Science.gov

Sample records for beam sputtered neutrals

  1. Fabrication of OSOS cells by neutral ion beam sputtering. [Oxide Semiconductor On Silicon solar cells

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, J. R.

    1976-01-01

    Oxide semiconductor on silicon (OSOS) solar cells have been fabricated from various indium tin oxide (In2O3)x(SnO2)1-x compositions sputtered onto p-type single crystal silicon substrates with a neutralized argon ion beam. High temperature processing or annealing was not required. The highest efficiency was achieved with x = 0.91 and was 12 percent. The cells are environmentally rugged, chemically stable, and show promise for still higher efficiencies. Moreover, the ion beam sputtering fabrication technique is amenable to low cost, continuous processing.

  2. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  3. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  4. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  5. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  6. Anion formation in sputter ion sources by neutral resonant ionization.

    PubMed

    Vogel, J S

    2016-02-01

    Focused Cs(+) beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm(2) C(-) current density compared to the 20 μA/mm(2) from a 1 mm recess. PMID:26931912

  7. Anion formation in sputter ion sources by neutral resonant ionization

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.

    2016-02-01

    Focused Cs+ beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm2 C- current density compared to the 20 μA/mm2 from a 1 mm recess.

  8. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  9. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  10. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  11. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  12. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957 hr test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especially at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  13. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957-hour test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especialy at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  14. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  15. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  16. NEUTRAL-BEAM INJECTION

    SciTech Connect

    Kunkel, W.B.

    1980-06-01

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in

  17. Photodetachment process for beam neutralization

    DOEpatents

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  18. Photodetachment process for beam neutralization

    DOEpatents

    Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.

  19. Sputtering-erosion estimates for NBETF beam dumps

    SciTech Connect

    Wekhof, A.; Berkner, K.H.

    1981-10-01

    To stop multi-second high-energy hydrogen or deuterium beams in neutral injection systems, thin-skin actively cooled dumps made of Cu, Mo, or W are contemplated. For the Neutral Beam Engineering Test Facility (NBETF), the design goal for the life of the beam dumps is 25,000 thirty-second pulses, with a fluence of 10/sup 23/ deuterons/cm/sup 2/. From a review of the literature on sputtering and blistering, we estimate that an erosion allowance of 0.13 cm for Cu, 0.02 cm for Mo, and 0.004 cm for W has to be incorporated in the beam-dump design.

  20. Ion-beam sputtering increases solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, R. R.

    1977-01-01

    Ion-beam sputtering, fabrication of oxide-semiconductor-on-silicon (OSOS) solar cells, results in cells of 12% efficiency. Ion-beam sputtering technique is compatible with low-cost continuous fabrication and requires no high-temperature processing.

  1. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  2. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  3. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  4. Self-neutralized ion beam

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Spaedtke, P.; Yu, K. M.; Brown, I. G.

    2011-10-15

    A vacuum arc ion source provides high current beams of metal ions that have been used both for accelerator injection and for ion implantation, and in both of these applications the degree of space charge neutralization of the beam is important. In accelerator injection application, the beam from the ion source may be accelerated further (post-acceleration), redirected by a bending magnet(s), or focused with magnetic or electrostatic lenses, and knowledge of the beam space charge is needed for optimal design of the optical elements. In ion implantation application, any build-up of positive charge in the insulating targets must be compensated by a simultaneous flux of cold electrons so as to provide overall charge neutrality of the target. We show that in line-of-sight ion implantation using a vacuum arc ion source, the high current ion beam carries along its own background sea of cold electrons, and this copious source of electrons provides a ''self-neutralizing'' feature to the beam. Here we describe experiments carried out in order to demonstrate this effect, and we provide an analysis showing that the beam is space-charge-neutralized to a very high degree.

  5. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  6. PDX neutral beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stuart, L.D.; Von Halle, A.; Williams, M.D.

    1982-04-01

    Reionization losses for 1.5 MW H /sup 0/ and 2 MW D /sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, phototransistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304 SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  7. ATF neutral beam injection system

    SciTech Connect

    Menon, M.M.; Morris, R.N.; Edmonds, P.H.

    1985-01-01

    The Advanced Toroidal Facility is a stellarator torsatron being built at Oak Ridge National Laboratory to investigate improved plasma confinement schemes. Plasmas heating will be carried out predominantly by means of neutral beam injection. This paper describes the basic parameters of the injection system. Numerical calculations were done to optimize the aiming of the injectors. The results of these calculations and their implications on the neutral power to the machine are elaborated. The effects of improving the beam optics and altering the focal length on the power transmitted to the plasma are discussed.

  8. Advanced neutral-beam technology

    SciTech Connect

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described.

  9. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  10. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  11. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  12. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  13. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  14. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  15. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  16. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  17. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  18. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  19. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    SciTech Connect

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-10-15

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  20. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  1. Neutral Beams from Blazar Jets

    NASA Astrophysics Data System (ADS)

    Atoyan, Armen M.; Dermer, Charles D.

    2003-03-01

    We treat the production of neutrons, photons, and neutrinos through photomeson interactions of relativistic protons with ambient photons in the compact inner jets of blazars. Internal synchrotron and external isotropic radiation due to scattered optical/UV accretion-disk radiation are considered as target photon fields. Protons are assumed to be accelerated to a maximum energy limited by the size scale and magnetic field of the jet, and by competing energy losses. We characterize the conditions when the photomeson interactions of ultrarelativistic protons become effective, and show that the presence of the external radiation field makes possible strong energy losses for protons with energies Ep>~1015 eV. Without this component, effective energy losses of protons begin at Ep>~1018 eV, and would rapidly disappear with expansion of the blob. We develop a model describing the production and escape of neutrons from a comoving spherical blob, which continue to interact with the ambient external radiation field on the parsec-scale broad-line region (BLR). Neutrons may carry ~10% of the overall energy of the accelerated protons with Ep>~1015 eV outside the BLR. Ultra-high-energy gamma rays produced by photomeson interaction of neutrons outside the blob can also escape the BLR. The escaping neutrons, gamma rays, and neutrinos form a collimated neutral beam with a characteristic opening angle θ~1/Γ, where Γ is the bulk Lorentz factor of the inner jet. Energy and momentum is deposited in the extended jet from the decay of neutrons at distances ld(En)~(En/1017eV) kpc, and through pair-production attenuation of gamma rays with energies Eγ>~1015 eV which propagate to ~10-100 kpc distances. In this scenario, neutral beams of ultra-high-energy gamma rays and neutrons can be the reason for straight extended jets, such as in Pictor A. Fluxes of neutrinos detectable with kilometer-scale neutrino telescopes are predicted from flat-spectrum radio quasars such as 3C 279.

  2. Neutral particle beams for space defense

    NASA Astrophysics Data System (ADS)

    Botwin, Robert; Favale, Anthony

    Neutral particle beam (NPB) weapons direct highly focused high energy streams of electrically neutral atomic particles traveling at nearly the speed of light, escaping deflection from the earth's magnetic field and acting on the subatomic structure of a target, destroying it from within. The beam's brief contact with a reentry vehicle produces a nuclear reaction in the latter that yields particle emissions; by detecting and identifying those particles, it becomes possible to effectively distinguish warheads from decoys. Attention is given to the NPB program roles to be played by the Beam Experiment Aboard Rocket and Neutral Particle Beam Integrated Space Experiment projects.

  3. Neutral Beam Ion Confinement in NSTX

    SciTech Connect

    D.S. Darrow; E.D. Fredrickson; S.M. Kaye; S.S. Medley; and A.L. Roquemore

    2001-07-24

    Neutral-beam (NB) heating in the National Spherical Torus Experiment (NSTX) began in September 2000 using up to 5 MW of 80 keV deuterium (D) beams. An initial assessment of beam ion confinement has been made using neutron detectors, a neutral particle analyzer (NPA), and a Faraday cup beam ion loss probe. Preliminary neutron results indicate that confinement may be roughly classical in quiescent discharges, but the probe measurements do not match a classical loss model. MHD activity, especially reconnection events (REs) causes substantial disturbance of the beam ion population.

  4. New applications of ORNL neutral beam injectors

    SciTech Connect

    Tsai, C. C.; Peng, Yueng Kay Martin

    1998-01-01

    The injection of energetic hydrogen and deuterium atoms has been used to heat plasmas in various fusion experimental devices including tokamaks, mirrors, and stellarators. The neutral beam injection is a proven plasma heating technique for increasing plasma densities, temperatures, and pressures. For this fusion endeavor, scientists at Oak Ridge National Laboratory (ORNL) have developed multimegawatt neutral beam injectors. Various ORNL injectors have been used for studying properties of beam-heated plasmas in Oak Ridge Tokamak (ORMAK), Impurity Study Experiment-B (ISX-B), Advanced Toroidal Facility (ATF), Princeton Large Torus (PLT), and Princeton Divertor Experiment (PDX) in the United States and in Small Tight Aspect Ratio Tokamak (START) in the United Kingdom. By using a 30-cm and 100-A ion source, each ORNL neutral beam injector is capable of injecting >1.5 MW of hydrogen atoms at 50-keV for a pulse length up to 0.5 s. For increasing plasma densities and raising plasma temperatures in START, one such injector was installed and commissioned during 1995. The initial goal was to provide an injected neutral beam power of more than 0.5 MW at a beam energy of 40 keV for 20 ms. Addition of a getter pump has allowed the beam power to be raised to 1 MW at 33 keV. Recent experiments have demonstrated that neutral beam heating can play a big role in raising plasma pressures to a record volume-average beta value over 30%. ORNL neutral beam injectors have been approved for plasma heating experiments on both the TJ-II stellarator at CIEMAT, Spain, and the Mega-Amp Spherical Tokamak (MAST) at Culham Science Centre (Culham). Two proven ORNL NE injectors are being installed at the TJ-II facility. Additional ORNL beam equipment is being used to implement two 5-s NE injectors at the MAST facility. In this paper, we report and discuss the progress and plans for these neutral beam activities.

  5. Neutral-beam-injection systems for reactors

    SciTech Connect

    Pyle, R.V.

    1983-06-01

    Increasing effort is being put into engineering designs of reactors and reactor-like magnetic confinement experiments. A central question concerns the methods of heating, fueling, and maintaining the plasmas, functions that primarily are now performed by neutral beams. Planning in the USA does not include the use of neutral beams on tokamaks in the 1990's and beyond. Tandem mirrors, however, will use energetic beams (sloshing ion beams) in the end plugs to produce electrostatic potentials that will confine plasma ions. These systems will be based on the production, acceleration, transport, and neutralization of negative hydrogen-ion (D/sup -/), multiampere beams with energies of 200-to 500-keV. In addition, lower-energy D and T beams may be used. These systems must operate steady state, with high reliability, and be compatible with radiation from a D-T burning plasma.

  6. Neutral-particle-beam production and injection

    SciTech Connect

    Post, D.; Pyle, R.

    1982-07-01

    This paper is divided into two sections: the first is a discussion of the interactions of neutral beams with confined plasmas, the second is concerned with the production and diagnosis of the neutral beams. In general we are dealing with atoms, molecules, and ions of the isotopes of hydrogen, but some heavier elements (for example, oxygen) will be mentioned. The emphasis will be on single-particle collisions; selected atomic processes on surfaces will be included.

  7. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  8. Focusing and neutralization of intense beams

    SciTech Connect

    Yu, Simon S.; Anders, Andre; Bieniosek, F.M.; Eylon, Shmuel; Henestroza, Enrique; Roy, Prabir; Shuman, Derek; Waldron, William; Sharp, William; Rose, Dave; Welch, Dale; Efthimion, Philip; Gilson, Eric

    2003-05-01

    In heavy ion inertial confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. Effective plasma neutralization of intense ion beams through the target chamber is essential for the viability of an economically competitive heavy ion fusion power plant. The physics of neutralized drift has been studied extensively with PIC simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Heavy Ion Fusion Virtual National Laboratory has completed the construction and has begun experimentation with the NTX (Neutralized Transport Experiment) as shown in Figure 1. The experiment consists of 3 phases, each with physics issues of its own. Phase 1 is designed to generate a very high brightness potassium beam with variable perveance, using a beam aperturing technique. Phase 2 consists of magnetic transport through four pulsed quadrupoles. Here, beam tuning as well as the effects of phase space dilution through higher order nonlinear fields must be understood. In Phase 3, a converging ion beam at the exit of the magnetic section is transported through a drift section with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we present first results from all 3 phases of the experiment.

  9. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  10. Diagnostics for neutral-beam-heated tokamaks

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Diagnostic techniques for neutral-beam-heated tokamak plasmas fall into three categories: (1) magnetic diagnostics for measurements of gross stored energy, (2) profile diagnostics for measurements of stored thermal and beam energy, impurity content and plasma rotation, and (3) fast time resolution diagnostics to study MHD fluctuations and micro-turbulence.

  11. Neutralized transport of high intensity beams

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W.; Efthimion, P.; Gilson, E.; Welch, D.; Rose, D.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented.

  12. Results on intense beam focusing and neutralization from the neutralized beam experiment

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Sharp, W.M.

    2003-10-31

    We have demonstrated experimental techniques to provide active neutralization for space-charge dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. We present measurements of current transmission, beam spot size as a function of axial position, beam energy and plasma source conditions. Detailed comparisons with theory are also presented.

  13. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  14. The control of powerful neutral beams

    SciTech Connect

    Theil, E.; Jacobson, V.

    1986-05-02

    While significant progress has been made in the development of neutral beams for the heating and sustaining of plasmas in large fusion experiments, the control of such devices has largely been a matter of hardware interlocks and operator experience. The need for computer-assisted control becomes more evident, however, with the initiation of multi-beamline experiments. This paper describes a software system that incorporates simple mathematical models coupled to Kalman filters for control of the high power (6 to 8 MW) beams currently under development at Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility. Among the principal features of the system are: reduction of a large number of operator variables to just a few (usually one or two); the ability to describe most of the major neutral beams in use and under development; a foundation resting on statistical data analysis and control system principles rather than rules-of-thumb.

  15. Neutral particle beam sensing and steering

    DOEpatents

    Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  16. Neutralizer options for high energy H/sup -/ beams

    SciTech Connect

    Fink, J.H.

    1986-10-01

    A neutralizer converts a negative ion beam into a neutral beam, but it also increases the beamline cost, weight and size while reducing its output power, efficiency and possibly the reliability of the entire system. In addition it scatters the newly formed neutrals, altering the beam current density distribution, causing the beam divergence to get larger and the brightness to go down. In the following, the role of neutralizers for hydrogen ion beams is reviewed, and the problems encountered over a range of beam energies are discussed. Consideration is given to enhancing the goals of the neutral beam application, be they the highest neutral fraction, optimum overall efficiency or maximum beam brightness, etc.

  17. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    SciTech Connect

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  18. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Pace, D C

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  19. PDX neutral-beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H/sup 0/ and 2 MW D/sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  20. Ion beam sputter target and method of manufacture

    DOEpatents

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  1. TPX Neutral Beam Injection System design

    SciTech Connect

    von Halle, A.; Bowen, O.N.; Edwards, J.W.

    1993-11-01

    The existing Tokamak Fusion Test Reactor Neutral Beam system is proposed to be modified for long pulse operation on the Tokamak Physics Experiment (TPX). Day one of TPX will call for one TFTR beamline modified for 1000 second pulse lengths oriented co-directional to the plasma current. The system design will be capable of accommodating an additional co-directional and a single counter directional beamline. For the TPX conceptual design, every attempt was made to use existing Neutral Beam hardware, plant facilities, auxiliary systems, service infrastructure, and control systems. This paper describes the moderate modifications required to the power systems, the ion sources, and the beam impinged surfaces of the ion dumps, the calorimeters, the various beam scrapers, and the neutralizers. Also described are the minimal modifications required to the vacuum, cryogenic, and gas systems and the major modification of replacing the beamline-torus duct in its entirety. Operational considerations for Neutral Beam subsystems over 1000 second pulse lengths will be explored including proposed operating scenarios for full steady state operation.

  2. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  3. A Neutral Beam Injector Upgrade for NSTX

    SciTech Connect

    T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

    2002-01-18

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

  4. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  5. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  6. The Neutralization of Ion-Rocket Beams

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R.

    1961-01-01

    The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.

  7. Power threshold for neutral beam current drive

    SciTech Connect

    Politzer, P.A. ); Porter, G.D. )

    1989-10-02

    For fully noninductive current drive in tokamaks using neutral beams, there is a power and density threshold condition, setting a minimum value for P{sup 3/2}/n{sup 2}. If this condition is not met, stationary state cannot occur, and a tokamak discharge will collapse. This is a consequence of the coupling between current and electron temperature, or between current drive efficiency and energy confinement time. 4 figs.

  8. Neutral beam source commercialization study. Final report

    SciTech Connect

    King, H.J.

    1980-06-01

    The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device.

  9. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  10. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  11. Pattern evolution during ion beam sputtering; reductionistic view

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Kim, J.-S.

    2016-09-01

    The development of the ripple pattern during the ion beam sputtering (IBS) is expounded via the evolution of its constituent ripples. For that purpose, we perform numerical simulation of the ripple evolution that is based on Bradley-Harper model and its non-linear extension. The ripples are found to evolve via various well-defined processes such as ripening, averaging, bifurcation and their combinations, depending on their neighboring ripples. Those information on the growth kinetics of each ripple allow the detailed description of the pattern development in real space that the instability argument and the diffraction study both made in k-space cannot provide.

  12. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  13. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  14. TFTR neutral-beam power system

    SciTech Connect

    Winje, R.A.

    1982-10-01

    The TFTR Neutral Beam Power System (NBPS) consists of the accelerator grid power supply and the auxiliary power supplies required to operate the TFTR 120-keV ion sources. The current configuration of the NBPS including the 11-MVA accelerator grid power supply and the Arc and Filament power supplies isolated for operation at accelerator grid voltages up to 120 kV, is described. The prototype NBPS has been assembled at the Princeton Plasma Physics Laboratory and has been operated. The results of the initial operation and the description and resolution of some of the technical problems encountered during the commissioning tests are presented.

  15. Neutral Beam Power System for TPX

    SciTech Connect

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  16. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  17. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    SciTech Connect

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  18. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  19. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  20. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  1. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  2. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  3. TFTR neutral beam calorimeter fabrication and instrumentation

    SciTech Connect

    Perry, E.D.; Brown, G.M.; Dudek, L.E.

    1981-01-01

    The TFTR Neutral Beam Calorimeter were designed by Lawrence Livemore Laboratory and Lawrence Berkeley Laboratory, but while the production units were being fabricated by the Plasma Physics Laboratory, several design changes were made. The major alterations included a detailed examination of the braze joints and cooling tubes along with techniques for inspecting the joints, and changing the temperature measurement instrumentation from thermistors to thermocouples. In addition, the water pipes were changed from custom bent pieces to assemblies of off the shelf street elbows and metal bellows, the motor control wiring was reworked to interface with the various TFTR control systems, and a second set of guide rollers was added to the retraction mechanism in order to provide smoother operation. Also, separate blow-out lines for each vee were added in order to increase the reliability of sufficiently purging the cooling systems and provide the capability of draining a single vee should it develop a leak.

  4. TFTR neutral-beam test facility

    SciTech Connect

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date.

  5. The influence of stray magnetic fields on ion beam neutralization

    NASA Technical Reports Server (NTRS)

    Feng, Y.-C.; Wilbur, P. J.

    1982-01-01

    An experimental investigation is described of a comparison between the ion beam neutralization characteristics of a local neutralizer (within approximately 5 cm of the beam edge) and those associated with a distant one (approximately 1 meter away from the thruster). The influence of magnetic fields in the vicinity of the neutralizer cathode orifice which are either parallel or normal to the neutralizer axis is assessed. The plasma property profiles which reflect the influence of the magnetic fields are measured. The results suggest that magnetic fields at the region of a neutralizer cathode orifice influence its ability to couple to the ion beam. They reveal that there is a potential jump from the neutralizer cathode orifice to the plasma which exists close to the orifice. This potential drop is found to increase as the axial component of magnetic flux density increases. A magnetic field perpendicular to the neutralizer axis induces a potential rise a few centimeters downstream from the neutralizer cathode.

  6. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  7. A tutorial on neutral beam injection into tokamaks

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.

    2014-10-01

    Neutral beam injection heats most magnetic fusion experiments. A typical source injects 2 MW of 80 keV deuterons. Deposition is governed by electron impact ionization and charge exchange with thermal ions. A ``halo'' cloud of thermal neutrals surrounds the ``footprint'' of injected neutrals. After ionizing, the energetic ions are confined by the magnetic field, eventually forming an axisymmetric fast-ion population. Fast ions that orbit through the beam footprint sometimes reneutralize. Escaping neutrals and light emitted by reneutralized fast ions is used to diagnose the fast-ion population. The initial beam deposition and halo cloud are also measured optically. Work supported by the US Department of Energy.

  8. Recent DIII-D neutral beam calibration results

    SciTech Connect

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs.

  9. Development and operation of PDX neutral beam computer system

    SciTech Connect

    Kozub, T.; Rossmassler, J.E.; Eubank, H.P.; Kugel, H.W.; Schilling, G.; von Halle, A.; Williams, M.D.

    1981-01-01

    The Poloidal Divertor Experiment (PDX) is a tokamak experiment designed to study impurity control through the use of magnetic divertors utilizing four neutral beams for heating. Each beamline is equipped with a 30 cm diameter ORNL source providing either 1.5 MW H/degree/or 2.0 MW D/degree/. The four neutral beam injectors have succeeded in reliably delivering 7 mega-watts of neutral beam power into PDX. The PDX neutral beam computer system supports the operation of the beamlines including ion sources and related diagnostics. A dedicated DEC PDP 11/34 computer is interfaced to the neutral beam components through a five crate CAMAC parallel/serial highway system.

  10. Neutral-beam injectors for 1990 and 2005

    SciTech Connect

    Fink, J.H.

    1981-04-01

    Anticipated developments in neutral-beam technology are described. Particular attention is given to gas efficiency, power efficiency, beam optics, and injector size. It is concluded that negative-ion sources can be made to operate with gas efficiencies in excess of 10%, while negative-ion neutral-beam injectors, using D/sub 2/ gas stripping cells, will operate at power efficiencies of roughly 50% in ten years. Twenty-five years from now, negative-ion neutral-beam injectors, using photodetachment, will operate at efficiencies approaching 70%.

  11. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  12. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  13. Neutral beam processing of semiconductor materials

    SciTech Connect

    Cross, J.; Hoffbauer, M.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The most important challenge facing the US and global microelectronics industry is to identify and develop the next generation of processing technology to produce device structures with dimensions substantially less than 0.25 microns. This project sought to develop controlled, contamination-free etching techniques that are more selective and less damaging than current methods, which are based on inducing surface chemical reactions by rather crude ion-damage mechanisms. The use of non-charged particle etching and cleaning processes in the production of memory and microprocessor chips has been identified by The National Technology Roadmap for Semiconductors as a new manufacturing technique that may aid in the quest for feature sizes of 0.1 micron and lower. The Hyperthermal Neutral Beam Facility at Los Alamos has demonstrated significant improvement over ion-assisted etching in experiments using energetic oxygen and chlorine atoms.

  14. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    NASA Technical Reports Server (NTRS)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  15. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  16. Using neutral beams as a light ion beam probe (invited).

    PubMed

    Chen, Xi; Heidbrink, W W; Van Zeeland, M A; Kramer, G J; Pace, D C; Petty, C C; Austin, M E; Fisher, R K; Hanson, J M; Nazikian, R; Zeng, L

    2014-11-01

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  17. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Kramer, G. J.; Nazikian, R.; Austin, M. E.; Hanson, J. M.; Zeng, L.

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  18. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  19. Diagnostics for hot plasmas using hydrogen neutral beams

    SciTech Connect

    Goldston, R.J.

    1982-12-01

    Beams of neutral hydrogen atoms have found a number of uses in the diagnosis of hot plasmas. In the most straightforward application, neutral beams have been used to determine plasma line density, based on simple attenuation measurements. This technique has been applied most intensively recently to the study of beam-injected mirror plasmas. Neutral beams have also now been used in a number of tokamaks to supply a local increase of the neutral atom target density for charge exchange. By directing a time-modulated neutral beam across the sight-line of a charge-exchange analyzer, and measuring the modulated neutral particle efflux from the plasma, local measurements of the ion energy distribution function can be made. If a modulated diagnostic neutral beam is directed across the sight-line of an ultra-violet spectrometer, one can also make measurements of the local densities and possibly velocity distributions of fully stripped impurities. The fast hydrogen neutrals charge exchange with fully stripped impurities in the plasma, leaving the impurities in excited hydrogen-like states. In their prompt radiative decay the impurity ions emit characteristic uv lines, which can be detected easily.

  20. Symmetric neutralized ion beams: Production, acceleration, propagation, and applications

    NASA Astrophysics Data System (ADS)

    Hicks, Nathaniel Kenneth

    This dissertation presents the first integrated experimental, computational, and theoretical research program on symmetric neutralized ion beams. A beam of this type is composed of positive and negative ions having equal charge-to-mass ratios, such that the beam has overall charge neutrality and its constituent ions respond symmetrically to electromagnetic forces. Under the right conditions, these beams may propagate undeflected across transverse magnetic fields due to beam polarization. Such propagation is studied here computationally, using a three-dimensional particle-in-cell code. Also, key theoretical differences between the propagation ability of these beams and that of beams consisting of positive ions and electrons are elucidated. An experimental method of producing a symmetric neutralized ion beam by merging together separate beams of positive and negative ions is demonstrated, and prototype collector hardware to diagnose the composition and energy distribution of the beam is developed. The ability of radio frequency quadrupole accelerators to simultaneously confine and accelerate the positive and negative ions of such a beam is demonstrated computationally and is confirmed experimentally, and a method to reestablish local charge neutrality in the beam after acceleration is conceived and simulated. The favorable scaling of such accelerators to small size and high frequency is illustrated. Finally, applications of the research to magnetic confinement fusion and topics for future study are presented.

  1. Drift compression of an intense neutralized ion beam.

    PubMed

    Roy, P K; Yu, S S; Henestroza, E; Anders, A; Bieniosek, F M; Coleman, J; Eylon, S; Greenway, W G; Leitner, M; Logan, B G; Waldron, W L; Welch, D R; Thoma, C; Sefkow, A B; Gilson, E P; Efthimion, P C; Davidson, R C

    2005-12-01

    Longitudinal compression of a velocity-tailored, intense neutralized beam at 300 keV, 25 mA has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. This measurement has been confirmed independently with two different diagnostic systems.

  2. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W. G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2005-09-08

    Longitudinal compression of a velocity-tailored, intense neutralized K{sup +} beam at 300 keV, 25 mA has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. This measurement has been confirmed independently with two different diagnostic systems.

  3. Neoclassical electron transport in tokamaks with neutral-beam injection

    SciTech Connect

    Helander, P.; Akers, R.J.

    2005-04-15

    The collisional interaction between neutral-beam ions and bulk plasma electrons leads to convective transport of particles and energy similar to the well-known Ware pinch. These transport fluxes are calculated, and it is found that the particle flux is outward when the neutral beams are in the same direction as the plasma current and inward otherwise, while the opposite holds for the electron heat transport. This effectively shifts the neutral-beam fueling profile approximately one fast-ion banana width outward during coinjection and inward during counterinjection, and could help to explain why very different plasma behavior is sometimes observed when the direction of the plasma current is reversed.

