of various dual-beam instruments could be quantitatively studied and compared. For this purpose, the analysis of light scattering in a generalized dual-wave system is presented in this paper. The present simulation model provides a basis for studying effects of nonplanar beam structures of incident waves, taking into account arbitrary modes of polarization. A polarizer is included in the receiving optics as well. The peculiar aspects of numerical integration of scattered light over circular, rectangular, and truncated circular apertures are also considered.
Mirandola, Alfredo; Molinelli, S; Vilches Freixas, G; Mairani, A; Gallio, E; Panizza, D; Russo, S; Ciocca, M; Donetti, M; Magro, G; Giordanengo, S; Orecchia, R
2015-09-01
To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. fluka Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ± 1 mm over the whole 20 × 20 cm(2) scan field; homogeneity in a uniform squared field was within ± 5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. After successful dosimetric beam commissioning, quality assurance measurements performed during a 24-month period show very stable beam characteristics, which are therefore suitable for performing safe and accurate patient treatments.
McLeod, Euan; Arnold, Craig B
2008-07-10
Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.
Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens
NASA Astrophysics Data System (ADS)
Le, Zichun; Wu, Xiang; Sun, Yunli; Du, Ying
2017-07-01
In this paper, a two-dimensional liquid gradient refractive index (L-GRIN) microlens is designed which can be used in adjusting focusing direction and focal spot of light beam. Finite element method (FEM) is used to simulate the convection diffusion process happening in core inlet flow and cladding inlet flow. And the ray tracing method shows us the light beam focusing effect including the extrapolation of focal length and output beam spot size. When the flow rates of the core and cladding fluids are held the same between the internal and external, left and right, and upper and lower inlets, the focal length varied from 313 μm to 53.3 μm while the flow rate of liquids ranges from 500 pL/s to 10,000 pL/s. While the core flow rate is bigger than the cladding inlet flow rate, the light beam will focus on a light spot with a tunable size. By adjusting the ratio of cladding inlet flow rate including Qright/Qleft and Qup/Qdown, we get the adjustable two-dimensional focus direction rather than the one-dimensional focusing. In summary, by adjusting the flow rate of core inlet and cladding inlet, the focal length, output beam spot and focusing direction of the input light beam can be manipulated. We suppose this kind of flexible microlens can be used in integrated optics and lab-on-a-chip system.
Wavefront control of high-power laser beams in the National Ignition Facility (NIF)
NASA Astrophysics Data System (ADS)
Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.
2000-04-01
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David
The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.
Ashokkumar, Sigamani; Nambi Raj, N Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Thiyagarajan, Rajesh; Raman, Kothanda; Mishra, Manindra Bhushan
2014-07-01
To measure and compare the head scatter factor for flattened (FB) and unflattened (FFF) of 6MV and 10MV photon beam using indigenously designed mini phantom. A columnar mini phantom was designed as recommended by AAPM Task Group 74 with low and high atomic number materials at 10 cm (mini phantom) and at approximately twice the depth of maximum dose water equivalent thickness (brass build-up cap). Scatter in the accelerator (Sc) values of 6MV-FFF photon beams are lesser than that of the 6MV-FB photon beams (0.66-2.8%; Clinac iX, 2300CD) and (0.47-1.74%; True beam) for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). Sc values of 10MV-FFF photon beams are lesser (0.61-2.19%; True beam) than that of the 10MV-FB photons beams for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). The SSD had no influence on head scatter for both flattened and unflattened beams and irrespective of head design of the different linear accelerators. The presence of field shaping device influences the Sc values. The collimator exchange effect reveals that the opening of the upper jaw increases Sc irrespective of FB or FFF photon beams and different linear accelerators, and it is less significant in FFF beams. Sc values of 6MV-FB square field were in good agreement with that of AAPM, TG-74 published data for Varian (Clinac iX, 2300CD) accelerator. Our results confirm that the removal of flattening filter decreases in the head scatter factor compared to flattened beam. This could reduce the out-of-field dose in advanced treatment delivery techniques.
Ashokkumar, Sigamani; Nambi Raj, N Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Thiyagarajan, Rajesh; Raman, Kothanda; Mishra, Manindra Bhushan
2014-01-01
To measure and compare the head scatter factor for flattened (FB) and unflattened (FFF) of 6MV and 10MV photon beam using indigenously designed mini phantom. A columnar mini phantom was designed as recommended by AAPM Task Group 74 with low and high atomic number materials at 10 cm (mini phantom) and at approximately twice the depth of maximum dose water equivalent thickness (brass build-up cap). Scatter in the accelerator (Sc) values of 6MV-FFF photon beams are lesser than that of the 6MV-FB photon beams (0.66-2.8%; Clinac iX, 2300CD) and (0.47-1.74%; True beam) for field sizes ranging from 10 × 10 cm2 to 40 × 40 cm2. Sc values of 10MV-FFF photon beams are lesser (0.61-2.19%; True beam) than that of the 10MV-FB photons beams for field sizes ranging from 10 × 10 cm2 to 40 × 40 cm2. The SSD had no influence on head scatter for both flattened and unflattened beams and irrespective of head design of the different linear accelerators. The presence of field shaping device influences the Sc values. The collimator exchange effect reveals that the opening of the upper jaw increases Sc irrespective of FB or FFF photon beams and different linear accelerators, and it is less significant in FFF beams. Sc values of 6MV-FB square field were in good agreement with that of AAPM, TG-74 published data for Varian (Clinac iX, 2300CD) accelerator. Our results confirm that the removal of flattening filter decreases in the head scatter factor compared to flattened beam. This could reduce the out-of-field dose in advanced treatment delivery techniques. PMID:25190997
Detection of atomic force microscopy cantilever displacement with a transmitted electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.; Woehl, T. J.; Keller, R. R.
2016-07-25
The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstratemore » detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.« less
Characterization and modelling of the hollow beam produced by a real conical lens
NASA Astrophysics Data System (ADS)
Dépret, Benoı̂t; Verkerk, Philippe; Hennequin, Daniel
2002-10-01
The properties of the hollow beam produced by a conical lens are studied in detail. In particular, the impact of a rounded vertex is examined. It is shown that it could lead to drastic changes in the transverse distribution of the hollow beam, determined by the ratio between the transverse size of the incident beam and the size of the blunt area. An adequate choice for this ratio allows us to either minimize the losses or optimize the distribution symmetry.
High-throughput NGL electron-beam direct-write lithography system
NASA Astrophysics Data System (ADS)
Parker, N. William; Brodie, Alan D.; McCoy, John H.
2000-07-01
Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs
Self-compensation of thermal lens in high-power diode pumped solid-state lasers
NASA Astrophysics Data System (ADS)
Wang, Xiao-Jun
2010-02-01
We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.
Effect of size on bending strength of wood members
Billy Bohannan
1966-01-01
This paper discusses the assumptions used in the statistical theory of strength, shows the application of the theory to wood bending members, and gives a comparison between theory and actual data for wood beams.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepkowski, Stefan Mark
2015-05-01
The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves amore » peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.« less
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams.
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
2018-03-05
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6-8 mrad. Irrespective of the material thickness, the magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.
Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang
2014-06-02
All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.
Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng
2010-04-01
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10(21)/m(3) and 2-3 mm/micros, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.
NASA Astrophysics Data System (ADS)
Yu, Haijun; Zhu, Jun; Chen, Nan; Xie, Yutong; Jiang, Xiaoguo; Jian, Cheng
2010-04-01
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 1021/m3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.
Towards ion beam therapy based on laser plasma accelerators.
Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg
2017-11-01
Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.
Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sramek, C
2003-11-20
At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casar, B; Carot, I Mendez; Peterlin, P
2016-06-15
Purpose: Aim of the multi-centre study was to analyse beam hardening effect of the Integral Quality Monitor (IQM) for high energy photon beams used in radiotherapy with linear accelerators. Generic values for attenuation coefficient k(IQM) of IQM system were additionally investigated. Methods: Beam hardening effect of the IQM system was studied for a set of standard nominal photon energies (6 MV–18 MV) and two flattening filter free (FFF) energies (6 MV FFF and 10 MV FFF). PDD curves were measured and analysed for various square radiation fields, with and without IQM in place. Differences between PDD curves were statistically analysedmore » through comparison of respective PDD-20,10 values. Attenuation coefficients k(IQM) were determined for the same range of photon energies. Results: Statistically significant differences in beam qualities for all evaluated high energy photon beams were found, comparing PDD-20,10 values derived from PDD curves with and without IQM in place. Significance of beam hardening effect was statistically proven with high confidence (p < 0,01) for all analysed photon beams except for 15 MV (p = 0,078), although relative differences in beam qualities were minimal, ranging from 0,1 % to 0,5 %. Attenuation of the IQM system showed negligible dependence on radiation field size. However, clinically important dependence of kIQM versus TPRs20,10 was found: 0,941 for 6 MV photon beams, to 0,959 for 18 MV photon beams, with highest uncertainty below 0,006. k(IQM) versus TPRs were tabulated and polynomial equation for the determination of k(IQM) is suggested for clinical use. Conclusion: There was no clinically relevant beam hardening, when IQM system was on linear accelerators. Consequently, no additional commissioning is needed for the IQM system regarding the determination of beam qualities. Generic values for k(IQM) are proposed and can be used as tray factors for complete range of examined photon beam energies.« less
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.
1997-05-01
We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, P; Chang Gung University, Taoyuan, Taiwan; Huang, H
Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (belowmore » 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.« less
Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H
2010-01-01
Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.
Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng
2018-03-01
Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-05-15
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less
Analysis and testing of a new method for drop size measurement using laser scatter interferometry
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.
Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J
2015-11-01
A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth-dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4-41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth-dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Electron-beam conditioning by thomson scattering.
Schroeder, C B; Esarey, E; Leemans, W P
2004-11-05
A method is proposed for conditioning electron beams via Thomson scattering. The conditioning provides a quadratic correlation between the electron energy deviation and the betatron amplitude of the electrons, which results in enhanced gain in free-electron lasers. Quantum effects imply conditioning must occur at high laser fluence and moderate electron energy. Conditioning of x-ray free-electron lasers should be achievable with present laser technology, leading to significant size and cost reductions of these large-scale facilities.
NASA Astrophysics Data System (ADS)
Kuzelev, M. V.
2017-09-01
An analytical linear theory of instability of an electron beam with a nonuniform directional velocity (slipping instability) against perturbations with wavelengths exceeding the transverse beam size is offered. An analogy with hydrodynamic instabilities of tangential discontinuity of an incompressible liquid flow is drawn. The instability growth rates are calculated for particular cases and in a general form in planar and cylindrical geometries. The stabilizing effect of the external magnetic field is analyzed.
NASA Astrophysics Data System (ADS)
Eigenbrot, Arthur D.; Bershady, Matthew A.; Wood, Corey M.
2012-09-01
We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 μm core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 μm (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly adopted micro-bending model for FRD is a poor descriptor of the observed phenomenon.
A new radiotherapy surface dose detector:the MOSFET.