  4. Automation of neutral beam source conditioning with artificial intelligence techniques

    SciTech Connect

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance.

  5. Surface Properties of SiC Layer Grown by Molecular Beam Epitaxy (MBE) with Helicon Sputtering Molecular Beam Source

    NASA Astrophysics Data System (ADS)

    Kakuta, Akira; Moronuki, Nobuyuki; Furukawa, Yuji

    Although there have been some attempts to produce a monocrystalline silicon carbide (SiC) flat surface, the surface properties, such as surface roughness, have not satisfied the required specifications. In this study, we apply a helicon sputtering device to molecular beam epitaxy (MBE) to improve those properties. The helicon sputtering device was used as a molecular beam source for generating a Si molecular beam, where the electric field caused by the helicon coil supplied energy to the sputtered Si molecules. The amount of energy was controlled by the electric power applied to the coil. High-purity acetylene gas was used as the carbon (C) molecular beam source. The substrate was a monocrystalline (111) Si wafer. With the increase of the electric power, that is, the supply of high energy to molecules, the roughness of the surface was improved. A uniform mirror surface of monocrystalline SiC was produced over the entire substrate with a roughness of 1nm (Ra) order.

  6. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1984-12-01

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3)=53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D/sub 1//sup +/(E):D/sub 2//sup +/(E):D/sub 3//sup +/(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed.

  7. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1985-05-01

    This work describes a new in situ method for measuring the neutral particle fractions in high-power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 ms, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from the TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with a microchannel plate. Complete energy scans were made every 20 ms and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3) = 53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3) = 72:21:7, and the associated ionic fractions at the output of the ion source were D/sup +//sub 1/ (E):D/sup +//sub 2/ (E):D/sup +//sub 3/ (E) = 74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full-energy component in the outer regions of the beam was observed.

  8. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Kaita, R.; Gammel, G.; Williams, M. D.

    1985-05-01

    This work describes a new in situ method for measuring the neutral particle fractions in high-power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 ms, 1.6 MW, were Rutherford backscattered at 135° from the TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with a microchannel plate. Complete energy scans were made every 20 ms and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D+1 (E):D+2 (E):D+3 (E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full-energy component in the outer regions of the beam was observed.

  9. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    SciTech Connect

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  10. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  11. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  12. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGES

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  13. Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prater, W. L.; Allen, E. L.; Lee, W.-Y.; Toney, M. F.; Kellock, A.; Daniels, J. S.; Hedstrom, J. A.; Harrell, T.

    2005-05-01

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen-containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses of 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6%-10% for ion-beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron-deposited films are smoother. The dc-magnetron-produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films.

  14. Fault detection and protection system for neutral beam generators on the Neutral Beam Engineering Test Facility (NBETF)

    SciTech Connect

    deVries, G.J.; Chesley, K.L.; Owren, H.M.

    1983-12-01

    Neutral beam sources, their power supplies and instrumentation can be damaged from high voltage sparkdown or from overheating due to excessive currents. The Neutral Beam Engineering Test Facility (NBETF) in Berkeley has protective electronic hardware that senses a condition outside a safe operating range and generates a response to terminate such a fault condition. A description of this system is presented in this paper. 8 references, 2 figures, 2 tables.

  15. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  16. Nonlinear transient neutralization theory of ion beams with dissipation

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    An analytical theory of nonlinear neutralization waves generated by injection of electrons from a grid in the direction of a homogeneous ion beam of uniform velocity and infinite extension is presented. The electrons are assumed to interact with the ions through the self-consistent space charge field and by strong collective interactions. The associated nonlinear boundary-value problem is solved in closed form by means of a von Mises transformation. It is shown that the electron gas moves into the ion space in the form of a discontinuous neutralization wave. This periodic wave structure is damped out by intercomponent momentum transfer, i.e., after a few relaxation lengths a quasi-neutral beam results. The relaxation scale in space agrees with neutralization experiments of rarefied ion beams, if the collective momentum transfer between the electron and ion streams is assumed to be of the Buneman type.

  17. Very-high-level neutral-beam control system

    SciTech Connect

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning.

  18. Studies on Neutral Beam Injection into the SSPX Spheromak Plasma

    SciTech Connect

    Jayakumar, R; Pearlstein, L D; Casper, T A; Fowler, T K; Hill, D N; Hudson, B; McLean, H; Moller, J

    2007-10-19

    In the Sustained Spheromak Physics Experiment, (SSPX) ['Improved operation of the SSPX spheromak', R.D. Wood, D.N. Hill, E.B. Hooper, S. Woodruff1, H.S. McLean and B.W. Stallard, Nucl. Fusion 45 1582-1588 (2005)], plasmas with core electron temperatures reaching up to 500 eV at densities of 10{sup 20}/m{sup 3} have been sustained for several milliseconds, making them suitable as targets for neutral beam injection. High performance and further progress in understanding Spheromak plasma physics are expected if neutral beams are injected into the plasma. This paper presents the results of numerical 1.5 D modeling of the plasma to calculate neutral beam current drive and ion and electron heating. The results are presented for varying initial conditions of density, temperatures and profiles and beam energy, injection angle and power. Current drive efficiency (Ampere/Watt of absorbed power) of up to 0.08 can be achieved with best performance SSPX shots as target. Analyses of neutral beam heating indicate that ion temperatures of up to 1.5 keV and electron temperatures of up to 750 eV can be obtained with injection of about 1 MW of neutral beam for 5-10 ms and with diffusivities typically observed in SSPX. Injection targeting near the magnetic axis appears to be the best for heating and current drive. Effect of the current drive and evolution of SSPX equilibrium are discussed.

  19. Rocket-borne positive and neutral beam experimental plan

    NASA Astrophysics Data System (ADS)

    Carpenter, J. W.; Humphrey, C. H.

    1983-01-01

    In this report the design of a rocket-borne charge ejection payload consisting of proton and neutral hydrogen beams is presented. The experimental plan calls for beams to be emitted up, down, and perpendicular to the geomagnetic field to be intercepted by throw-away detectors (TADS). This experimental plan is designed to be very cost effective, while extending the present upper limit of heavy charged beams to higher levels and revealing significant scientific information.

  20. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  1. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  2. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  3. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  4. Intense proton beam source for ITER neutral-beam spectroscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Bartsch, R. R.; Davis, H. A.; Henins, I.; Greenly, J. B.

    An intense proton beam has been developed to evaluate a gas-cell neutralizer for use in an intense-neutral beam source for Tokomak Spectroscopy diagnostics. The allowed energy range of the proton stream is determined to be 50 to 70 keV from neutralization and reionization cross-sections and from the alpha particle charge exchange recombination intensity as a function of energy (baseline diagnostic). The neutralization evaluation source uses a flashover anode, magnetized, ion-diode. Neutral probes sensitive to energetic atomic and molecular hydrogen, developed to evaluate neutralizer performance, show neutral fluence from the ion-diode during the beam pulse. An array of Rogowski current probes, used to study the evolution of the current path, suggests that expansion of the anode plasma along the radial insulating magnetic field leads to impedance collapse.

  5. Intense proton beam source for ITER neutral-beam spectroscopy diagnostics

    SciTech Connect

    Bartsch, R.R.; Davis, H.A.; Henins, I.; Greenly, J.B.

    1994-09-01

    An intense proton beam has been developed to evaluate a gas-cell neutralizer for use in an intense-neutral beam source for Tokomak Spectroscopy diagnostics. The allowed energy range of the proton stream is determined to be 50 to 70 keV from neutralization and reionization cross-sections and from the alpha particle charge exchange recombination intensity as a function of energy (baseline diagnostic). The neutralization evaluation source uses a flashover anode, magnetized, ion-diode. Neutral probes sensitive to energetic atomic and molecular hydrogen, developed to evaluate neutralizer performance, show neutral fluence from the ion-diode during the beam pulse. An array of Rogowski current probes, used to study the evolution of the current path, suggests that expansion of the anode plasma along the radial insulating magnetic field leads to impedance collapse.

  6. Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth.

    PubMed

    Langegger, Rupert; Hradil, Klaudia; Steiger-Thirsfeld, Andreas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-08-01

    In this paper, we report on the surface evolution of focused ion beam treated single crystalline Bi(001) with respect to different beam incidence angles and channeling effects. 'Erosive' sputtering appears to be the dominant mechanism at room temperature (RT) and diffusion processes during sputtering seem to play only a minor role for the surface evolution of Bi. The sputtering yield of Bi(001) shows anomalous behavior when increasing the beam incidence angle along particular azimuthal angles of the specimen. The behavior of the sputtering yield could be related to channeling effects and the relevant channeling directions are identified. Dynamic annealing processes during ion irradiation retain the crystalline quality of the Bi specimen allowing ion channeling at RT. Lowering the specimen temperature to T = -188 °C reduces dynamic annealing processes and thereby disables channeling effects. Furthermore unexpected features are observed at normal beam incidence angle. Spike-like features appear during the ion beam induced erosion, whose growth directions are not determined by the ion beam but by the channeling directions of the Bi specimen.

  7. TFTR neutral beam control and monitoring for DT operations

    SciTech Connect

    O`Connor, T.; Kamperschroer, J.; Chu, J.

    1995-12-31

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.

  8. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  9. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  10. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J.

    2006-10-15

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  11. A high energy neutral beam system for reactors

    SciTech Connect

    Anderson, O.A.; Chan, C.F.; Cooper, W.S.; Leung, K.N.; Lietzke, A.F.; Kim, C.H.; Kunkel, W.B.; Kwan, J.W.; Purgalis, P.; Schlachter, A.S.

    1988-09-01

    High energy neutral beams provide a promising method of heating and driving current in steady-state tokamak fusion reactors. As an example, we have made a conceptual design of a neutral beam system for current drive on the International Thermonuclear Experimental Reactor (ITER). The system, based on electrostatic acceleration of D/sup /minus// ions, can deliver up to 100 MW of 1.6 MeV D/sup 0/ neutrals through three ports. Radiation protection is provided by locating sensitive beamline components 35 to 50 m from the reactor. In an application to a 3300 MW power reactor, a system delivering 120 MW of 2-2.4 MeV deuterium beams assisted by 21 MW of lower hybrid wave power drives 25 MA and provides an adequate plasma power gain (Q = 24) for a commercial fusion power plant. 8 refs., 1 fig., 2 tabs.

  12. Performance of the PDX neutral beam wall armor

    SciTech Connect

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Williams, M.D.

    1985-02-01

    The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating experiments. During this period it provided sufficient inner wall protection to permit perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma involving special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.

  13. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  14. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  15. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  16. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak. PMID:22852685

  17. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (˜100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  18. ECR plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.; Grisham, L.; Kolchin, P.; Davidson, E.C.; Yu, S.S.; Logan, B.G.

    2002-05-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures {approx} 10{sup -6} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr. Electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3} have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  19. Personal computer applications in DIII-D neutral beam operation

    SciTech Connect

    Glad, A.S.

    1986-08-01

    An IBM PC AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for on-line shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host minicomputers, support multitasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e., LOTUS 123, PC PLOT, etc.), host communications software (i.e., PCLink, KERMIT, etc.), and applications developed software utilizing f-smcapso-smcapsr-smcapst-smcapsr-smcapsa-smcapsn-smcaps and b-smcapsa-smcapss-smcapsIc-smcaps. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for on-line control and analysis.

  20. Neutral beam heating in stellarators: a numerical approach

    SciTech Connect

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently.

  1. Fast ion profiles during neutral beam and lower hybrid heating

    SciTech Connect

    Heidbrink, W.W.; Strachan, J.D.; Bell, R.E.; Cavallo, A.; Motley, R.; Schilling, G.; Stevens, J.; Wilson, J.R.

    1985-07-01

    Profiles of the d(d,p)t fusion reaction are measured in the PLT tokamak using an array of collimated 3 MeV proton detectors. During deuterium neutral beam injection, the emission profile indicates that the beam deposition is at least as narrow as predicted by a bounce-averaged Fokker-Planck code. The fast ion tail formed by lower hybrid waves (at densities above the critical density for current drive) also peaks strongly near the magnetic axis.

  2. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage

    NASA Astrophysics Data System (ADS)

    Timilsina, R.; Tan, S.; Livengood, R.; Rack, P. D.

    2014-12-01

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies.

  3. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage.

    PubMed

    Timilsina, R; Tan, S; Livengood, R; Rack, P D

    2014-12-01

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies.

  4. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage.

    PubMed

    Timilsina, R; Tan, S; Livengood, R; Rack, P D

    2014-12-01

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies. PMID:25387461

  5. Diagnostics of the ITER neutral beam test facility

    SciTech Connect

    Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B.; Sonato, P.; De Muri, M.; Croci, G.; Gorini, G.

    2012-02-15

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  6. Diagnostics of the ITER neutral beam test facility.

    PubMed

    Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B

    2012-02-01

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  7. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  8. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  9. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  10. Emittance Analysis of the DIII-D Neutral Beam Source

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Crowley, B.

    2014-10-01

    In a high powered neutral beam system ions are extracted from a low temperature plasma, through apertures in the arc chamber, by application of a potential to an external electrode. It has been determined that to increase the beam energy of the DIII-D neutral beam system beyond 95 keV the accelerator must be reconfigured to avoid excessive electrical breakdown in the grid gaps. Deciding exactly what modifications are to be made requires modeling and experimental effort. A basic problem is to find a geometry with which the extracted beam is intense, low divergence, free of aberrations, and does not strike the focusing electrodes. We present the results of modeling proposed reconfigurations to the accelerator geometry and source conditions. The quality of the beam produced from the various accelerator configurations is quantified through metrics such as the beam emittance and the average divergence per beamlet. By comparing the beam quality and power delivered for each proposed reconfiguration an optimal design is selected and recommended. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US DOE under DE-FG02-94ER54235, DE-FC02-04ER54698.

  11. Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Bora, D.; Antoni, V.; Bonicelli, T.; Chakraborty, A.; Cordier, J.-J.; Hemsworth, R.; Inoue, T.; Tanga, A.; Watanabe, K.

    2008-04-01

    To meet the requirements of the four operating and one start-up scenarios foreseen in the International Tokamak Experimental Reactor (ITER) a flexible heating mix will be required, which has to include a reliable contribution from neutral beams. The current baseline of ITER foresees 2 Heating Neutral Beam (HNB) systems based on negative ion technology, each operating at 1 MeV 40 A D- ions, and each capable of delivering up to 16.7 MW of D ° to the ITER plasma. A 3rd HNB injector is foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) injecting 100 keV 60 A of negative hydrogen ions will be available for charge exchange resonant spectroscopy (CXRS). The significant R&D effort necessary to meet the design requirements will be provided in the Neutral Beam Test Facility (NBTF), which is to be constructed in Padua, Italy. This paper gives an overview of the current status of the neutral beam (NB) systems and the chosen configuration. The ongoing integration effort into the ITER plant is highlighted and open interface issues are identified. It is shown how installation and maintenance logistics has influenced the design. ITER operating scenarios are briefly discussed, including start-up and commissioning. For example it is now envisaged to have a low current hydrogen phase of ITER operations, essentially for commissioning of the many auxiliary systems used on ITER. The low current limits the achievable plasma density, and hence the NB energy due to shine through limitations. Therefore a possible reconfiguration of the auxiliary heating systems is now being discussed. Other NB related issues identified by the ongoing design review process are emphasized and possible impact on the implementations of the HNB and DNB systems is indicated.

  12. TFTR (Tokamak Fusion Test Reactor) neutral beam injected power measurement

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Dudek, L.E.; Gammel, G.M.; Johnson, G.A.; Kugel, H.W.; Lagin, L.; O'Connor, T.E.; Shah, P.A.; Sichta, P.

    1989-05-01

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab.

  13. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  14. Neutral Beam Injection in the JET Trace Tritium Experiment

    SciTech Connect

    Surrey, E.; Ciric, D.; Cox, S. J.; Hackett, L.; Homfray, D.; Jenkins, I.; Jones, T.T.C.; Keeling, D.; King, R.; Young, A.; Whitehead, D.

    2005-07-15

    Operation of the JET Neutral Beam Injectors with tritium is described. Supplying the tritium feed via the special electrically grounded gas feed compromised the performance of the up-graded high current triode Positive Ion Neutral Injectors (PINI) due to gas starvation of the source and the methods adopted to ameliorate this effect are described. A total of 362 PINI beam pulses were requested, circulating a total of 4.73g tritium, of which 9.3mg was injected into the torus. Safety considerations required a continuous, cumulative total to be maintained of the mass of tritium adsorbed onto the cryo-pumping panel; a daily limit of 0.5g was adopted for the Trace Tritium Experiment (TTE). A subsequent clean up phase using 115keV deuterium beams completed the isotopic exchange of components in the beamline.

  15. Spheromak Energy Transport Studies via Neutral Beam Injection

    SciTech Connect

    McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

    2008-02-11

    Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

  16. Commissioning of heating neutral beams for COMPASS-D tokamak

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A.

    2012-02-15

    Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.

  17. Effects of polycrystallinity in nano patterning by ion-beam sputtering

    SciTech Connect

    Yoon, Sun Mi; Kim, J.-S.; Yoon, D.; Cheong, H.; Kim, Y.; Lee, H. H.

    2014-07-14

    Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceed by both thermal diffusion and ion-induced processes.

  18. Titan's atmospheric sputtering and neutral torus produced by magnetospheric and pick-up ions

    NASA Astrophysics Data System (ADS)

    Michael, M.; Smith, H. T.; Johnson, R. E.; Shematovich, V.; Leblanc, F.; Ledvina, S.; Luhmann, J. H.

    As Titan does not possess an intrinsic magnetic field, Kronian magnetospheric ions can penetrate Titan's exobase as can locally produced pick-up ions (e.g. Shematovich et al. 2003). This can cause atmospheric loss and heating of the exobase region. Penetration by slowed and deflected magnetospheric ions and by the pick-up ions is described here using a 3-D Monte Carlo model (Michael et al. 2004). The incident ions can lead to the production of fast neutrals that collide with other atmospheric neutrals producing the ejection of both atomic and molecular nitrogen and heating. The recently calculated dissociation cross sections of N2 are used in the present model (Tully and Johnson 2002). The incident flux of slowed magnetospheric N+ ions and pick-up C2H5+ ions is estimated from the work of Brecht et al. (2000). These ions, which have energies less than 1.2 keV, were shown to be more efficient in ejecting material from Titan's atmosphere than the non-deflected co-rotating ions used earlier (Lammer et al. 1993). The loss rates are comparable or larger than those produced by photo-dissociation. Exobse heating rates are given and the loss rates of N and N2 are then used as a source of nitrogen for the Titan neutral torus. If atmospheric sputtering is important this torus will contain both atomic and molecular nitrogen and, therefore, will provide a distributed source of both atomic and molecular nitrogen ions that will be readily detected by Cassini (Smith et al. 2004) Acknowledgment: This work is supported by NASA's Planetary Atmospheres Program and by the CAPS-Cassini Instrument. Brecht, S.H., J.G. Luhmann, and D.J. Larson, J. Geophys. Res., 105, 13119, 2000. Lammer, H., and S.J. Bauer,. Planet. Space Sci., 41, 657, 1993. Shematovich, V.I.,et al, J. Geophys. Res., 108, 5086, 10.1029/2003JE002096, 2003. Michael, M. et al., submitted, Icarus, 2004. Smith, H.T., et al., Titan Aeronomy Workshop, Paris, January 7-9, 2004. Tully, C., R.E. Johnson, J. Chem. Phys. 117, 6556

  19. Measurement of diagnostic neutral beam parameters on J-TEXT

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Cheng, Z. F.; Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  20. Neutral particle beam scoring system proof-of-principle experiment

    SciTech Connect

    Tichenor, D.A.; Pontau, A.E.; Antolak, A.J.

    1986-10-01

    A method of scoring a ground-based neutral particle beam pointing experiment is described. Beam scoring in this context means performing beam direction measurements in the near field (tens of meters) sufficient to determine whether energy would be concentrated on a far-field target as desired in a pointing experiment. The principle of operation is to impress a high-resolution spatial modulation on the beam by inserting an array of shadow wires into the beam upstream of the steering magnet. At the downstream end of the beam line the shadows are detected using one or more scintillation screens and video cameras. Beam direction is determined by measuring the location of the shadows at a known distance downstream of the point of steering. A proof-of-principle experiment demonstrates that: (1) wire shadows can be created in a 50 MeV beam and propagate over the distances required; (2) images of sufficient brightness and resolution can be formed on scintillating screens excited by 50 MeV protons; and (3) CCD array cameras can operate in the radiation environment created near the beam line.

  1. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  2. Negative-ion-based neutral beams for fusion

    SciTech Connect

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.; Jackson, L.T.; Kunkel, W.B.; Kwan, J.W.; Leung, K.N.; Lietzke, A.F.; Purgalis, P.; Soroka, L.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D/sup -/ ions and then removing the electron. Sources are being developed that generate the D/sup -/ ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D/sup -/ beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D/sup -/ beam can be transported through a maze in the neutron shielding. The D/sup -/ ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs.

  3. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  4. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  5. Performance characteristics of a circular multicusp neutral beam source

    NASA Astrophysics Data System (ADS)

    Obiki, T.; Sasaki, A.; Sano, F.; Uo, K.

    1981-10-01

    The performance of the Heliotron-E neutral beam system, composed of intense cylindrical magnetic multipole bucket sources and beam line facilities, has been investigated. The investigation of the influence of the filament shape on the arc discharge stability shows that a wide-hairpin shaped filament results in more stable arc discharge without increasing the arc voltage than does a narrow-hairpin filament. An electrolytic polishing process has been tested for surface treatment of the Molybdenum grid and found to be very effective in reducing the number of conditioning shots. Beam extraction experiments show that a single bucket source can deliver the total beam current of 35 A at the accelerating voltage of 30 kV with the corresponding power transmission efficiency of more than 85% at the focal point of the grid curvature, the minimum beam divergence is less than 1.15° and the proton yield of the source is above 85%. Measurements of the equivalent gas line density in the neutralizer cell suggest the existence of the gas flow process different from a standard vacuum model.

  6. Steady state gas efficiency of ion sources for neutral beams

    SciTech Connect

    Vella, M.C.; Berkner, K.H.; Massoletti, D.J.; Owren, H.M.; Willis, J.E.

    1981-09-01

    Gas present in the acceleration grids of a neutral beam line is one cause of divergent beam power. A measure of this problem is the gas efficiency (nuclear) of the ion source, epsilon/sub g/ = I/sub b//I/sub g/, where I/sub b/ denotes the extracted current of beam nuclei, and I/sub g/ the total current of nuclei to the source as gas. For a short pulse beam, less than or equal to 0.1 sec, gas transients make epsilon/sub g/ difficult to observe. Using the fraction size Berkeley LPA (nominally 120 keV, 10A), the gas efficiency of a positive ion, hydrogen neutral beam has been studied with pulses from 0.5 to 28 sec at 80 keV, 5.7 A, and 0.5 sec at 120 keV, 10A. The observed gas efficiency, 20% to 40%, is shown to agree with a simple steady state model. The model indicates that gas efficiency is determined by the degree of arc ionization.

  7. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    SciTech Connect

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  8. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  9. Nanopatterning of mica surface under low energy ion beam sputtering

    SciTech Connect

    Metya, A.; Ghose, D.; Mollick, S. A.; Majumdar, A.

    2012-04-01

    Irradiation of crystalline muscovite mica samples by 500 eV Ar{sup +} ions at different incident angles can induce significant surface morphological variations. A periodic ripple pattern of nano-dimensions forms in the angle window 47 deg. -70 deg. . On the other hand, tilted conical protrusions develop on the surface at grazing incidence angles around 80 deg. . From the derivative of the topographic images the distribution of the side-facet slopes in the ion incidence plane are measured, which is found to be strongly related to the pattern morphology. Additionally, it has been shown that, for the ripple structures, the base angles can be tuned by changing the ion fluence. An asymmetric sawtooth profile of the ripples obtained at low fluence is transformed to a symmetrical triangular profile at high fluence. As the slopes are found to be small, the pattern formation is not provoked by the gradient-dependent erosion mechanism rather it is the general effect of the curvature-dependent sputtering phenomena.

  10. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Zhou, Lin; Shi, Feng; Wan, Wen; Xie, Xuhui; Sui, Tingting

    2016-08-01

    Surface characteristics have great influence on the optical properties especially the laser radiation resistivity of optics. In this paper, the surface characteristics evolutions of fused silica during ion-beam sputtering and their effects on the laser damage performance were investigated. The results show that roughness change is strongly removal depth dependent and a super-smooth surface (0.25 nm RMS) can be obtained by the ion-induced smoothing effect. The concentration of metal impurities (especially Ce element) in subsurface can be effectively decreased after the removal of polishing re-deposition layer. During ion-beam sputtering process, the plastic scratches can be removed while the brittle cracks can be broadened and passivated without increase in the depth direction. Laser damage threshold of fused silica improved by 36% after ion-beam sputtering treatment. Research results have a guiding significance for ion-beam sputtering process technology of fused silica optics.

  11. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  12. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  13. Neutral beam interlock system on TFTR using infrared pyrometry

    SciTech Connect

    Medley, S.S.; Kugel, H.W.; Kozub, T.A.; Lowrance, J.L.; Mastrocola, V.; Renda, G.; Young, K.M.

    1986-06-01

    Although the region of the TFTR vacuum vessel wall which is susceptible to damage by neutral beam strike is armored with a mosaic of TiC-clad POCO graphite titles, at power deposition levels above 2.5 kW/cm/sup 2/ the armor surface temperature exceeds 1200/sup 0/C within 250 ms and itself becomes susceptible to damage. In order to protect the wall armor, a neutral beam interlock system based on infrared pyrometry measurement of the armor surface temperature was installed on TFTR. For each beamline, a three-fiber-optic telescope views three areas of approx.30 cm diameter centered on the armor hot spots for the three ion sources. Each signal is fiber-optic coupled to a remote 900 nm pyrometer which feeds analog signals to the neutral beam interrupt circuits. The pyrometer interlock system is designed to interrupt each of the twelve ion sources independently within 10 ms of the temperature exceeding a threshold settable in the range of 500 to 2300/sup 0/C. A description of the pyrometer interlock system and its performance will be presented.

  14. Neutral beam interlock system on TFTR using infrared pyrometry

    SciTech Connect

    Medley, S.S.; Kugel, H.W.; Kozub, T.A.; Lowrance, J.L.; Mastrocola, V.; Renda, G.; Young, K.M.

    1986-08-01

    Although the region of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel wall which is susceptible to damage by neutral beam strike is armored with a mosaic of TiC-clad POCO graphite tiles, at power deposition levels above 2.5 kW/cm/sup 2/ the armor surface temperature exceeds 1200 /sup 0/C within 250 ms, and itself becomes susceptible to damage. In order to protect the wall armor, a neutral beam interlock system based on infrared pyrometry measurement of the armor surface temperature was installed on TFTR. For each beamline, a three-fiber-optic telescope views three areas of --30 cm diameter centered on the armor hot spots for the three ion sources. Each signal is fiber-optic coupled to a remote 900-nm pyrometer which feeds analog signals to the neutral beam interrupt circuits. The pyrometer interlock system is designed to interrupt each of the 12 ion sources independently within 10 ms of the temperature exceeding a threshold which can be set in the range of 500--2300 /sup 0/C. A description of the pyrometer interlock system and its performance will be presented.

  15. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  16. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  17. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    SciTech Connect

    Kubota, Tomohiro; Nukaga, Osamu; Ueki, Shinji; Sugiyama, Masakazu; Inamoto, Yoshimasa; Ohtake, Hiroto; Samukawa, Seiji

    2010-09-15

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm{sup 2} in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within {+-}6% within a 100 mm diameter. Silicon etching using a F{sub 2}-based neutral beam was done at an etch rate of about 47 nm/min, while Cl{sub 2}-based neutral beam realized completely no undercut. The uniformity of etch rate was less than {+-}5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  18. Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering

    SciTech Connect

    Abrasonis, G.; Gago, R.; Jimenez, I.; Kreissig, U.; Kolitsch, A.; Moeller, W.

    2005-10-01

    Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas. The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.

  19. First neutral beam injection experiments on KSTAR tokamaka)

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Chang, D. H.; Kim, T. S.; In, S. R.; Lee, K. W.; Jin, J. T.; Chang, D. S.; Oh, B. H.; Bae, Y. S.; Kim, J. S.; Park, H. T.; Watanabe, K.; Inoue, T.; Kashiwagi, M.; Dairaku, M.; Tobari, H.; Hanada, M.

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1/3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D+:D2+:D3+ = 75:20:5 at beam current density of 85 mA/cm2. The arc efficiency is more than 1.0 A/kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the Ti and Te profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  20. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  1. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  2. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  3. Fast ion behavior during neutral beam injection in ATF

    NASA Astrophysics Data System (ADS)

    Wade, M. R.; Thomas, C. E.; Colchin, R. J.; Rome, J. A.; England, A. C.; Fowler, R. H.; Aceto, S. C.

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as well established experimentally with the primary experiments to date focusing on near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator and Heliotron-E. This paper addresses fast-ion confinement properties in a large aspect ratio, moderate shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970's. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energetic ion distributions derived from the fast ion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J(sup *) surfaces, and by Monte Carlo calculations.

  4. Development of neutral beams for fusion plasma heating

    SciTech Connect

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  5. Realization of Critical Distance during the Interplay between Re-deposition and Secondary sputtering from Milling of Angular Side Wall with a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.

    2011-07-01

    In-situ observation of critical distance (CD), a distance where secondary sputtering effects diminish and re-deposition starts to dominate is realized during controlled focused ion beam (FIB) sputtering. The experiments were performed on representative high density Nialloy and lower density porous Ni-YSZ. For the Ni-alloy case, it was observed that linear extrapolation of re-deposited layer width coincides with CD suggesting uniform sputtering and re-deposition effects. Estimation related to percentage of re-deposition from FIB etched layer at an angle of 50 degrees between the lower membrane and FIB etched side wall clearly demonstrated dominant secondary etching, neutralizing sputtering/redeposition and dominant re-deposition regions. Although the angle between FIB etched angular side wall and re-deposited/etched membrane adds some complication, the suggested overall experimental approach would substantially simplify to develop more realistic models than previously considered complex situations dealing with interplay between the re-deposition and secondary etching.

  6. BEAM TRANSPORT AND STORAGE WITH COLD NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Walstrom, Peter L.

    2012-05-15

    A large class of cold neutral atoms and molecules is subject to magnetic field-gradient forces. In the presence of a field, hyperfine atomic states are split into several Zeeman levels. The slopes of these curves vs. field are the effective magnetic moments. By means of optical pumping in a field, Zeeman states of neutral lithium atoms and CaH molecules with effective magnetic moments of nearly {+-} one Bohr magneton can be selected. Particles in Zeeman states for which the energy increases with field are repelled by increasing fields; particles in states for which the energy decreases with field are attracted to increasing fields. For stable magnetic confinement, field-repelled states are required. Neutral-particle velocities in the present study are on the order of tens to hundreds of m/s and the magnetic fields needed for transport and injection are on the order of in the range of 0.01-1T. Many of the general concepts of charged-particle beam transport carry over into neutral particle spin-force optics, but with important differences. In general, the role of bending dipoles in charged particle optics is played by quadrupoles in neutral particle optics; the role of quadrupoles is played by sextupoles. The neutralparticle analog of charge-exchange injection into storage rings is the use of lasers to flip the state of particles from field-seeking to field-repelled. Preliminary tracking results for two neutral atom/molecule storage ring configurations are presented. It was found that orbit instabilities limit the confinment time in a racetrack-shaped ring with discrete magnetic elements with drift spaces between them; stable behavior was observed in a toroidal ring with a continuous sextupole field. An alternative concept using a linear sextupole or octupole channel with solenoids on the ends is presently being considered.

  7. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    NASA Astrophysics Data System (ADS)

    Dremel, M.; Mack, A.; Day, C.; Jensen, H.

    2006-04-01

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system. The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbarṡl/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

  8. On neutral-beam injection counter to the plasma current

    SciTech Connect

    Helander, P.; Akers, R.J.; Eriksson, L.-G.

    2005-11-15

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C. Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.

  9. A global fitting code for multichordal neutral beam spectroscopic data

    SciTech Connect

    Seraydarian, R.P.; Burrell, K.H.; Groebner, R.J.

    1992-05-01

    Knowledge of the heat deposition profile is crucial to all transport analysis of beam heated discharges. The heat deposition profile can be inferred from the fast ion birth profile which, in turn, is directly related to the loss of neutral atoms from the beam. This loss can be measured spectroscopically be the decrease in amplitude of spectral emissions from the beam as it penetrates the plasma. The spectra are complicated by the motional Stark effect which produces a manifold of nine bright peaks for each of the three beam energy components. A code has been written to analyze this kind of data. In the first phase of this work, spectra from tokamak shots are fit with a Stark splitting and Doppler shift model that ties together the geometry of several spatial positions when they are fit simultaneously. In the second phase, a relative position-to-position intensity calibration will be applied to these results to obtain the spectral amplitudes from which beam atom loss can be estimated. This paper reports on the computer code for the first phase. Sample fits to real tokamak spectral data are shown.

  10. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  11. Measured Signatures of Low Energy, Physical Sputtering in the Line Shape of Neutral Carbon Emission

    SciTech Connect

    Brooks, N; Isler, R; Whyte, D; Fenstermacher, M; Groebner, R; Stangeby, P; Heidbrink, W; Jackson, G; Mahdavi, M; West, W

    2004-12-01

    The most important mechanisms for introducing carbon into the DIII-D divertors [Nucl. Fusion 42 (2002) 614] are physical and chemical sputtering. Previous investigations have indicated that operating conditions where one or the other of these is dominant can be distinguished by using CD and C{sub 2} emissions to infer C I influxes from dissociation of hydrocarbons and comparing to measured C I influxes. The present work extends these results through detailed analysis of the C I spectral line shapes. In general, it is found that the profiles are actually asymmetric and have shifted peaks. These features are interpreted as originating from a combination of an anisotropic velocity distribution from physical sputtering (the Thompson model) and an isotropic distribution from molecular dissociation. The present study utilizes pure helium plasmas to benchmark C I spectral profiles arising from physical sputtering alone.

  12. Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.

    1981-01-01

    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.

  13. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Repetto, Diego; Giordano, Maria Caterina; Martella, Christian; Buatier de Mongeot, Francesco

    2015-02-01

    Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  14. Si etching with reactive neutral beams of very low energy

    SciTech Connect

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Iwata, Naotaka; Hara, Tamio

    2014-12-14

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF{sub 4} and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy reactive NB is useful for damage-free high speed Si etching.

  15. Development of rf plasma generators for neutral beams

    SciTech Connect

    Vella, M.C.; Ehlers, K.W.; Kippenhan, D.; Pincosy, P.A.; Pyle, R.V.; DiVergilio, W.F.; Fosnight, V.V.

    1984-10-01

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime.

  16. Development of rf plasma generators for neutral beams

    SciTech Connect

    Vella, M.C.; Ehlers, K.W.; Kippenhan, D.; Pincosy, P.A.; Pyle, R.V.; DiVergilio, W.F.; Fosnight, V.V.

    1985-05-01

    The development of low frequency (1--2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, < or =15% max/min, were obtained in a variety of field-free, magnetic bucket and magnetic filter-bucket sources, with 10 x 10 or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime.

  17. Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.

    1992-03-01

    A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.

  18. Neutral atom beam technique enhances bioactivity of PEEK

    NASA Astrophysics Data System (ADS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-07-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  19. Electrostatic steering and beamlet aiming in large neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Veltri, P.; Cavenago, M.; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2015-04-01

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ˜ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic "steerer" to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  20. Electrostatic steering and beamlet aiming in large neutral beam injectors

    SciTech Connect

    Veltri, P. Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.; Cavenago, M.

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  1. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    NASA Astrophysics Data System (ADS)

    Xu, YongJian; Hu, ChunDong

    2011-12-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  2. Design and test of-80 kV snubber core assemblies for MFTF sustaining-neutral-beam power supplies

    SciTech Connect

    Bishop, S.R.; Mayhall, D.J.; Wilson, J.H.; De Vore, K.R.; Ross, R.I.; Sears, R.G.

    1981-10-09

    Core snubbers, located near the neutral beam source ends of the Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS) source cables, protect the neutral beam source extractor grid wires from overheating and sputtering during internal sparkdowns. The snubbers work by producing an induced counter-emf which limits the fault current and by absorbing the capacitive energy stored on the 80 kV source cables and power supplies. A computer program STACAL was used in snubber magnetic design to choose appropriate tape wound cores to provide 400 ..cap omega.. resistance and 25 J energy absorption. The cores are mounted horizontally in a dielectric structure. The central source cable bundle passes through the snubber and terminates on three copper buses. Multilam receptacles on the buses connect to the source module jumper cables. Corona rings and shields limit electric field stresses to allow close clearances between snubbers. A filament circuit shunt bias winding wound on a dielectric cylinder surrounds the cores. The dc voltage holdoff of a single snubber has been tested. Current and voltage behavior during capacitor bank and source cable discharges are presented.

  3. Scheme for Low Energy Beam Transport with a Non-Neutralized Section

    SciTech Connect

    Shemyakin, A.; Prost, L.

    2015-04-23

    A typical Low Energy Beam Transport (LEBT) design relies on dynamics with nearly complete beam space charge neutralization over the entire length of the LEBT. This paper argues that, for a beam with modest perveance and uniform current density distribution when generated at the source, a downstream portion of the LEBT can be un-neutralized without significant emittance growth.

  4. Physical processes in directed ion beam sputtering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1979-01-01

    The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.

  5. Low-damage high-throughput grazing-angle sputter deposition on graphene

    SciTech Connect

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  6. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  7. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-04-28

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  8. Thermal effects in high power cavities for photoneutralization of D- beams in future neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-01

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  9. Comparison of experimental data and 3D simulations of ion beam neutralization from the neutralized transport experiment

    SciTech Connect

    Thoma, C.; Welch, D.R.; Yu, S.S.; Henestroza, E.; Roy, P.K.; Eylon, S.; Gilson, E.P.

    2004-09-22

    The Neutralized Transport Experiment (NTX) at Lawrence Berkeley National Laboratory has been designed to study the final focus and neutralization of high perveance ion beams for applications in heavy ion fusion (HIF) and high energy density physics (HEDP) experiments. Pre-formed plasmas in the last meter before the target of the scaled experiment provide a source of electrons which neutralize the ion current and prevent the space-charge induced spreading of the beam spot. NTX physics issues are discussed and experimental data is analyzed and compared with 3D particle-in-cell simulations. Along with detailed target images, 4D phase-space data of the NTX at the entrance of the neutralization region has been acquired. This data is used to provide a more accurate beam distribution with which to initialize the simulation. Previous treatments have used various idealized beam distributions which lack the detailed features of the experimental ion beam images. Simulation results are compared with NTX experimental measurements for 250 keV K{sup +} ion beams with dimensionless perveance of 1-7 x 10{sup -4}. In both simulation and experiment, the deduced beam charge neutralization is close to the predicted maximum value.

  10. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density.

    PubMed

    Grierson, B A; Burrell, K H; Crowley, B; Grisham, L; Scoville, J T

    2014-10-01

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 μs) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2-3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  11. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect

    Grierson, B. A. Grisham, L.; Burrell, K. H.; Crowley, B.; Scoville, J. T.

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 μs) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2–3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  12. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  13. Neutral beam stopping and emission in fusion plasmas I: deuterium beams

    NASA Astrophysics Data System (ADS)

    Anderson, H.; von Hellermann, M. G.; Hoekstra, R.; Horton, L. D.; Howman, A. C.; Konig, R. W. T.; Martin, R.; Olson, R. E.; Summers, H. P.

    2000-07-01

    The charge transfer reaction of neutral deuterium beams with impurities enables one of the principle quantitative diagnostic measurements of the hot core fusion plasma; that is, charge exchange spectroscopy. The complementary measurement of beam emission spectroscopy has been fruitful in motional Stark wavelength shift and fluctuation studies, but less so in using absolute measured intensities. In the last two years we have achieved substantial improvement in the quantitative analysis and agreement between the observed and modelled beam emission at the JET Joint Undertaking. This has depended on improved spectral fitting of the overlayed Dα motional Stark multiplet, self-consistent beam emission and impurity charge exchange modelling and analysis, and revision of the data entering the modelling of the beam emission process. The paper outlines the present JET beam emission diagnostic system and the collisional radiative modelling of deuterium beam stopping and emission. The nature and organization of the effective derived data directly used in experimental interpretation at JET are described and some results of spectral analysis of deuterium beam emission given. The practical implementation of the methods described here is part of the ADAS Project.

  14. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  15. Compact electron-beam source for formation of neutral beams of very low vapor pressure materials

    NASA Technical Reports Server (NTRS)

    Rutherford, J. A.; Vroom, D. A.

    1978-01-01

    In order to form metal vapors for neutral beam studies, an electron-beam heater and a power supply have been designed. The source, which measures about 30 x 50 x 70 mm, consists of a filament, accelerating plate (defined by pole pieces), and a supported target. The electrons from the filament are focused by the field penetration through a 2 mm slit in the high-voltage cage. They are then accelerated to about 5 kV to a ground plate. The electrons then follow a path in the magnetic field and strike the sample to be heated on its front surface. The assembly is attached to a water-cooled base plate. The electron beam source has produced beams of Ta and C particles with densities of about 10 to the 8th power/cu cm.

  16. Arc modulator for the TFTR neutral-beam ion source--

    SciTech Connect

    Dawson, F.P.; Dewan, S.B. )

    1990-02-01

    Power-conditioning systems are being increasingly used to provide specialized protection capabilities. This paper discusses the protection of the tokomak fusion reactor neutral-beam ion source, located at the Princeton Plasma Physics Laboratory. The system design is based on thee operational protection requirements. The protection requirements include provisions for ion-source current pulse matching, ion-source fault current extinction, and metallic fault current extinction. A power circuit configuration satisfying these requirements is illustrated and briefly described. Simplified analytical expressions relating the protection requirements to the circuit parameters are developed. The circuit configuration is implemented using SCR's. Testing and operational verification of the circuit implementation has been conducted. The side effects observed include ion-source current overshoot and the existence of a negative ion source current. Modifications to counteract these side effects are briefly described.

  17. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  18. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  19. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  20. Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems

    SciTech Connect

    Hong, R.M.; Chiu, H.K.

    1999-11-01

    Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, maximizing neutralization efficiency does not necessarily provide the maximum available neutral beam power, since high levels of neutral gas can increase beam loss through collisions and cause larger beam divergence. Excessive gas diffused from the neutralizer into the accelerator region also increases the number of energetic particles (ions and secondary electrons from the accelerator grid surfaces) deposited on the accelerator grids, increasing the possibility of overheating. We have operated an ion source with a constant optimal gas flow directly into the arc chamber while gas flow into the neutralizer was varied. Neutral beam power available for injecting into plasmas was obtained based on the measured data of beam energy, beam current, beam transmission, beam divergence, and neutralization efficiency for various neutralizer gas flow rates. We will present the results of performance comparison with the two gas puffing schemes, and show steps of obtaining the maximum available beam power and determining the optimum neutralizer gas flow rate.

  1. Laboratory studies of the charge neutralization of a rocket payload during electron beam emission

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Whalen, B. A.; Harris, F. R.; Mcnamara, A. G.; Konradi, A.

    1980-01-01

    The charge neutralization of an electrically-isolated rocket payload emitting an energetic electron beam has been studied in experiments in the large vacuum chamber at Johnson Space Center. The introduction of an RF-discharge-produced ambient plasma density (10,000 to 50,000 per cu cm) reduces the payload potential to 200 V for low current (1 and 10 ma) beams. The ignition of the beam-plasma discharge provides an efficient neutralization process for higher current beams.

  2. Radiation Safety System for SPIDER Neutral Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  3. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  4. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Krämer-Flecken, A.; TEXTOR Team; de Bock, M.

    2008-03-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the plasma current, the sawtooth period increases to a maximum before it begins to shorten once more. Results from both magnetohydrodynamic stability modelling including toroidal flows and modelling of the kinetic effects of the fast ions resulting from NBI heating are also presented. This model combining the gyroscopic and kinetic effects upon the stability of the n = 1 internal kink mode—thought to be associated with sawtooth oscillations—qualitatively recovers the sawtooth behaviour exhibited in the experiment. It is proposed that the sawtooth period is minimized in the co-NBI direction at the point at which the stabilization of the kink mode due to rotation is weakest. This occurs when the plasma rotation induced by the NBI balances the intrinsic rotation of the plasma. The sawtooth behaviour in the counter-NBI regime is attributed to a subtle balance of the competing stabilization from the toroidal rotation and destabilization from the presence of energetic ions.

  5. Benchmark of 3D halo neutral simulation in TRANSP and FIDASIM and application to projected neutral-beam-heated NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Liu, D.; Medley, S. S.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2014-10-01

    A cloud of halo neutrals is created in the vicinity of beam footprint during the neutral beam injection and the halo neutral density can be comparable with beam neutral density. Proper modeling of halo neutrals is critical to correctly interpret neutral particle analyzers (NPA) and fast ion D-alpha (FIDA) signals since these signals strongly depend on local beam and halo neutral density. A 3D halo neutral model has been recently developed and implemented inside TRANSP code. The 3D halo neutral code uses a ``beam-in-a-box'' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce thermal halo neutrals that are tracked through successive halo neutral generations until an ionization event occurs or a descendant halo exits the box. A benchmark between 3D halo neural model in TRANSP and in FIDA/NPA synthetic diagnostic code FIDASIM is carried out. Detailed comparison of halo neutral density profiles from two codes will be shown. The NPA and FIDA simulations with and without 3D halos are applied to projections of plasma performance for the National Spherical Tours eXperiment-Upgrade (NSTX-U) and the effects of halo neutral density on NPA and FIDA signal amplitude and profile will be presented. Work supported by US DOE.

  6. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  7. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  8. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  9. Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering

    SciTech Connect

    Melninkaitis, Andrius; Tolenis, Tomas; Mazule, Lina; Mirauskas, Julius; Sirutkaitis, Valdas; Mangote, Benoit; Fu Xinghai; Zerrad, Myriam; Gallais, Laurent; Commandre, Mireille; Kicas, Simonas; Drazdys, Ramutis

    2011-03-20

    ZrO{sub 2}-SiO{sub 2} and Nb{sub 2}O{sub 5}-SiO{sub 2} mixture coatings as well as those of pure zirconia (ZrO{sub 2}), niobia (Nb{sub 2}O{sub 5}), and silica (SiO{sub 2}) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO{sub 2}. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.

  10. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  11. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  12. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  13. Global energy confinement scaling for neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.; Goldston, R.J.

    1984-10-01

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks has been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from ASDEX, DITE, D-III, ISX-B, PDX, PLT, and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tau/sub E/ on discharge parameters kappa, I/sub p/, B/sub t/, anti n/sub e/ P/sub tot/, a, and R/a, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tau/sub E/ ..cap alpha.. kappa/sup 0.28/ B/sub T//sup -0.09/ I/sub p//sup 1.24/anti n/sub e//sup -0.26/ P/sub tot//sup -0.58/ a/sup 1.16/ (R/a)/sup 1.65/.

  14. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    SciTech Connect

    Barbisan, M. Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.

  15. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  16. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  17. Surface damage correction, and atomic level smoothing of optics by Accelerated Neutral Atom Beam (ANAB) Processing

    NASA Astrophysics Data System (ADS)

    Walsh, M.; Chau, K.; Kirkpatrick, S.; Svrluga, R.

    2014-10-01

    Surface damage and surface contamination of optics has long been a source of problems for laser, lithography and other industries. Nano-sized surface defects may present significant performance issues in optical materials for deep UV and EUV applications. The effects of nanometer sized surface damage (scratches, pits, and organics) on the surface of optics made of traditional materials and new more exotic materials is a limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, zinc sulfide, BK7 and others presents a unique set of challenges. Exogenesis Corporation, using its proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and contamination and leaves many material surfaces with roughness typically around one angstrom. This process technology has been demonstrated on nonlinear crystals, and various other high-end optical materials. This paper describes the ANAB technology and summarizes smoothing results for various materials that have been processed with ANAB. All surface measurement data for the paper was produced via AFM analysis. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply normal forces associated with traditional polishing techniques. ANAB efficiently removes surface contaminants, nano-scale scratches, bumps and other asperities under low energy physical sputtering conditions as the removal action proceeds. ANAB may be used to remove a precisely controlled, uniform thickness of material without any increase of surface roughness, regardless of the total amount of material removed. The ANAB process does not

  18. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

    NASA Astrophysics Data System (ADS)

    Cosar, M. B.; Ozhan, A. E. S.; Aydogdu, G. H.

    2015-05-01

    Ion beam sputtering is one of the widely used methods for manufacturing laser optical components due to its advantages such as uniformity, reproducibility, suitability for multilayer coatings and growth of dielectric materials with high packing densities. In this study, single Ta2O5 layers and Ta2O5/SiO2 heterostructures were deposited on optical quality glass substrates by dual ion beam sputtering. We focused on the effect of deposition conditions like substrate cleaning, assistance by 12 cm diameter ion beam source and oxygen partial pressure on the laser-induced damage threshold of Ta2O5 single layers. Afterwards, the obtained information is employed to a sample design and produces a Ta2O5/SiO2 multilayer structure demonstrating low laser-induced damage without a post treatment procedure.

  19. Simulation of low-angle forward-reflected neutral beam for chargeup-free Si etching

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Wang, Soon Jung; Lee, Jae Koo; Haing Lee, Do; Yeom, Geun Young

    2003-10-01

    As a device size shrinks toward nano-scale, a charge-up damage by using ion induced etching is a very serious problem. A neutral beam etching is one of the most popular techniques to reduce the charge-up damage. We have performed a neutral beam simulation[1] by a modified XOOPIC code, in order to obtain neutral energy and angle distributions. The neutral beam is generated by collisions between ions produced by an ion-gun and low angle reflectors. The ion-gun is composed of several grids with voltages applied. Positive ions are accelerated toward low angle reflectors by the potential between grids. We have optimized the condition of the ion-gun for high ion flux and better directionality. It is applied to the neutral beam simulation in order to calculate neutral beam characteristics such as neutral flux, energy and angle distributions which have an influence upon etch rate. As low energy neutral beam is used for Si etching, the ion-gun using two grids has low ion flux and broad angle distribution. Therefore, we propose a three-grid ion-gun which has one additional grid with positive voltage. The ion flux from the three-grid ion-gun is about three times larger than that from the two-grid ion-gun. Etch profile is calculated from neutral beam by the three-grid ion-gun at a shallow Si trench. It is verified by comparison with experiment. This work is supported by the national program for Tera-level nanodevices in Korea Ministry of Science and Technology. [1] M.S. Hur, S.J. Kim, H.S. Lee, J.K. Lee, and G.Y. Yeom, ¡°Particle in Cell Simulation of a Neutral Beam Source for Materials Processing¡+/-, IEEE Trans. Plasma Science 30 (1) 110 (2002)

  20. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    SciTech Connect

    McAdams, R.

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  1. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    PubMed

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  2. Optimization of large area YBa 2Cu 3O 7-x films by single target ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Lucia, M. L.; Affronte, M.; Pavuna, D.

    1991-12-01

    We report on the in-situ growth over large area of high-quality homogeneous YBa 2Cu 3O 7-x films by single target ion beam sputtering. The ‘123’ stoichiometry transfer to the substrates is obtained by using sufficiently low power ion beam and a grazing angle between the ion beam and the target. The as-deposited films show consistent homogeneity and reproducible superconducting properties (ΔT c<1 K, j c(77K)>10 6 A cm -2 at 77 K) over areas larger than ≈30 cm 2.

  3. Optimization of a constrained linear monochromator design for neutral atom beams.

    PubMed

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  4. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  5. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac

    NASA Astrophysics Data System (ADS)

    Raparia, D.; Alessi, J.; Atoian, G.; Zelenski, A.

    2016-02-01

    The H- magnetron source provides about 100 mA H- beam to be match into the radio-frequency quadrupole accelerator. As H- beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H- beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H- beam from optically pumped polarized ion source.

  6. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac.

    PubMed

    Raparia, D; Alessi, J; Atoian, G; Zelenski, A

    2016-02-01

    The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source. PMID:26932107

  7. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  8. Dynamics of neutralized electrons and the focusability of intenseion beams in HIF accelerating structures

    SciTech Connect

    Lifschitz, A.F.; Maynard, G.; Vay, J.-V.

    2005-01-18

    In most of the proposals for HIF reactors, beams propagate ballistically through the containment chamber. To get the required final radius ({approx} 3 mm), the charge of the beam must be neutralized to some extent. Several neutralization schemes are possible, as co-injection of negative-ions beams, inclusion of external sources of electrons, or it can be provided by electrons coming from ionization of the background gas. In this work, we study the role of the electron dynamic on the neutralization and final radius of the beam. This is done by performing fully-electromagnetic PIC simulations of the beam ballistic transport using the BPIC code[1]. In agreement with previous works we found that the evolution of an isolated beam is well described as a bidimensional adiabatic compression, and the beam neutralization degree and final radius can be estimated from the initial electron transversal temperature. When a background gas is present the evolution differs significantly from an adiabatic compression. Even for low gas densities, the continuous electrons flow coming from gas ionization limits efficiently the compressional heating, thus reducing the final radius. Aspects of beam neutralization by background gas ionization are discussed.

  9. Properties of Electron-Beam Irradiated CuInSe2 Layers by Multi-Step Sputtering Method.

    PubMed

    Kim, Chae-Woong; Kim, Jin Hyeok; Jeong, Chaehwan

    2015-10-01

    Typically, CuInSe2 (CIS) based thin films for photovoltaic devices are deposited by co-evaporation or by deposition of the metals, followed by treatment in a selenium environment. This article describes CIS films that are instead deposited by DC and RF magnetron sputtering from binary Cu2Se and In2Se3 targets without the supply of selenium. As a novel method, electron beam annealing was used for crystallization of Cu2Se/In2Se3 stacked precursors. The surface, cross-sectional morphology, and compositional ratio of CIS films were investigated to confirm the possibility in crystallization without any addition of selenium. Our work demonstrates that the e-beam annealing method can be a good candidate for the rapid crystallization of Cu-In-Se sputtered precursors.

  10. Initial operation and performance of the PDX neutral-beam injection system

    SciTech Connect

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Rossmassler, J.E.; Schilling, G.; van Halle, A.; Williams, M.D.