Butson, M J; Rozenfeld, A; Mathur, J N; Carolan, M; Wong, T P; Metcalfe, P E
1996-05-01
Radiotherapy x-ray and electron beam surface doses are accurately measurable by use of a MOS-FET detector system. The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is approximately 200-microns in diameter and consists of a 0.5-microns Al electrode on top of a 1-microns SiO2 and 300-microns Si substrate. Results for % surface dose were within +/- 2% compared to the Attix chamber and within +/- 3% of TLD extrapolation results for normally incident beams. Detectors were compared using different energies, field size, and beam modifying devices such as block trays and wedges. Percentage surface dose for 10 x 10-cm and 40 x 40-cm field size for 6-MV x rays at 100-cm SSD using the MOSFET were 16% and 42% of maximum, respectively. Factors such as its small size, immediate retrieval of results, high accuracy attainable from low applied doses, and as the MOSFET records its dose history make it a suitable in vivo dosimeter where surface and skin doses need to be determined. This can be achieved within part of the first fraction of dose (i.e., only 10 cGy is required.)
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2018-03-01
A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.
Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields
NASA Astrophysics Data System (ADS)
McNiven, Andrea L.
The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.
Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip
2017-10-20
Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders ofmore » magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.« less
Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.
Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng
2013-11-20
Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.
Kanematsu, Nobuyuki
2011-03-07
A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-12-01
Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.
Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires
NASA Astrophysics Data System (ADS)
Ina, Ginnosuke; Fujii, Tatsuya; Kozeki, Takahiro; Miura, Eri; Inoue, Shozo; Namazu, Takahiro
2017-06-01
In this study, we investigate the effects of focused ion beam (FIB)-induced damage and specimen size on the mechanical properties of Si nanowires (NWs) by a microelectromechanical system (MEMS)-based tensile testing technique. By an FIB fabrication technique, three types of Si NWs, which are as-FIB-fabricated, annealed, and FIB-implanted NWs, are prepared. A sacrificial-oxidized NW is also prepared to compare the mechanical properties of these FIB-based NWs. The quasi-static uniaxial tensile tests of all the NWs are conducted by scanning electron microscopy (SEM). The fabrication process and specimen size dependences on Young’s modulus and fracture strength are observed. Annealing is effective for improving the Young’s modulus of the FIB-damaged Si. Transmission electron microscopy (TEM) suggests that the mechanism behind the process dependence on the mechanical characteristics is related to the crystallinity of the FIB-damaged portion.
EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napolitano, Arthur Soriano; Vogel, Sven C.
2017-08-03
Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, themore » collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Hsi, W; Zhao, J
2016-06-15
Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less
NASA Astrophysics Data System (ADS)
Kuo, Chun-Fu; Chu, Shu-Chun
2013-03-01
Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
Predictive Model of Electron Beam Induced Flashblindness.
1985-03-01
65-71 (19514). 19. Chism , G. T., and J. H. Hill. Flashblindness: The effects of preflash adaptation and pupil size. Aerospace Med 38:395-399 (1967). 20... Chism , G. T. Intraocular effects on flashblindness: II. Parafoveal Re- covery. Aerospace Med 42:31-35 (1971). * 21. Wulfeck, J. W., A. Weisz, and M
Friedman, L.; Beuhler, R.J.; Matthew, M.W.; Ledbetter, M.
1984-06-25
A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10/sup 6/ atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm/sup 2//sec in order to effect a precise modification in that selected area of the workpiece.
Friedman, Lewis; Buehler, Robert J.; Matthew, Michael W.; Ledbetter, Myron
1985-01-01
A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10.sup.6 atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm.sup.2 /sec. in order to effect a precise modification in that selected area of the workpiece.
Investigation of MeV-Cu implantation and channeling effects into porous silicon formation
NASA Astrophysics Data System (ADS)
Ahmad, M.; Naddaf, M.
2011-11-01
P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.
Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin
2017-01-01
To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-15
We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less
Swift heavy ion induced topography changes of Tin oxide thin films
NASA Astrophysics Data System (ADS)
Jaiswal, Manoj K.; Kumar, Avesh; Kanjilal, D.; Mohanty, T.
2012-12-01
Monodisperse tin oxide nanocrystalline thin films are grown on silicon substrates by electron beam evaporation method followed by 100 MeV silver ion bombardment with varying ion fluence from 5 × 1011 ions cm-2 to 1 × 1013 ions cm-2 at constant ion flux. Enhancement of crystallinity of thin films with fluence is observed from glancing angle X-ray diffraction studies. Morphological studies by atomic force microscopy reveal the changes in grain size from 25 nm to 44 nm with variation in ion fluence. The effect of initial surface roughness and adatom mobility on topography is reported. In this work correlation between ion beam induced defect concentration with topography and grain size distribution is emphasized.
NASA Technical Reports Server (NTRS)
Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan
2012-01-01
The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.
de-Azevedo-Vaz, Sergio Lins; Vasconcelos, Karla de Faria; Neves, Frederico Sampaio; Melo, Saulo Leonardo Sousa; Campos, Paulo Sérgio Flores; Haiter-Neto, Francisco
2013-01-01
To assess the accuracy of cone-beam computed tomography (CBCT) in periimplant fenestration and dehiscence detection, and to determine the effects of 2 voxel sizes and scan modes. One hundred titanium implants were placed in bovine ribs in which periimplant fenestration and dehiscence were simulated. CBCT images were acquired with the use of 3 protocols of the i-CAT NG unit: A) 0.2 mm voxel size half-scan (180°); B) 0.2 mm voxel size full-scan (360°); and C) 0.12 mm voxel size full scan (360°). Receiver operating characteristic curves and diagnostic values were obtained. The Az values were compared with the use of analysis of variance. The Az value for dehiscence in protocol A was significantly lower than those of B or C (P < .01). They did not statistically differ for fenestration (P > .05). Protocol B yielded the highest values. The voxel sizes did not affect fenestration and dehiscence detection, and for dehiscence full-scan performed better than half-scan. Copyright © 2013 Elsevier Inc. All rights reserved.
Investigation of photon beam models in heterogeneous media of modern radiotherapy.
Ding, W; Johnston, P N; Wong, T P Y; Bubb, I F
2004-06-01
This study investigates the performance of photon beam models in dose calculations involving heterogeneous media in modern radiotherapy. Three dose calculation algorithms implemented in the CMS FOCUS treatment planning system have been assessed and validated using ionization chambers, thermoluminescent dosimeters (TLDs) and film. The algorithms include the multigrid superposition (MGS) algorithm, fast Fourier Transform Convolution (FFTC) algorithm and Clarkson algorithm. Heterogeneous phantoms used in the study consist of air cavities, lung analogue and an anthropomorphic phantom. Depth dose distributions along the central beam axis for 6 MV and 10 MV photon beams with field sizes of 5 cm x 5 cm and 10 cm x 10 cm were measured in the air cavity phantoms and lung analogue phantom. Point dose measurements were performed in the anthropomorphic phantom. Calculated results with three dose calculation algorithms were compared with measured results. In the air cavity phantoms, the maximum dose differences between the algorithms and the measurements were found at the distal surface of the air cavity with a 10 MV photon beam and a 5 cm x 5 cm field size. The differences were 3.8%. 24.9% and 27.7% for the MGS. FFTC and Clarkson algorithms. respectively. Experimental measurements of secondary electron build-up range beyond the air cavity showed an increase with decreasing field size, increasing energy and increasing air cavity thickness. The maximum dose differences in the lung analogue with 5 cm x 5 cm field size were found to be 0.3%. 4.9% and 6.9% for the MGS. FFTC and Clarkson algorithms with a 6 MV photon beam and 0.4%. 6.3% and 9.1% with a 10 MV photon beam, respectively. In the anthropomorphic phantom, the dose differences between calculations using the MGS algorithm and measurements with TLD rods were less than +/-4.5% for 6 MV and 10 MV photon beams with 10 cm x 10 cm field size and 6 MV photon beam with 5 cm x 5 cm field size, and within +/-7.5% for 10 MV with 5 cm x 5 cm field size, respectively. The FFTC and Clarkson algorithms overestimate doses at all dose points in the lung of the anthropomorphic phantom. In conclusion, the MGS is the most accurate dose calculation algorithm of investigated photon beam models. It is strongly recommended for implementation in modern radiotherapy with multiple small fields when heterogeneous media are in the treatment fields.
Intelligent Sensors for Atomization Processing of Molten Metals and Alloys
1988-06-01
20ff. 12. Hirleman, Dan E. Particle Sizing by Optical , Nonimaging Techniques. Liquid Particle Size Measurement Techniques, ASTM, 1984, pp. 35ff. 13...sensors are based on electric, electromagnetic or optical principles, the latter being most developed in fields obviously related to atomization. Optical ...beams to observe various interference, diffraction, and heterodyning effects, and to observe, with high signal-to-noise ratio, even weak optical
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
Rananavare, Shankar B; Morakinyo, Moshood K
2017-02-12
Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.
Dual beam organic depth profiling using large argon cluster ion beams
Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES
2014-01-01
Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.
2012-04-16
A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound fieldmore » image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.« less
Automated translating beam profiler for in situ laser beam spot-size and focal position measurements
NASA Astrophysics Data System (ADS)
Keaveney, James
2018-03-01
We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.
Keaveney, James
2018-03-01
We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.
Experimental evaluation of a MOSFET dosimeter for proton dose measurements.
Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi
2006-12-07
The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations.
Dosimetric studies of cadmium free alloy used in compensator based intensity modulated radiotherapy
NASA Astrophysics Data System (ADS)
Kaushik, Sandeep; Punia, Rajesh; Tyagi, Atul; Singh, Mann P.
2017-10-01
Aim of this study was to investigate dosimetric properties of cadmium free alloy which is used in compensator based intensity modulated radiotherapy (cIMRT). A mixture of lead, bismuth and tin was used to prepare the alloy whose melting point is 90-95 °C. Slabs of different thicknesses ranging from 0.71 cm to 6.14 cm were prepared. Density of alloy was measured by Archimedes' principle using water. For six megavolt (6 MV) photon beam energy transmission, linear effective attenuation coefficient (μeff), tissue phantom ratio (TPR1020), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter has been measured and analyzed for different field sizes and different thickness of compensator. Effect of extended source to detector distance (SDD) on transmissions and μeff was measured. The density of alloy was found to be 9.5456 g/cm3. At SDD of 100 cm, μeff was observed 0.4253 cm-1 for a field size of 10×10 cm 2. Calculated TPR1020 was found to be within 3% of experimental TPR1020 . It was found to be increasing with increasing thickness of compensator. Ds was found to decrease with thickness of compensator and increase with wider collimator opening due to increased scattered dose. Compensator slabs of 1 cm, 1.98 cm and 4.16 cm decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10 cm2 at 100 cm SDD. For small field size of 3×3 cm2 and 5×5 cm2 PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increased from 1 cm to 6.14 cm at a depth of 10 cm in water while variation in PDD is insignificant in for larger field sizes 10×10 cm2 to 20×20 cm2. A high degree of intensity modulation is essential in cIMRT and it can be achieved with this compensator material. Dosimetric properties analyzed in this study establish this alloy as a reliable, reusable, optimally dense and cost effective compensator material.
Performance of the full size nGEM detector for the SPIDER experiment
NASA Astrophysics Data System (ADS)
Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.
2016-03-01
The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).