    1982-01-19

    In 1981, the joint ORNL/PPPL PDX neutral beam heating project succeeded in reliably injecting 7.2 MW of D/sup 0/ into the PDX plasma, at nearly perpendicular angles, and achieved ion temperatures up to 6.5 keV. The expeditious achievement of this result was due to the thorough conditioning and qualification of the PDX neutral beam ion sources at ORNL prior to delivery coupled with several field design changes and improvements in the injection system made at PPPL as a result of neutral beam operating experience with the PLT tokamak. It has been found that the operation of high power neutral beam injection systems in a tokamak-neutral beam environment requires procedures and performance different from those required for development operation on test stands. In this paper, we review the installatin of the PDX neutral beam injection system, and its operation and performance during the initial high power plasma heating experiments with the PDX tokamak.

  11. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  12. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  13. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  14. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  15. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  16. In/ITO whisker and optoelectronic properties of ITO films deposited by ion beam sputtering

    SciTech Connect

    Shen, Jung-Hsiung; Yeh, Sung-Wei; Teoh, Lay Gaik

    2012-07-15

    ITO films were deposited on a glass substrate using ion beam sputtering, with oxygen flow rates from 0.5 to 2 sccm. The films consisted of randomly oriented ITO nanoparticles and metallic indium (In) with {l_brace}101{r_brace} facets, following the specific crystallographic relationship of [010]{sub In}//[110]{sub ITO}; (001){sub In}//(001){sub ITO} with habit planes (100){sub In}//(011){sub ITO}, when fabricated using a low oxygen flow rate. Oxygen flow rate in excess of 2.0 sccm results in the growth of amorphous films. The epitaxial In nanoparticles probably act as seeds for the development of curved ITO whiskers as small as 10 nm and extend up to 100 nm in length along the [100] direction, with poorly defined shape, possibly due to the tapering and bending of the whisker to form a tilt boundary about the [011] zone axis of the ITO. The ITO whisker growth was facilitated by the In globular tips in the vapor-liquid-solid growth mechanism. The films prepared using a series of oxygen flow rates showed different chemical-bonding states, electric resistivity and optical transparency; as a result of phase and microstructural changes.

  17. The Electric, Magnetic, and Optical Characterization of Permalloy Oxide Grown by Dual-Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Compton, Maclyn; Leblanc, Elizabeth; Geerts, Wilhelmus; Simpson, Nelson; Robinson, Michael

    2014-03-01

    Permalloy (Ni80Fe20) is a commonly used soft magnetic material in magnetic reading heads. Its magnetic properties do not depend on stress, a parameter difficult to control in thin film devices. Permalloy Oxide (PyO) on the other hand, has a high resistivity (>4 .103 Ω cm), is anti-ferromagnetic and has recently been shown to strongly enhance the performance of lateral spin valve devices. Historically, the oxidation of permalloy has been seen as a defect that should be avoided by appropriate encapsulation and very little is known on its electric and optical properties. We deposited thin PyO films by Dual Ion Beam Sputtering (DIBS) at room temperature on various substrates. Van der Pauw and Hall measurements were carried out from 77K to 400K and at magnetic fields up to 9T in order to determine its electronic bandgap, resistivity, free carrier concentration, and its mobility. The dielectric properties and defects were studied using a CV-setup and an impedance analyzer. Magnetic measurements were conducted on a Quantum Design PPMS VSM to determine the state of oxidation. Optical properties were measured by a M2000 Woollam variable angle spectroscopic ellipsometer. These properties were used to determine film thickness, bandgap and the optical constants of PyO. The authors would like to thank Research Corporation for financial support.

  18. Symmetry of surface nanopatterns induced by ion-beam sputtering: Role of anisotropic surface diffusion

    NASA Astrophysics Data System (ADS)

    Renedo, Javier; Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier

    2016-04-01

    Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces of different materials. To date, most theoretical studies of this process have focused on systems which become amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of experimental work on metals, or more recently on semiconductors at high temperatures, such experimental contexts have received relatively little theoretical attention. These systems are characterized by transport mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in order to account for anisotropic surface diffusion. We explore systematically our generalized model in order to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as a function of system parameters and employ an angular correlation function to assess these pattern symmetries. By suitably choosing experimental conditions, it is found that one might be able to experimentally control the type of order displayed by the patterns produced.

  19. Electrical trimming of ion-beam-sputtered polysilicon resistors by high current pulses

    NASA Astrophysics Data System (ADS)

    Das, Soumen; Lahiri, Samir K.

    1994-08-01

    Phosphorus doped polysilicon resistors have been fabricated from microcrystalline silicon films which were deposited by ion beam sputtering using an argon ion beam of diameter 3 cm, energy 1 keV and current density 7mA/cm(sup 2), with a deposition rate of 100-120 angstrom/min. The resistors, having a sheet resistance of 70 Omega /square and a carrier concentration of 7.5 x 10(sup 19)cm(sup - 3), were stressed with current pulses of width 10 mu s and duty cycle 0.6% for 5 min. There was a steady decrease of resistance with increasing pulse current density above a threshold value 5 x 10(sup 5)A/cm(sup 2). A maximum fall of 27% was observed for a 95 micron long resistor. The current-voltage characteristics were also recorded during the trimming process. The trimming characteristics were simulated using a small-signal resistivity model of Lu et al. (11) and the I-V characteristics by a large-bias conduction model (12) . A close fitting of the experimental data with the theoretical values needed an adjustment of some grain boundary parameters for the different pulse current densities used for stressing. The nature of variation of the grain boundary parameters indicates that the rapid Joule heating of the grain boundaries due to current pulses passivates the grain boundary interfaces, at lower currents above the threshold, and then, at higher values of currents, causes zone melting and gradual recrystallization of the disordered boundary layers and subsequent dopant segregation. It confirms the mechanism suggested in the physical model of Kato et al. (7) . The role played by the field-enhanced diffusivity and electromigration of dopant ions, due to the high instantaneous temperature of the grain boundaries, has also been discussed. The pulse trimming technique is simple and does not cause damage to the adjacent components on a monolithic chip.

  20. Using neutral beams as a light ion beam probe (invited)a)

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Austin, M. E.; Fisher, R. K.; Hanson, J. M.; Nazikian, R.; Zeng, L.

    2014-11-01

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  1. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  2. Preparation of thin films for use in generating neutral particle beams

    SciTech Connect

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.

    1986-01-01

    Large-area, thin aluminum foils were prepared for use in beam neutralization experiments. The foils were made using either electron beams of resistance heating. Foil thickness and uniformity were determined using alpha particles. The foils perform very well when bombarded by energetic H/sup -/ ions. (DLC)

  3. Extending DIII-D Neutral Beam Modulated Operations with a Camac Based Total on Time Interlock

    SciTech Connect

    Baggest, D.S.; Broesch, J.D.; Phillips, J.C.

    1999-11-01

    A new total-on-time interlock has increased the operational time limits of the Neutral Beam systems at DIII-D. The interlock, called the Neutral Beam On-Time-Limiter (NBOTL), is a custom built CAMAC module utilizing a Xilinx 9572 Complex Programmable Logic Device (CPLD) as its primary circuit. The Neutral Beam Injection Systems are the primary source of auxiliary heating for DIII-D plasma discharges and contain eight sources capable of delivering 20MW of power. The delivered power is typically limited to 3.5 s per source to protect beam-line components, while a DIII-D plasma discharge usually exceeds 5 s. Implemented as a hardware interlock within the neutral beam power supplies, the NBOTL limits the beam injection time. With a continuing emphasis on modulated beam injections, the NBOTL guards against command faults and allows the beam injection to be safely spread over a longer plasma discharge time. The NBOTL design is an example of incorporating modern circuit design techniques (CPLD) within an established format (CAMAC). The CPLD is the heart of the NBOTL and contains 90% of the circuitry, including a loadable, 1 MHz, 28 bit, BCD count down timer, buffers, and CAMAC communication circuitry. This paper discusses the circuit design and implementation. Of particular interest is the melding of flexible modern programmable logic devices with the CAMAC format.

  4. Measurements of sputtered neutrals and ions and investigation of their roles on the plasma properties during rf magnetron sputtering of Zn and ZnO targets

    SciTech Connect

    Maaloul, L.; Stafford, L.

    2013-11-15

    Langmuir probe and optical absorption spectroscopy measurements were used to determine the line-integrated electron density, electron temperature, and number density of Ar atoms in metastable {sup 3}P{sub 2} and {sup 3}P{sub 0} levels in a 5 mTorr, rf magnetron sputtering plasmas used for the deposition of ZnO-based thin films. While the average electron energy and density of Ar atoms in {sup 3}P{sub 2} and {sup 3}P{sub 0} excited states were fairly independent of self-bias voltage, the Ar {sup 3}P{sub 2}-to-electron number density ratio decreased by approximately a factor of 5 when going from −115 V to −300 V. This decrease was correlated to an increase by about one order of magnitude of the number density of sputtered Zn atoms determined by absolute actinometry measurements on Zn I using either Ar or Xe as the actinometer gas. These results were also found to be in excellent agreement with the predictions of a global model accounting for Penning ionization of sputtered Zn particles. The importance of the latter reactions was further confirmed by plasma sampling mass spectrometry showing a double peak structure for Zn ions: a low-energy component ascribed to thermalized ions created in the gas phase (by direct electron impact and by Penning ionization) and a high-energy tail due to ions ejected from the target and reaching quasi-collisionlessly the substrate surface.

  5. Performance of positive ion based high power ion source of EAST neutral beam injector.

    PubMed

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  6. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  7. Operating characteristics of a new ion source for KSTAR neutral beam injection system

    SciTech Connect

    Kim, Tae-Seong Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-15

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  8. Operating characteristics of a new ion source for KSTAR neutral beam injection system

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  9. Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.

  10. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    SciTech Connect

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-05-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

  11. The mechanism of controlling liquid crystal surface pretilt angle on plasma beam sputtered films

    NASA Astrophysics Data System (ADS)

    Pan, Ru-Pin; Huang, Meng-Chiou; Wu, Wei-Ta; Lai, Cheng-Wei; Wu, Hsin-Ying

    2012-02-01

    In liquid crystal (LC) devices, the surface alignment is essential. The polyimide (PI) film is commonly used to make LC molecules parallel to the surface. A rubbing process is usually applied to choose a particular direction on the surface. A pretilt angle is also induced, which is useful but usually very small. In previous works, we have found out that the sputtered ion-oxide films can give a homeotropic alignment to LC, i,e, the LC molecules are perpendicular to the surface. In this work, we combine these two effects by sputtering the ion-oxide particles onto the PI coated glasses. By adjusting the sputtering conditions, the LC alignment are controlled. A wide range of pretilt angles have been achieved, while the rubbing process is no longer required. A thorough study by varying the sputtering conditions, such as voltage, current, and time duration, and observing the pretilt angles is carried out. The sputtered surfaces are examined with scanning electron microscope to see the coverage. By considering the charge distribution and electric field within the sputter, a quantitative model is then developed, which explains how the sputtering conditions affect the pretilt angles almost perfectly.

  12. Molecular depth profiling of organic photovoltaic heterojunction layers by ToF-SIMS: comparative evaluation of three sputtering beams.

    PubMed

    Mouhib, T; Poleunis, C; Wehbe, N; Michels, J J; Galagan, Y; Houssiau, L; Bertrand, P; Delcorte, A

    2013-11-21

    With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

  13. Comparison between the radial density buildup in the TARA plugs using hydrogen versus deuterium neutral beams

    SciTech Connect

    Blackfield, D.T.

    1983-11-01

    The WOLF code is used to compare the beam divergences from a TARA source using hydrogen and deuterium. Factors which influence the divergence which are investigated are the electron temperature, initial ion energy, electrode positions and ion beam current density. The beam divergence for 20 keV hydrogen is found to be only 20% smaller than for 25 keV deuterium for the same electrode positions. Since the optimal positioning of the electrodes is found to be independent of mesh spacing, a large parameter study is undertaken using little computer time. A time-dependent radial Fokker-Planck code is next used to examine the radial density buildup in a plug of the TARA tandem mirror. For both hydrogen and deuterium neutral beams, the influences of beam positioning, current and energy, edge neutral pressure and assumed electron temperature are studied.

  14. Calculations of tangential neutral beam injection current drive efficiency for present moderate flux FRCs

    NASA Astrophysics Data System (ADS)

    Lifschitz, A. F.; Farengo, R.; Hoffman, A. L.

    2004-09-01

    A Monte Carlo code is employed to study tangential neutral beam injection into moderate flux field reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs). The dimensions of the FRC are similar to those obtained in the Translation, Confinement and Sustainment (TCS) experiment. Two injection geometries are considered. In one case the beam is injected through the ends, at a small angle to the FRC axis while in the other the beam is injected almost perpendicularly, at some point along the separatrix. The current drive efficiency and the deposited power are calculated employing plasma parameters that can be expected in future experiments on TCS. It is shown that, although the RMF degrades beam confinement, relatively high efficiencies can be obtained provided the RMF does not penetrate too deeply into the plasma. Since the torque deposited by the neutral beam can balance the torque deposited by the RMF, the simultaneous use of both methods appears to be a very attractive option.

  15. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    SciTech Connect

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O.; Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S.; Shinto, K.; Wada, M.

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  16. Neutralization of Space Charge Effects for Low Energy Ion Beams Using Field Emitters

    SciTech Connect

    Nicolaescu, D.; Sakai, S.; Matsuda, K.; Gotoh, Y.; Ishikawa, J.

    2008-11-03

    The paper presents models and computations for neutralization of space charge effects using electrons provided by field emitter arrays. Different ion species ({sup 11}B{sup +},{sup 31}P{sup +},{sup 75}As{sup +}) with energy in the range E{sub ion} = 200 eV-1 keV have been considered. The ion beam divergence is studied as a function of electron beam geometry and physical parameters (electron and ion energy, electron/ion current ratio I{sub el}/I{sub ion}). The electron beam geometry takes into account electron source positions and initial launching angles. It is shown that optimal ion beam neutralization occurs for low energy electrons emitted parallel to the ion beam.

  17. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    PubMed

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  18. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  19. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  20. Implementation of a quasi-realtime display of DIII-D neutral beam heating waveforms

    SciTech Connect

    Phillips, J.C.

    1993-10-01

    The DIII-D neutral beam system employs eight 80 keV ion sources mounted on four beamlines to provide plasma heating to the DIII-D tokamak. The neutral beam system is capable of injecting over 20 MW of deuterium power with flexibility in terms of timing and modulation of the individual neutral beams. To maintain DIII-D`s efficient tokamak shot cycle and make informed control decisions, it is important to be able to determine which beams fired, and exactly when, by the time the tokamak shot is over. Previously this information was available in centralized form only after a several minute wait. A cost-effective alternative to the traditional eight-channel storage oscilloscope has been implemented using off the shelf PC hardware and software. The system provides a real time display of injected neutral beam accelerator voltages and tokamak plasma current, as well an a summation waveform indicative of the total injected power as a function of time. The hardware consists of a Macintosh Centris 650 PC with a Motorola 68040 microprocessor. Data acquisition is accomplished using a National Instrument`s 16-channel analog to digital conversion board for the Macintosh. The color displays and functionality were developed using National Instruments` LabView environment. Because the price of PCs has been decreasing rapidly and their capabilities increasing, this system is far less expensive than an eight-channel storage oscilloscope. As a flexible combination of PC and software, the system also provides much more capability than a dedicated oscilloscope, acting as the neutral beam coordinator`s logbook, recording comments and availability statistics. Data such as shot number and neutral beam parameters are obtained over the local network from other computers and added to the display. Waveforms are easily archived to disk for future recall. Details of the implementation will be discussed along with samples of the displays and a description of the system`s function and capabilities.

  1. New techniques for calculating heat and particle source rates due to neutral-beam injection in axisymmetric tokamaks

    SciTech Connect

    Goldston, R.J.; McCune, D.C.; Towner, H.H.; Davis, S.L.; Hawryluk, R.J.; Schmidt, G.L.

    1981-02-01

    A set of numerical techniques are described for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks. While these techniques consume a substantial amount of computer time, they take into account a number of significant, and normally neglected, effects. Examples of these effects are reionization of escaping charge exchanged beam particles, finite fast ion orbit excursions, beam deposition through collisions of beam neutrals with circulating beam ions, and the transport of thermal neutrals in the plasma due to charge changing collisions with beam ions.

  2. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  3. The performance of the poloidal divertor experiment neutral beam wall armor

    SciTech Connect

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Williams, M.D.; Ulrickson, M.

    1986-05-01

    During 2 yr of experimental operations, the Poloidal Divertor Experiment (PDX) inner wall neutral beam graphite armor provided protection for perpendicular heating injections into normal and disruptive plasmas as well as injection in the absence of plasma for special experiments, calibrations, and tests involving the optimization and development of the PDX neutral beam injection system. About 80 to 100 heating injections occurred per operating day, at a 360-s duty cycle, into plasmas of various densities, and typically approx. =5 to 50% of the injected neutral beam power was transmitted to the armor. More than 10/sup 3/ neutral beam pulses of 100- to 300-ms duration were injected in the absence of plasma at peak power densities of 1.5 to 3 kW/cm/sup 2/, yielding peak surface temperatures of 950 to 1550/sup 0/C. There was no significant impurity production attributable to beam heating of the armor, and no observed beam-induced, macroscopic surface damage. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.

  4. Long-pulse ion source for neutral-beam applications

    NASA Astrophysics Data System (ADS)

    Tsai, C. C.; Menon, M. M.; Ryan, P. M.; Schechter, D. E.; Stirling, W. L.; Haselton, H. H.

    1982-04-01

    A rectangular ion source is being developed for producing 120-keV/25-A hydrogen ion beams for pulse durations up to 10 s. It consists of a plasma generator with a rectangular arc chamber (25×35 cm cross section) and an ion accelerator with rectangular grids (10×25 cm hole pattern). The plasma generator is a modified duoPIGatron type. It has been operated at 120 V, 1100 A, and 10 s arc durations to produce a dense and uniform plasma sufficient for supplying a 25-A ion beam current. The electron emitter used is either a LaB6 hollow cathode or a LM (molybdenum doped with La2O3) indirectly heated cathode. The ion accelerator having four (or three) rectangular grids with multiple circular apertures has been utilized to form high-energy ion beams above (or below) 80 keV. With substantial improvements in water cooling and mechanical stability, this ion accelerator has been operated reliably to deliver long-pulse ion beams with energies in excess of 100 keV and pulse lengths of many seconds. The results of measurements made on the power transmission efficiency (70%-80%), power density profile at the target (±0.5% HWHM near the focal plane), and grid loadings (≲1% for each grid) are elaborated. The important characteristics associated with this long-pulse ion source are also presented and discussed.

  5. Neutral beam injector for 475 keV MARS sloshing ions

    SciTech Connect

    Goebel, D.M.; Hamilton, G.W.

    1983-12-13

    A neutral beam injector system which produces 5 MW of 475 keV D/sup 0/ neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produces a total system electrical efficiency of about 63% for this design.

  6. A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem

    2015-11-01

    Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  7. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  8. Development and characterization of a neutral beam source for sub-10 nm etching

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; El Otell, Ziad; St. Braithwaite, Nicholas; Bowden, Mark

    2013-09-01

    Neutral beam etching is a promising technology for damage-free sub-10 nm device fabrication. In this work a neutral beam is generated by surface neutralization of ions extracted from a pulsed ICP discharge in Ar/SF6. Negative ions are extracted during the afterglow phase when an ion-ion plasma is formed. The evolution of the density of various charged species is measured with different techniques (Langmuir, hairpin and ion flux probes). High density plasma, with electron number density in the range 1017 - 1018 m-3, is typically produced in the pulsed ICP. The electron heating in the active-glow phase is characterized using trace rare gas optical emission spectroscopy with Ar, Kr and Xe admixtures. The energy spectra and fluxes of the extracted ions are measured using a retarding field analyzer. The potential of pulse tailoring of the discharge for optimization of negative ion formation is investigated, while varying the extraction pulse waveform provides another degree of freedom to obtain desirable neutral beam characteristics. Finally, the etching performance of the neutral beam source is demonstrated on patterned and non-patterned silicon wafers. This work is part of the EU-FP7 project Single Nanometer Manufacturing.

  9. Measurement of Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    SciTech Connect

    Kurimoto, Yoshinori

    2010-01-01

    Understanding of the π0 production via neutrino-nucleus neutral current interaction in the neutrino energy region of a few GeV is essential for the neutrino oscillation experiments. In this thesis, we present a study of neutral current π0 production from muon neutrinos scattering on a polystyrene (C8H8) target in the SciBooNE experiment. All neutrino beam data corresponding to 0.99 × 1020 protons on target have been analyzed. We have measured the cross section ratio of the neutral current π0 production to the total charge current interaction and the π0 kinematic distribution such as momentum and direction. We obtain [7.7 ± 0.5(stat.) ± 0.5(sys.)] × 10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein- Sehgal model, which is generally used for the Monte Carlo simulation by many neutrino oscillation experiments. We achieve less than 10 % uncertainty which is required for the next generation search for νµ → νe oscillation. The spectrum shape of the π0 momentum and the distribution of the π0 emitted angle agree with the prediction, which means that not only the Rein-Sehgal model but also the intra-nuclear interaction models describe our data well. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (1.17 ± 0.23 ) × 10-2 based on the Rein and Sehgal model. The result gives the evidence for non-zero coherent pion production via neutral current interaction at the mean neutrino energy of 1.0 GeV.

  10. Progress in computer-assisted diagnosis and control of neutral beam lines

    SciTech Connect

    Theil, E.; Elischer, V.; Fiddler, J.; Jacobs, N.J.D.; Jacobson, V.; Lawhorn, R.; Uber, D.; Wilner, D.

    1980-09-01

    This paper discusses the principles that have guided the development of a computerized diagnostic and control system for both the Neutral Beam Systems Test Facility at Lawrence Berkeley Laboratory and the Doublet III neutral beams at the General Atomic Company. The emphasis is not on the particular details of the implementation, but on general considerations which have influenced the design criteria for the system. Foremost among these are the requirements of an appropriate human interface to the system, and effective use of a relational data base. Examples are used to illustrate how these principles are carried out in practice. A systems view of diagnostic programs is suggested in the light of our experience.

  11. An algorithm to provide real time neutral beam substitution in the DIII-D tokamak

    SciTech Connect

    Phillips, J.C.; Greene, K.L.; Hyatt, A.W.; McHarg, B.B. Jr.; Penaflor, B.G.

    1999-06-01

    A key component of the DIII-D tokamak fusion experiment is a flexible and easy to expand digital control system which actively controls a large number of parameters in real-time. These include plasma shape, position, density, and total stored energy. This system, known as the PCS (plasma control system), also has the ability to directly control auxiliary plasma heating systems, such as the 20 MW of neutral beams routinely used on DIII-D. This paper describes the implementation of a real-time algorithm allowing substitution of power from one neutral beam for another, given a fault in the originally scheduled beam. Previously, in the event of a fault in one of the neutral beams, the actual power profile for the shot might be deficient, resulting in a less useful or wasted shot. Using this new real-time algorithm, a stand by neutral beam may substitute within milliseconds for one which has faulted. Since single shots can have substantial value, this is an important advance to DIII-D`s capabilities and utilization. Detailed results are presented, along with a description not only of the algorithm but of the simulation setup required to prove the algorithm without the costs normally associated with using physics operations time.

  12. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    NASA Astrophysics Data System (ADS)

    Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  13. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O’Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-10-01

    We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.

  14. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  15. Oxygen vacancy mediated enhanced photo-absorption from ZnO(0001) nanostructures fabricated by atom beam sputtering

    NASA Astrophysics Data System (ADS)

    Solanki, Vanaraj; Joshi, Shalik R.; Mishra, Indrani; Kabiraj, D.; Mishra, N. C.; Avasthi, D. K.; Varma, Shikha

    2016-08-01

    The nanoscale patterns created on the ZnO(0001) surfaces during atom beam irradiation have been investigated here for their photo absorption response. Preferential sputtering, during irradiation, promotes Zn-rich zones that serve as the nucleation centers for the spontaneous creation of nanostructures. Nanostructured surfaces with bigger (78 nm) nanodots, displaying hexagonal ordering and long ranged periodic behavior, show higher photo absorption and a ˜0.09 eV reduced bandgap. These nanostructures also demonstrate higher concentration of oxygen vacancies which are crucial for these results. The enhanced photo-response, as observed here, has been achieved in the absence of any dopant elements.

  16. Reticle blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers

    SciTech Connect

    Vernon, S.P.; Kania, D.R.; Kearney, P.A.; Levesque, R.A.; Hayes, A.V.; Druz, B.; Osten, E.; Rajan, R.; Hedge, H.

    1996-06-24

    We report on growth of low defect density Mo/Si multilayer (ML) coatings. The coatings were grown in a deposition system designed for EUVL reticle blank fabrication. Complete, 81 layer, high reflectance Mo/Si ML coatings were deposited on 150 mm dia (100) oriented Si wafer substrates using ion beam sputter deposition. Added defects, measured by optical scattering, correspond to defect densities of 2x10{sup -2}/cm{sup 2}. This represents a reduction in defect density of Mo/Si ML coatings by a factor of 10{sup 5}.

  17. Kinetic Monte Carlo simulation of self-organized pattern formation induced by ion beam sputtering using crater functions

    NASA Astrophysics Data System (ADS)

    Yang, Zhangcan; Lively, Michael A.; Allain, Jean Paul

    2015-02-01

    The production of self-organized nanostructures by ion beam sputtering has been of keen interest to researchers for many decades. Despite numerous experimental and theoretical efforts to understand ion-induced nanostructures, there are still many basic questions open to discussion, such as the role of erosion or curvature-dependent sputtering. In this work, a hybrid MD/kMC (molecular dynamics/kinetic Monte Carlo) multiscale atomistic model is developed to investigate these knowledge gaps, and its predictive ability is validated across the experimental parameter space. This model uses crater functions, which were obtained from MD simulations, to model the prompt mass redistribution due to single-ion impacts. Defect migration, which is missing from previous models that use crater functions, is treated by a kMC Arrhenius method. Using this model, a systematic study was performed for silicon bombarded by Ar+ ions of various energies (100 eV, 250 eV, 500 eV, 700 eV, and 1000 eV) at incidence angles of 0∘ to 80∘. The simulation results were compared with experimental findings, showing good agreement in many aspects of surface evolution, such as the phase diagram. The underestimation of the ripple wavelength by the simulations suggests that surface diffusion is not the main smoothening mechanism for ion-induced pattern formation. Furthermore, the simulated results were compared with moment-description continuum theory and found to give better results, as the simulation did not suffer from the same mathematical inconsistencies as the continuum model. The key finding was that redistributive effects are dominant in the formation of flat surfaces and parallel-mode ripples, but erosive effects are dominant at high angles when perpendicular-mode ripples are formed. Ion irradiation with simultaneous sample rotation was also simulated, resulting in arrays of square-ordered dots. The patterns obtained from sample rotation were strongly correlated to the rotation speed and to

  18. H2 plasma and neutral beam treatment of EUV photoresist

    NASA Astrophysics Data System (ADS)

    De Schepper, P.; Marinov, D.; el Otell, Z.; Altamirano-Sánchez, E.; de Marneffe, J.-F.; De Gendt, S.; Braithwaite, N. St. J.

    2015-03-01

    Optical lithography has given the semiconductor industry the chance to follow Moore's law in scaling the transistor dimensions and consequently stacking them in a more dense way. However, for present sub 20 nm nanoscale patterns, which are reaching molecular dimensions; controlling the line edge and width roughness (LER/LWR) has become a key challenge. One way of reducing the roughness at photoresist level is the exposure of the organic substrate to a hydrogen plasma process in a post lithography step. Unfortunately, to this day, no clear understanding of the interaction of various plasma parameters with EUV resist substrates has been reported. In this work, two EUV resist platforms were exposed to an H2 plasma environment and H2 energetic neutrals only, by using a customized plasma reactor. The surface and bulk modifications of the photoresists have been evaluated by spectroscopic ellipsometry, Fourier transformed infrared spectroscopy and atomic force microscopy.

  19. Operation of TFTR neutral beams with heavy ions

    SciTech Connect

    Kamperschroer, J.H.; Stevenson, T.N.; Wright, K.E.; Dudek, L.E.; Grisham, L.R.; Newman, R.A.; O'Connor, T.E.; Oldaker, M.E.; von Halle, A.; Williams, M.D.

    1991-07-01

    High Z neutral atoms have been injected into TFTR plasmas in an attempt to enhance plasma confinement through modification of the edge electric field. TFTR ion sources have extracted 9 A of 62 keV Ne{sup +} for up to 0.2 s during injection into deuterium plasmas, and for 0.5 s during conditioning pulses. Approximately 400 kW of Ne{sup 0} have been injected from each of two ion sources. Operation was at full bending magnet current, with the Ne{sup +} barely contained on the ion dump. Beamline design modifications to permit operation up to 120 keV with krypton or xenon are described. Such ions are too massive to be deflected up to the ion dump. The plan, therefore, is to armor those components receiving these ions. Even with this armor, modest increases in the bending magnet current capability are necessary to safely reach 120 kV with Kr or Xe. Information relevant to heavy ion operation was also acquired when several ion sources were inadvertently operated with water contamination. Spectroscopic analysis of certain pathological pulses indicate that up to 6% of the extracted ions were water. After dissociation in the neutralizer, water yields oxygen ions which, as with Ne, Kr, and Xe, are under-deflected by the magnet. Damage to a calorimeter scraper, due to the focal properties of the magnet, has resulted. A magnified power density of 6 KW/cm{sup 2} for 2 s, from {approximately} 90 kW of O{sup +}, is the suspected cause. 11 refs., 4 figs.

  20. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  1. Physics of neutralization of intense high-energy ion beam pulses by electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-05-15

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  2. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  3. RF ion source development for neutral beam application

    SciTech Connect

    Leung, K.N.; Ehlers, K.W.; Kippenhan, D.; Vella, M.C.

    1983-11-01

    At Lawrence Berkeley Laboratory, a 24 x 24 cm/sup 2/ RF source has been tested with beam acceleration. Recently, we have been investigating the characteristics of plasmas generated with different kinds of antenna coatings. The antenna coil was installed inside a cylindrical multicusp source (20-cm diam by 24-cm long) and was driven by a 500 W amplifier. A tiny light bulb filament was used to start a background plasma. The RF was then switched on and a steady-state hydrogen plasma of moderate density (n approx. = 10/sup 11//cm/sup 3/) could be sustained even with the filament turned off.

  4. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    NASA Astrophysics Data System (ADS)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  5. High-flux source of low-energy neutral beams using reflection of ions from metals

    NASA Technical Reports Server (NTRS)

    Cuthbertson, John W.; Motley, Robert W.; Langer, William D.

    1992-01-01

    Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.

  6. Optimizing 50kV hydrogen diagnostic neutral beam performance for active spectroscopy in MST

    NASA Astrophysics Data System (ADS)

    Feng, X.; Boguski, J.; Craig, D.; den Hartog, D. J.; Munaretto, S.; Nornberg, M. D.; Olivia, S.

    2015-11-01

    The 50 kV hydrogen diagnostic neutral beam on MST provides local measurements of impurity ion emission through charge exchange recombination spectroscopy (CHERS) and of core-localized magnetic field through the motional Stark effect (MSE). The beam, which was designed to provide 5A of neutral current at 50 kV to meet these needs, is currently on a test stand to accommodate diagnosis, in order to increase the reliability of beam formation, sustain a steady current of 5 amps for 20ms, and optimize the primary energy fraction. The reliability of arc formation was increased from 40% to 80% success rate with increase of cathode gas pressure from 150kPa to 200kPa, and the stability of the arc current is improved with a decrease of the insulation magnetic field. A calorimeter with 5 thermocouples is installed to measure the horizontal and vertical beam profiles as well as beam divergence. Beam energy components are quantified through Doppler-shift spectroscopy. Preliminary simulation results of the beam using the ALCBEAM code as well as a description of how changes to the beam performance can affect CHERS and MSE measurements are presented. This work is supported by the U.S. DOE.

  7. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; Friedman, A.; Gilson, E. P.; Grote, D.; Ji, Q.; Kaganovich, I. D.; Persaud, A.; Waldron, W. L.; Schenkel, T.

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.

  8. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    SciTech Connect

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S. E-mail: vspandit12@gmail.com

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  9. Studies on space charge neutralization and emittance measurement of beam from microwave ion source.

    PubMed

    Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S

    2015-11-01

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results. PMID:26628123

  10. Thermal effects in high power cavities for photoneutralization of D{sup −} beams in future neutral beam injectors

    SciTech Connect

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-08

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  11. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    SciTech Connect

    Huang, H.S.; Chiu, C.H.; Hong, I.T.; Tung, H.C.; Chien, F.S.-S.

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  12. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  13. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    SciTech Connect

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source.

  14. Reduction in Neutral Beam Driven Current in a Tokamak by Tearing Modes

    SciTech Connect

    Forest, C.B.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Politzer, P.A.; St. John, H.E.; Gianakon, T.; Harvey, R.W.; Heidbrink, W.W.; Murakami, M.

    1997-07-01

    Profiles of noninductive current driven by neutral beam injection into a tokamak have been measured and compared with theory. The driven current can be less than the theoretical prediction (by up to 80{percent}) in the presence of islands driven by tearing modes. {copyright} {ital 1997} {ital The American Physical Society}

  15. Development of ion source with a washer gun for pulsed neutral beam injection.

    PubMed

    Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N

    2008-06-01

    A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.

  16. Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam

    NASA Astrophysics Data System (ADS)

    Feng, X.; Nornberg, M. D.; Craig, D.; Den Hartog, D. J.; Oliva, S. P.

    2016-11-01

    A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened Hβ emission and the spectrum of Doppler-shifted Hα emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

  17. Installation and start-up of the PDX neutral beam injection system

    SciTech Connect

    Williams, M.D.; Eubank, H.P.; Kozub, T.; Kugel, H.W.; Rossmassler, J.E.; Schilling, G.; VonHalle, A.

    1981-01-01

    The PDX Neutral Beam Injection System consists of four beamlines of basic PLT injector design with changes primarily related to the containment of increased beam power and pulse length. The beams are driven by four ORNL developed duopigatron ion sources rated at 50 kilovolts and delivering 1.5 megawatts H/degree/or 2 megawatts D/degree/each to the PDX target plasma. The early attainment of 8 megawatts of D/degree/injected into the PDX was due to thorough conditioning of each ion source by ORNL prior to delivery coupled with several field design changes and improvements made as a result of injector experience on the PLT.

  18. Heating efficiency of high-power perpendicular neutral-beam injection in PDX

    SciTech Connect

    Hawryluk, R.J.; Arunasalam, V.; Bell, M.

    1982-03-01

    The heating efficiency of high power (up to 7.2 MW) near-perpendicular neutral beam injection in the PDX tokamak is comparable to that of tangential injection in PLT. Collisionless plasmas with central ion temperatures up to 6.5 keV and central electron temperatures greater than 2.5 keV have been obtained. The plasma pressure, including the contribution from the beam particles, increases with increasing beam power and does not appear to saturate, although the parametric dependence of the energy confinement time is different from that observed in ohmic discharges.

  19. A calorimeter for measuring the neutral beam power reaching the plasma

    SciTech Connect

    Menon, M.M.; Edmonds, P.H.; Hahs, C.L.

    1987-01-01

    A calorimeter has been designed to measure the neutral beam power reaching the Advanced Toroidal Facility (ATF) plasma. The high-heat-flux surface of this calorimeter is made of an array of graphite tiles. The calorimeter, which will be located in the adapter section between the ATF vacuum vessel and the beam line, is retractable so that it can be moved away from the plasma without opening the vacuum vessel during normal ATF operation. Two rows of thermocouples mounted perpendicular to each other allow determination of the beam profile. This paper presents the details of the design and fabrication of the calorimeter. 5 refs., 6 figs.

  20. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Bell, M. G.; Bol, K.; Boyd, D.; Brau, K.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.; Darrow, D. S.; Eubank, H.; Fonck, R. J.; Goldston, R.; Grek, B.; Jaehnig, K. P.; Johnson, D.; Kaita, R.; Kugel, H.; Leblanc, B.; Manickam, J.; Manos, D.; Mansfield, D.; Mazzucato, E.; McCann, R.; McCune, D.; McGuire, K.; Mueller, D.; Murdock, A.; Okabayashi, M.; Okano, K.; Owens, D. K.; Post, D. E.; Reusch, M.; Schmidt, G. L.; Sesnic, S.; Slusher, R.; Suckewer, S.; Surko, C.; Takahashi, H.; Tenney, F.; Towner, H.; Valley, J.

    1984-05-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H α emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but can be degraded due either to the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Tc near the plasma edge (˜ 450 eV) with sharp radial gradients (˜ 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix.

  1. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering.

    PubMed

    Liao, Wenlin; Dai, Yifan; Liu, Zongzheng; Xie, Xuhui; Nie, Xuqing; Xu, Mingjin

    2016-02-22

    Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

  2. Large area superconducting YBa 2Cu 3O 7-x films grown by single target ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gauzzi, Andrea; Lucía, Maria L.; Kellett, Bruce J.; James, Jonathan H.; Pavuna, Davor

    1991-10-01

    We have demonstrated, by using a simple single YBa 2Cu 3O 7- x target ion beam system that, with a sufficiently low power ion beam, preferential sputtering is avoided and high-quality YBa 2Cu 3O 7- x films are deposited over areas larger than ≈ 30 cm 2 in a reproducible way. As-deposited films on <100>SrTiO 3 are 50-100 nmthick, c-oriented and show the following reproducible electrical properties (within the given variations): Tc0 =90±0.5 K, transitions widths less than 1 K, j inc(77 K)=1.0-1.2× 10 6 A cm -2, ϱ(300 K)=300±50μΩ cm, ϱ(300 K)/ ϱ(100 K)=2.9±0.1. The extrapolated residual resistivity ϱ res(O K) is between 0 and 5% of ϱ(300 K).

  3. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering

    PubMed Central

    2012-01-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. PMID:23031449

  4. Tunneling behavior in ion-assist ion-beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet; Pandya, Dinesh K.

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Dual ion beam sputtered MgO barrier for MTJs. ► ∼12% TMR at 60 K. ► Glazman and Matveev model fitted for quantification of elastic and inelastic tunneling conductance through barrier. -- Abstract: Magnetic tunnel junctions (MTJs) consisting of CoFe and NiFe as ferromagnetic electrodes and MgO as insulating barrier fabricated through in situ shadow masking employing ion beam sputtering are studied for their tunneling magnetoresistance (TMR) and temperature dependence of the tunneling conductance behavior. The tunneling characteristics of these MTJs exhibited barrier height of 0.7 eV and width of 3.3 nm. These MTJs possessed ∼12% TMR at 60 K. The temperature dependence of conductance behavior of these junctions have revealed finite contributions from inelastic tunneling through the barrier via hopping conduction via present localized states which arise due to the presence of ionic interstitial defects in the MgO oxide barrier. The fitting of the data reveals that thirteenth order of hopping conduction is operative through MgO barrier.

  5. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering.

    PubMed

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-10-03

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.

  6. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    SciTech Connect

    Paterson, J.A.; Biagi, L.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-12-01

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities.

  7. Broad, intense, quiescent beam of singly charged metal ions obtained by extraction from self-sputtering plasma far above the runaway threshold

    SciTech Connect

    Anders, Andre; Oks, Efim

    2009-05-19

    Dense metal plasmas obtained by self-sputtering far above the runway threshold are well suited to generate intense quiescent ion beams. The dilemma of high current density and charge state purity can be solved when using target materials of low surface binding energy by utilizing non-resonant exchange reactions before ion extraction. Space-charge-limited quiescent beams of Cu+, Zn+, and Bi+ with ~;;10 mA/cm2 have been obtained through multi-aperture gridded ion extraction up to 45 kV from self-sputtering plasmas.

  8. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks.

    PubMed

    O'Connor, A P; Grussie, F; Bruhns, H; de Ruette, N; Koenning, T P; Miller, K A; Savin, D W; Stützel, J; Urbain, X; Kreckel, H

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼7.4% for H(-) at a beam energy of 10 keV and ∼3.7% for C(-) at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table. PMID:26628128

  9. Overview of the negative ion based neutral beam injectors for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Boilson, D.; Chareyre, J.; Choi, C.-H.; Decamps, H.; El-Ouazzani, A.; Geli, F.; Graceffa, J.; Hemsworth, R.; Kushwah, M.; Roux, K.; Shah, D.; Singh, M.; Svensson, L.; Urbani, M.

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D- negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H0 at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds—for the prototype route chosen—will soon be ready to start.

  10. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    NASA Astrophysics Data System (ADS)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  11. Summary of the status of negative-ion-based neutral beams

    SciTech Connect

    Cooper, W.S.

    1983-01-01

    Negative-ion-based neutral beam systems can perform multiple functions for fusion reactors, such as heating, current drive in tokamak reactors, and establishing and maintaining potential barriers in tandem mirror reactors. Practical systems operating continuously at the 200 keV, 1 MW level can be built using present-day technology. Ion sources have been demonstrated that produce D/sup -/ beams with <5% electron content, and that operate at linear current densities that are within a factor of 2 of what conservatively designed accelerator/transport structures can handle. Concepts are in hand for transporting the negative ion beam through a neutron maze before neutralization, thus permitting a radiation-hardened beamline. With an advanced laser photoneutralizer, overall system power efficiencies of 70% should be possible. A national program is being planned to achieve the goal of application of 475 keV systems on a mirror ETR in 1994.

  12. Overview of the negative ion based neutral beam injectors for ITER.

    PubMed

    Schunke, B; Boilson, D; Chareyre, J; Choi, C-H; Decamps, H; El-Ouazzani, A; Geli, F; Graceffa, J; Hemsworth, R; Kushwah, M; Roux, K; Shah, D; Singh, M; Svensson, L; Urbani, M

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start.

  13. Overview of the negative ion based neutral beam injectors for ITER.

    PubMed

    Schunke, B; Boilson, D; Chareyre, J; Choi, C-H; Decamps, H; El-Ouazzani, A; Geli, F; Graceffa, J; Hemsworth, R; Kushwah, M; Roux, K; Shah, D; Singh, M; Svensson, L; Urbani, M

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start. PMID:26932111

  14. Fast-ion Characteristics in Colliding FRCs with Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Clary, Ryan; Smirnov, Artem; Korepanov, Sergey; Dettrick, Sean; TAE Team Team

    2011-10-01

    Tri Alpha Energy's C-2 device aims to explore confinement properties of colliding Field-Reversed Configuration (FRC) plasmas, augmented with neutral beam injection. Naturally, it is desirable to understand the general characteristics of the resulting fast- ion population. For this purpose, several 16 channel silicone-based Neutral Particle Bolometers (NPB) have been designed and installed on the C-2 device, measuring charge-exchanged fast-neutrals originating from the fast-ion population. We present results illustrating the effects on fast-ions from wall recycling and from the n = 2 rotation instability. In addition we find good agreement between NPB measurements and Monte Carlo simulations. The NPB diagnostics are a spatially resolved complement to the energy resolved Neutral Particle Analyzers installed on the C-2 device.

  15. Nonlinear theory of electron neutralization waves in ions beams with dissipation

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analytical theory of nonlinear neutralization waves generated by injection of electrons from a grid in the direction of a homogeneous ion beam of uniform velocity and infinite extension is presented. The electrons are assumed to interact with the ions through the self-consistent space charge field and by strong collective interactions, while diffusion in the pressure gradient is disregarded (zero-temperature approximation). The associated nonlinear boundary-value problem is solved in closed form by means of a von Mises transformation. It is shown that the electron gas moves into the ion space in the form of a discontinuous neutralization wave, which exhibits a periodic field structure (incomplete neutralization). This periodic wave structure is damped out by intercomponent momentum transfer - i.e., after a few relaxation lengths a quasi-neutral plasma results.

  16. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    NASA Astrophysics Data System (ADS)

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  17. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  18. Ion beam analysis and co-sputtering simulation (CO-SS) of bi-metal films produced by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Andrade, E.; Muhl, S.; Canto, C.; de Lucio, O.; Chávez, E.; Rocha, M. F.; Garcés-Medina, E.

    2016-03-01

    Magnetron sputtering is widely used to deposit thin films on different types of substrates. An important application of this method is to make multicomponent thin films using co-sputtering, where two or more elements are included in the target. The thickness and elemental composition of the films depend on the experimental parameters used, the system geometry and the spatial distribution of the elements in the target. If the target is made of two spatially separate pieces of the materials, then the composition of the deposit depends on a combination of the relative areas, the sputtering yield and the angular distribution of the emission of the sputtered flux of each material. In this work, a co-sputtering simulation program, known as CO-SS, was developed to simulate the thickness and composition of metal films produced by DC magnetron sputtering (Al) and co-sputtering (Al + Ti). The CO-SS code models the angular distribution of particles ejected by sputtering from the target, where this is assumed to vary as cosn β , where n is a free parameter and β is the angle of ejection relative to the normal to the surface of the target, and the sputtering yield of each material. The program also takes into account other geometry factors such as the distance between the target and the substrate, and the size of the substrate. Rutherford backscattering (RBS) using 4He was employed to measure the thickness and the composition of the films deposited on glass cover slides in order to assess the CO-SS program. The film thickness was also measured by profilometry. The CO-SS code was found to accurately model the experimental results for both the Al and Ti/Al films. The CO-SS code is freely available for use from http://demonstrations.wolfram.com/CoSputteringSimulationCOSS/.

  19. Physical Sputtering vs. Gas Assisted Etching of Silicon Dioxide with a Gallium Focused Ion Beam: Elucidating Experiments via Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Timilsina, Rajendra; Tan, Shida; Livengood, Richard; Rack, Philip

    2015-03-01

    In order to increase ion beam nanomachining precision and improve imaging resolution, fine tuning of the ion beam profile is absolutely necessary. To understand the effects of ion beam tails, experiments and Monte Carlo simulations were conducted with a 40 keV gallium beam with and without gas assisted chemical etching. A gallium ion beam was scanned in an area of 25x25 nm2 on a silicon dioxide film with and without a localized XeF2 gas at 1pA current. Four different ion doses (0.23, 0.9, 1.8 and 3.6 nC/ μm2) were experimentally considered to study the sputtered and etched via profiles. Monte Carlo simulations using EnvizION program was performed to elucidate the sputtered and gas-assisted etch process. New features including gas-assisted etching by secondary electrons and a binary collision model to dissociate the precursor molecules were introduced. Sputtered via and gas assisted etching (XeF2 precursor gas) via profiles with various gas-assist pressures were studied to understand the experimental temporal behavior. Various contributions including sputtering from primary, forward scattered, backscattered ions as well as etching by recoiled atoms and secondary electrons will be discussed.

  20. Ion transport studies on the PLT tokamak during neutral beam injection

    SciTech Connect

    Suckewer, S.; Cavallo, A.; Cohen, S.; Daughney, C.; Denne, B.; Hinnov, E.; Hosea, J.; Hulse, R.; Hwang, D.; Schilling, G.

    1983-12-01

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10/sup 3/ cm/sec superposed to a diffusion coefficient of the order 10/sup 4/ cm/sup 2//sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element.

  1. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  2. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  3. Calculations of Neutral Beam Ion Confinement for the National Spherical Torus Experiment

    SciTech Connect

    M.H. Redi; D.S. Darrow; J. Egedal; S.M. Kaye; R.B. White

    2002-06-27

    The spherical torus (ST) concept underlies several contemporary plasma physics experiments, in which relatively low magnetic fields, high plasma edge q, and low aspect ratio combine for potentially compact, high beta and high performance fusion reactors. An important issue for the ST is the calculation of energetic ion confinement, as large Larmor radius makes conventional guiding center codes of limited usefulness and efficient plasma heating by RF and neutral beam ion technology requires minimal fast ion losses. The National Spherical Torus Experiment (NSTX) is a medium-sized, low aspect ratio ST, with R=0.85 m, a=0.67 m, R/a=1.26, Ip*1.4 MA, Bt*0.6 T, 5 MW of neutral beam heating and 6 MW of RF heating. 80 keV neutral beam ions at tangency radii of 0.5, 0.6 and 0.7 m are routinely used to achieve plasma betas above 30%. Transport analyses for experiments on NSTX often exhibit a puzzling ion power balance. It will be necessary to have reliable beam ion calculations to distinguish among the source and loss channels, and to explore the possibilities for new physics phenomena, such as the recently proposed compressional Alfven eigenmode ion heating.

  4. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    SciTech Connect

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.

  5. Development of thin foils for use in generating neutral particle beams

    SciTech Connect

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.; Culpepper, C.A.; McCulla, W.H.; Nolan, T.A.; Hughes, M.R.

    1986-01-01

    The Isotope Research Materials Laboratory (IRML) was requested to prepare large-area, ultrathin aluminum and carbon foils for use in beam neutralization experiments. There were two major parts to this request. The first was to immediately provide a number of 5-cm-dia foils 5 to 20 ..mu..g/cm/sup 2/ thick for use in experiments at the Fusion Materials Irradiation Test (FMIT) facility and at Argonne National Laboratory (ANL). The second, longer-term request was to develop methods to prepare 25-cm x 25-cm, 10-..mu..g/cm/sup 2/ aluminum neutralizer foils. Both parts of the request have been successfully met.

  6. Energetic beams of negative and neutral hydrogen from intense laser plasma interaction

    SciTech Connect

    Abicht, F.; Priebe, G.; Braenzel, J.; Schnürer, M.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Revet, G.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-12-16

    We present observations of intense beams of energetic negative hydrogen ions and fast neutral hydrogen atoms in intense (5 × 10{sup 19} W/cm{sup 2}) laser plasma interaction experiments, which were quantified in numerical calculations. Generation of negative ions and neutral atoms is ascribed to the processes of electron capture and loss by a laser accelerated positive ion in the collisions with a cloud of droplets. A comparison with a numerical model of charge exchange processes provides information on the cross section of the electron capture in the high energy domain.

  7. Ion beam induced surface patterns due to mass redistribution and curvature-dependent sputtering

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Zhang, Kun; Hofsäss, Hans

    2012-12-01

    Recently it was reported that ion-induced mass redistribution would solely determine nano pattern formation on ion-irradiated surfaces. We investigate the pattern formation on amorphous carbon thin films irradiated with Xe ions of energies between 200 eV and 10 keV. Sputter yield as well as number of displacements within the collision cascade vary strongly as function of ion energy and allow us to investigate the contributions of curvature-dependent erosion according to the Bradley-Harper model as well as mass redistribution according to the Carter-Vishnyakov model. We find parallel ripple orientations for an ion incidence angle of 60° and for all energies. A transition to perpendicular pattern orientation or a rather flat surface occurs around 80° for energies between 1 keV and 10 keV. Our results are compared with calculations based on both models. For the calculations we extract the shape and size of Sigmund's energy ellipsoid (parameters a, σ, μ), the angle-dependent sputter yield, and the mean mass redistribution distance from the Monte Carlo simulations with program SDTrimSP. The calculated curvature coefficients Sx and Sy describing the height evolution of the surface show that mass redistribution is dominant for parallel pattern formation in the whole energy regime. Furthermore, the angle where the parallel pattern orientation starts to disappear is related to curvature-dependent sputtering. In addition, we investigate the case of Pt erosion with 200 eV Ne ions, where mass redistribution vanishes. In this case, we observe perpendicular ripple orientation in accordance with curvature-dependent sputtering and the predictions of the Bradley-Harper model.

  8. Quantitative Surface Analysis of a Binary Drug Mixture—Suppression Effects in the Detection of Sputtered Ions and Post-Ionized Neutrals

    NASA Astrophysics Data System (ADS)

    Karras, Gabriel; Lockyer, Nicholas P.

    2014-05-01

    A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.

  9. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    SciTech Connect

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  10. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  11. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    PubMed

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-28

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.

  12. Development of the plasma generator for a long pulse 10 x 40 neutral beam

    SciTech Connect

    Pincosy, P.A.; Ehlers, K.W.; Lietzke, A.F.; Owren, H.M.; Paterson, J.A.; Pyle, R.V.; Vella, M.C.

    1986-11-01

    Users of fusion devices have identified heating requirements for positive ion based neutral beams to include energies of 80 or 120 kV with pulse length up to 30 s. Additional requirements are low beam divergence (0.3/sup 0/ x 1.0/sup 0/; 1/e half angles), low impurity (less than 1%), high species (over 80% atomic), and cathode lifetime exceeding 5 h of beam operation. Accelerator design remains as an engineering problem, whereas most of the performance goals have required development of the plasma generator. Problems of concern which relate to the performance goals are the heat dissipation, magnetic field configuration, and cathode placement. The plasma generator was tested on TS IIA (the plasma generator testing facility) which does not have beam extraction capability but is used to evaluate efficiency, operating conditions, arc notching characteristics, species, plasma uniformity, and cathode conditioning. The source, consisting of the plasma generator mounted on the long pulse accelerator was mounted on NBETF (Neutral Beam Engineering Test Facility) for beam testing. During beam operation the back-streaming electrons add power to the source and affect the arc operation. Source durability and stability were studied at 80 kV and 40 A of accelerator current (deuterium). The arc efficiency was higher than the value used for the design. Power loading from back-streaming electrons was much less than the design level. With feedback control, plasma density and accel current were constant to +- 2% during 30-s shots. The beam atomic fraction of 84%-88% (deuterium) was slightly higher than measured on TS IIA. Cathode durability was tested by operating over 500, 30-s full shots at 80 kV and 40 A of deuterium. Arc conditioning was found to be an important phase to avoid filament damage.

  13. Simulation And Design Of A Reflection Magnet For The EAST Neutral Beam System

    SciTech Connect

    Zhen Liangli; Dong Huchun

    2011-09-26

    The simulation and design of a reflection magnet to be installed in the Experimental Advanced Superconducting Tokamak (EAST) neutral beam injection system are reported. A parametric design and simulation for the reflection magnet was carried out. For a deuterium beam with 42 cm as the bending radius, the intensity of reflection magnet field is about 1376 Gs at the energy of 80 keV. In order to determine position of the ion dump and the surface power load, a particle simulation with Monte Carlo was developed to study ion trajectories. In addition, the louver design is introduced.