Physics Design Considerations for Diagnostic X Electron Beam Transport System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y-J
2000-04-10
The Diagnostic X (D-X) beamlines will transport the DARHT-II beam from the end of the accelerator to the Diagnostic X firing point providing four lines of sight for x-ray radiography. The design goal for the Diagnostic X beamline is to deliver four x-ray pulses with the DARHT-II dose format and time integrated spot size on each line of sight. The D-X beamline's final focus should be compatible with a range of first conjugates from 1 m-5 m. Furthermore, the D-X beamline operational parameters and the beamline layout should not preclude a possible upgrade to additional lines of sight. The DARHT-IImore » accelerator is designed to deliver beams at a rate of 1 pulse per minute or less. Tuning the D-X beamline with several hundred optical elements would be time consuming. Therefore, minimizing the required number of tuning shots for the D-X beamline is also an important design goal. Many different beamline configurations may be able to accomplish these design objectives, and high beam quality (i.e., high current and low emittance) must be maintained throughout the chosen beamline configuration in order to achieve the DARHT-II x-ray dose format. In general, the longer the distance a beam travels, the harder it is to preserve the beam quality. Therefore, from the point of view of maintaining beam quality, it is highly desirable to minimize the beamline length. Lastly, modification to the DARHT-II building and the downstream transport should be minimized. Several processes can degrade beam quality by increasing the beam emittance, increasing the time-varying transverse beam motion, creating a beam halo, or creating a time-varying beam envelope. In this report, we consider those processes in the passive magnet lattice beamline and indicate how they constrain the beamline design. The physics design considerations for the active components such as the kicker system will be discussed in Ref. 2. In Sec. I, we discuss how beam emittance affects the x-ray forward dose. We also establish a physics design goal for the emittance growth budget. In Sec. II, we discuss how the conductivity and size of the beam pipe affects the transverse beam motion. We also discuss the emittance growth arise from the beam centroid offset. In Sec. III, we discuss the background gas focusing effects and establish the vacuum requirements. In Sec. IV, we consider the emittance growth in a bend. In Sec. V, we discuss the misalignment and corkscrew motion. The design specifications for misalignment are established. In Secs. VI and VII, we discuss the design objectives on how to extract beams from the DARHT-II beamline and how to minimize the tuning shots. The integrated spot size and final focusing are discussed in Sec. VIII. A conclusion will be presented in Sec. IX.« less
An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.
Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Haijun; Zhu Jun; Chen Nan
2010-04-15
Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ionsmore » are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.« less
Würl, M; Englbrecht, F; Parodi, K; Hillbrand, M
2016-01-21
Due to the low-dose envelope of scanned proton beams, the dose output depends on the size of the irradiated field or volume. While this field size dependence has already been extensively investigated by measurements and Monte Carlo (MC) simulations for single pencil beams or monoenergetic fields, reports on the relevance of this effect for analytical dose calculation models are limited. Previous studies on this topic only exist for specific beamline designs. However, the amount of large-angle scattered primary and long-range secondary particles and thus the relevance of the low-dose envelope can considerably be influenced by the particular design of the treatment nozzle. In this work, we therefore addressed the field size dependence of the dose output at the commercially available ProBeam(®) beamline, which is being built in several facilities worldwide. We compared treatment planning dose calculations with ionization chamber (IC) measurements and MC simulations, using an experimentally validated FLUKA MC model of the scanning beamline. To this aim, monoenergetic square fields of three energies, as well as spherical target volumes were studied, including the investigation on the influence of the lateral spot spacing on the field size dependence. For the spherical target volumes, MC as well as analytical dose calculation were found in excellent agreement with the measurements in the center of the spread-out Bragg peak. In the plateau region, the treatment planning system (TPS) tended to overestimate the dose compared to MC calculations and IC measurements by up to almost 5% for the smallest investigated sphere and for small monoenergetic square fields. Narrower spot spacing slightly enhanced the field size dependence of the dose output. The deviations in the plateau dose were found to go in the clinically safe direction, i.e. the actual deposited dose outside the target was found to be lower than predicted by the TPS. Thus, the moderate overestimation of dose to normal tissue by the TPS is likely to result in no severe consequences in clinical cases, even for the most critical cases of small target volumes.
Beam dynamics issues in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1989-06-01
The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less
Periodicity analysis on cat-eye reflected beam profiles of optical detectors
NASA Astrophysics Data System (ADS)
Gong, Mali; He, Sifeng
2017-05-01
The cat-eye effect reflected beam profiles of most optical detectors have a certain characteristic of periodicity, which is caused by array arrangement of sensors at their optical focal planes. It is the first time to find and prove that the reflected beam profile becomes several periodic spots at the reflected propagation distance corresponding to half the imaging distance of a CCD camera. Furthermore, the spatial cycle of these spots is approximately constant, independent of the CCD camera's imaging distance, which is related only to the focal length and pixel size of the CCD sensor. Thus, we can obtain the imaging distance and intrinsic parameters of the optical detector by analyzing its cat-eye reflected beam profiles. This conclusion can be applied in the field of non-cooperative cat-eye target recognition.
1974-08-01
COPY Reinforced concrete members ( beams and columns ): sizes, spans, support conditions, reinforcement ratios Steel members (open web joists, beams ...order of 30 to 50 percent of gross wall area are expected in upper portions butnt i n areas ’housing EOC’s. Open web joists and precast concrete units...are expected to dominate roof systems. Floors over the EOC’s are expected to be of rein- forced concrete . Cast-in-place flat plates and precast
Laser Damage in Thin Film Optical Coatings
1992-07-01
10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as
Incoherent light-induced self-organization of molecules.
Kandjani, S Ahmadi; Barille, R; Dabos-Seignon, S; Nunzi, J M; Ortyl, E; Kucharski, S
2005-12-01
Although coherent light is usually required for the self-organization of regular spatial patterns from optical beams, we show that peculiar light-matter interaction can break this evidence. In the traditional method of recording laser-induced periodic surface structures, a light intensity distribution is produced at the surface of a polymer film by an interference between two coherent optical beams. We report on the self-organization followed by propagation of a surface relief pattern. It is induced in a polymer film by using a low-power and small-size coherent beam assisted by a high-power and large-size incoherent and unpolarized beam. We demonstrate that we can obtain large size and well-organized patterns starting from a dissipative interaction. Our experiments open new directions to improving optical processing systems.
Evolution of a beam dynamics model for the transport line in a proton therapy facility
NASA Astrophysics Data System (ADS)
Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.
2017-12-01
During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.
Highly sensitive beam steering with plasmonic antenna
Rui, Guanghao; Zhan, Qiwen
2014-01-01
In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405
Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams
Kumar, A. Sathish; Sharma, S. D.; Ravindran, B. Paul
2014-01-01
The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET) detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams. PMID:25190992
Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams.
Kumar, A Sathish; Sharma, S D; Ravindran, B Paul
2014-07-01
The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET) detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams.
NASA Astrophysics Data System (ADS)
Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang
2017-12-01
Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.
Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model
NASA Astrophysics Data System (ADS)
Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji
2018-04-01
In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friberg, Ari T.; Visser, Taco D.; Wolf, Emil
A reciprocity inequality is derived, involving the effective size of a planar, secondary, Gaussian Schell-model source and the effective angular spread of the beam that the source generates. The analysis is shown to imply that a fully spatially coherent source of that class (which generates the lowest-order Hermite-Gaussian laser mode) has certain minimal properties. (c) 2000 Optical Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniraj, M.; Barman, Sudipta Roy
By imaging the spatial intensity distribution of the electrons from a Stoffel-Johnson (SJ) type low energy electron source for inverse photoemission spectroscopy (IPES), we find that the focus is distorted when the beam current exceeds the limiting value due to space charge effect. The space charge effect and the contact potential difference suppress the beam current at low energies (<10 eV). In this work, we show that these limitations of the SJ source can be overcome by compensation of the contact potential difference between the cathode and the lens electrodes and an uniform well focused electron beam with the set kineticmore » energy can be obtained. The size of the electron beam is around 1 mm full width at half maximum over the whole energy range of 5 to 30 eV generally used for IPES. The compensation of the contact potential difference also enhances the beam current substantially at low energies (<10 eV) and uniform beam current is achieved for the whole energy range. We find that the drift in the electron beam position is sensitive to the lens electrode separation and it is about 1 mm over the whole energy range. By measuring the n = 1 image potential state on Cu(100), we show that the resolution is better when the cathode filament current is set to lower values.« less
Beam characteristics of energy-matched flattening filter free beams.
Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I
2014-05-01
Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed less variation with field size, the d(max) value was deeper for the matched FFF beam than the FFF beam and deeper than the flattened beam for field sizes greater than 5 cm × 5 cm. The head leakage when using the machine in FFF mode is less than half that for a flattened beam, but comparable for both FFF modes. The radiation protection dose-rate measurements show an increase of instantaneous dose-rates when operating the machines in FFF mode but that increase is less than the ratio of MU/min produced by the machine. The matching of a FFF beam to a flattened beam at a depth of 10 cm in water by increasing the FFF beam energy does not reduce any of the reported benefits of FFF beams. Conversely, there are a number of potential benefits resulting from matching the FFF beam; the depth of maximum dose is deeper, the out of field dose is potentially reduced, and the beam quality and penetration more closely resembles the flattened beams currently used in clinical practice, making dose distributions in water more alike. Highlighted in this work is the fact that some conventional specifications and methods for measurement of beam parameters such as penumbra are not relevant and further work is required to address this situation with respect to "matched" FFF beams and to determine methods of measurement that are not reliant on an associated flattened beam.
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
2018-03-05
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less
Emittance and lifetime measurement with damping wigglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.
National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less
NASA Astrophysics Data System (ADS)
Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo
2011-07-01
Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.
Log-amplitude variance and wave structure function: A new perspective for Gaussian beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W.B.; Ricklin, J.C.; Andrews, L.C.
1993-04-01
Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less
Proton beam radiotherapy of uveal melanoma
Damato, Bertil; Kacperek, Andrzej; Errington, Doug; Heimann, Heinrich
2013-01-01
Proton beam radiotherapy of uveal melanoma can be administered as primary treatment, as salvage therapy for recurrent tumor, and as neoadjuvant therapy prior to surgical resection. The physical properties of proton beams make it possible to deliver high-doses of radiation to the tumor with relative sparing of adjacent tissues. This form of therapy is effective for a wider range of uveal melanoma than any other modality, providing exceptionally-high rates of local tumor control. This is particularly the case with diffuse iris melanomas, many of which are unresectable. The chances of survival, ocular conservation, visual preservation and avoidance of iatrogenic morbidity depend greatly on the tumor size, location and extent. When treating any side-effects and/or complications, it is helpful to consider whether these are the result of collateral damage or persistence of the irradiated tumor (‘toxic tumor syndrome’). PMID:24227980
Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P
2017-02-01
To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm 2 ) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H ∗ (10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H ∗ (10)/D for pristine proton pencil beams varied between 0.04μSvGy -1 at beam energy 100MeV and a (2×2)cm 2 field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy -1 at beam energy 200MeV and a (20×20) cm 2 field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, TK
Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizesmore » with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect.« less
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.
2016-12-01
On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.
NASA Astrophysics Data System (ADS)
Hilgers, G.; Bug, M. U.; Rabus, H.
2017-10-01
Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.
NASA Astrophysics Data System (ADS)
Sukrawa, Made
2017-11-01
Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.
SU-F-T-487: On-Site Beam Matching of An Elekta Infinity with Agility MLC with An Elekta Versa HD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C; Garcia, M; Mason, B
2016-06-15
Purpose: Historically, beam matching of similar Linear Accelerators has been accomplished by sending beam data to the manufacturer to match at their factory. The purpose of this work is to demonstrate that fine beam matching can be carried out on-site as part of the acceptance test, with similar or better results. Methods: Initial scans of a 10 × 10 Percent depth dose (PDD) and a 40 × 40 beam profile at the depth of Dmax, for 6MV and 10 MV were taken to compare with the standard beam data from the Versa. The energy was then adjusted and the beammore » steered to achieve agreement between the depth dose and the horns of the beam profile. This process was repeated until the best agreement between PDD and profiles was achieved. Upon completion, all other clinical data were measured to verify match. This included PDD, beam profiles, output factors and Wedge factors. For electron beams PDD’s were matched and the beam profiles verified for the final beam energy. Confirmatory PDD and beam profiles for clinical field sizes, as well as Output Factors were measured. Results: The average difference in PDD’s for 6MV and 10MV were within 0.4% for both wedged and open fields. Beam profile comparisons over the central 80% of the field, at multiple depths, show agreement of 0.8% or less for both wedged and open fields. Average output factor agreement over all field sizes was 0.4% for 6MV and 0.2 % for 10MV. Wedge factors agreement was less than 0.6% for both photon energies over all field sizes. Electron PDD agreed to 0.5mm. Cone ratios agreed to 1% or less. Conclusion: This work indicates that beam matching can be carried out on-site simply and quickly. The results of this beam matching can achieve similar or better results than factory matching.« less
NASA Astrophysics Data System (ADS)
Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.
2017-07-01
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J
2017-07-07
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Laser-induced rocket force on a microparticle in a complex (dusty) plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosenko, V.; Ivlev, A. V.; Morfill, G. E.
2010-12-15
The interaction of a focused powerful laser beam with micron-sized melamine formaldehyde (MF) particles was studied experimentally. The microspheres had a thin palladium coating on their surface and were suspended in a radio frequency argon plasma as a single layer (plasma crystal). A particle hit by the laser beam usually accelerated in the direction of the laser beam, consistent with the radiation pressure force mechanism. However, random-direction acceleration up to the speeds on the order 1 m/s was sometimes observed. Rocket-force mechanism is proposed to account for the random-direction acceleration. Similar, but much less pronounced, effect was also observed formore » MF particles without palladium coating.« less
Annular Focused Electron/Ion Beams for Combining High Spatial Resolution with High Probe Current.
Khursheed, Anjam; Ang, Wei Kean
2016-10-01
This paper presents a proposal for reducing the final probe size of focused electron/ion beam columns that are operated in a high primary beam current mode where relatively large final apertures are used, typically required in applications such as electron beam lithography, focused ion beams, and electron beam spectroscopy. An annular aperture together with a lens corrector unit is used to replace the conventional final hole-aperture, creating an annular ring-shaped primary beam. The corrector unit is designed to eliminate the first- and second-order geometric aberrations of the objective lens, and for the same probe current, the final geometric aberration limited spot size is predicted to be around a factor of 50 times smaller than that of the corresponding conventional hole-aperture beam. Direct ray tracing simulation is used to illustrate how a three-stage core lens corrector can be used to eliminate the first- and second-order geometric aberrations of an electric Einzel objective lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir; Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu; Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir
2014-12-15
This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly.more » It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})« less
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2002-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Nanoscience and Nanotechnology
1992-05-05
Stanford has fabricated gate lengths down to 65 nm, and are entering into consortia to fabricate modulation doped field effect transistors (MODFETs...and from the substrate exposes the resist over a greater area than the beam xpot size. Correcting for these effects (where possible) is computationally...the lithographic pattern (proximity effects ). The push to smaller dimensions is concentrated on controlling and understanding these phenomena rather
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
NASA Astrophysics Data System (ADS)
Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A. I.; Gauthier, D.; Zangrando, M.
2013-05-01
FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10-100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens-Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E
2016-03-01
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.
2016-01-01
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068
432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak
NASA Astrophysics Data System (ADS)
Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.
2014-10-01
A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.
Laser pushing or pulling of absorbing airborne particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chuji, E-mail: cw175@msstate.edu; Gong, Zhiyong; Pan, Yong-Le
2016-07-04
A single absorbing particle formed by carbon nanotubes in the size range of 10–50 μm is trapped in air by a laser trapping beam and concurrently illuminated by another laser manipulating beam. When the trapping beam is terminated, the movement of the particle controlled by the manipulating beam is investigated. We report our observations of light-controlled pushing and pulling motions. We show that the movement direction has little relationship with the particle size and manipulating beam's parameters but is dominated by the particle's orientation and morphology. With this observation, the controllable optical manipulation is now able to be generalized to arbitrarymore » particles, including irregularly shaped absorbing particles that are shown in this work.« less
Multiple pinhole collimator based X-ray luminescence computed tomography
Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing
2016-01-01
X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Ding, X; Syh, J
2015-06-15
Purpose: An approved proton pencil beam scanning (PBS) treatment plan might not be able to deliver because of existed extremely low monitor unit per beam spot. A dual hybrid plan with higher efficiency of higher spot monitor unit and the efficacy of less number of energy layers were searched and optimized. The range of monitor unit threshold setting was investigated and the plan quality was evaluated by target dose conformity. Methods: Certain limitations and requirements need to be checks and tested before a nominal proton PBS treatment plan can be delivered. The plan needs to be met the machine characterization,more » specification in record and verification to deliver the beams. Minimal threshold of monitor unit, e.g. 0.02, per spot was set to filter the low counts and plan was re-computed. Further MU threshold increment was tested in sequence without sacrificing the plan quality. The number of energy layer was also alternated due to elimination of low count layer(s). Results: Minimal MU/spot threshold, spot spacing in each energy layer and total number of energy layer and the MU weighting of beam spots of each beam were evaluated. Plan optimization between increases of the spot MU (efficiency) and less energy layers of delivery (efficacy) was adjusted. 5% weighting limit of total monitor unit per beam was feasible. Scarce spreading of beam spots was not discouraging as long as target dose conformity within 3% criteria. Conclusion: Each spot size is equivalent to the relative dose in the beam delivery system. The energy layer is associated with the depth of the targeting tumor. Our work is crucial to maintain the best possible quality plan. To keep integrity of all intrinsic elements such as spot size, spot number, layer number and the carried weighting of spots in each layer is important in this study.« less
Application of fully stressed design procedures to redundant and non-isotropic structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Tsach, U.
1980-01-01
An evaluation is presented of fully stressed design procedures for sizing highly redundant structures including structures made of composite materials. The evaluation is carried out by sizing three structures: a simple box beam of either composite or metal construction; a low aspect ratio titanium wing; and a titanium arrow wing for a conceptual supersonic cruise aircraft. All three structures are sized by ordinary fully-stressed design (FSD) and thermal fully stressed design (TFSD) for combined mechanical and thermal loads. Where possible, designs are checked by applying rigorous mathematical programming techniques to the structures. It is found that FSD and TFSD produce optimum designs for the metal box beam, but produce highly non-optimum designs for the composite box beam. Results from the delta wing and arrow wing indicate that FSD and TFSD exhibits slow convergence for highly redundant metal structures. Further, TFSD exhibits slow oscillatory convergence behavior for the arrow wing for very high temperatures. In all cases where FSD and TFSD perform poorly either in obtaining nonoptimum designs or in converging slowly, the assumptions on which the algorithms are based are grossly violated. The use of scaling, however, is found to be very effective in obtaining fast convergence and efficiently produces safe designs even for those cases when FSD and TFSD alone are ineffective.
Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells.
Mehrnia, Somayeh Sadat; Hashemi, Bijan; Mowla, Seyed Javad; Arbabi, Azim
2017-03-01
Gold nanoparticles (GNPs) have been applied as radiosensitizer in radiotherapy. Limited reports have shown that GNPs may be effective as a dose enhancer agent for electron radiation therapy. Some Monte Carlo Simulation studies have shown that selecting suitable size of GNPs and electron energies are critical for effective dose enhancement. The aim of this study was to assess possible radiosensitization effect of GNPs on cancer cell treated with 4MeV electron beams. Approximately 10nm GNPs were synthesized and characterized by electron microscope and dynamic light scattering. MCF-7 and MDA-MB-231 breast cancer cells were used and their viability was measured by MTT assay. Radiosensitization effect of GNPs under 4MeV electron beams was measured by clonogenic assay. The result showed a concentration dependent uptake of GNPs without reducing cell viability at concentrations ≤50mg/L. Incubation of cancer cells with GNPs caused a significant decrease in their viability following exposure to electron beams as well as a decrease in their survival fraction when compared to control. The sensitizer enhancement ratio (SER) by electron beams in MCF-7 cells was 1.43 and 1.40 in presence of 25 and 50mg/L GNPs, respectively. For MDA-MB-231 cells, it was 1.62 in presence of 25mg/L GNPs. Our data demonstrated the significant dose enhancement of the GNPs in combination with 4MeV electron beams that could be applicable for the treatment of superficial tumors and intra operative radiation therapy. Copyright © 2017. Published by Elsevier Ltd.
Laser beam shaping design based on micromirror array
NASA Astrophysics Data System (ADS)
Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang
2017-10-01
In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.
Plasma based optical guiding of an amplitude-modulated electromagnetic beam
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2015-06-01
We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.
DAΦNE operation with electron-cloud-clearing electrodes.
Alesini, D; Drago, A; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, M; De Santis, S; Demma, T; Raimondi, P
2013-03-22
The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression.
A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-10-01
The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.
Theory and simulation of electron beam dynamics in the AWE superswarf magnetically immersed diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, B.V.; Welch, D.R.; Olson, C.L.
1999-07-01
Results from numerical simulation and analytic theory of magnetically immersed diode behavior on the United Kingdom's Atomic Weapons Establishment (AWE) Superswarf accelerator are presented. The immersed diode consists of a cylindrical needle point cathode immersed in a strong {approximately}10--20 T solenoidal magnetic field. The anode-cathode (A-K) accelerating gap is held at vacuum and is {approximately}5--10 cm in length, with the anode/target located at the mid-plane of the solenoid. Typical accelerator parameters are 5--6 MeV and 40 kA. Ions emitted from the anode target stream toward the cathode and interact strongly with the electron beam. Collective oscillations between the beam electronsmore » and counter-streaming ions are driven unstable and results in a corkscrew rotation of the beam, yielding a time-integrated spot size substantially larger than that expected from single particle motion. This magnetized ion-hose instability is three dimensional. On the other hand, beam transverse temperature variations, although slightly enhanced in 3D, are primarily due to changes in the effective potential at the cathode (a combination of both the electrostatic and vector potential) and are manifest in 2D. Simulation studies examining spot and dose variation with varying cathode diameter and A-K gap distance are presented and confirm the above mentioned trends. Conclusions are that the diode current is determined by standard di-polar space-charge limited emissions, the minimum beam spot-size is limited by the ion-hose instability saturation amplitude, and the beam transverse temperature at the target is a function of the initial conditions on the cathode. Comparison to existing data will also be presented.« less
Monte Carlo study of si diode response in electron beams.
Wang, Lilie L W; Rogers, David W O
2007-05-01
Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)
NASA Astrophysics Data System (ADS)
Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie
2011-03-01
In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.
Back-streaming ion emission and beam focusing on high power linear induction accelerator
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui
2011-08-01
Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.
Dose calculation for electron therapy using an improved LBR method.
Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A
2013-07-01
To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).
NASA Astrophysics Data System (ADS)
Feng, Bing
Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac (ERL) due to extremely small emittance and high peak currents anticipated in the machine. A tune shift is discovered from the simulation; however, emittance growth of the electron beam in electron cloud is not observed for ERL parameters.
Emittance Growth in the DARHT-II Linear Induction Accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.
2017-11-01
The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.