  14. Slow down of a globally neutral relativistic e‑e+ beam shearing the vacuum

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Silveirinha, M. G.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    The microphysics of relativistic collisionless shear flows is investigated in a configuration consisting of a globally neutral, relativistic {{e}-}{{e}+} beam streaming through a hollow plasma/dielectric channel. We show through multidimensional particle-in-cell simulations that this scenario excites the mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the {{e}-}{{e}+} beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam’s kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.

  15. Fabrication and testing of the flexible transmission line to the TFTR neutral beam ion sources

    SciTech Connect

    Haughian, J.; Lou, K.; Byrns, R.; Fong, E.; Carrieri, J.

    1983-12-01

    The four Neutral Beam Injectors (NBI) on the TFTR Tokamak Test Cell (TTC) floor require twelve transmission lines to carry arc and filament power to the twelve ion sources from the basement. Also, the Neutral Beam Test Cell (NBTC) requires three lines but on the same floor through a wall. The same basic specifications apply: (1) center bundle operates at 120 kV with respect to the outer cables, (2) filament circuits at 6000 A, (3) arc circuits at 3000 A, (4) gradient grid, (5) accel grids in a quadrupole configuration, (6) multi wire control cable, (7) SF/sub 6/ environment, (7) flexible, (8) 36'' centerline bend radius and (9) hi-pot to 200 kV.

  16. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  17. Instrumentation and control of the Doublet III Neutral Beam Injector System

    SciTech Connect

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  18. Slow down of a globally neutral relativistic e-e+ beam shearing the vacuum

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Silveirinha, M. G.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    The microphysics of relativistic collisionless shear flows is investigated in a configuration consisting of a globally neutral, relativistic {{e}-}{{e}+} beam streaming through a hollow plasma/dielectric channel. We show through multidimensional particle-in-cell simulations that this scenario excites the mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the {{e}-}{{e}+} beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam’s kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.

  19. Neutral Beam Injection Requirements and Design Issues for the National Compact Stellarator Experiment

    SciTech Connect

    H.W. Kugel; H. Neilson; W. Reiersen; M. Zarnstorff

    2002-02-11

    The National Compact Stellarator Experiment (NCSX) will require 6 MW of 50 keV neutral beam injection (NBI) with initial pulse lengths of 500 msec and upgradeable to pulse lengths of 1.5 sec. This paper discusses the NCSX NBI requirements and design issues, and shows how these are provided by the candidate PBX-M [Princeton Beta Experiment-Modification] NBI system.

  20. Mode particle resonances during near-tangential neutral beam injection in large tokamaks

    SciTech Connect

    Kaita, R.; White, R.B.; Morris, A.W.; Fredrickson, E.D.; McGuire, K.M.; Medley, S.S.; Scott, S.D.

    1988-01-01

    Coherent magnetohydrodynamic modes have been observed during neutral beam injection in TFTR and JET. Periodic bursts of oscillations were detected with several plasma diagnostics, and Fokker-Planck calculations show that the populations of trapped particles in both tokamaks are sufficient to account for fishbone destabilization. Estimates of mode parameters are in reasonable agreement with the experiments, and they indicate that the fishbone mode may continue to affect the performance of intensely heated tokamaks. 13 refs., 1 fig., 1 tab.

  1. Structure and composition of zirconium carbide thin-film grown by ion beam sputtering for optical applications

    NASA Astrophysics Data System (ADS)

    Singh, Amol; Modi, Mohammed H.; Dhawan, Rajnish; Lodha, G. S.

    2014-04-01

    Thin film of compound material ZrC was deposited on Si (100) wafer using ion beam sputtering method. The deposition was carried out at room temperature and at base pressure of 3×10-5 Pa. X-ray photoelectron spectroscopy (XPS) measurements were performed for determining the surface chemical compositions. Grazing incidence x-ray reflectivity (GIXRR) measurements were performed to study the film thickness, roughness and density. From GIXRR curve roughness value of the film was found less than 1 nm indicating smooth surface morphology. Films density was found 6.51 g/cm3, which is close to bulk density. Atomic force microscopy (AFM) measurements were performed to check the surface morphology. AFM investigation showed that the film surface is smooth, which corroborate the GIXRR data. Figure 2 of the original article PDF file, as supplied to AIP Publishing, contained a PDF processing error. This article was updated on 12 May 2014 to correct that error.

  2. Tunneling conductance studies in the ion-beam sputtered CoFe/Mg/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2013-06-03

    Magnetic tunnel junctions consisting of CoFe(10 nm)/Mg(1 nm)/MgO(3.5 nm)/NiFe(10 nm) are grown at room temperature using dual ion beam sputtering via in-situ shadow masking. The effective barrier thickness and average barrier height are estimated to be 3.5 nm (2.9 nm) and 0.69 eV (1.09 eV) at 290 K (70 K), respectively. The tunnel magnetoresistance value of 0.2 % and 2.3 % was observed at 290 K and 60 K, respectively. The temperature dependence of tunneling conductance revealed the presence of localized states present within the forbidden gap of the MgO barrier leading to finite inelastic spin independent tunneling contributions, which degrade the TMR value.

  3. Structural and magnetic properties of ion beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet; Svedlindh, Peter

    2016-05-01

    Co2FeAl full Heusler alloy thin films grown at different temperatures on Si(100) substrates using ion beam sputtering system have been investigated. X-ray diffraction (XRD) patterns revealed the A2 disordered phase in these films. The deduced lattice parameter slightly increases with increase in the growth temperature. The saturation magnetization it is found to increase with increase in growth temperature. The magnetic anisotropy has been studied using angle dependent magneto-optical Kerr effect. In the room temperature deposited film, the combination of cubic and uniaxial anisotropy have been observed with weak in-plane uniaxial anisotropy which increases with growth temperature. The uniaxial anisotropy is attributed to the anisotropic interfacial bonding in these Co2FeAl /Si(100) heterostructures.

  4. Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

    SciTech Connect

    Chan, J.; Fu, T.; Cheung, N.W.; Ross, J.; Newman, N.; Rubin, M.

    1993-04-01

    Crystalline aluminum nitride (AlN) thin films were formed on various substrates by using RF magnetron sputtering of an A1 target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AlN/(111) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 C, while the crystallinity of AlN/(0001) A1{sub 2}O{sub 3} samples improved from 700 to 850 C. The optical absorption characteristics of the AlN/(0001) A1{sub 2}O{sub 3} films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

  5. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  6. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  7. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-03-01

    We investigated the effects of additives on the preferred orientation of the Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion beam sputtering. A mosaic target, consisting of a single crystal (100) Mn-Zn ferrite with a metal strip on it, was employed as the target. The preferred orientation of the ferrite films was (hhh) for the target with or without Fe and Zn additives, and (h00) for Ti addition. In the case of Cu addition, a weak (311) orientation appeared with a strong (hhh) preferred orientation. The origin of the changes in the preferred orientation with different additives was discussed. The easy axis of magnetization, however, lay in the direction parallel to the film plane due to large shape anisotropy, irrespective of the preferred orientation.

  8. Thickness dependence of the preferred orientation of Mn-Zn ferrite thin films deposited by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-07-01

    The thickness dependence of the preferred orientation of the Cu or Ti added Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion-beam sputtering was investigated. A mosaic target, consisting of a single-crystal (110) Mn-Zn ferrite with a metal strip on it, was employed as the target. The (hhh) preferred orientation, formed at the initial growth stage, of the Cu added Mn-Zn ferrite film changed to the (h00) preferred orientation with increasing film thickness, while the initially formed (h00) preferred orientation of the Ti added one was enhanced with increasing film thickness. Such different behaviors were discussed in terms of the surface energy and the preferred growth orientation of the ferrite film. The thickness dependence of magnetic properties of the ferrite films was also investigated.

  9. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D.

    PubMed

    Thomas, D M; Grierson, B A; Muñoz Burgos, J M; Van Zeeland, M A

    2012-10-01

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D(α) emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  10. Cold-cathode Penning discharge-based ionizer for detection of hyperthermal neutral beams.

    PubMed

    Abolmasov, S N; Samukawa, S

    2007-07-01

    Plasmas produced in a cold-cathode Penning discharge have been studied for possible use as an active ionizing medium in commercial quadrupole mass/energy analyzers for detection of low-energy neutral beams. Two distinct Penning discharge modes have been examined: (1) high-pressure (HP) mode and (2) high magnetic field (HMF) mode. It is shown that the ionization efficiency in the HP mode is independent of the length of ionization region; however, somewhat high working pressures (p>10(-4) Torr) and large discharge currents limit the practical use of this mode. This is not the case in the HMF mode, which appears at lower pressures, with an effective ionization region length of the order of electron cyclotron radius. The design and operation of a compact (5x4x4 cm(3)), low-maintenance ionizer based on a Penning cell with permanent magnets is described. The ability to ionize 40 eV neutral-argon beams with subsequent detection in a Hiden EQP energy-resolved mass spectrometer is shown. The ionization efficiency of the ionizer was found to be as high as 10(-3). Unlike conventional electron impact ionizers, the Penning discharge configuration allows to eliminate the thermal background component in the detected signal. The ionizer has potential application for the detection of hyperthermal neutral beams of various species.

  11. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.; Hayes, S.L.; Johnson, G.A.; Lowrance, J.L.; Shah, P.A.; Sichta, P.; Sleaford, B.W.; Williams, M.D.; Zucchino, P.M.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15/sup 0/ and accounting for up to 30% of the extracted power.

  12. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric M.; Warwick, Tony; Braun, Stefan; Yashchuk, Valeriy V.; Padmore, Howard A.

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  13. Correlation between properties of HfO2 films and preparing parameters by ion beam sputtering deposition.

    PubMed

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Leng, Jian; Sun, Peng; Zhuang, Kewen; Ji, Yiqin; Cheng, Xinbin; Jiao, Hongfei; Wang, Zhanshan; Wu, Bingjun

    2014-02-01

    Ion beam sputtering is one of the most important technologies for preparing hafnium dioxide thin films. In this paper, the correlation between properties of hafnium dioxide thin films and preparing parameters was systematically researched by using the orthogonal experiment design method. The properties of hafnium oxide films (refractive index, extinction coefficient, deposition rate, stress, and inhomogeneity of refractive index) were studied. The refractive index, extinction coefficient, physical thickness, and inhomogeneity of refractive index were obtained by the multiple wavelength curve-fitting method from the reflectance and transmittance of single layers. The stress of thin film was measured by elastic deformation of the thin film-substrate system. An orthogonal experimental strategy was designed using substrate temperature, ion beam voltage, ion beam current, and oxygen flow rate as the variables. The experimental results indicated that the temperature of the substrate is the key influencing parameter on the properties of hafnium oxide films, while other preparing parameters are also correlated with specific properties. The experimental results are significant for selecting proper parameters for preparing hafnium oxide films with different applications.

  14. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    PubMed

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  15. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  16. Temperature dependence of the optical properties of ion-beam sputtered ZrN films

    NASA Astrophysics Data System (ADS)

    Larijani, M. M.; Kiani, M.; Jafari-Khamse, E.; Fathollahi, V.

    2014-05-01

    The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8-6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity.

  17. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  18. A new Cs sputter ion source with polyatomic ion beams for SIMS applications.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Phys.-Tech. Inst.; Ghent Univ.; Univ. Antwerp

    2007-08-02

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  19. Specific features of measuring the isotopic composition of hydrogen ions in ITER plasma by using neutral particle diagnostics under neutral beam injection conditions

    SciTech Connect

    Afanasyev, V. I.; Goncharov, P. R.; Mironov, M. I.; Nesenevich, V. G. Petrov, M. P.; Petrov, S. Ya.; Sergeev, V. Yu.

    2015-12-15

    Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energy range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.

  20. Development of ion source with a washer gun for pulsed neutral beam injection.

    PubMed

    Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N

    2008-06-01

    A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber. PMID:18601403

  1. Physics design of the injector source for ITER neutral beam injector (invited).

    PubMed

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.

  2. Physics design of the injector source for ITER neutral beam injector (invited)

    SciTech Connect

    Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G. Veltri, P.; Cavenago, M.

    2014-02-15

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.

  3. Neutral beams in two-ribbon flares and in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Young, A.

    1990-01-01

    The current sheet created in the wake of an erupting filament during a two-ribbon flare is studied. A comparison with the geomagnetic tail shows that the physics of these systems is very similar, and therefore the existence of super Dreicer fields and the generation of netural beams traveling down the postflare loops with small pitch angles may be expected. The observational evidence for neutral beams in flares is reviewed and found to be generally supportive, while contracting the widely held hypothesis of electron beams. A dimensional analysis further demonstrates that the results for self-consistent numerical simulations of the current sheet in the geomagnetic tail can directly be scaled to the coronal current sheet, and the scaling parameters are derived.

  4. Improved plasma generator for the PLT/PDX neutral beam injectors

    SciTech Connect

    Schilling, G.

    1981-01-01

    Neutral beam injection heating of experimental plasmas confined in the PLT tokamak was initiated in the summer of 1977. Four injectors developed and fabricated by the Fusion Energy Division of the Oak Ridge National Laboratory (1)became operational by the spring of 1978, and hot plasmas were achieved in the summer of 1978. Since the total power injected into the tokamak simultaneously by all four beams fell short of that expected (3MW H/degree/) on the basis of single-beam test stand operation, and it had been quite difficult to drive some of the ion sources up to the higher power levels, injector improvement was attempted. It was possible to improve the ion source plasma generator performance by a relatively simple change in arc arc circuit.

  5. Numerical simulation for the accelerator of the KSTAR neutral beam ion source.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang Ryul

    2010-02-01

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  6. Prototype testing for the US common long pulse neutral beam source

    SciTech Connect

    Vella, M.C.; Anderson, O.A.; Berkner, K.H.; Chan, C.F.; Cooper, W.S.; Lietzke, A.F.; Owren, H.M.; Paterson, J.A.; Pincosy, P.A.; Pyle, R.V.

    1985-11-01

    The US positive ion neutral beam program has developed a single design, the Common Long Pulse Source (CLPS), which will provide multi-second beam heating for TFTR, MFTF-B and GA's Big D. Following competitive prototype testing, the LBL design was selected for industrialization because it could both meet the performance requirements of all three users, and fit within all space constraints. The LBL accelerator design is based on a slot type of aperture, with water cooled molybdenum grid tubes. The plasma generator is a magnetic bucket arc chamber, with multiple tungsten wire filaments. Beam test results are presented for the 10 x 40 cm prototype source with 80 kV and 120 kV gaps. The initial test results from the first 12 x 48 cm CLPS industrial plasma generator, made by RCA, are also presented.

  7. Collisional bulk ion transport and poloidal rotation driven by neutral beam injection

    SciTech Connect

    Newton, Sarah L.; Helander, Per; Catto, Peter J.

    2007-06-15

    Neutral beam injection (NBI) is known to significantly affect radial transport in a tokamak plasma. Furthermore, recent observations have shown poloidal velocities, in the presence of NBI, significantly in excess of the standard neoclassical value. Motivated by this, the additional collisional radial bulk ion fluxes of particles, heat and toroidal angular momentum, and the poloidal velocity, driven by fast ions from NBI have been evaluated for a low-collisionality, pure plasma, with strong toroidal rotation and arbitrary aspect ratio. Higher order velocity space structure of the fast ion distribution function can be significant, whilst the effects of toroidal acceleration caused by strong NBI dominate at large aspect ratio. The driven poloidal velocity depends strongly on system parameters, becoming larger at higher beam density and lower beam energy.

  8. Chord integrated neutral particle diagnostic data analysis for neutral beam injection and ion cyclotron radio frequency heated plasma in a complex Large Helical Device geometry

    SciTech Connect

    Veshchev, E. A.; Goncharov, P. R.; Ozaki, T.; Sudo, S.; Lyon, J. F.

    2006-10-15

    Energy and angle-resolved measurements of charge exchange neutral particle fluxes from the plasma provide information about T{sub i}, as well as non-Maxwellian substantially anisotropic ion distribution tails due to neutral beam injection (NBI) and ion cyclotron radio frequency (ICRF) heating. The measured chord integral neutral flux calculation scheme for the Large Helical Device magnetic surface geometry is given. Calculation results are shown for measurable atomic energy spectra corresponding to heating-induced fast ion distributions from simplified Fokker-Planck models. The behavior of calculated and experimental suprathermal particle distributions from NBI and ICRF heated plasma is discussed in the context of the experimental data interpretation.

  9. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    SciTech Connect

    Heon Kim, Seong; Heo, Sung; Ihn, Soo-Ghang; Yun, Sungyoung; Hwan Park, Jong; Chung, Yeonji; Lee, Eunha; Park, Gyeongsu; Yun, Dong-Jin

    2014-06-16

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells.

  10. A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator

    SciTech Connect

    McCarthy, Kieran J.; Carmona, J. M.; Balbin, R.

    2008-10-22

    We summarize the TJ-II stellarator device give an outline of a vacuum ultraviolet spectrometer used for performing spectral surveys specialized plasma studies. Next, we report the main impurities observed in hot plasmas created maintained by electron cyclotron resonance neutral beam injection heating with lithium coated wall conditioning. Finally, we report broad emission structures that have been observed close to strong oxygen emission lines during neutral beam injection heating phases we elucidate their possible origin.

  11. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    SciTech Connect

    Kaye, S.M.; Bell, M.; Bol, K.; Boyd, D.; Brau, K.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1983-11-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub ..cap alpha../ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix.

  12. A detector to measure transverse profiles and energy of an H- beam using gas stripping and laser photo neutralization

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Degen, C.; DeSanto, L.; Raparia, D.

    2012-02-01

    A detector has been developed at Brookhaven National Lab (BNL) [1] and installed in the exit beam line of the BNL H- linear accelerator (linac) to measure transverse beam profiles, average beam energy and beam-energy spread. These beam properties are found by deflecting beam electrons, produced by both gas stripping and laser neutralization, into a detector. An H- ion, with a first ionization potential of 0.756 eV, can be neutralized by collisions with background gas and by absorbing the energy of a photon of wavelength shorter than 1.64 m. Free electrons produced by both mechanisms are deflected out of the H- beam by a dipole magnet and into a chamber which measures electron charge vs. energy. Ion-beam profiles are measured by scanning a laser beam across the H- beam and measuring the laser-stripped electron charge vs. laser position. Beam energy is deduced by measuring either the laser-stripped or gas-stripped electron charge which passes through a retarding-voltage grid vs. the grid voltage. Since beam electrons have the same velocities as beam protons, the beam proton energy is the electron energy multiplied by mp/me=1836, [E=(γ-1)mc2].

  13. Improvement of a block co-polymer (PS-b-PMMA)-masked silicon etch profile using a neutral beam

    NASA Astrophysics Data System (ADS)

    Yun, Deokhyun; Park, Jinwoo; Kim, Hwasung; Mun, Jeongho; Kim, Sangouk; Kim, Kyongnam; Yeom, Geunyoung

    2016-09-01

    Bottom-up block copolymer (BCP) lithography mediated by self-assembly of polystyrene (PS)/poly-methyl methacrylate (PMMA) is widely used as an alternative patterning method for various deep nanoscale devices, such as optical devices and transistors, replacing conventional top-down photolithography. However, the nanoscale BCP mask features formed on the substrates after direct self-assembly of BCP tend to be easily damaged during exposure to the following plasma processing. In this study, silicon masked with a nanoscale BCP mask (PS) was etched by irradiating with a Cl2/Ar neutral beam in addition to a Cl2/Ar ion beam, and the effect of a Cl2/Ar neutral beam instead of a Cl2/Ar ion beam on damage to the PS mask and the silicon etch characteristics of nanodevices was investigated. The results show that the use of a neutral beam instead of an ion beam decreased degradation of the BCP mask during etching; therefore, a more anisotropic silicon etch profile in addition to improved etch selectivity of silicon compared to the BCP mask was observed. Moreover, by using the neutral beam, the sidewall roughness and sidewall angle also improved due to the decreased surface charge and reduced damage to the nanoscale PS mask resulting from use of a highly directional radical beam instead of a conventional ion-based beam.

  14. Improvement of a block co-polymer (PS-b-PMMA)-masked silicon etch profile using a neutral beam.

    PubMed

    Yun, Deokhyun; Park, Jinwoo; Kim, Hwasung; Mun, Jeongho; Kim, Sangouk; Kim, Kyongnam; Yeom, Geunyoung

    2016-09-23

    Bottom-up block copolymer (BCP) lithography mediated by self-assembly of polystyrene (PS)/poly-methyl methacrylate (PMMA) is widely used as an alternative patterning method for various deep nanoscale devices, such as optical devices and transistors, replacing conventional top-down photolithography. However, the nanoscale BCP mask features formed on the substrates after direct self-assembly of BCP tend to be easily damaged during exposure to the following plasma processing. In this study, silicon masked with a nanoscale BCP mask (PS) was etched by irradiating with a Cl2/Ar neutral beam in addition to a Cl2/Ar ion beam, and the effect of a Cl2/Ar neutral beam instead of a Cl2/Ar ion beam on damage to the PS mask and the silicon etch characteristics of nanodevices was investigated. The results show that the use of a neutral beam instead of an ion beam decreased degradation of the BCP mask during etching; therefore, a more anisotropic silicon etch profile in addition to improved etch selectivity of silicon compared to the BCP mask was observed. Moreover, by using the neutral beam, the sidewall roughness and sidewall angle also improved due to the decreased surface charge and reduced damage to the nanoscale PS mask resulting from use of a highly directional radical beam instead of a conventional ion-based beam. PMID:27528588

  15. Contamination removal by ion sputtering

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    1990-11-01

    Experimental investigations are described for ion-beam sputtering and RF-plasma sputtering to determine the effectiveness of the methods for removing contaminants from an optical surface. The effects of ion-beam sputtering are tested with an ion gun and measured by mounting a 5-MHz quartz-crystal microbalance on a sample holder and simulating spacecraft contamination. RF-plasma sputtering involves the application of an alternating electric field to opposing electrodes immersed in a low density gas, and is tested with the same setup. The energy dependence of the sputtering yields is measured to determine whether the different contaminants are removed and whether the mirror surface is affected. Ion-beam sputtering removes all contaminants tested, but also affects the mirror surface at high energies. When the correct DC bias is applied, RF sputtering can remove the contaminants without removing the metal-mirror surface.

  16. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  17. Modeling activities on the negative-ion-based Neutral Beam Injectors of the Large Helical Device

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Serianni, G.; Veltri, P.; Cavenago, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.

    2011-09-26

    At the National Institute for Fusion Science (NIFS) large-scaled negative ion sources have been widely used for the Neutral Beam Injectors (NBIs) mounted on the Large Helical Device (LHD), which is the world-largest superconducting helical system. These injectors have achieved outstanding performances in terms of beam energy, negative-ion current and optics, and represent a reference for the development of heating and current drive NBIs for ITER.In the framework of the support activities for the ITER NBIs, the PRIMA test facility, which includes a RF-drive ion source with 100 keV accelerator (SPIDER) and a complete 1 MeV Neutral Beam system (MITICA) is under construction at Consorzio RFX in Padova.An experimental validation of the codes has been undertaken in order to prove the accuracy of the simulations and the soundness of the SPIDER and MITICA design. To this purpose, the whole set of codes have been applied to the LHD NBIs in a joint activity between Consorzio RFX and NIFS, with the goal of comparing and benchmarking the codes with the experimental data. A description of these modeling activities and a discussion of the main results obtained are reported in this paper.

  18. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  19. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  20. Off-axis Neutral Beam Current Drive for Advanced Scenario Development in DIII-D

    SciTech Connect

    Murakami, M; Park, J; Petty, C; Luce, T; Heidbrink, W; Osborne, T; Wade, M; Austin, M; Brooks, N; Budny, R; Challis, C; DeBoo, J; deGrassie, J; Ferron, J; Gohil, P; Hobirk, J; Holcomb, C; Hollmann, E; Hong, R; Hyatt, A; Lohr, J; Lanctot, M; Makowski, M; McCune, D; Politzer, P; Prater, R; John, H S; Suzuki, T; West, W; Unterberg, E; Van Zeeland, M; Yu, J

    2008-10-13

    Modification of the two existing DIII-D neutral beam lines is proposed to allow vertical steering to provide off-axis neutral beam current drive (NBCD) as far off-axis as half the plasma radius. New calculations indicate very good current drive with good localization off-axis as long as the toroidal magnetic field, B{sub T}, and the plasma current, I{sub p}, are in the same direction (for a beam steered downward). The effects of helicity can be large: e.g., ITER off-axis NBCD can be increased by more than 20% if the B{sub T} direction is reversed. This prediction has been tested by an off-axis NBCD experiment using reduced size plasmas that are vertically shifted with the existing NBI on DIII-D. The existence of off-axis NBCD is evident in sawtooth and internal inductance behavior. By shifting the plasma upward or downward, or by changing the sign of the toroidal field, measured off-axis NBCD profiles, determined from MSE data, are consistent with predicted differences (40%-45%) arising from the NBI orientation with respect to the magnetic field lines. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as providing flexible scientific tools for understanding transport, energetic particles and heating and current drive.

  1. A high-charge-state plasma neutralizer for an energetic H/sup -/ beam

    SciTech Connect

    Schlachter, A.S.; Leung, K.N.; Stearns, J.W.; Olson, R.E.

    1986-10-01

    A high-charge-state plasma neutralizer for a beam of energetic H/sup -/ ions offers the potential of high optimum neutralization efficiency (approx.85%) relative to a gas target (50 to 60%), and considerably reduced target thickness. We have calculated cross sections for charge-changing interactions of fast H/sup -/ and H/sup 0/ in collision with highly charged ions using a semiclassical model for H/sup -/, and the Classical-Trajectory Monte Carlo method plus Born calculations, to obtain correct asymptotic cross sections in the high-energy limit. Charge-state fractions as a function of plasma line density, and f/sub 0//sup max/, the maximum H/sup 0/ fraction, are calculated using these cross sections; we find that f/sub 0//sup mx/ approx. = 85% for ion charge states in the range 1+ to 10+, and that target ion line density for f/sub 0//sup max/ decreases approximately as the square of the plasma ion charge state. The maximum neutral fraction is also high for a partially ionized plasma. We have built a small multicusp plasma generator to use a a plasma neutralizer; preliminary results show that the plasma contains argon ions with an average charge state between 2+ and 3+ for a steady-state discharge.

  2. Neutral beam system for the C-2-Upgrade Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Korepanov, Sergey; Smirnov, Artem; Clary, Ryan; Dunaevsky, Alexandr; Isakov, Ivan; Magee, Richard; Matvienko, Vasily; van Drie, Alan; Deichuli, Petr; Ivanov, Alexandr; Pirogov, Konstantin; Sorokin, Aleksey; Stupishin, Nickolay; Vakhrushev, Roman; TAE Team; Budker Team

    2015-11-01

    In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (NBI), coupled with electrically-biased plasma guns at the plasma ends and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses. Under such conditions, highly reproducible, macroscopically stable, hot FRCs with a significant fast-ion population, total plasma temperature of ~ 1 keV and record lifetimes were achieved. To further improve the FRC sustainment and provide a better coupling with beams, the C-2 device has been upgraded with a new NBI system, which can deliver up to a total of 10 MW of hydrogen beam power (15 keV, 8 ms pulse), by far the largest ever used in compact toroid plasma experiments. The NBI system consists of six positive-ion based injectors featuring flexible, modular design. This presentation will provide an overview of the C-2U NBI system, including: 1) NBI test facility, beam characterization, and acceptance tests, 2) integration with the machine and operating experience, 3) improvements in plasma performance with increased beam power.

  3. Impurity levels and power loading in the PDX tokamak with high power neutral beam injection

    SciTech Connect

    Fonck, R.J.; Bell, M.; Bol, K.

    1982-10-01

    The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines can inject up to 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.

  4. Impurity levels and power loading in the pdx tokamak with high power neutral beam injection

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bell, M.; Bol, K.; Brau, K.; Budny, R.; Cecchi, J. L.; Cohen, S.; Davis, S.; Dylla, H. F.; Goldston, R.; Grek, B.; Hawryluk, R. J.; Hirschberg, J.; Johnson, D.; Hülse, R.; Kaita, R.; Kaye, S.; Knize, R. J.; Kugel, H.; Manos, D.; Mansfield, D.; Mcguire, K.; Mueller, D.; Oasa, K.; Okabayashi, M.; Owens, D. K.; Ramette, J.; Reeves, R.; Reusch, M.; Schmidt, G.; sesnic, S.; Suckewer, S.; Takahashi, H.; Tenney, F.; Thomas, P.; Ulrickson, M.; Yelle, R.

    1982-12-01

    The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines inject > 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.

  5. Improved measurement of neutral current coherent $\\pi^0$ production on carbon in a few-GeV neutrino beam

    SciTech Connect

    Kurimoto, Y.; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; Franke, A.J.; /Columbia U. /INFN, Rome

    2010-05-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.

  6. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  7. Development of a plasma generator for a long pulse ion source for neutral beam injectors.

    PubMed

    Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S

    2011-06-01

    A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2).

  8. Software upgrade for the DIII-D neutral beam control systems

    SciTech Connect

    Cummings, J.W.; Thurgood, P.A.

    1991-11-01

    The neutral beams are used to heat the plasma in the DIII-D tokamak, a fusion energy research experiment operated by General Atomics (GA) and funded by the Department of Energy (DOE). The experiment is dedicated to demonstrating noninductive current drive of high beta high temperature divertor plasma with good confinement. The neutral beam heating system for the DIII-D tokamak uses four MODCOMP Classic computers for data acquisition and control of the four beamlines. The Neutral Beam Software Upgrade project was launched in early 1990. The major goals were to upgrade the MAX IV operating system to the latest revision (K.1), use standard MODCOMP software (as much as possible), and to develop a very user friendly,'' versatile system. Accomplishing these goals required new software to be developed and modifications to existing applications software to make it compatible with the latest operating system. The custom operating system modules to handle the message service and interrupt handling were replaced by the standard MODCOMP Inter Task Communication (ITC) and interrupt routines that are part of the MAX IV operating system. The message service provides the mechanism for doing shot task sequencing (task scheduling). The interrupt routines are used to connect external interrupts to the system. The new software developed consists of a task dispatcher, screen manager, and interrupt tasks. The existing applications software had to be modified to be compatible with the MODCOMP ITC services and consists of the Modcomp Infinity Data Base Manager, a multi-user system, and menu-driven operating system interface routines using the Infinity Data Base Manager.

  9. Off-axis neutral beam current drive for advanced scenario development in DIII-D

    SciTech Connect

    Murakami, Masanori; Park, Jin Myung; Petty, C C.; Luce, T.C.; Heidbrink, W. W.; Osborne, T.H.; Prater, R.; Wade, M R; Unterberg, E. A.

    2009-01-01

    Modification of the two existing DIII-D neutral beamlines is planned to allow vertical steering to provide off-axis neutral beam current drive (NBCD) peaked as far off-axis as half the plasma minor radius. New calculations for a downward-steered beam indicate strong current drive with good localization off-axis so long as the toroidal magnetic field, B-T, and the plasma current, I-p, point in the same direction. This is due to good alignment of neutral beam injection (NBI) with the local pitch of the magnetic field lines. This model has been tested experimentally on DIII-D by injecting equatorially mounted NBs into reduced size plasmas that are vertically displaced with respect to the vessel midplane. The existence of off-axis NBCD is evident in the changes seen in sawtooth behaviour in the internal inductance. By shifting the plasma upwards or downwards, or by changing the sign of the toroidal field, off-axis NBCD profiles measured with motional Stark effect data and internal loop voltage show a difference in amplitude (40-45%) consistent with differences predicted by the changed NBI alignment with respect to the helicity of the magnetic field lines. The effects of NBI direction relative to field line helicity can be large even in ITER: off-axis NBCD can be increased by more than 30% if the B-T direction is reversed. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as provide flexible scientific tools for understanding transport, energetic particles and heating and current drive.

  10. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    SciTech Connect

    Politzer, P.A.

    2005-10-15

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f{sub bs}). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached {approx}80% bootstrap current in stationary discharges without inductive current drive. The remaining current is {approx}20% NBCD. This is achieved at {beta}{sub N} [approximately equal to] {beta}{sub p} > 3, but at relatively high q{sub 95} ({approx}10). In lower q{sub 95} Advanced Tokamak plasmas, f{sub bs} {approx} 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high {beta}{sub p} and {beta}{sub N} plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing {beta}, limiting the achievable average {beta} and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory.

  11. Elimination of output-current transients in the MFTF sustaining neutral-beam-arc power supplies

    NASA Astrophysics Data System (ADS)

    Vanness, H. W.; Mayhall, D. J.; Wilson, J. H.

    1981-10-01

    The twenty-three MFTF sustaining neutral beam arc power supplies were designed to provide 0.3 to 30 second output pulses over a range of 24 to 71 volts and 600 to 4000 amperes at 10 percent duty. For economic reasons, the circuit design consists of a 12 pulse rectifier which is synchronously switched on and off by a three phase electromechanical contactor in the primary ac input. Analysis of the problem, various possible solution considered, and the simple and inexpensive solution adopted for use are described.

  12. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  13. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    SciTech Connect

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results.

  14. ProVac3D and Application to the Neutral Beam Injection System of ITER

    SciTech Connect

    Luo, X.; Dremel, M.; Day, Ch.

    2008-12-31

    In order to heat the confined plasma up to 100 million degrees Celsius and initiate a sustained fusion reaction, ITER will use several heating mechanisms at the same time, of which Neutral Beam Injection (NBI) systems play an important role. The NBI includes several internal gas sources and has to be operated under vacuum conditions. We have developed ProVac3D, a Monte Carlo simulation code, to calculate gas dynamics and the density profiles in volumes of interest inside NBI. This enables us to elaborate our in-situ and state-of-the-art cryogenic pump design and estimate the corresponding pumping speed.

  15. Field Reversed Configuration Confinement Enhancement through Edge Biasing and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Korepanov, S.; Akhmetov, T.; Ivanov, A.; Voskoboynikov, R.; Schmitz, L.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H. Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; Longman, A.; Hollins, M.; Li, X. L.; Luo, Y.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Ruskov, E.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Sun, X.; Trask, E.; Van Drie, A. D.; Walters, J. K.; Wyman, M. D.

    2012-06-01

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n=2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E×B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.

  16. Field reversed configuration confinement enhancement through edge biasing and neutral beam injection.

    PubMed

    Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D

    2012-06-22

    Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms. PMID:23004613

  17. Photon-assisted Beam Probes for Low Temperature Plasmas and Installation of Neutral Beam Probe in Helimak

    NASA Astrophysics Data System (ADS)

    Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala

    2008-11-01

    The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.

  18. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  19. Low damage etching method of low-k material with a neutral beam for interlayer dielectric of semiconductor device

    SciTech Connect

    Kang, Seung Hyun; Kim, Jong Kyu; Lee, Sung Ho; Kim, Jin Woo; Yeom, Geun Young

    2015-03-15

    To reduce the cross-talk between nanoscale devices, low-k materials such as methyl silsesquioxane (MSQ), which is damaged easily during plasma etching, are introduced as an intermetallic dielectric material in addition to the use of copper as the conducting material for the reduction of parasitic resistance and capacitance. In this study, beam techniques such as neutral/ion beams were used in the etching of MSQ and the effect of these beam techniques on the reduction of the degradation of the MSQ were investigated. When MSQ was etched using the same CF{sub 4} etch gas at the similar etch rate as that used for conventional MSQ etching using inductively coupled plasmas (ICPs), the neutral/ion beam etching showed lower F contents and lower penetration depth of F, indicating decreased degradation by fluorination of MSQ during etching using the beam techniques. Especially, the neutral beam etching technique showed the lowest F contamination and the lower penetration depth of F among the etch methods. When the dielectric constant was measured after the etching of the same depth, the MSQ etched with the neutral beam showed the lowest change of the dielectric constant, while that etched using the ICP showed the highest change of dielectric constant. The lower degradation, that is, the lower chemical modification of MSQ material with the beam technique is believed to be related to the decreased concentration of radical species in the processing chamber reacting with the MSQ surface, while the lowest degradation using the neutral beam is believed to be due to the lower reaction rate of the reactive neutral compared to reactive ions.

  20. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    SciTech Connect

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  1. Status of PRIMA, the test facility for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team

    2013-02-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.

  2. Selective in-plane nitrogen doping of graphene by an energy-controlled neutral beam

    NASA Astrophysics Data System (ADS)

    Okada, Takeru; Samukawa, Seiji

    2015-12-01

    Nitrogen-doped graphene promises to improve current electronic devices, sensors, and energy-based devices. To this end, the bonding states between carbon and nitrogen atoms can be manipulated to tailor the properties of the doped graphene. For example, graphitic nitrogen is known to promote desired catalytic activities in graphene fuel-cell systems, resulting from a four-electron reaction. However, established nitrogen-doping methods lack selectivity in dopant chemical identity and in dopant location; both are key factors in graphene property design because the properties depend on the chemical identity and location of the dopant. Here, we utilize a nitrogen neutral beam (NB) technique—with exquisite beam energy control—to dope graphene with nitrogen. Using x-ray photoelectron and Raman spectroscopy, we show that the energy of the nitrogen NB not only determines the chemistry of the nitrogen dopant introduced to graphene, but it also dictates the doping locations within graphene layers.

  3. Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a HIF reactor chamber

    NASA Astrophysics Data System (ADS)

    Lifschitz, A. F.; Maynard, G.; Vay, J.-L.; Lenglet, A.

    2006-06-01

    The efficiency of a Heavy Ion Fusion reactor heavily depends on the maximum value for the density of energy (DoE) that can be deposited by the ion beams. In order to reduce the final radius, and thus to increase the DoE inside the target, the beam spatial charge has to be neutralized. Therefore the dynamics of the neutralizing electrons (DNE) play a central role in optimizing the DoE deposited in solid targets by high current of high energy heavy ion beams. We present results on some aspects of the DNE, which was performed using the Monte-Carlo 2D1/2 PIC code BPIC.

  4. Magnetron Sputtered Gold Contacts on N-gaas

    NASA Technical Reports Server (NTRS)

    Buonaquisti, A. D.; Matson, R. J.; Russell, P. E.; Holloway, P. H.

    1984-01-01

    Direct current planar magnetron sputtering was used to deposit gold Schottky barrier electrical contacts on n-type GaAs of varying doping densities. The electrical character of the contact was determined from current voltage and electron beam induced voltage data. Without reducing the surface concentration of carbon and oxide, the contacts were found to be rectifying. There is evidence that energetic neutral particles reflected from the magnetron target strike the GaAs and cause interfacial damage similar to that observed for ion sputtering. Particle irradiation of the surface during contact deposition is discussed.

  5. Ion heating with high-power perpendicular neutral-beam injection in the Poloidal Divertor Experiment (PDX)

    SciTech Connect

    Hawryluk, R.J.; Arunasalam, V.; Bell, M.; Bitter, M.; Bol, K.; Brau, K.; Davis, S.; Dylla, F.; Eubank, H.; Finkenthal, M.; Fonck, R.; Goldston, R.; Grek, B.; Hugill, J.; Johnson, D.; Kaita, R.; Kaye, S.; Kugel, H.; Mansfield, D.; Manos, D.; McGuire, K.; McCann, R.; McCune, D.; Mueller, D.; Okabayashi, M.; Owens, K.; Reusch, M.; Sauthoff, N.; Schilling, G.; Schmidt, G.; Sesnic, S.; Suckewer, S.; Tait, G.; Takahashi, H.; Tenney, F.; Yamazaki, K.

    1982-08-02

    Plasma heating by near-perpendicular injection of up to 7.2 MW of neutral-beam power has been studied in the PDX tokamak. Collisionless plasmas with central ion temperatures up to 6 keV have been obtained. The total plasma energy, which is dominated by contributions from beam and thermal ions, rises linearly with increasing beam power. The ion heating efficiency in PDX is comparable to that measured in PLT with tangential injection.

  6. Ion Heating with High-Power Perpendicular Neutral-Beam Injection in the Poloidal Divertor Experiment (PDX)

    NASA Astrophysics Data System (ADS)

    Hawryluk, R. J.; Arunasalam, V.; Bell, M.; Bitter, M.; Bol, K.; Brau, K.; Davis, S.; Dylla, F.; Eubank, H.; Finkenthal, M.; Fonck, R.; Goldston, R.; Grek, B.; Hugill, J.; Johnson, D.; Kaita, R.; Kaye, S.; Kugel, H.; Mansfield, D.; Manos, D.; McGuire, K.; McCann, R.; McCune, D.; Mueller, D.; Okabayashi, M.; Owens, K.; Reusch, M.; Sauthoff, N.; Schilling, G.; Schmidt, G.; Sesnic, S.; Suckewer, S.; Tait, G.; Takahashi, H.; Tenney, F.; Yamazaki, K.

    1982-08-01

    Plasma heating by near-perpendicular injection of up to 7.2 MW of neutral-beam power has been studied in the PDX tokamak. Collisionless plasmas with centrla ion temperatures up to 6 keV have been obtained. The total plasma energy, which is dominated by contributions from beam and thermal ions, rises linearly with increasing beam power. The ion heating efficiency in PDX is comparable to the measured in the Princeton Large Torus with tangential injection.

  7. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-05-31

    In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.

  8. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    DOE PAGES

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-05-31

    In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less

  9. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    SciTech Connect

    Glad, A S; Jacobson, V

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc.

  10. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  11. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    DOE PAGES

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  12. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    SciTech Connect

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  13. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  14. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  15. Probe measurements of the PDX divertor plasma in ohmic and neutral beam heated discharges

    NASA Astrophysics Data System (ADS)

    Owens, D. K.; Kaye, S. M.; Fonck, R. J.; Schmidt, G. L.

    1984-05-01

    A graphite-shielded probe was recently installed in the divertor region of PDX to continuously monitor local electron temperature, electron density (from the ion saturation current), and plasma floating potential throughout divertor discharges. In ohmically heated deuterium plasmas, the electron temperature near the separatrix was 6 to 12 eV; these values confirm the low Te inferred from the density dependence of Balmer line emission from the divertor plasmas. During neutral beam heating, PDX divertor discharges were characterized by a sharp transition at which time the main chamber plasma density increased rapidly, the divertor H α emission dropped, and the global energy confinement increased abruptly. At later times, edge relaxation oscillations, characterized by spikes in the H α emission, occurred and were accompanied by a clamp in the density rise and lower confinement time. Limited scans of the temperature and density measured by the divertor probe indicated that these parameters changed with discharge conditions primarily near the separatrix. With the onset of neutral beam injection the temperature and density rose by a factor of 1.5 and 2-4 respectively. Transient drops in Te to values as low as 2 eV and concomitant rises in ne were sometimes observed near the time of the transition into the high confinement mode. Later in the discharge, the values returned to their pre-H-mode level. TV camera observations of the divertor probe revealed a "shadow" along the field lines indicating a well-defined flow in the vicinity of the separatrix.

  16. Fast ion diagnostic's neutral beam injector on the poloidal divertor experiment

    SciTech Connect

    Nudelman, A.; Goldston, R.; Kaita, R.

    1982-04-01

    Neutral beams, in conjunction with charge-exchange analyzers, have proved to be valuable diagnostic tools for studying high temperature tokamak plasmas. The PDX Fast Ion Diagnostic Experiment (FIDE) consists of a Diagnostic Neutral Beam (DNB) and spatially imaging charge-exchange analyzer. The DNB is built around a Lawrence--Berkeley Laboratory 40-kV, 10-A, 4-grid ion source. The power requirements are 0.5 MW in up to 10-ms-long pulse bursts. The accelerating grid is supplied from a 125-kJ, 50-kV capacitor bank with a hard-tube modulator for switching and pulse burst generation at up to 3 kHz. The filament and arc power is drawn directly from a 480-V ac line through multiphase controlled rectifiers, which provide a soft start for the filament and fast switching for the arc. Special attention was paid to the H--V transmission line, since the power supplies could not be located close to the ion source. The DNB has been tested under actual operating conditions and is now being used in experiments with the charge-exchange analyzer.

  17. Monte Carlo simulation of molecular flow in a neutral beam injector and comparison with experiment

    SciTech Connect

    Lillie, R.A.; Alsmiller, R.G. Jr.; Gabriel, T.A.; Santoro, R.T.; Schwenterly, S.W.

    1982-04-01

    Monte Carlo calculations have been performed to obtain estimates of the background gas pressure and molecular number density as a function of position in the PDX-prototype neutral beam injector, which has undergone testing at the Oak Ridge National Laboratory. Estimates of these quantities together with the transient and steady-state energy deposition and molecular capture rates on the cryopanels of the cryocondensation pumps and the molecular escape rate from the injector were obtained utilizing a detailed geometric model of the neutral beam injector. The molecular flow calculations were performed using an existing Monte Carlo radiation transport code, which was modified slightly to monitor the energy of the background gas molecules. The credibility of these calculations is demonstrated by the excellent agreement between the calculated and experimentally measured background gas pressure in front of the beamline calorimeter located in the downstream drift region of the injector. The usefulness of the calculational method as a design tool is illustrated by a comparison of the integrated beamline molecular density over the drift region of the injector for three modes of cryopump operation.

  18. Monte Carlo simulation of molecular flow in a neutral-beam injector and comparison with experiment

    SciTech Connect

    Lillie, R.A.; Gabriel, T.A.; Schwenterly, S.W.; Alsmiller, R.G. Jr.; Santoro, R.T.

    1981-09-01

    Monte Carlo calculations have been performed to obtain estimates of the background gas pressure and molecular number density as a function of position in the PDX-prototype neutral beam injector which has undergone testing at the Oak Ridge National Laboratory. Estimates of these quantities together with the transient and steady-state energy deposition and molecular capture rates on the cryopanels of the cryocondensation pumps and the molecular escape rate from the injector were obtained utilizing a detailed geometric model of the neutral beam injector. The molecular flow calculations were performed using an existing Monte Carlo radiation transport code which was modified slightly to monitor the energy of the background gas molecules. The credibility of these calculations is demonstrated by the excellent agreement between the calculated and experimentally measured background gas pressure in front of the beamline calorimeter located in the downstream drift region of the injector. The usefulness of the calculational method as a design tool is illustrated by a comparison of the integrated beamline molecular density over the drift region of the injector for three modes of cryopump operation.

  19. Phenomenology of intense electron cyclotron emission bursts during high power neutral beam heating on TFTR (abstract)

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bush, C. E.; Fredrickson, E.; Park, H. K.; Ramsey, A. T.

    1992-10-01

    A 20-channel grating polychromator has been used to study intense bursts of electron cyclotron emission (ECE) from TFTR deuterium plasmas predominantly heated by 90-110-keV neutral beams (Pinj/Poh≳30). The ECE bursts have a duration of 20-150 μs and are usually seen 300-500 ms after the start of neutral beam injection, when the stored energy and neutron production are collapsing or rolling over. In most cases the ECE bursts have Δf/f˜0.2-0.5, if this frequency spread is due entirely to relativistic broadening it implies an electron energy of 10-100 keV (Core electron temperatures in these plasmas are typically 7-12 keV). The ECE bursts are often correlated with ELM activity during limiter H modes and appear to occur at the beginning of the rise in the Dα signal. In some instances the spectral width of the ECE burst is narrow enough (Δf/f˜0.1) to allow identification of the origin of the emission, in these cases the source appears to be within 0.2 m of the plasma edge and the ECE burst exhibits a delay characteristic of an outwardly directed velocity of 2-3×103 m/s. This work is supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073.

  20. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  1. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  2. Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Lin, C. S.; Burch, J. L.; Obayashi, T.; Beghin, C.

    1988-01-01

    An unusual signature of return current and spacecraft charging potential was observed during the Spacelab 1 mission launched on November 28, 1983. The phenomenon occurred during neutral gas releases from the SEPAC (Space Experiments with Particle Accelerators) magnetoplasma-dynamic arcjet (MPD) concurrent with firings of the PICPAB (Phenomena Induced by Charged Particle Beams) electron gun and was recorded by the instruments of the SEPAC diagnostic package (DGP). Data from the langmuir probe, floating probes, neutral gas pressure gauge, and the plasma wave probes are reported. As the dense neutral gas was released, the return current measured by the langmuir probe changed from positive to negative and a positive potential relative to the spacecraft was measured by the floating probe. The anomalous return current is believed to be attributable to secondary electron fluxes escaping from the spacecraft, and the unusual charging situation is attributed to the formation of a double-layer structure between a hot plasma cloud localized to the MPD and the spacecraft. The charging scenario is supported by a computer simulation.

  3. FY14 Progress Report for PL12-LaserSPec SIMS-PD08. Laser Photoionization of Sputtered Neutral atoms in PNNL SIMS and Applications in Nuclear Materials and Environmental Analyses

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Thompson, Sandra E.; Cloutier, Janet M.

    2014-12-18

    A continuous wave (CW) Ar ion laser producing photons at 244 nm (doubled from the fundamental wavelength at 488nm) was used to ionize neutrals sputtered from representative lanthanide (neodymium oxide, Nd2O3) and actinide (uranium oxide, U3O8) containing materials in the modified Cameca ims-4f at PNNL.

  4. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  5. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  6. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x < 2) were fabricated by ion-beam sputtering deposition (IBSD) at room temperature. The ratio of O and Hf atoms in films x was varied by setting the O2 partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  7. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure. PMID:27302495

  8. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, R. F.; Zhang, J.; Li, H. S.; Zhang, J.; Qiu, F.; Yang, J.; Wang, C.; Yang, Y.

    2016-07-01

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  9. Measurement of inclusive neutral current π0 production on carbon in a few-GeV neutrino beam

    NASA Astrophysics Data System (ADS)

    Kurimoto, Y.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Wilking, M. J.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.; SciBooNE Collaboration

    2010-02-01

    The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7±0.5(stat)±0.5(sys))×10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the π0 momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7±0.4)×10-2.

  10. Recent Progress in the Negative-Ion-Based Neutral Beam Injectors in Large Helical Device

    SciTech Connect

    Takeiri, Y.; Tsumori, K.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Oka, Y.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.; Kaneko, O.

    2009-03-12

    Negative-ion-based neutral beam injection (negative-NBI) system has been operated for 10 years in Large Helical Device (LHD). The injection power has been increased year by year, according to the improvement of the negative ion sources. Up to now, every injector achieves the designed injection energy and power of 180 keV-5 MW with hydrogen beams, and the total injection power exceeds 16 MW with three injectors. In the multi-round aperture grounded grid (GG), the diameter of a round aperture has been enlarged for higher GG transparency. Then, the GG heat load is reduced, as well as in the multi-slotted GG, and the voltage holding ability in the beam acceleration was improved. As a result, the beam energy is raised and the injection power is increased. To improve the anisotropic property of the beamlet convergence condition between the perpendicular and the parallel directions to the slots in the multi-slotted GG, a round-shape aperture of the steering grid (SG) has been changed to a racetrack shape. As a result, the difference of the beamlet conversion condition is much mitigated, and the injection efficiency (port-transmission efficiency) is improved, leading to 188 keV-6.4 MW injection. The Cs consumption is observed to be proportional to the tungsten evaporation from filaments. The Cs behavior is investigated with optical emission spectroscopy. During the beam extraction, the Cs recycling is dominated by Cs on the backplate, which is evaporated into the plasma by the backstreaming positive ions, and the wall surfaces should be loss regions for the supplied Cs.

  11. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  12. Beam spin asymmetries of charged and neutral pion production in semi-inclusive DIS

    NASA Astrophysics Data System (ADS)

    Mao, Wenjuan; Lu, Zhun

    2013-09-01

    We present a study on the beam single spin asymmetries of π +, π - and π 0 production in semi-inclusive deep inelastic scattering process, by considering Collins effect and the g ⊥ D 1 term simultaneously. We calculate the twist-3 distributions and for the valence quarks inside the proton in a spectator model. We consider two different options for the form of diquark propagator, as well as two different choices for the model parameters in the calculation. Using the model results, we estimate the beam spin asymmetries for the charged and neutral pions and compare the results with the measurement from the HERMES Collaboration. We also make predictions on the asymmetries at CLAS with a 5.5 GeV beam using the same model results. It is found that different choices for the diquark propagator will not only lead to different expressions for the distribution functions, but also result in different sizes of the asymmetries. Our study also shows that, although the spectator model calculation can describe the asymmetries for certain pion production in some kinematic regions, it seems difficult to explain the asymmetries of pion production for all three pions in a consistent way from the current versions.

  13. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  14. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng; E.D. Fredrickson

    2003-07-07

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects.

  15. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  16. Development of a high-heat-flux target for multimegawatt, multisecond neutral beams at ORNL

    SciTech Connect

    Combs, S.K.; Milora, S.L.; Bush, C.E.; Foster, C.A.; Haselton, H.H.; Hayes, P.H.; Menon, M.M.; Moeller, J.A.; Sluss, F.; Tsai, C.C.

    1984-01-01

    A high-heat-flux target has been developed for intercepting multimegawatt, multisecond neutral beam power at the Oak Ridge National Laboratory (ORNL). Water-cooled copper swirl tubes are used for the heat transfer medium; these tubes exhibit an enhancement in burnout heat flux over conventional axial-flow tubes. The target consists of 126 swirl tubes (each 0.95 cm in outside diameter with 0.16-cm-thick walls and approx. =1 m long) arranged in a V-shape. Two arrays of parallel tubes inclined at an angle ..cap alpha.. to the beam axis form the V-shape, and this geometry reduces the surface heat flux by a factor of 1/sin ..cap alpha.. (for the present design, ..cap alpha.. =13/sup 0/ and 21/sup 0/). In tests with the ORNL long-pulse ion source (13- by 43-cm grid), the target has handled up to 3-MW, 30-s beam pulses with no deleterious effects. The peak power density was estimated at approx. =15 kW/cm/sup 2/ normal to the beam axis (5.4 kW/cm/sup 2/ maximum on tube surfaces). The water flow rate through the target was 41.6 L/s (660 gpm) or 0.33 L/s (5.2 gpm) per tube (axial flow velocity = 11.6 m/s). The corresponding pressure drop across the target was 1.14 MPa (165 psi) with an inlet pressure of 1.45 MPa (210 psia). Data are also presented from backup experiments in which individual tubes were heated by a small ion source (10-cm-diam grid) to characterize tube performance. These results suggest that the target should handle peak power densities in the range 25 to 30 kW/cm/sup 2/ normal to the beam axis (approx. =10 kW/cm/sup 2/ maximum on tube surfaces) with the present flow parameters. This translates to beam power levels of 5 to 6 MW for equivalent beam optics.