Strategies for high-throughput focused-beam ptychography
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
2017-08-08
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Strategies for high-throughput focused-beam ptychography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
Benmakhlouf, Hamza; Andreo, Pedro
2017-02-01
Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by photoabsorption in the high-Z shielding material. For the ionization chambers and the diamond detector, the electron fluence spectra were found to be similar to that in water, for both field sizes. In contrast, electron spectra in the silicon diodes were much higher than that in water for both field sizes. The estimated perturbations of the fluence spectra for the silicon diodes were 11-21% for the large fields and 14-27% for the small fields. These perturbations are related to the atomic number, density and mean excitation energy (I-value) of silicon, as well as to the influence of the "extracameral"' components surrounding the detector sensitive volume. For most detectors the fluence perturbation was also found to increase when the field size was decreased, in consistency with the increased small-field effects observed for the smallest field sizes. The present work improves the understanding of small-field effects by relating output correction factors to spectral fluence perturbations in small field detectors. It is shown that the main reasons for the well-known small-field effects in silicon diodes are the high-Z and density of the "extracameral" detector components and the high I-value of silicon relative to that of water and diamond. Compared to these parameters, the density and atomic number of the radiation sensitive volume material play a less significant role. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessis, F.C.P. du; Willemse, C.A.
In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm{sup 2}, and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field sizemore » and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm{sup 2} field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm{sup 2}. At 100 cm SSD the RSI values were below 50% for all field sizes used.« less
NASA Astrophysics Data System (ADS)
Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong
2016-10-01
Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.
DOT National Transportation Integrated Search
2009-05-01
"This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...
X-ray phase contrast imaging at MAMI
NASA Astrophysics Data System (ADS)
El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.
2006-05-01
Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical magnification of up to 7.4 high-quality holograms of tiny transparent strings were taken in which the holographic information is contained in up to 18 interference fringes.
The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.
Araki, Fujio; Ohno, Takeshi
2014-12-01
This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. The RGD response was compared with ion chamber measurements for 4-18 MV photons and 6-20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs_chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin's general cavity theory. The perturbation correction factor, PQ, in the RGD cavity was also estimated from MC simulations for photon and electron beams. The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm(2) field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm(2) to 20 × 20 cm(2) was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm(2)) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 - d) in the RGD cavity, according to Burlin's cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 - d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. PQ for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, PQ depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, dref, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. The RGD response for photon beams depends on both (1 - d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by Burlin's theory and it is recommended to directly measure RGD response or use the MC-calculated RGD response, regarding the practical use. The response for electron beams decreased rapidly at a depth beyond dref for lower mean electron energies <3 MeV and in contrast PQ increased.
INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Vasiliy; Derbenev, Yaroslav; Lin, Fanglei
2016-05-01
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required tomore » allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.« less
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yipeng
In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
Williams Element with Generalized Degrees of Freedom for Fracture Analysis of Multiple-Cracked Beam
NASA Astrophysics Data System (ADS)
Xu, Hua; Wei, Quyang; Yang, Lufeng
2017-10-01
In this paper, the method of finite element with generalized degrees of freedom (FEDOFs) is used to calculate the stress intensity factor (SIF) of multiple cracked beam and analysed the effect of minor cracks on the main crack SIF in different cases. Williams element is insensitive to the size of singular region. So that calculation efficiency is highly improved. Examples analysis validates that the SIF near the crack tip can be obtained directly though FEDOFs. And the result is well consistent with ANSYS solution and has a satisfied accuracy.
NASA Astrophysics Data System (ADS)
Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.
2018-05-01
The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.
Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kun; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang
2015-01-14
Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.
SU-F-J-48: Effect of Scan Length On Magnitude of Imaging Dose in KV CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, S; Naidu, S; Sutar, A
Purpose: To study effect of scan length on magnitude of imaging dose deposition in Varian kV CBCT for head & neck and pelvis CBCT. Methods: To study effect of scan length we measured imaging dose at depth of 8 cm for head and neck Cone Beam Computed Tomography (CBCT) acquisition ( X ray beam energy is used 100kV and 200 degree of gantry rotation) and at 16 cm depth for pelvis CBCT acquisition ( X ray beam energy used is 125 kV and 360 degree of gantry rotation) in specially designed phantom. We used farmer chamber which was calibrated inmore » kV X ray range for measurements .Dose was measured with default field size, and reducing field size along y direction to 10 cm and 5 cm. Results: As the energy of the beam decreases the scattered radiation increases and this contributes significantly to the dose deposited in the patient. By reducing the scan length to 10 Cm from default 20.6 cm we found a dose reduction of 14% for head and neck CBCT protocol and a reduction of 26% for pelvis CBCT protocol. Similarly for a scan length of 5cm compared to default the dose reduction in head and neck CBCT protocol is 36% while in the pelvis CBCT protocol the dose reduction is 50%. Conclusion: By limiting the scan length we can control the scatter radiation generated and hence the dose to the patient. However the variation in dose reduction for same length used in two protocols is because of the scan geometry. The pelvis CBCT protocol uses a full rotation and head and neck CBCT protocol uses partial rotation.« less
SPring-8 BL41XU, a high-flux macromolecular crystallography beamline
Hasegawa, Kazuya; Shimizu, Nobutaka; Okumura, Hideo; Mizuno, Nobuhiro; Baba, Seiki; Hirata, Kunio; Takeuchi, Tomoyuki; Yamazaki, Hiroshi; Senba, Yasunori; Ohashi, Haruhiko; Yamamoto, Masaki; Kumasaka, Takashi
2013-01-01
SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick–Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 1013 photons s−1. A pinhole aperture is used to collimate the beam in the range 10–50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6–35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented. PMID:24121338
Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure
NASA Technical Reports Server (NTRS)
Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald
2013-01-01
Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.
Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H
2017-01-01
The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere
NASA Astrophysics Data System (ADS)
Ata, Yalçın; Baykal, Yahya
2017-10-01
Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan
2013-09-01
High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.
Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C
2013-06-01
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
Song, Shukun; Wang, Neng; Lu, Wanli; Lin, Zhifang
2014-10-01
Optical forces are calculated for a dielectric spherical particle illuminated by a zero-order Bessel beam based on both the generalized Lorenz-Mie theory (GLMT) and the ray optics method (ROM). Particles with positive and negative refractive indices are examined. The peculiar characteristics of the Bessel beam allow for analytical expressions for the beam shape coefficients required in the GLMT as well as a decomposition of optical force into the gradient and the scattering forces irrespective of the particle size, which enable respective comparisons for the gradient and scattering forces between the results obtained from the GLMT and the ROM. Our results demonstrate that the discrepancy between the results obtained from the GLMT and the ROM depends on the particle refractive index np, the particle size, and, also, the particle location in the beam field. As the particle size increases, the difference between the results from the GLMT and the ROM shows a general tendency of decreasing, as can be expected, but the change may exhibit oscillatory rather than monotonic behavior. A phase diagram is presented that displays the regime for particle size and refractive index where a specified accuracy can be achieved for optical force by the ROM.
Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L.
The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle andmore » generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR {at} 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, U; Langen, K
Purpose: To investigate the effect of spot size variation as function of gantry angle on the quality of treatment plans for pencil beam scanning proton plans. Method: Three homogeneous 26×26×7cm dose volumes with different ranges and SOBPs were delivered on the matrixxPT 2D array at gantry angles of 0 and 270 degrees. The spot size sigma varies by 1.8, 7.8, and 1.4%, for nominal energies of 215, 183, and 103 MeV (Range 29, 22, and 8cm, respectively). The resulting dose planes are compared and evaluated with the gamma index for 2%/2mm and 1%/1mm criteria. Results: Patient specific QA is performedmore » at a gantry angle of 0 degrees. However, beam sigmas vary as function of gantry angle because of the beam optics for each gantry. This will cause differences between the delivered and planned treatment plans. Delivered plans were compared and a gamma pass rate of 96.5% for criteria of 2%/2mm and 91.4% for 1%/1mm were seen for plans with a nominal energy of 183 MeV. For plans with a nominal energy of 103 MeV, gamma pass rates of 97.3% for 2%/2mm and 91.5% for 1%/1mm were seen. For plans with a nominal energy of 215 MeV the pass rate was 99.8% for 1%/1mm between the two gantry angles. Conclusion: Differences in beam sigma of up to 7.8% do not cause significant differences in the dose distribution of different spot size gammas.« less
Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.
Neupane, Bhanu; Chen, Fang; Sun, Wei; Chiu, Daniel T; Wang, Gufeng
2013-04-01
In stimulated emission depletion (STED)-based or up-conversion depletion-based super-resolution optical microscopy, the donut-shaped depletion beam profile is of critical importance to its resolution. In this study, we investigate the transformation of the donut-shaped depletion beam focused by a high numerical aperture (NA) microscope objective, and model STED point spread function (PSF) as a function of donut beam profile. We show experimentally that the intensity profile of the dark kernel of the donut can be approximated as a parabolic function, whose slope is determined by the donut beam size before the objective back aperture, or the effective NA. Based on this, we derive the mathematical expression for continuous wave (CW) STED PSF as a function of focal plane donut and excitation beam profiles, as well as dye properties. We find that the effective NA and the residual intensity at the center are critical factors for STED imaging quality and the resolution. The effective NA is critical for STED resolution in that it not only determines the donut shape but also the area the depletion laser power is dispersed. An improperly expanded depletion beam will have negligible improvement in resolution. The polarization of the depletion beam also plays an important role as it affects the residual intensity in the center of the donut. Finally, we construct a CW STED microscope operating at 488 nm excitation and 592 nm depletion with a resolution of 70 nm. Our study provides detailed insight to the property of donut beam, and parameters that are important for the optimal performance of STED microscopes. This paper will provide a useful guide for the construction and future development of STED microscopes.
Zemax simulations describing collective effects in transition and diffraction radiation.
Bisesto, F G; Castellano, M; Chiadroni, E; Cianchi, A
2018-02-19
Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette
1999-01-01
A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.
Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.
1999-08-31
A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.
Staging of laser-plasma accelerators
Steinke, S.; van Tilborg, J.; Benedetti, C.; ...
2016-05-02
We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller thanmore » the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Advanced High Brilliance X-Ray Source
NASA Technical Reports Server (NTRS)
Gibson, Walter M.
1998-01-01
The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent beam could, in principle, provide a similar sampling benefit without oscillation. Although more problematic, because of complications in analyzing the diffraction patterns, it was also suggested that even more extreme beam convergence might be used to give another order of magnitude intensity gain and even smaller focused spot size which could make it possible to study smaller protein crystals than can be studied using standard laboratory based X-ray diffraction systems. This project represents the first systematic investigation of these possibilities. As initially proposed, the contract included requirements for design, purchase, evaluation and delivery of three polycapillary lenses to the Laboratory for Structural Biology at MSFC and demonstration of such optics at MSFC for selected protein crystal diffraction applications.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
NASA Astrophysics Data System (ADS)
van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.
2018-05-01
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Tilborg, J.; Barber, S. K.; Benedetti, C.
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...
2018-03-13
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Control of polarization rotation in nonlinear propagation of fully structured light
NASA Astrophysics Data System (ADS)
Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.