  17. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-11-01

    Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  18. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  19. Data Processing Middleware in a High-Powered Neutral Beam Injection Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Peng; Hu, Chundong; Song, Shihua; Liu, Zhimin; Zhao, Yuanzhe; Zhang, Xiaodan; Dou, Shaobin

    2013-06-01

    A set of data-processing middleware for a high-powered neutral beam injection (NBI) control system is presented in this paper. The middleware, based on TCP/IP and multi-threading technologies, focuses mainly on data processing and transmission. It separates the data processing and compression from data acquisition and storage. It provides universal transmitting interfaces for different software circumstances, such as WinCC, LabView and other measurement systems. The experimental data acquired on Windows, QNX and Linux platforms are processed by the middleware and sent to the monitoring applications. There are three middleware deployment models: serial processing, parallel processing and alternate serial processing. By using these models, the middleware solves real-time data-processing problems on heterogeneous environmental acquisition hardware with different operating systems and data applications.

  20. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    SciTech Connect

    Jeong, S. H. Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-15

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  1. New source of MeV negative ion and neutral atom beams

    NASA Astrophysics Data System (ADS)

    Ter-Avetisyan, S.; Braenzel, J.; Schnürer, M.; Prasad, R.; Borghesi, M.; Jequier, S.; Tikhonchuk, V.

    2016-02-01

    The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  2. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    SciTech Connect

    Nishimura, S.; Nakamura, Y.; Nishioka, K.

    2015-09-15

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiring flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.

  3. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  4. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  5. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  6. Neutral Probe Beam q-profile measurements in PDX and PBX-M

    SciTech Connect

    Kugel, H.W.; Gammel, G.M.; Kaita, R.; Reusch, M.F.; Roberts, D.W.

    1988-06-01

    Using the Fast Ion Diagnostic Experiment (FIDE) technique, a Neutral Probe Beam (NPB) can be aimed to inject tangentially to a magnetic surface. The resultant ion orbit shifts, due to conservation of canonical toroidal angular momentum, can be measured with a multi-sightline charge-exchange analyzer to yield direct measurements of radial magnetic flux profiles, current density profiles, the radial position of the magnetic axis, flux surface inner and outer edges, q-profiles, and central-q time dependencies. An extensive error analysis was performed on previous PDX q-measurements in circular plasmas and the resulting estimated contributions of various systematic effects are discussed. Preliminary results of fast ion orbit shift measurements at early times in indented PBX-M plasmas are given. Methods for increasing the absolute experimental precision of similar measurements in progress on PBX-M are discussed. 4 refs., 3 figs.

  7. Neutral probe beam q-profile measurements in PDX and PBX-M

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Gammel, G. M.; Kaita, R.; Reusch, M. F.; Roberts, D. W.

    1988-08-01

    Using the fast ion diagnostic experiment technique, a neutral probe beam (NPB) can be aimed to inject tangent to a magnetic surface. The resultant ion orbit shifts, due to conservation of canonical toroidal angular momentum, can be measured with a multi-sight-line charge exchange analyzer to yield direct measurements of radial magnetic flux profiles, current-density profiles, the radial position of the magnetic axis, flux surface inner and outer edges, q profiles, and central-q time dependencies. An extensive error analysis was performed on previous PDX q measurements in circular plasmas and the resulting estimated contributions of various systematic effects are discussed. Preliminary results of fast ion orbit shift measurements at early times in indented PBX-M plasmas are given. Methods for increasing the absolute experimental precision of similar measurements in progress on PBX-M are discussed.

  8. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  9. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  10. Development of a high-brightness and low-divergence lithium neutral beam for a Zeeman polarimetry on JT-60U.

    PubMed

    Kojima, Atshushi; Kamiya, Kensaku; Iguchi, Harukazu; Fujita, Takaaki; Kakiuchi, Hideto; Kamada, Yutaka

    2008-09-01

    A high-brightness and low-divergence neutral beam is obtained for a Zeeman polarimetry of edge plasmas on JT-60U. The electron density and the pitch angle of the magnetic field line, thus the plasma current density distribution, can be measured by the Zeeman polarimetry using the lithium beam. A thermionic ion source heated by an electron beam is developed in order to obtain the ion beam current extraction over 10 mA. The beam optics is designed after detailed numerical simulation taking the space charge effects into account because a low-divergence angle of the neutral lithium beam leads to a narrow spectrum of the beam emission. It is also necessary to keep the beam radius small for good spatial resolution due to a long beam line of 6.5 m. The newly developed ion gun is operated on a test stand which simulates the diagnostic arrangement on JT-60U. The ion beam current of 10 mA at a beam energy of 10 keV is successfully extracted from the ion source operated at the temperature over 1300 degrees C and focused by Einzel lens. The full width at half maximum radius of the ion beam at the neutralizer is about 9 mm. A sodium vapor neutralizer neutralizes the collimated ion beam fully at the temperature of 300 degrees C. The neutral beam profiles are measured at two locations of the beam line at Z=2.3 m (beam monitor position) and Z=6.5 m (plasma region). The half-width at half maximum radius of the neutral beam of 26 mm and the equivalent beam current of 3 mA with the beam divergence angle of 0.2 deg which is the half-angle divergence are obtained. Those parameters satisfy the requirements of the Zeeman polarimetry. Furthermore, a long pulse extraction with a current of 10 mA and duration of 50 s is attained.

  11. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  12. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  13. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    SciTech Connect

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun E-mail: lqhu@ipp.cas.cn; Hu, Liqun E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  14. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  15. Energy Recovery from a Space-Charge Neutralized Positive Ion Beam by Means of Magnetic Electron Suppression

    NASA Astrophysics Data System (ADS)

    Ryan, Philip Michael

    The charge-exchange neutralization efficiency of positive ion based neutral beams used in plasma heating applications decreases as the beam energy increases. Direct energy recovery from the charged particles can be accomplished by electrostatically decelerating the positive ions; the problem is to effect this without accelerating the space -charge neutralizing electrons residing in the beam. Prior work with both electrostatic and magnetic electron suppression is reviewed. A finite difference ion optics code which solves the nonlinear Vlasov-Poisson equation is adapted to energy recovery application and used to analyze the transverse magnetic field electron suppression experiments carried out at Oak Ridge National Laboratory between 1980 and 1982. Three numerical models are discussed and evaluated. The double plasma model, which assumes an equilibrium Boltzmann distribution of electrons at both the neutralizer potential and the ion collector potential, most successfully duplicates the experimental results with beams in the 40 keV, 10 A range. It is used to analyze the effects of the magnetic field strength, the ion "boost" energy, and the ion beam current density on the ion collection efficiency. Conclusions of the study are: (1) the electron leakage current scales as B('-1), necessitating magnetic suppression fields in excess of 0.1 tesla; (2) the neutralizer geometry should provide an electrostatic field to counteract the magnetic force on the ions; (3) fractional energy beam ions should be confined to the neutralizer interior; (4) the neutral line density in the recovery region should be less than 3 x 10('-3) torr(.)cm. Recovery efficiency decreases with increasing beam current density; a net recovery efficiency of 30% (ion collection efficiency of 75%) at 5 mA/cm('2) falls to zero at 10 mA/cm('2) for a 40 keV beam. New designs are presented and analyzed: an ion collection efficiency of close to 90% is predicted for an 80 keV D ion beam with an ion current

  16. Synthesis of silicon oxynitride by ion beam sputtering and the effects of nitrogen ion-assisted bombardment

    NASA Astrophysics Data System (ADS)

    Lambrinos, M. F.; Valizadeh, R.; Colligon, J. S.

    1997-05-01

    Thin silicon oxynitride (SiO xN y) films were synthesised without substrate heating by means of N 2+ ion-beam sputtering of a silicon nitride target at an energy of 1000 eV in a N 2 and O 2 ambient with and without 200 eV N 2+ ion assistance. Unassisted films were deposited in a controlled O 2 partial pressure ranging from ambient to 5.0 × 10 -3 Pa whereas assisted films were deposited at a fixed O 2 partial pressure of 1.0 × 10 -3 Pa. The O/(O+N) atomic fraction and the SiO xN y asymmetric stretch mode IR absorption peak wavenumber of unassisted films increased almost linearly with increasing O 2 partial pressure, from 0.2 to 1.0 and 860 cm -1 to 1050 cm -1, respectively, while their refractive indices decreased from 1.92 to 1.46. The behaviour of the SiO xN y film refractive index with the SiO 2 fraction has been compared to that predicted by Drude, Lorentz-Lorenz and Bruggeman models under the assumption that the film is a mixture of SiO 2 and Si 3N 4 phases. For a fixed O 2 partial pressure, the O content of the N 2+ ion-assisted films increased with an increase in the N + ion to Si atom arrival ratio from 0 to 3. This increase in O content correlate with changes in the film refractive index and SiO xN y asymmetric stretch mode absorption peak position, from 1.56 to 1.43 and 1014 cm -1 to 1054 cm -1, respectively, indicating that the O/N atomic ratio increases with increasing N + ion to Si atom ratio until film properties consistent with stoichiometric SiO 2 are obtained.

  17. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications.

  18. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  19. Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP

    NASA Astrophysics Data System (ADS)

    Wei, Jianglong; Xie, Yahong; Liang, Lizhen; Gu, Yuming; Yi, Wei; Li, Jun; Hu, Chundong; Xie, Yuanlai; Jiang, Caichao; Tao, Ling; Sheng, Peng; Xu, Yongjian

    2016-09-01

    In order to support the design, manufacture and commissioning of the negative-ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV. supported by National Natural Science Foundation of China (Nos. 11505224, 11575240, 11405207), the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2013GB101002, 2013GB101003), International Science and Technology Cooperation Program of China (No. 2014DFG61950), and Foundation of ASIPP (No. DSJJ-14-JC07)

  20. Confinement studies with neutral-beam injection on PDX and PLT

    SciTech Connect

    Goldston, R.; Kaye, S.; Davis, S.

    1982-07-01

    Neutral beam injection experiments on PLT and PDX have been conducted over a wider range in parameter space than previously. On PLT H/sup 0/ beams have been injected into well-confined high toroidal field, high density Ohmic plasmas, giving n/sub e/(0) tau/sub Ee/ products during injection of up to 5 x 10/sup 12/ sec cm/sup -3/. tau/sub Ee/ is found to rise slowly with increasing density in these experiments. Comparing these results with earlier (1979) discharges, which showed much lower heating efficiency, the importance of starting with a hot Ohmic plasma and a peaked density profile is striking. On PDX high power injection experiments over a range in plasma current have shown a significant variation with current of both ion heating and total stored plasma energy. Transport analysis of these results indicates that global confinement drops little when I/sup p/ is varied from 480 to 320 kA, but as I/sup p/ falls to 200 kA, tau/sub E/ deteriorates significantly.

  1. High-beta experiments with neutral-beam injection on PDX

    SciTech Connect

    Johnson, D.; Bell, M.; Bitter, M.

    1983-01-01

    We report experimental investigations of high-beta plasmas produced in PDX with near perpendicular neutral-beam injection. Systematic power scans have been performed over a wide range of toroidal fields (0.7T < B/sub T/ < 2.2T) and plasma currents (200 kA < I/sub p/ < 500 kA). At high toroidal fields, the change in total stored energy due to beam injection increases linearly with input power and also increases with plasma current. At lower toroidal fields and low injection-power levels, the stored energy also increases with power and plasma current. However, at high power and low toroidal fields, a saturation in heating is observed. This result suggests the onset of a ..beta../sub T/ limit for circular cross-sectional tokamaks with near-perpendicular injection. Scaling experiments indicate that this ..beta../sub T/ limit increases with rising (1/q). Values of ..beta../sub T/ approx. = 3% at q/sub Psi/ = 1.8 have been achieved.

  2. Progress in the realization of the PRIMA neutral beam test facility

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Boilson, D.; Bonicelli, T.; Piovan, R.; Hanada, M.; Chakraborty, A.; Agarici, G.; Antoni, V.; Baruah, U.; Bigi, M.; Chitarin, G.; Dal Bello, S.; Decamps, H.; Graceffa, J.; Kashiwagi, M.; Hemsworth, R.; Luchetta, A.; Marcuzzi, D.; Masiello, A.; Paolucci, F.; Pasqualotto, R.; Patel, H.; Pomaro, N.; Rotti, C.; Serianni, G.; Simon, M.; Singh, M.; Singh, N. P.; Svensson, L.; Tobari, H.; Watanabe, K.; Zaccaria, P.; Agostinetti, P.; Agostini, M.; Andreani, R.; Aprile, D.; Bandyopadhyay, M.; Barbisan, M.; Battistella, M.; Bettini, P.; Blatchford, P.; Boldrin, M.; Bonomo, F.; Bragulat, E.; Brombin, M.; Cavenago, M.; Chuilon, B.; Coniglio, A.; Croci, G.; Dalla Palma, M.; D'Arienzo, M.; Dave, R.; De Esch, H. P. L.; De Lorenzi, A.; De Muri, M.; Delogu, R.; Dhola, H.; Fantz, U.; Fellin, F.; Fellin, L.; Ferro, A.; Fiorentin, A.; Fonnesu, N.; Franzen, P.; Fröschle, M.; Gaio, E.; Gambetta, G.; Gomez, G.; Gnesotto, F.; Gorini, G.; Grando, L.; Gupta, V.; Gutierrez, D.; Hanke, S.; Hardie, C.; Heinemann, B.; Kojima, A.; Kraus, W.; Maeshima, T.; Maistrello, A.; Manduchi, G.; Marconato, N.; Mico, G.; Moreno, J. F.; Moresco, M.; Muraro, A.; Muvvala, V.; Nocentini, R.; Ocello, E.; Ochoa, S.; Parmar, D.; Patel, A.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pilard, V.; Recchia, M.; Riedl, R.; Rizzolo, A.; Roopesh, G.; Rostagni, G.; Sandri, S.; Sartori, E.; Sonato, P.; Sottocornola, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Tardocchi, M.; Thakkar, A.; Umeda, N.; Valente, M.; Veltri, P.; Yadav, A.; Yamanaka, H.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.

    2015-08-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1 MV a 40 A beam of negative deuterium ions, to deliver to the plasma a power of about 17 MW for one hour. As these requirements have never been experimentally met, it was recognized as necessary to setup a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. This realization is made with the main contribution of the European Union, through the Joint Undertaking for ITER (F4E), the ITER Organization and Consorzio RFX which hosts the Test Facility. The Japanese and the Indian ITER Domestic Agencies (JADA and INDA) participate in the PRIMA enterprise; European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache and others are also cooperating. Presently, the assembly of SPIDER is on-going and the MITICA design is being completed. The paper gives a general overview of the test facility and of the status of development of the MITICA and SPIDER main components at this important stage of the overall development; then it focuses on the latest and most critical issues, regarding both physics and technology, describing the identified solutions.

  3. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    SciTech Connect

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-02-15

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  4. Neutral beam excitation of Alfven continua in the madison symmetric torus reversed field pinch

    NASA Astrophysics Data System (ADS)

    Koliner, Jonathan Jay

    Alfven continua and Alfven eigenmodes (AEs) have been generated for reversed-field pinch (RFP) plasma equilibria in Madison Symmetric Torus (MST). Data gathered from the extensive suite of diagnostics on MST was used to generate equilibria using MSTFIT and VMEC. Three dimensional equilibria for spontaneous helical states were generated using the equilibrium reconstruction code V3FIT. The reduced-MHD codes AE3D and STELLGAP were run on all generated equilibria to calculate the continua and AEs. All continuum solutions contain a toroidicity-induced Alfven gap at 200-400 kHz, within which AE solutions appear by coupling of m=0,1 at medium n. The first observation of beam-driven instabilities on the RFP was performed using MST magnetics during neutral beam injection (NBI). Spatially coherent bursts with n=5,m=1 were observed in plasmas with edge safety factor q_a=0. The bursts oscillate at 65 kHz, and reach maximum amplitude and decay away within 100 mus. These bursts persist for the duration of NBI. Secondary n=-1 and n=4 bursts are coupled in time, reaching maximum amplitude with 50 mus after the n=5 peak amplitude. While the n=5 bursts scale weakly with the electron density n_e and strongly with the beam velocity v_beam, the n=4 bursts scale with the Alfven speed v_A. The burst frequencies are well below those of the calculated AEs and the modes are driven even with v_ beam < v_A, suggesting that the bursting modes are EPMs exciting continuum resonances. Burst characteristics were examined in a variety of plasmas. In reversed plasmas, the temporally changing q profile changes the burst resonances, bringing n=6 into resonance halfway through the sawtooth cycle. The n=5 mode switches from its frequency in non-reversed plasmas to a higher frequency at the end of the sawtooth cycle. In deeply reversed plasmas, the bursts are weaker and display chirping behavior as the plasma reversal increases. During the transition to a helical state, the bursts increase in frequency

  5. Experimental Investigation and Validation of Neutral Beam Current Drive for ITER Through ITPA Joint Experiments

    SciTech Connect

    Suzuki, T.; Akers, R. J.; Gates, D.A.; Gunter, S.; Heidbrink, W. W.; Hobirk, J.; Luce, T.C.; Murakami, Masanori; Park, Jin Myung; Turnyanskiy, M.

    2011-01-01

    Joint experiments investigating the off-axis neutral beam current drive (NBCD) capability to be utilized for advanced operation scenario development in ITER were conducted in four tokamaks (ASDEX Upgrade (AUG), DIII-D, JT-60U and MAST) through the international tokamak physics activity (ITPA). The following results were obtained in the joint experiments, where the toroidal field, B(t), covered 0.4-3.7 T, the plasma current, I(p), 0.5-1.2 MA, and the beam energy, E(b), 65-350 keV. A current profile broadened by off-axis NBCD was observed in MAST. In DIII-D and JT-60U, the NB driven current profile has been evaluated using motional Stark effect diagnostics and good agreement between the measured and calculated NB driven current profile was observed. In AUG (at low delta similar to 0.2) and DIII-D, introduction of a fast-ion diffusion coefficient of D(b) similar to 0.3-0.5 m(2) s(-1) in the calculation gave better agreement at high heating power (5 MW and 7.2 MW, respectively), suggesting anomalous transport of fast ions by turbulence. It was found through these ITPA joint experiments that NBCD related physics quantities reasonably agree with calculations (with D(b) = 0-0.5 m(2) s(-1)) in all devices when there is no magnetohydrodynamic (MHD) activity except ELMs. Proximity of measured off-axis beam driven current to the corresponding calculation with D(b) = 0 has been discussed for ITER in terms of a theoretically predicted scaling of fast-ion diffusion that depends on E(b)/T(e) for electrostatic turbulence or beta(t) for electromagnetic turbulence.

  6. Neutral beam model for the anomalous γ-ray emission component in GRB 941017

    NASA Astrophysics Data System (ADS)

    Dermer, C. D.; Atoyan, A.

    2004-04-01

    González et al. (\\cite{gon03}) have reported the discovery of an anomalous radiation component from ≈1-200 MeV in GRB 941017. This component varies independently of and contains ⪆3× the energy found in the prompt ˜50 keV-1 MeV radiation component that is well described by the relativistic synchrotron-shock model. Acceleration of hadrons to very high energies can give rise to two additional emission components, one produced inside the GRB blast wave and one associated with an escaping beam of ultra-high energy (UHE; ⪆1014 eV) neutrons, γ rays, and neutrinos. The first component extending to ˜100 MeV is from a pair-photon cascade induced by photomeson processes with the internal synchrotron photons coincident with the prompt radiation. The outflowing UHE neutral beam can undergo further interactions with external photons from the backscattered photon field to produce a beam of hyper-relativistic electrons that lose most of their energy during a fraction of a gyroperiod in the assumed Gauss-strength magnetic fields of the circumburst medium. The synchrotron radiation of these electrons has a spectrum with ν Fν index equal to +1 that can explain the anomalous component in GRB 941017. This interpretation of the spectrum of GRB 941017 requires a high baryon load of the accelerated particles in GRB blast waves. It implies that most of the radiation associated with the anomalous component is released at ⪆500 MeV, suitable for observations with GLAST, and with a comparable energy fluence in ˜100 TeV neutrinos that could be detected with a km-scale neutrino telescope like IceCube.

  7. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  8. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  9. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    SciTech Connect

    Simonin, A.; Christin, L.; Esch, H. de; Garibaldi, P.; Grand, C.; Villecroze, F.; Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M.; Brillet, A.; Chaibi, W.

    2011-09-26

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  10. Transport properties of discontinuous Co{sub 80}Fe{sub 20}/Al{sub 2}O{sub 3} multilayers, prepared by ion beam sputtering

    SciTech Connect

    Kakazei, G.N.; Freitas, P.P.; Cardoso, S.; Lopes, A.M.L.; Pereira de Azevedo, M.M.; Pogorelov, Y.G.; Sousa, J.B.

    1999-09-01

    Ion beam sputtered Co{sub 80}Fe{sub 20}(t)/Al{sub 2}O{sub 3}(30 {angstrom}) multilayers were obtained. The Co{sub 80}Fe{sub 20} layers become discontinuous for nominal thicknesses T {le} 18{angstrom}. Tunnel magnetoresistance was measured in CIP and CPP geometries, reaching up to 6.5% at room temperature and 11% at 15 K, for as-deposited films in CIP geometry. The temperature dependence of MR was found quite different for the two geometries: fairly strong in the CIP case and almost absent in the CPP geometry. A model is proposed to explain these large differences in behavior.

  11. Quantitative analysis of growth-induced reduction of long range lattice order in ion-beam sputtered YBa2Cu3O6.9 films

    NASA Astrophysics Data System (ADS)

    Gauzzi, Andrea; Pavuna, Davor

    1995-04-01

    We report evidence for the reduction of long range lattice order caused by slight departures from the optimal growth temperature in fully doped (x≊0.9) YBa2Cu3O6+x films deposited by ion-beam sputtering on <001> SrTiO3. We estimate the characteristic length of this disorder from the broadening Δϑ of the <005> x-ray diffraction rocking curve. The depression of superconductivity and normal conductivity scales as Δϑ and disappears when the in-plane lattice coherence length rc˜1/Δϑ is larger than ≊10 nm.

  12. The influence of Atomic Oxygen on the Figure of Merit of Indium Tin Oxide thin Films grown by reactive Dual Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn

    2014-03-01

    Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.

  13. Report on the engineering test of the LBL 30 second neutral beam source for the MFTF-B project

    SciTech Connect

    Vella, M.C.; Pincosy, P.A.; Hauck, C.A.; Pyle, R.V.

    1984-08-01

    Positive ion based neutral beam development in the US has centered on the long pulse, Advanced Positive Ion Source (APIS). APIS eventually focused on development of 30 second sources for MFTF-B. The Engineering Test was part of competitive testing of the LBL and ORNL long pulse sources carried out for the MFTF-B Project. The test consisted of 500 beam shots with 80 kV, 30 second deuterium, and was carried out on the Neutral Beam Engineering Test Facility (NBETF). This report summarizes the results of LBL testing, in which the LBL APIS demonstrated that it would meet the requirements for MFTF-B 30 second sources. In part as a result of this test, the LBL design was found to be suitable as the baseline for a Common Long Pulse Source design for MFTF-B, TFTR, and Doublet Upgrade.

  14. Dielectric thin-films by ion-beam sputtering deposition for III-V based infrared optoelectronic imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean

    The growing technological industry is demanding the development of powerful and smaller devices. Dielectric thin-films can play an important role to help push towards achieving these goals. However, their advantage of high-quality material and low material costs compared to bulk can only be achieved with consideration of the technique, conditions, and parameters. The sensitivity makes every step in the process extremely important, beginning from substrate preparation to the first initial layers of growth and ending with the testing/modeling of the devices. Further, not all applications want bulk-like properties, so the ability to adjust and fine tune the material characteristics opens up a wide range of opportunities with the advancements and can drive the power of the devices to an ultimate level. This work provides the motivation, theoretical basis, and experimental results for performance enhancement of optoelectronic devices through the use of high-quality dielectric thin-films by ion-beam sputtering deposition (IBSD). The advantages and disadvantages to this technique are demonstrated and compared to others. The optimization processes, relationships, and motivation of using seven different thin-film materials have been detailed and provided. Using IBSD, the performance improvements were demonstrated on infrared lasers and detectors. For lasers, a 170% increase in maximum output power was achieved using near-0% percent anti-reflection coatings (AR) and near-100% high-reflection (HR) coatings. Following, wide tunability was achieved by using the structures in an external cavity laser system, showing nearly a three-fold improvement in tuning range. Also, structurally robust lasers were achieved with a custom-tailored HR structure designed for damage resistance to high output power density operation, showing over 14W of peak output power for MOCVD lasers. For infrared photodetectors, over a 4 orders of magnitude decrease in current density and zero-bias resistance

  15. Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    SciTech Connect

    Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Fisher, R. K.; Van Zeeland, M. A.; Garcia-Munoz, M.; Darrow, D. S.; Nazikian, R.

    2010-10-15

    A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

  16. Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak.

    PubMed

    Pace, D C; Fisher, R K; García-Muñoz, M; Darrow, D S; Heidbrink, W W; Muscatello, C M; Nazikian, R; Van Zeeland, M A; Zhu, Y B

    2010-10-01

    A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

  17. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    SciTech Connect

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J.; Dlougach, E.; Krylov, A.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  18. Comparison of fast ion confinement during on-axis and off-axis neutral beam experiments on NSTX-U

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.; Medley, S. S.

    2015-11-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good fast ion confinement is essential to achieve the anticipated improvements in performance. In a planed ``sanity check'' experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses with different source mixes will be injected into quiescent L-mode plasmas to characterize the fast ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the fast ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The newly installed Solid State Neutral Particle Analyzer (SSNPA) and Fast-Ion D-Alapha (FIDA) diagnostics will be described and will be used to measure fast ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Fast ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental techniques, measurements of fast ion confinement time and distribution function, and comparisons with classical predictions from NUBEAM modeling will be presented in detail. Work supported by US DOE.

  19. Assessment and modification of an ion source grid design in KSTAR neutral beam system.

    PubMed

    Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Choi, Bo Guen; Kim, Tae-Seong; Jeong, Seung Ho

    2014-02-01

    A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m(2) heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment. PMID:24593583

  20. High frequency core localized modes in neutral beam heated plasmas on TFTR

    SciTech Connect

    Nazikian, R.; Chang, Z.; Fredrickson, E.D.

    1995-11-01

    A band of high frequency modes in the range 50--150 kHz with intermediate toroidal mode numbers 4 < n < 10 are commonly observed in the core of supershot plasmas on TFTR. Two distinct varieties of MHD modes are identified corresponding to a flute-like mode predominantly appearing around the q = 1 surface and an outward ballooning mode for q > 1. The flute-like modes have nearly equal amplitude on the high field and low field side of the magnetic axis and are mostly observed in moderate performance supershot plasmas with {tau}{sub E} < 2{tau}{sub L} while the ballooning-like modes have enhanced amplitude on the low field side of the magnetic axis and tend to appear in higher performance supershot plasmas with {tau}{sub E} > 2{tau}{sub L}, where {tau}{sub L} is the equivalent L-mode confinement time. The modes propagate in the ion diamagnetic drift direction and are highly localized with radial widths {Delta}r {approximately} 5--10 cm, fluctuation levels {tilde n}/n, {tilde T}{sub e}/T{sub e} < 0.01, and radial displacements {zeta}{sub r} {approximately} 0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR, these modes are typically much weaker, more benign, and may be indicative of kinetic ballooning modes destabilized by resonant circulating neutral beam ions.