2018-03-01
Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, A; Boone, J
Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically.more » These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less
NASA Astrophysics Data System (ADS)
Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann
2016-12-01
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuping, E-mail: wangxp@sdas.org; Liu, Bing; Yang, Yuguo
2014-08-04
An abnormal laser deflection phenomenon in a copper-doped KTa{sub 1−x}Nb{sub x}O{sub 3} (Cu:KTN) crystal is demonstrated in this Letter. A near-50 mrad beam deflection angle was observed when a voltage of 1.2 kV was applied to a Cu:KTN block with size of 2.8 mm × 1.2 mm × 7.5 mm at room temperature. The special features of this deflection phenomenon are that the laser beam deflection direction is perpendicular to the electric field direction, and the beam deflection angle remains unchanged when the electric field direction is reversed. The operating principle of the phenomenon is investigated and the origin of the deflection phenomenon is attributed to an interactionmore » between the graded refractivity effect and the quadratic electro-optic effect of the crystal.« less
SU-F-T-533: Study of Dosimetric Properties of Cadmium Free Alloy Used in Compensator Based IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, A; Kaushik, S; Guru Jambheshwar University of Science & Technology, Hisar, Haryana
Purpose: To study the dosimetric properties of cadmium free alloy which is used in compensator based IMRT. Methods: A mixture of 30% of lead,52% of bismuth and 18% of tin was used to prepare alloy. We prepared slabs of different thicknesses ranging from 0.71 cm to 6.14 cm. Density of alloy was measured by Archimedes’ principle using SI-234 Denver instrument and water as buoyant liquid. Transmission, linear attenuation coefficient (µ), tissue phantom ration (TPR), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter were measured and analyze for different field size and different thickness of compensatormore » for 6 MV photon beam. Measurements were carried out at 100 cm SSD and 160 cm SSD. Results: Density of alloy was found to be 9.5456 gm/cm3. Melting point of alloy is 90–95 °C. For a field size of 10×10 cm2 µ was 0.4253 cm-1 at 100 cm SSD. Calculated TPR was found to be within 3 % of measured TPR. Ds was found to be decreasing with increasing thickness of compensator. 1cm, 1.98 cm and 4.16 cm thick compensator slab decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10cm2 at 100 cm SSD. As field size increases Ds increases for a given compensator thickness. This is due to increase in amount of scattered dose from wider collimator opening. For smaller field size, PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increases from 1 cm to 6.14 cm at a depth of 10 cm in water. For larger field size variation in PDDs is not significant. Conclusion: High degree of modulation can be achieved from this compensator material, which is essential in compensator based IMRT. Dosimetric properties analyzed in this study establish this alloy as a reliable, cost effective, reusable compensator material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, S.; Mimura, H.; Yumoto, H.
We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less
Hang, Li; Luo, Kai; Fu, Jian; Chang, Yizhe; Wang, Ying; Chen, Peifeng
2018-03-20
Based on extended Richards-Wolf theory for axisymmetric surfaces and the inverse Faraday effect, we propose the generation of a purely longitudinal magnetization needle by focusing Gaussian annular azimuthally polarized beams with a spherical mirror. The needle obtained has a longitudinal length varying hundreds to thousands of wavelengths while keeping the lateral size under 0.4λ, and the corresponding aspect ratio can easily reach more than 2000. It may be the first time that a magnetization needle whose aspect ratio is over 500 has been achieved. The approximate analytical expressions of the magnetization needle are given, and the longitudinal length is tunable by changing the value of the angular thickness and the position of the annular beams.
Repair of white oak glued-laminated beams
Lawrence A. Soltis; Robert J. Ross
1999-01-01
Connections between steel side plates and white oak glued-laminated beams subjected to tension perpendicular-to-grain stresses were tested to failure. The beams were then repaired with five different configurations using two sizes of lag screws, with and without steel reinforcing plates. The repaired beams were re-tested to failure. Results indicate that in all...
γ-Particle coincidence technique for the study of nuclear reactions
NASA Astrophysics Data System (ADS)
Zagatto, V. A. B.; Oliveira, J. R. B.; Allegro, P. R. P.; Chamon, L. C.; Cybulska, E. W.; Medina, N. H.; Ribas, R. V.; Seale, W. A.; Silva, C. P.; Gasques, L. R.; Zahn, G. S.; Genezini, F. A.; Shorto, J. M. B.; Lubian, J.; Linares, R.; Toufen, D. L.; Silveira, M. A. G.; Rossi, E. S.; Nobre, G. P.
2014-06-01
The Saci-Perere γ ray spectrometer (located at the Pelletron AcceleratorLaboratory - IFUSP) was employed to implement the γ-particle coincidence technique for the study of nuclear reaction mechanisms. For this, the 18O+110Pd reaction has been studied in the beam energy range of 45-54 MeV. Several corrections to the data due to various effects (energy and angle integrations, beam spot size, γ detector finite size and the vacuum de-alignment) are small and well controlled. The aim of this work was to establish a proper method to analyze the data and identify the reaction mechanisms involved. To achieve this goal the inelastic scattering to the first excited state of 110Pd has been extracted and compared to coupled channel calculations using the São Paulo Potential (PSP), being reasonably well described by it.
Monte Carlo modeling of fluorescence in semi-infinite turbid media
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.
2018-02-01
The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 - 1 cm-1 , μs'= 5 - 40 cm-1 ).
Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad
2017-12-01
In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Komanduri, K
2014-06-01
Purpose: The objective of this work is to present a mechanism for calculating inflection points on profiles at various depths and field sizes and also a significant study on the percentage of doses at the inflection points for various field sizes and depths for 6XFFF and 10XFFF energy profiles. Methods: Graphical representation was done on Percentage of dose versus Inflection points. Also using the polynomial function, the authors formulated equations for calculating spot-on inflection point on the profiles for 6X FFF and 10X FFF energies for all field sizes and at various depths. Results: In a flattening filter free radiationmore » beam which is not like in Flattened beams, the dose at inflection point of the profile decreases as field size increases for 10XFFF. Whereas in 6XFFF, the dose at the inflection point initially increases up to 10x10cm2 and then decreases. The polynomial function was fitted for both FFF beams for all field sizes and depths. For small fields less than 5x5 cm2 the inflection point and FWHM are almost same and hence analysis can be done just like in FF beams. A change in 10% of dose can change the field width by 1mm. Conclusion: The present study, Derivative of equations based on the polynomial equation to define inflection point concept is precise and accurate way to derive the inflection point dose on any FFF beam profile at any depth with less than 1% accuracy. Corrections can be done in future studies based on the multiple number of machine data. Also a brief study was done to evaluate the inflection point positions with respect to dose in FFF energies for various field sizes and depths for 6XFFF and 10XFFF energy profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIU, B; Zhu, T
Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less
DOT National Transportation Integrated Search
2009-05-01
This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort ...
DOT National Transportation Integrated Search
2009-05-01
This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced : concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effor...
SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, P; Na, Y; Wuu, C
2016-06-15
Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) systemmore » (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to standard MLC position segments.« less
SU-F-T-491: Photon Beam Matching Analysis at Multiple Sites Up to Twelve Years Post Installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, C; Zakikhani, R; Yan, K
Purpose: To determine if the photon beams associated with several models of accelerators are matched with ‘Golden Beam’ data (VGBD) to assess treatment planning modeling and delivery. Methods: Six accelerators’ photon beams were evaluated to determine if they matched the manufacturer’s (Varian Medical Systems, Inc.) VGBD. Additional direct comparisons of the 6X and 18X beams using the manufacturer’s specification of Basic and Fine beam matching were also performed. The Cseries accelerator models were 21 EX (3), IX (2), and a IX Trilogy, ranging from three to twelve years post installation. Computerized beam scanning was performed (IBA Blue Phantom 2) withmore » 2 CC13 ion chambers in water at 100 cm SSD. Dmax (10 cm2 field size), percentage depth dose (6 cm2, 10 cm2, 20 cm2, and 30 cm2 field sizes) and beam uniformity (10 cm2, 30 cm2 and 40 cm2 field sizes) were evaluated. Results: When comparing the beams with VGBD using the ‘Basic’ matching criteria, all beams were within the specifications ( 1.5mm at dmax, 1% PDD, and 2% Profiles). When considering the “Fine” matching criteria ( 1.5mm at dmax, 0.5% PDD, and 2% Profiles), only three of six 6MV beams and two of six high energy (five 18MV & one 15MV) beams passed. Direct comparisons between accelerators using the Clinac IX (installed 2012) as the reference beam datasets resulted in all 6 MV and 18MV beams meeting both the “Basic” and “Fine” criterion with the exception of two accelerators. Conclusion: Linear accelerators installed up to nine years apart are capable of meeting the manufacturers beam matching criteria for “Basic” matching. Without any adjustments most beams, when evaluated, may meet the “Fine” match criteria. The use of a single dataset (VGBD or designated accelerator reference data) for treatment planning commissioning is acceptable and can provide quality treatment delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo
Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamicmore » light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for investigating DEF. Moreover, these results alert to the importance of controlling the size-position of nanoparticles to enhance DEF.« less
NASA Astrophysics Data System (ADS)
Pirani, F.; Cappelletti, D.; Vecchiocattivi, F.; Vattuone, L.; Gerbi, A.; Rocca, M.; Valbusa, U.
2004-02-01
A light and compact mechanical velocity selector, of novel design, for applications in supersonic molecular-beam studies has been developed. It represents a simplified version of the traditional, 50 year old, slotted disks velocity selector. Taking advantage of new materials and improved machining techniques, the new version has been realized with only two rotating slotted disks, driven by an electrical motor with adjustable frequency of rotation, and thus has a much smaller weight and size with respect to the original design, which may allow easier implementation in most of the available molecular-beam apparatuses. This new type of selector, which maintains a sufficiently high velocity resolution, has been developed for sampling molecules with different degrees of rotational alignment, like those emerging from a seeded supersonic expansion. This sampling is the crucial step to realize new molecular-beam experiments to study the effect of molecular alignment in collisional processes.
The effect of residual gas scattering on Ga ion beam patterning of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thissen, Nick F. W., E-mail: n.f.w.thissen@tue.nl, E-mail: a.a.bol@tue.nl; Vervuurt, R. H. J.; Weber, J. W.
2015-11-23
The patterning of graphene by a 30 kV Ga{sup +} focused ion beam (FIB) is studied by in-situ and ex-situ Raman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced bymore » working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account.« less
Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle
NASA Astrophysics Data System (ADS)
Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing
2018-06-01
Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.
EPR/alanine dosimetry for two therapeutic proton beams
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony
2016-02-01
In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.
Ponmalar, Retna; Manickam, Ravikumar; Ganesh, K M; Saminathan, Sathiyan; Raman, Arun; Godson, Henry Finlay
2017-01-01
The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
Statistical spatio-temporal properties of the Laser MegaJoule speckle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2012-10-15
This paper investigates a statistical model to describe the spatial and temporal properties of hot spots generated by the superimposition of multiple laser beams. In the context of the Laser MegaJoule design, we introduce the formula for contrasts, trajectories and velocities of the speckle pattern. Single bundle of four beams, two-cones and three-cones configurations are considered. Statistical properties of the speckle in the zone where all the beams overlap are studied with different configurations of polarizations. These properties are shown to be very different from the case of one single bundle of four beams. The configuration of polarization has onlymore » a slight effect in the two-cones or three cones configuration. Indeed, the impact of the double polarization smoothing is reduced in the area in which all the beams overlap, while it is much more significant when they split. Moreover, the size of the hot-spots decreases as the number of laser beams increases, but we show that their velocity decreases. As a matter of fact, the maximal velocity of hot spots is found to be only about 10{sup -5} of the velocity of light and the integrated contrast is about 15% when the beams overlap.« less
Study of plasma natural convection induced by electron beam in atmosphere [
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yongfeng, E-mail: yfdeng@mail.dlut.edu.cn; Han, Xianwei; Tan, Yonghua
2014-06-15
Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysismore » is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.« less
Development of Planar Optics for an Optical Tracking Sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro
1998-10-01
An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.
Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB
NASA Astrophysics Data System (ADS)
Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.
2012-10-01
During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.
In-situ micro bend testing of SiC and the effects of Ga+ ion damage
NASA Astrophysics Data System (ADS)
Robertson, S.; Doak, SS; Zhou, Z.; Wu, H.
2017-09-01
The Young’s modulus of 6H single crystal silicon carbide (SiC) was tested with micro cantilevers that had a range of cross-sectional dimensions with surfaces cleaned under different accelerating voltages of Ga+ beam. A clear size effect is seen with Young’s modulus decreasing as the cross-sectional area reduces. One of the possible reasons for such size effect is the Ga+ induced damage on all surfaces of the cantilever. Transmission electron microscopy (TEM) was used to analyse the degree of damage, and the measurements of damage is compared to predictions by SRIM irradiation simulation.
Lárraga-Gutiérrez, José Manuel; Ballesteros-Zebadúa, Paola; Rodríguez-Ponce, Miguel; García-Garduño, Olivia Amanda; de la Cruz, Olga Olinca Galván
2015-01-21
A CVD based radiation detector has recently become commercially available from the manufacturer PTW-Freiburg (Germany). This detector has a sensitive volume of 0.004 mm(3), a nominal sensitivity of 1 nC Gy(-1) and operates at 0 V. Unlike natural diamond based detectors, the CVD diamond detector reports a low dose rate dependence. The dosimetric properties investigated in this work were dose rate, angular dependence and detector sensitivity and linearity. Also, percentage depth dose, off-axis dose profiles and total scatter ratios were measured and compared against equivalent measurements performed with a stereotactic diode. A Monte Carlo simulation was carried out to estimate the CVD small beam correction factors for a 6 MV photon beam. The small beam correction factors were compared with those obtained from stereotactic diode and ionization chambers in the same irradiation conditions The experimental measurements were performed in 6 and 15 MV photon beams with the following square field sizes: 10 × 10, 5 × 5, 4 × 4, 3 × 3, 2 × 2, 1.5 × 1.5, 1 × 1 and 0.5 × 0.5 cm. The CVD detector showed an excellent signal stability (<0.2%) and linearity, negligible dose rate dependence (<0.2%) and lower response angular dependence. The percentage depth dose and off-axis dose profiles measurements were comparable (within 1%) to the measurements performed with ionization chamber and diode in both conventional and small radiotherapy beams. For the 0.5 × 0.5 cm, the measurements performed with the CVD detector showed a partial volume effect for all the dosimetric quantities measured. The Monte Carlo simulation showed that the small beam correction factors were close to unity (within 1.0%) for field sizes ≥1 cm. The synthetic diamond detector had high linearity, low angular and negligible dose rate dependence, and its response was energy independent within 1% for field sizes from 1.0 to 5.0 cm. This work provides new data showing the performance of the CVD detector compared against a high spatial resolution diode. It also presents a comparison of the CVD small beam correction factors with those of diode and ionization chamber for a 6 MV photon beam.
FDTD approach to optical forces of tightly focused vector beams on metal particles.
Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian
2009-05-11
We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.
Optical extinction dependence on wavelength and size distribution of airborne dust
NASA Astrophysics Data System (ADS)
Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.
2013-05-01
The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.
A Dust Grain Photoemission Experiment
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.
2000-01-01
A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.
NASA Astrophysics Data System (ADS)
Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam
2015-09-01
Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael
2006-05-21
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
NASA Astrophysics Data System (ADS)
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael
2006-05-01
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
Extended volume coverage in helical cone-beam CT by using PI-line based BPF algorithm
NASA Astrophysics Data System (ADS)
Cho, Seungryong; Pan, Xiaochuan
2007-03-01
We compared data requirements of filtered-backprojection (FBP) and backprojection-filtration (BPF) algorithms based on PI-lines in helical cone-beam CT. Since the filtration process in FBP algorithm needs all the projection data of PI-lines for each view, the required detector size should be bigger than the size that can cover Tam-Danielsson (T-D) window to avoid data truncation. BPF algorithm, however, requires the projection data only within the T-D window, which means smaller detector size can be used to reconstruct the same image than that in FBP. In other words, a longer helical pitch can be obtained by using BPF algorithm without any truncation artifacts when a fixed detector size is given. The purpose of the work is to demonstrate numerically that extended volume coverage in helical cone-beam CT by using PI-line-based BPF algorithm can be achieved.
System-size and beam energy dependence of the space-time extent of the pion emission source
NASA Astrophysics Data System (ADS)
Pak, Robert; Phenix Collaboration
2014-09-01
Two-pion interferometry measurements are used to extract the Gaussian source radii Rout ,Rside and Rlong , of the pion emission sources produced in d + Au, Cu +Cu and Au +Au collisions for several beam collision energies at PHENIX experiment. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse geometric size of the collision system, and the transverse mass of the emitted pion pairs. These scaling patterns indicate a linear dependence of Rside on the initial transverse size, as well as a smaller freeze-out size for the d + Au system. Mathematical combinations of the extracted radii generally associated with the emission source duration and expansion rate exhibit non-monotonic behavior, suggesting a change in the expansion dynamics over this beam energy range.
Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.
2001-01-01
A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.
Oblate Field-Reversed Configuration Experiments with Neutral Beam Injection
NASA Astrophysics Data System (ADS)
T., II; Gi, K.; Umezawa, T.; Inomoto, M.; Ono, Y.
2011-11-01
The effect of energetic beam ions on oblate Field-Reversed Configurations (FRCs) has been studied experimentally in the TS-4 plasma merging device. In order to examine its kinetic effects, we developed an economical pulsed Neutral Beam Injection (NBI) system by using a washer gun plasma source and finally attained the beam power of 0.6 MW (15 kV, 40 A) for its pulse length of 0.5 ms, longer than the FRC lifetime in TS-4. The Monte Carlo simulation indicates that the tangential NB ions of 15 keV are trapped between the magnetic axis and the separatrix. We found that two merging high-s (s is plasma size normalized by ion gyroradius) hydrogen spheromaks with opposite helicities relaxed into the large scale FRC with poloidal flux as high as 15 mWb under the assistance of the NBI. Without the assistance of NBI, however, they did not relax to an FRC but to another spheromak. These facts suggest some ion kinetic effects such as toroidal ion flow are essential to FRC stability. Recently, two new NB sources with acceleration voltage and current of 15 kV and 20 A were installed on the TS-4 device on the midplane for tangential injection, increasing the beam power over 1 MW. We will start the upgraded FRC experiments using the 1 MW NBI for ion flow control.
Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator
NASA Astrophysics Data System (ADS)
Gamelin, A.; Bruni, C.; Radevych, D.
2018-05-01
The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.
Saturation current and collection efficiency for ionization chambers in pulsed beams.
DeBlois, F; Zankowski, C; Podgorsak, E B
2000-05-01
Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.
SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.
Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E
2012-06-01
To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.
Modulation power of porous materials and usage as ripple filter in particle therapy.
Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli
2017-04-07
Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2015-03-01
Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.
Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas
2015-04-14
X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Ng, S K; Hesser, J; Zhang, H; Gowrisanker, S; Yakushevich, S; Shulhevich, Y; Abkai, C; Wack, L; Zygmanski, P
2012-06-01
To characterize dosimetric properties of low-cost thin film organic-based photovoltaic (OPV) cells to kV and MV x-ray beams for their usage as large area dosimeter for QA and patient safety monitoring device. A series of thin film OPV cells of various areas and thicknesses were irradiated with MV beams to evaluate the stability and reproducibility of their response, linearity and sensitivity to absorbed dose. The OPV response to x-rays of various linac energies were also characterized. Furthermore the practical (clinical) sensitivity of the cells was determined using IMRT sweeping gap test generated with various gap sizes. To evaluate their potential usage in the development of low cost kV imaging device, the OPV cells were irradiated with kV beam (60-120 kVp) from a fluoroscopy unit. Photocell response to the absorbed dose was characterized as a function of the organic thin film thickness and size, beam energy and exposure for kV beams as well. In addition, photocell response was determined with and without thin plastic scintillator. Response of the OPV cells to the absorbed dose from kV and MV beams are stable and reproducible. The photocell response was linearly proportional to the size and about slightly decreasing with the thickness of the organic thin film, which agrees with the general performance of the photocells in visible light. The photocell response increases as a linear function of absorbed dose and x-ray energy. The sweeping gap tests performed showed that OPV cells have sufficient practical sensitivity to measured MV x-ray delivery with gap size as small as 1 mm. With proper calibration, the OPV cells could be used for online radiation dose measurement for quality assurance and patient safety purposes. Their response to kV beam show promising potential in development of low cost kV radiation detection devices. © 2012 American Association of Physicists in Medicine.
New phase method of measuring particle size with laser Doppler radar
NASA Astrophysics Data System (ADS)
Zemlianskii, Vladimir M.
1996-06-01
A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.
Pulsed Nd:YAG laser welding of cardiac pacemaker batteries with reduced heat input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerschbach, P.W.; Hinkley, D.A.
1997-03-01
The effects of Nd:YAG laser beam welding process parameters on the resulting heat input in 304L stainless steel cardiac pacemaker batteries have been studied. By careful selection of process parameters, the results can be used to reduce temperatures near glass-to-metal seals and assure hermeticity in laser beam welding of high reliability components. Three designed response surface experiments were used to compare welding performance with lenses of varying focal lengths. The measured peak temperatures at the glass-to-metal seals varied from 65 to 140 C (149 to 284 F) and depended strongly on the levels of the experimental factors. It was foundmore » that welds of equivalent size can be made with significantly reduced temperatures. The reduction in battery temperatures has been attributed to an increase in the melting efficiency. This increase is thought to be due primarily to increased travel speeds, which were facilitated by high peak powers and low pulse energies. For longer focal length lenses, weld fusion zone widths were found to be greater even without a corresponding increase in the size of the weld. It was also found that increases in laser beam irradiance either by higher peak powers or smaller spot sizes created deeper and larger welds. These gains were attributed to an increase in the laser energy transfer efficiency.« less
Resolution performance of a 0.60-NA, 364-nm laser direct writer
NASA Astrophysics Data System (ADS)
Allen, Paul C.; Buck, Peter D.
1990-06-01
ATEQ has developed a high resolution laser scanning printing engine based on the 8 beam architecture of the CORE- 2000. This printing engine has been incorporated into two systems: the CORE-2500 for the production of advanced masks and reticles and a prototype system for direct write on wafers. The laser direct writer incorporates a through-the-lens alignment system and a rotary chuck for theta alignment. Its resolution performance is delivered by a 0. 60 NA laser scan lens and a novel air-jet focus system. The short focal length high resolution lens also reduces beam position errors thereby improving overall pattern accuracy. In order to take advantage of the high NA optics a high performance focus servo was developed capable of dynamic focus with a maximum error of 0. 15 tm. The focus system uses a hot wire anemometer to measure air flow through an orifice abutting the wafer providing a direct measurement to the top surface of resist independent of substrate properties. Lens specifications are presented and compared with the previous design. Bench data of spot size vs. entrance pupil filling show spot size performance down to 0. 35 m FWHM. The lens has a linearity specification of 0. 05 m system measurements of lens linearity indicate system performance substantially below this. The aerial image of the scanned beams is measured using resist as a threshold detector. An effective spot size is
Fast resolution change in neutral helium atom microscopy
NASA Astrophysics Data System (ADS)
Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.
2018-05-01
In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.
2017-08-01
The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational resultsmore » are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape.« less
A simple method for astigmatic compensation of folded resonator without Brewster window.
Qiao, Wen; Xiaojun, Zhang; Yonggang, Wang; Liqun, Sun; Hanben, Niu
2014-02-10
A folded resonator requires an oblique angle of incidence on the folded curved mirror, which introduces astigmatic distortions that limit the performance of the lasers. We present a simple method to compensate the astigmatism of folded resonator without Brewster windows for the first time to the best of our knowledge. Based on the theory of the propagation and transformation of Gaussian beams, the method is both effective and reliable. Theoretical results show that the folded resonator can be compensated astigmatism completely when the following two conditions are fulfilled. Firstly, when the Gaussian beam with a determined size beam waist is obliquely incident on an off-axis concave mirror, two new Gaussian beam respectively in the tangential and sagittal planes are formed. Another off-axis concave mirror is located at another intersection point of the two new Gaussian beams. Secondly, adjusting the incident angle of the second concave mirror or its focal length can make the above two Gaussian beam coincide in the image plane of the second concave mirror, which compensates the astigmatic aberration completely. A side-pumped continues-wave (CW) passively mode locked Nd:YAG laser was taken as an example of the astigmatically compensated folded resonators. The experimental results show good agreement with the theoretical predictions. This method can be used effectively to design astigmatically compensated cavities resonator of high-performance lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tien, C; Brewer, M; Studenski, M
Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less
SU-E-T-451: Accuracy and Application of the Standard Imaging W1 Scintillator Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, M; McEwen, M
2014-06-01
Purpose: To evaluate the Standard Imaging W1 scintillator dosimeter in a range of clinical radiation beams to determine its range of possible applications. Methods: The W1 scintillator is a small perturbation-free dosimeter which is of interest in absolute and relative clinical dosimetry due to its small size and water equivalence. A single version of this detector was evaluated in Co-60 and linac photon and electron beams to investigate the following: linearity, sensitivity, precision, and dependence on electrometer type. In addition, depth-dose and cross-plane profiles were obtained in both photon and electron beams and compared with data obtained with wellbehaved ionizationmore » chambers. Results: In linac beams the precision and linearity was very impressive, with typical values of 0.3% and 0.1% respectively. Performance in a Co-60 beam was much poorer (approximately three times worse) and it is not clear whether this is due to the lower signal current or the effect of the continuous beam (rather than pulsed beam of the linac measurements). There was no significant difference in the detector reading when using either the recommended SI Supermax electrometer or two independent high-quality electrometers, except for low signal levels, where the Supermax exhibited an apparent threshold effect, preventing the measurement of the bremsstrahlung background in electron depth-dose curves. Comparisons with ion chamber measurements in linac beams were somewhat variable: good agreement was seen for cross-profiles (photon and electron beams) and electron beam depth-dose curves, generally within the 0.3% precision of the scintillator but systematic differences were observed as a function of measurement depth in photon beam depth-dose curves. Conclusion: A first look would suggest that the W1 scintillator has applications beyond small field dosimetry but performance appears to be limited to higher doserate and/or pulsed radiation beams. Further work is required to resolve discrepancies compared to ion chambers.« less
Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars
NASA Astrophysics Data System (ADS)
Naveen Kumar, G.; Sundaravadivelu, Karthik
2017-07-01
In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.
Size Effects on Deformation and Fracture of Scandium Deuteride Films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teresi, C. S.; Hintsala, E.; Adams, David P.
Metal hydride films have been observed to crack during production and use, prompting mechanical property studies of scandium deuteride films. The following focuses on elastic modulus, fracture, and size effects observed in the system for future film mechanical behavior modeling efforts. Scandium deuteride films were produced through the deuterium charging of electron beam evaporated scandium films using X-ray diffraction, scanning Auger microscopy, and electron backscatter diffraction to monitor changes in the films before and after charging. Scanning electron microscopy, nanoindentation, and focused ion beam machined micropillar compression tests were used for mechanical characterization of the scandium deuteride films. The micropillarsmore » showed a size effect for flow stress, indicating that film thickness is a relevant tuning parameter for film performance, and that fracture was controlled by the presence of grain boundaries. Elastic modulus was determined by both micropillar compression and nanoindentation to be approximately 150 GPa, Fracture studies of bulk film channel cracking as well as compression induced cracks in some of the pillars yielded a fracture toughness around 1.0 MPa-m1/2. Preliminary Weibull distributions of fracture in the micropillars are provided. Despite this relatively low value of fracture toughness, scandium deuteride micropillars can undergo a large degree of plasticity in small volumes and can harden to some degree, demonstrating the ductile and brittle nature of this material« less
Characterization and prediction of monomer-based dose rate effects in electron-beam polymerization
NASA Astrophysics Data System (ADS)
Schissel, Sage M.; Lapin, Stephen C.; Jessop, Julie L. P.
2017-12-01
Properties of some materials produced by electron-beam (EB) induced polymerization appear dependent upon the rate at which the initiating dose was delivered. However, the magnitude of these dose rate effects (DREs) can vary greatly with different monomer formulations, suggesting DREs are dependent on chemical structure. The relationship among dose, dose rate, conversion, and the glass transition temperature (Tg) of the cured material was explored for an acrylate monomer series. A strong correlation was determined between the DRE magnitude and monomer size, and this correlation may be attributed to chain transfer. Using the Tg shift caused by changes in dose, a preliminary predictive relationship was developed to estimate the magnitude of the Tg DRE, enabling scale-up of process variables for polymers prone to dose rate effects.
Gaussian beam in two-photon fluorescence imaging of rat brain microvessel
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Alfano, Robert R.
2014-12-01
The critical optical properties of a Gaussian laser beam in two-photon or multiphoton fluorescence imaging, including the beam spot size, depth of focus, and intensity profile, are investigated for spatially locating nanoscale solutes in and surrounding the microvessels of rat brain.
High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators
NASA Astrophysics Data System (ADS)
Feiz Zarrin Ghalam, Ali
Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)
Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas
NASA Astrophysics Data System (ADS)
Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.
1993-07-01
A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.
Curvature aided long range propagation of short laser pulses in the atmosphere
NASA Astrophysics Data System (ADS)
Yedierler, Burak
2013-03-01
The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
Scintillation properties of dark hollow beams in a weak turbulent atmosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Cai, Y.; Eyyuboğlu, H. T.; Baykal, Y.
2008-01-01
The on-axis scintillation index for a circular dark hollow beam (DHB) propagating in a weak turbulent atmosphere is formulated, and the scintillation properties of a DHB are investigated in detail. The scintillation index for a DHB reduces to the scintillation index for a Gaussian beam, an annular beam and a flat-topped beam under certain conditions. It is found that the scintillation index of a DHB is closely related to the beam parameters and can be lower than that of a Gaussian beam, an annular beam and a flat-topped beam in a weak turbulent atmosphere at smaller waist sizes and longer propagation lengths.
NASA Astrophysics Data System (ADS)
Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.
2018-07-01
Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.
SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.
Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I
2012-06-01
The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.
DARHT Axis-I Diode Simulations II: Geometrical Scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl A. Jr.
2012-06-14
Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide varietymore » of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.« less
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.
Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F
2015-11-14
In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.
A technique for computation of noise temperature due to a beam waveguide shroud
NASA Technical Reports Server (NTRS)
Veruttipong, W.; Franco, M. M.
1993-01-01
Direct analytical computation of the noise temperature of real beam waveguide (BWG) systems, including all mirrors and the surrounding shroud, is an extremely complex problem and virtually impossible to achieve. Yet the DSN antennas are required to be ultra low-noise in order to be effective, and a reasonably accurate prediction is essential. This article presents a relatively simple technique to compute a real BWG system noise temperature by combining analytical techniques with data from experimental tests. Specific expressions and parameters for X-band (8.45-GHz) BWG noise computation are obtained for DSS 13 and DSS 24, now under construction. These expressions are also valid for various conditions of the BWG feed systems, including horn sizes and positions, and mirror sizes, curvatures, and positions. Parameters for S- and Ka-bands (2.3 and 32.0 GHz) have not been determined; however, those can be obtained following the same procedure as for X-band.
Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence
NASA Astrophysics Data System (ADS)
Gökçe, Muhsin Caner; Baykal, Yahya
2018-03-01
In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (
NASA Astrophysics Data System (ADS)
Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang
2017-07-01
Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.
Scaling device for photographic images
NASA Technical Reports Server (NTRS)
Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)
2005-01-01
A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.
Automatic low-order aberration correction based on geometrical optics for slab lasers.
Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Liu, Yong; Kong, Qingfeng; Yang, Kangjian; Tang, Guomao; Xu, Bing
2017-02-20
In this paper, we present a method based on geometry optics to simultaneously correct low-order aberrations and reshape the beams of slab lasers. A coaxial optical system with three lenses is adapted. The positions of the three lenses are directly calculated based on the beam parameters detected by wavefront sensors. The initial sizes of the input beams are 1.8 mm×11 mm, and peak-to-valley (PV) values of the wavefront range up to several tens of microns. After automatic correction, the dimensions may reach nearly 22 mm×22 mm as expected, and PV values of the wavefront are less than 2 μm. The effectiveness and precision of this method are verified with experiments.
Advanced TIL system for laser beam focusing in a turbulent regime
NASA Astrophysics Data System (ADS)
Sprangle, Phillip A.; Ting, Antonio C.; Kaganovich, Dmitry; Khizhnyak, Anatoliy I.; Tomov, Ivan V.; Markov, Vladimir B.; Korobkin, Dmitriy V.
2014-10-01
This paper discusses an advanced target in the loop (ATIL) system with its performance based on a nonlinear phase conjugation scheme that performs rapid adjustment of the laser beam wavefront to mitigate effects associated with atmospheric turbulence along the propagation path. The ATIL method allows positional control of the laser spot (the beacon) on a remote imaged-resolved target. The size of this beacon is governed by the reciprocity of two counterpropagating beams (one towards the target and another scattered by the target) and the fidelity of the phase conjugation scheme. In this presentation we will present the results of the thorough analysis of ATIL operation, factors that affect its performance, its focusing efficiency and the comparison of laboratory experimental validation and computer simulation results.
The Born approximation, multiple scattering, and the butterfly algorithm
NASA Astrophysics Data System (ADS)
Martinez, Alejandro F.
Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.
Experimental studies of systematic multiple-energy operation at HIMAC synchrotron
NASA Astrophysics Data System (ADS)
Mizushima, K.; Katagiri, K.; Iwata, Y.; Furukawa, T.; Fujimoto, T.; Sato, S.; Hara, Y.; Shirai, T.; Noda, K.
2014-07-01
Multiple-energy synchrotron operation providing carbon-ion beams with various energies has been used for scanned particle therapy at NIRS. An energy range from 430 to 56 MeV/u and about 200 steps within this range are required to vary the Bragg peak position for effective treatment. The treatment also demands the slow extraction of beam with highly reliable properties, such as spill, position and size, for all energies. We propose an approach to generating multiple-energy operation meeting these requirements within a short time. In this approach, the device settings at most energy steps are determined without manual adjustments by using systematic parameter tuning depending on the beam energy. Experimental verification was carried out at the HIMAC synchrotron, and its results proved that this approach can greatly reduce the adjustment period.
NASA Astrophysics Data System (ADS)
Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.
2018-01-01
The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.